1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/cpu.h>
18#include <linux/cpufreq.h>
19#include <linux/cpu_cooling.h>
20#include <linux/delay.h>
21#include <linux/device.h>
22#include <linux/init.h>
23#include <linux/kernel_stat.h>
24#include <linux/module.h>
25#include <linux/mutex.h>
26#include <linux/pm_qos.h>
27#include <linux/slab.h>
28#include <linux/suspend.h>
29#include <linux/syscore_ops.h>
30#include <linux/tick.h>
31#include <linux/units.h>
32#include <trace/events/power.h>
33
34static LIST_HEAD(cpufreq_policy_list);
35
36/* Macros to iterate over CPU policies */
37#define for_each_suitable_policy(__policy, __active) \
38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 if ((__active) == !policy_is_inactive(__policy))
40
41#define for_each_active_policy(__policy) \
42 for_each_suitable_policy(__policy, true)
43#define for_each_inactive_policy(__policy) \
44 for_each_suitable_policy(__policy, false)
45
46/* Iterate over governors */
47static LIST_HEAD(cpufreq_governor_list);
48#define for_each_governor(__governor) \
49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50
51static char default_governor[CPUFREQ_NAME_LEN];
52
53/*
54 * The "cpufreq driver" - the arch- or hardware-dependent low
55 * level driver of CPUFreq support, and its spinlock. This lock
56 * also protects the cpufreq_cpu_data array.
57 */
58static struct cpufreq_driver *cpufreq_driver;
59static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63bool cpufreq_supports_freq_invariance(void)
64{
65 return static_branch_likely(&cpufreq_freq_invariance);
66}
67
68/* Flag to suspend/resume CPUFreq governors */
69static bool cpufreq_suspended;
70
71static inline bool has_target(void)
72{
73 return cpufreq_driver->target_index || cpufreq_driver->target;
74}
75
76bool has_target_index(void)
77{
78 return !!cpufreq_driver->target_index;
79}
80
81/* internal prototypes */
82static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83static int cpufreq_init_governor(struct cpufreq_policy *policy);
84static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 struct cpufreq_governor *new_gov,
88 unsigned int new_pol);
89static bool cpufreq_boost_supported(void);
90
91/*
92 * Two notifier lists: the "policy" list is involved in the
93 * validation process for a new CPU frequency policy; the
94 * "transition" list for kernel code that needs to handle
95 * changes to devices when the CPU clock speed changes.
96 * The mutex locks both lists.
97 */
98static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100
101static int off __read_mostly;
102static int cpufreq_disabled(void)
103{
104 return off;
105}
106void disable_cpufreq(void)
107{
108 off = 1;
109}
110static DEFINE_MUTEX(cpufreq_governor_mutex);
111
112bool have_governor_per_policy(void)
113{
114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115}
116EXPORT_SYMBOL_GPL(have_governor_per_policy);
117
118static struct kobject *cpufreq_global_kobject;
119
120struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121{
122 if (have_governor_per_policy())
123 return &policy->kobj;
124 else
125 return cpufreq_global_kobject;
126}
127EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130{
131 struct kernel_cpustat kcpustat;
132 u64 cur_wall_time;
133 u64 idle_time;
134 u64 busy_time;
135
136 cur_wall_time = jiffies64_to_nsecs(j: get_jiffies_64());
137
138 kcpustat_cpu_fetch(dst: &kcpustat, cpu);
139
140 busy_time = kcpustat.cpustat[CPUTIME_USER];
141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 busy_time += kcpustat.cpustat[CPUTIME_NICE];
146
147 idle_time = cur_wall_time - busy_time;
148 if (wall)
149 *wall = div_u64(dividend: cur_wall_time, NSEC_PER_USEC);
150
151 return div_u64(dividend: idle_time, NSEC_PER_USEC);
152}
153
154u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155{
156 u64 idle_time = get_cpu_idle_time_us(cpu, last_update_time: io_busy ? wall : NULL);
157
158 if (idle_time == -1ULL)
159 return get_cpu_idle_time_jiffy(cpu, wall);
160 else if (!io_busy)
161 idle_time += get_cpu_iowait_time_us(cpu, last_update_time: wall);
162
163 return idle_time;
164}
165EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166
167/*
168 * This is a generic cpufreq init() routine which can be used by cpufreq
169 * drivers of SMP systems. It will do following:
170 * - validate & show freq table passed
171 * - set policies transition latency
172 * - policy->cpus with all possible CPUs
173 */
174void cpufreq_generic_init(struct cpufreq_policy *policy,
175 struct cpufreq_frequency_table *table,
176 unsigned int transition_latency)
177{
178 policy->freq_table = table;
179 policy->cpuinfo.transition_latency = transition_latency;
180
181 /*
182 * The driver only supports the SMP configuration where all processors
183 * share the clock and voltage and clock.
184 */
185 cpumask_setall(dstp: policy->cpus);
186}
187EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188
189struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190{
191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192
193 return policy && cpumask_test_cpu(cpu, cpumask: policy->cpus) ? policy : NULL;
194}
195EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196
197unsigned int cpufreq_generic_get(unsigned int cpu)
198{
199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200
201 if (!policy || IS_ERR(ptr: policy->clk)) {
202 pr_err("%s: No %s associated to cpu: %d\n",
203 __func__, policy ? "clk" : "policy", cpu);
204 return 0;
205 }
206
207 return clk_get_rate(clk: policy->clk) / 1000;
208}
209EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210
211/**
212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213 * @cpu: CPU to find the policy for.
214 *
215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216 * the kobject reference counter of that policy. Return a valid policy on
217 * success or NULL on failure.
218 *
219 * The policy returned by this function has to be released with the help of
220 * cpufreq_cpu_put() to balance its kobject reference counter properly.
221 */
222struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223{
224 struct cpufreq_policy *policy = NULL;
225 unsigned long flags;
226
227 if (WARN_ON(cpu >= nr_cpu_ids))
228 return NULL;
229
230 /* get the cpufreq driver */
231 read_lock_irqsave(&cpufreq_driver_lock, flags);
232
233 if (cpufreq_driver) {
234 /* get the CPU */
235 policy = cpufreq_cpu_get_raw(cpu);
236 if (policy)
237 kobject_get(kobj: &policy->kobj);
238 }
239
240 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241
242 return policy;
243}
244EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245
246/**
247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248 * @policy: cpufreq policy returned by cpufreq_cpu_get().
249 */
250void cpufreq_cpu_put(struct cpufreq_policy *policy)
251{
252 kobject_put(kobj: &policy->kobj);
253}
254EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255
256/**
257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259 */
260void cpufreq_cpu_release(struct cpufreq_policy *policy)
261{
262 if (WARN_ON(!policy))
263 return;
264
265 lockdep_assert_held(&policy->rwsem);
266
267 up_write(sem: &policy->rwsem);
268
269 cpufreq_cpu_put(policy);
270}
271
272/**
273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274 * @cpu: CPU to find the policy for.
275 *
276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277 * if the policy returned by it is not NULL, acquire its rwsem for writing.
278 * Return the policy if it is active or release it and return NULL otherwise.
279 *
280 * The policy returned by this function has to be released with the help of
281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282 * counter properly.
283 */
284struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285{
286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287
288 if (!policy)
289 return NULL;
290
291 down_write(sem: &policy->rwsem);
292
293 if (policy_is_inactive(policy)) {
294 cpufreq_cpu_release(policy);
295 return NULL;
296 }
297
298 return policy;
299}
300
301/*********************************************************************
302 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
303 *********************************************************************/
304
305/**
306 * adjust_jiffies - Adjust the system "loops_per_jiffy".
307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308 * @ci: Frequency change information.
309 *
310 * This function alters the system "loops_per_jiffy" for the clock
311 * speed change. Note that loops_per_jiffy cannot be updated on SMP
312 * systems as each CPU might be scaled differently. So, use the arch
313 * per-CPU loops_per_jiffy value wherever possible.
314 */
315static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316{
317#ifndef CONFIG_SMP
318 static unsigned long l_p_j_ref;
319 static unsigned int l_p_j_ref_freq;
320
321 if (ci->flags & CPUFREQ_CONST_LOOPS)
322 return;
323
324 if (!l_p_j_ref_freq) {
325 l_p_j_ref = loops_per_jiffy;
326 l_p_j_ref_freq = ci->old;
327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 l_p_j_ref, l_p_j_ref_freq);
329 }
330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 ci->new);
333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 loops_per_jiffy, ci->new);
335 }
336#endif
337}
338
339/**
340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341 * @policy: cpufreq policy to enable fast frequency switching for.
342 * @freqs: contain details of the frequency update.
343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344 *
345 * This function calls the transition notifiers and adjust_jiffies().
346 *
347 * It is called twice on all CPU frequency changes that have external effects.
348 */
349static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 struct cpufreq_freqs *freqs,
351 unsigned int state)
352{
353 int cpu;
354
355 BUG_ON(irqs_disabled());
356
357 if (cpufreq_disabled())
358 return;
359
360 freqs->policy = policy;
361 freqs->flags = cpufreq_driver->flags;
362 pr_debug("notification %u of frequency transition to %u kHz\n",
363 state, freqs->new);
364
365 switch (state) {
366 case CPUFREQ_PRECHANGE:
367 /*
368 * Detect if the driver reported a value as "old frequency"
369 * which is not equal to what the cpufreq core thinks is
370 * "old frequency".
371 */
372 if (policy->cur && policy->cur != freqs->old) {
373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 freqs->old, policy->cur);
375 freqs->old = policy->cur;
376 }
377
378 srcu_notifier_call_chain(nh: &cpufreq_transition_notifier_list,
379 CPUFREQ_PRECHANGE, v: freqs);
380
381 adjust_jiffies(CPUFREQ_PRECHANGE, ci: freqs);
382 break;
383
384 case CPUFREQ_POSTCHANGE:
385 adjust_jiffies(CPUFREQ_POSTCHANGE, ci: freqs);
386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 cpumask_pr_args(policy->cpus));
388
389 for_each_cpu(cpu, policy->cpus)
390 trace_cpu_frequency(frequency: freqs->new, cpu_id: cpu);
391
392 srcu_notifier_call_chain(nh: &cpufreq_transition_notifier_list,
393 CPUFREQ_POSTCHANGE, v: freqs);
394
395 cpufreq_stats_record_transition(policy, new_freq: freqs->new);
396 policy->cur = freqs->new;
397 }
398}
399
400/* Do post notifications when there are chances that transition has failed */
401static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 struct cpufreq_freqs *freqs, int transition_failed)
403{
404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 if (!transition_failed)
406 return;
407
408 swap(freqs->old, freqs->new);
409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411}
412
413void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 struct cpufreq_freqs *freqs)
415{
416
417 /*
418 * Catch double invocations of _begin() which lead to self-deadlock.
419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 * doesn't invoke _begin() on their behalf, and hence the chances of
421 * double invocations are very low. Moreover, there are scenarios
422 * where these checks can emit false-positive warnings in these
423 * drivers; so we avoid that by skipping them altogether.
424 */
425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 && current == policy->transition_task);
427
428wait:
429 wait_event(policy->transition_wait, !policy->transition_ongoing);
430
431 spin_lock(lock: &policy->transition_lock);
432
433 if (unlikely(policy->transition_ongoing)) {
434 spin_unlock(lock: &policy->transition_lock);
435 goto wait;
436 }
437
438 policy->transition_ongoing = true;
439 policy->transition_task = current;
440
441 spin_unlock(lock: &policy->transition_lock);
442
443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444}
445EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446
447void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 struct cpufreq_freqs *freqs, int transition_failed)
449{
450 if (WARN_ON(!policy->transition_ongoing))
451 return;
452
453 cpufreq_notify_post_transition(policy, freqs, transition_failed);
454
455 arch_set_freq_scale(cpus: policy->related_cpus,
456 cur_freq: policy->cur,
457 max_freq: arch_scale_freq_ref(cpu: policy->cpu));
458
459 spin_lock(lock: &policy->transition_lock);
460 policy->transition_ongoing = false;
461 policy->transition_task = NULL;
462 spin_unlock(lock: &policy->transition_lock);
463
464 wake_up(&policy->transition_wait);
465}
466EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467
468/*
469 * Fast frequency switching status count. Positive means "enabled", negative
470 * means "disabled" and 0 means "not decided yet".
471 */
472static int cpufreq_fast_switch_count;
473static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474
475static void cpufreq_list_transition_notifiers(void)
476{
477 struct notifier_block *nb;
478
479 pr_info("Registered transition notifiers:\n");
480
481 mutex_lock(&cpufreq_transition_notifier_list.mutex);
482
483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 pr_info("%pS\n", nb->notifier_call);
485
486 mutex_unlock(lock: &cpufreq_transition_notifier_list.mutex);
487}
488
489/**
490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491 * @policy: cpufreq policy to enable fast frequency switching for.
492 *
493 * Try to enable fast frequency switching for @policy.
494 *
495 * The attempt will fail if there is at least one transition notifier registered
496 * at this point, as fast frequency switching is quite fundamentally at odds
497 * with transition notifiers. Thus if successful, it will make registration of
498 * transition notifiers fail going forward.
499 */
500void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501{
502 lockdep_assert_held(&policy->rwsem);
503
504 if (!policy->fast_switch_possible)
505 return;
506
507 mutex_lock(&cpufreq_fast_switch_lock);
508 if (cpufreq_fast_switch_count >= 0) {
509 cpufreq_fast_switch_count++;
510 policy->fast_switch_enabled = true;
511 } else {
512 pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 policy->cpu);
514 cpufreq_list_transition_notifiers();
515 }
516 mutex_unlock(lock: &cpufreq_fast_switch_lock);
517}
518EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519
520/**
521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522 * @policy: cpufreq policy to disable fast frequency switching for.
523 */
524void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525{
526 mutex_lock(&cpufreq_fast_switch_lock);
527 if (policy->fast_switch_enabled) {
528 policy->fast_switch_enabled = false;
529 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 cpufreq_fast_switch_count--;
531 }
532 mutex_unlock(lock: &cpufreq_fast_switch_lock);
533}
534EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535
536static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 unsigned int target_freq, unsigned int relation)
538{
539 unsigned int idx;
540
541 target_freq = clamp_val(target_freq, policy->min, policy->max);
542
543 if (!policy->freq_table)
544 return target_freq;
545
546 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 policy->cached_resolved_idx = idx;
548 policy->cached_target_freq = target_freq;
549 return policy->freq_table[idx].frequency;
550}
551
552/**
553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554 * one.
555 * @policy: associated policy to interrogate
556 * @target_freq: target frequency to resolve.
557 *
558 * The target to driver frequency mapping is cached in the policy.
559 *
560 * Return: Lowest driver-supported frequency greater than or equal to the
561 * given target_freq, subject to policy (min/max) and driver limitations.
562 */
563unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 unsigned int target_freq)
565{
566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567}
568EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569
570unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571{
572 unsigned int latency;
573
574 if (policy->transition_delay_us)
575 return policy->transition_delay_us;
576
577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 if (latency) {
579 unsigned int max_delay_us = 2 * MSEC_PER_SEC;
580
581 /*
582 * If the platform already has high transition_latency, use it
583 * as-is.
584 */
585 if (latency > max_delay_us)
586 return latency;
587
588 /*
589 * For platforms that can change the frequency very fast (< 2
590 * us), the above formula gives a decent transition delay. But
591 * for platforms where transition_latency is in milliseconds, it
592 * ends up giving unrealistic values.
593 *
594 * Cap the default transition delay to 2 ms, which seems to be
595 * a reasonable amount of time after which we should reevaluate
596 * the frequency.
597 */
598 return min(latency * LATENCY_MULTIPLIER, max_delay_us);
599 }
600
601 return LATENCY_MULTIPLIER;
602}
603EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
604
605/*********************************************************************
606 * SYSFS INTERFACE *
607 *********************************************************************/
608static ssize_t show_boost(struct kobject *kobj,
609 struct kobj_attribute *attr, char *buf)
610{
611 return sprintf(buf, fmt: "%d\n", cpufreq_driver->boost_enabled);
612}
613
614static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
615 const char *buf, size_t count)
616{
617 int ret, enable;
618
619 ret = sscanf(buf, "%d", &enable);
620 if (ret != 1 || enable < 0 || enable > 1)
621 return -EINVAL;
622
623 if (cpufreq_boost_trigger_state(state: enable)) {
624 pr_err("%s: Cannot %s BOOST!\n",
625 __func__, enable ? "enable" : "disable");
626 return -EINVAL;
627 }
628
629 pr_debug("%s: cpufreq BOOST %s\n",
630 __func__, enable ? "enabled" : "disabled");
631
632 return count;
633}
634define_one_global_rw(boost);
635
636static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
637{
638 return sysfs_emit(buf, fmt: "%d\n", policy->boost_enabled);
639}
640
641static ssize_t store_local_boost(struct cpufreq_policy *policy,
642 const char *buf, size_t count)
643{
644 int ret, enable;
645
646 ret = kstrtoint(s: buf, base: 10, res: &enable);
647 if (ret || enable < 0 || enable > 1)
648 return -EINVAL;
649
650 if (!cpufreq_driver->boost_enabled)
651 return -EINVAL;
652
653 if (policy->boost_enabled == enable)
654 return count;
655
656 policy->boost_enabled = enable;
657
658 cpus_read_lock();
659 ret = cpufreq_driver->set_boost(policy, enable);
660 cpus_read_unlock();
661
662 if (ret) {
663 policy->boost_enabled = !policy->boost_enabled;
664 return ret;
665 }
666
667 return count;
668}
669
670static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
671
672static struct cpufreq_governor *find_governor(const char *str_governor)
673{
674 struct cpufreq_governor *t;
675
676 for_each_governor(t)
677 if (!strncasecmp(s1: str_governor, s2: t->name, CPUFREQ_NAME_LEN))
678 return t;
679
680 return NULL;
681}
682
683static struct cpufreq_governor *get_governor(const char *str_governor)
684{
685 struct cpufreq_governor *t;
686
687 mutex_lock(&cpufreq_governor_mutex);
688 t = find_governor(str_governor);
689 if (!t)
690 goto unlock;
691
692 if (!try_module_get(module: t->owner))
693 t = NULL;
694
695unlock:
696 mutex_unlock(lock: &cpufreq_governor_mutex);
697
698 return t;
699}
700
701static unsigned int cpufreq_parse_policy(char *str_governor)
702{
703 if (!strncasecmp(s1: str_governor, s2: "performance", CPUFREQ_NAME_LEN))
704 return CPUFREQ_POLICY_PERFORMANCE;
705
706 if (!strncasecmp(s1: str_governor, s2: "powersave", CPUFREQ_NAME_LEN))
707 return CPUFREQ_POLICY_POWERSAVE;
708
709 return CPUFREQ_POLICY_UNKNOWN;
710}
711
712/**
713 * cpufreq_parse_governor - parse a governor string only for has_target()
714 * @str_governor: Governor name.
715 */
716static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
717{
718 struct cpufreq_governor *t;
719
720 t = get_governor(str_governor);
721 if (t)
722 return t;
723
724 if (request_module("cpufreq_%s", str_governor))
725 return NULL;
726
727 return get_governor(str_governor);
728}
729
730/*
731 * cpufreq_per_cpu_attr_read() / show_##file_name() -
732 * print out cpufreq information
733 *
734 * Write out information from cpufreq_driver->policy[cpu]; object must be
735 * "unsigned int".
736 */
737
738#define show_one(file_name, object) \
739static ssize_t show_##file_name \
740(struct cpufreq_policy *policy, char *buf) \
741{ \
742 return sprintf(buf, "%u\n", policy->object); \
743}
744
745show_one(cpuinfo_min_freq, cpuinfo.min_freq);
746show_one(cpuinfo_max_freq, cpuinfo.max_freq);
747show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
748show_one(scaling_min_freq, min);
749show_one(scaling_max_freq, max);
750
751__weak unsigned int arch_freq_get_on_cpu(int cpu)
752{
753 return 0;
754}
755
756static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
757{
758 ssize_t ret;
759 unsigned int freq;
760
761 freq = arch_freq_get_on_cpu(cpu: policy->cpu);
762 if (freq)
763 ret = sprintf(buf, fmt: "%u\n", freq);
764 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
765 ret = sprintf(buf, fmt: "%u\n", cpufreq_driver->get(policy->cpu));
766 else
767 ret = sprintf(buf, fmt: "%u\n", policy->cur);
768 return ret;
769}
770
771/*
772 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
773 */
774#define store_one(file_name, object) \
775static ssize_t store_##file_name \
776(struct cpufreq_policy *policy, const char *buf, size_t count) \
777{ \
778 unsigned long val; \
779 int ret; \
780 \
781 ret = kstrtoul(buf, 0, &val); \
782 if (ret) \
783 return ret; \
784 \
785 ret = freq_qos_update_request(policy->object##_freq_req, val);\
786 return ret >= 0 ? count : ret; \
787}
788
789store_one(scaling_min_freq, min);
790store_one(scaling_max_freq, max);
791
792/*
793 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
794 */
795static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
796 char *buf)
797{
798 unsigned int cur_freq = __cpufreq_get(policy);
799
800 if (cur_freq)
801 return sprintf(buf, fmt: "%u\n", cur_freq);
802
803 return sprintf(buf, fmt: "<unknown>\n");
804}
805
806/*
807 * show_scaling_governor - show the current policy for the specified CPU
808 */
809static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
810{
811 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
812 return sprintf(buf, fmt: "powersave\n");
813 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
814 return sprintf(buf, fmt: "performance\n");
815 else if (policy->governor)
816 return scnprintf(buf, CPUFREQ_NAME_PLEN, fmt: "%s\n",
817 policy->governor->name);
818 return -EINVAL;
819}
820
821/*
822 * store_scaling_governor - store policy for the specified CPU
823 */
824static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
825 const char *buf, size_t count)
826{
827 char str_governor[16];
828 int ret;
829
830 ret = sscanf(buf, "%15s", str_governor);
831 if (ret != 1)
832 return -EINVAL;
833
834 if (cpufreq_driver->setpolicy) {
835 unsigned int new_pol;
836
837 new_pol = cpufreq_parse_policy(str_governor);
838 if (!new_pol)
839 return -EINVAL;
840
841 ret = cpufreq_set_policy(policy, NULL, new_pol);
842 } else {
843 struct cpufreq_governor *new_gov;
844
845 new_gov = cpufreq_parse_governor(str_governor);
846 if (!new_gov)
847 return -EINVAL;
848
849 ret = cpufreq_set_policy(policy, new_gov,
850 CPUFREQ_POLICY_UNKNOWN);
851
852 module_put(module: new_gov->owner);
853 }
854
855 return ret ? ret : count;
856}
857
858/*
859 * show_scaling_driver - show the cpufreq driver currently loaded
860 */
861static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
862{
863 return scnprintf(buf, CPUFREQ_NAME_PLEN, fmt: "%s\n", cpufreq_driver->name);
864}
865
866/*
867 * show_scaling_available_governors - show the available CPUfreq governors
868 */
869static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
870 char *buf)
871{
872 ssize_t i = 0;
873 struct cpufreq_governor *t;
874
875 if (!has_target()) {
876 i += sprintf(buf, fmt: "performance powersave");
877 goto out;
878 }
879
880 mutex_lock(&cpufreq_governor_mutex);
881 for_each_governor(t) {
882 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
883 - (CPUFREQ_NAME_LEN + 2)))
884 break;
885 i += scnprintf(buf: &buf[i], CPUFREQ_NAME_PLEN, fmt: "%s ", t->name);
886 }
887 mutex_unlock(lock: &cpufreq_governor_mutex);
888out:
889 i += sprintf(buf: &buf[i], fmt: "\n");
890 return i;
891}
892
893ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
894{
895 ssize_t i = 0;
896 unsigned int cpu;
897
898 for_each_cpu(cpu, mask) {
899 i += scnprintf(buf: &buf[i], size: (PAGE_SIZE - i - 2), fmt: "%u ", cpu);
900 if (i >= (PAGE_SIZE - 5))
901 break;
902 }
903
904 /* Remove the extra space at the end */
905 i--;
906
907 i += sprintf(buf: &buf[i], fmt: "\n");
908 return i;
909}
910EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
911
912/*
913 * show_related_cpus - show the CPUs affected by each transition even if
914 * hw coordination is in use
915 */
916static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
917{
918 return cpufreq_show_cpus(policy->related_cpus, buf);
919}
920
921/*
922 * show_affected_cpus - show the CPUs affected by each transition
923 */
924static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
925{
926 return cpufreq_show_cpus(policy->cpus, buf);
927}
928
929static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
930 const char *buf, size_t count)
931{
932 unsigned int freq = 0;
933 unsigned int ret;
934
935 if (!policy->governor || !policy->governor->store_setspeed)
936 return -EINVAL;
937
938 ret = sscanf(buf, "%u", &freq);
939 if (ret != 1)
940 return -EINVAL;
941
942 policy->governor->store_setspeed(policy, freq);
943
944 return count;
945}
946
947static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
948{
949 if (!policy->governor || !policy->governor->show_setspeed)
950 return sprintf(buf, fmt: "<unsupported>\n");
951
952 return policy->governor->show_setspeed(policy, buf);
953}
954
955/*
956 * show_bios_limit - show the current cpufreq HW/BIOS limitation
957 */
958static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
959{
960 unsigned int limit;
961 int ret;
962 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
963 if (!ret)
964 return sprintf(buf, fmt: "%u\n", limit);
965 return sprintf(buf, fmt: "%u\n", policy->cpuinfo.max_freq);
966}
967
968cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
969cpufreq_freq_attr_ro(cpuinfo_min_freq);
970cpufreq_freq_attr_ro(cpuinfo_max_freq);
971cpufreq_freq_attr_ro(cpuinfo_transition_latency);
972cpufreq_freq_attr_ro(scaling_available_governors);
973cpufreq_freq_attr_ro(scaling_driver);
974cpufreq_freq_attr_ro(scaling_cur_freq);
975cpufreq_freq_attr_ro(bios_limit);
976cpufreq_freq_attr_ro(related_cpus);
977cpufreq_freq_attr_ro(affected_cpus);
978cpufreq_freq_attr_rw(scaling_min_freq);
979cpufreq_freq_attr_rw(scaling_max_freq);
980cpufreq_freq_attr_rw(scaling_governor);
981cpufreq_freq_attr_rw(scaling_setspeed);
982
983static struct attribute *cpufreq_attrs[] = {
984 &cpuinfo_min_freq.attr,
985 &cpuinfo_max_freq.attr,
986 &cpuinfo_transition_latency.attr,
987 &scaling_min_freq.attr,
988 &scaling_max_freq.attr,
989 &affected_cpus.attr,
990 &related_cpus.attr,
991 &scaling_governor.attr,
992 &scaling_driver.attr,
993 &scaling_available_governors.attr,
994 &scaling_setspeed.attr,
995 NULL
996};
997ATTRIBUTE_GROUPS(cpufreq);
998
999#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
1000#define to_attr(a) container_of(a, struct freq_attr, attr)
1001
1002static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1003{
1004 struct cpufreq_policy *policy = to_policy(kobj);
1005 struct freq_attr *fattr = to_attr(attr);
1006 ssize_t ret = -EBUSY;
1007
1008 if (!fattr->show)
1009 return -EIO;
1010
1011 down_read(sem: &policy->rwsem);
1012 if (likely(!policy_is_inactive(policy)))
1013 ret = fattr->show(policy, buf);
1014 up_read(sem: &policy->rwsem);
1015
1016 return ret;
1017}
1018
1019static ssize_t store(struct kobject *kobj, struct attribute *attr,
1020 const char *buf, size_t count)
1021{
1022 struct cpufreq_policy *policy = to_policy(kobj);
1023 struct freq_attr *fattr = to_attr(attr);
1024 ssize_t ret = -EBUSY;
1025
1026 if (!fattr->store)
1027 return -EIO;
1028
1029 down_write(sem: &policy->rwsem);
1030 if (likely(!policy_is_inactive(policy)))
1031 ret = fattr->store(policy, buf, count);
1032 up_write(sem: &policy->rwsem);
1033
1034 return ret;
1035}
1036
1037static void cpufreq_sysfs_release(struct kobject *kobj)
1038{
1039 struct cpufreq_policy *policy = to_policy(kobj);
1040 pr_debug("last reference is dropped\n");
1041 complete(&policy->kobj_unregister);
1042}
1043
1044static const struct sysfs_ops sysfs_ops = {
1045 .show = show,
1046 .store = store,
1047};
1048
1049static const struct kobj_type ktype_cpufreq = {
1050 .sysfs_ops = &sysfs_ops,
1051 .default_groups = cpufreq_groups,
1052 .release = cpufreq_sysfs_release,
1053};
1054
1055static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1056 struct device *dev)
1057{
1058 if (unlikely(!dev))
1059 return;
1060
1061 if (cpumask_test_and_set_cpu(cpu, cpumask: policy->real_cpus))
1062 return;
1063
1064 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1065 if (sysfs_create_link(kobj: &dev->kobj, target: &policy->kobj, name: "cpufreq"))
1066 dev_err(dev, "cpufreq symlink creation failed\n");
1067}
1068
1069static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1070 struct device *dev)
1071{
1072 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1073 sysfs_remove_link(kobj: &dev->kobj, name: "cpufreq");
1074 cpumask_clear_cpu(cpu, dstp: policy->real_cpus);
1075}
1076
1077static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1078{
1079 struct freq_attr **drv_attr;
1080 int ret = 0;
1081
1082 /* set up files for this cpu device */
1083 drv_attr = cpufreq_driver->attr;
1084 while (drv_attr && *drv_attr) {
1085 ret = sysfs_create_file(kobj: &policy->kobj, attr: &((*drv_attr)->attr));
1086 if (ret)
1087 return ret;
1088 drv_attr++;
1089 }
1090 if (cpufreq_driver->get) {
1091 ret = sysfs_create_file(kobj: &policy->kobj, attr: &cpuinfo_cur_freq.attr);
1092 if (ret)
1093 return ret;
1094 }
1095
1096 ret = sysfs_create_file(kobj: &policy->kobj, attr: &scaling_cur_freq.attr);
1097 if (ret)
1098 return ret;
1099
1100 if (cpufreq_driver->bios_limit) {
1101 ret = sysfs_create_file(kobj: &policy->kobj, attr: &bios_limit.attr);
1102 if (ret)
1103 return ret;
1104 }
1105
1106 if (cpufreq_boost_supported()) {
1107 ret = sysfs_create_file(kobj: &policy->kobj, attr: &local_boost.attr);
1108 if (ret)
1109 return ret;
1110 }
1111
1112 return 0;
1113}
1114
1115static int cpufreq_init_policy(struct cpufreq_policy *policy)
1116{
1117 struct cpufreq_governor *gov = NULL;
1118 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1119 int ret;
1120
1121 if (has_target()) {
1122 /* Update policy governor to the one used before hotplug. */
1123 gov = get_governor(str_governor: policy->last_governor);
1124 if (gov) {
1125 pr_debug("Restoring governor %s for cpu %d\n",
1126 gov->name, policy->cpu);
1127 } else {
1128 gov = get_governor(str_governor: default_governor);
1129 }
1130
1131 if (!gov) {
1132 gov = cpufreq_default_governor();
1133 __module_get(module: gov->owner);
1134 }
1135
1136 } else {
1137
1138 /* Use the default policy if there is no last_policy. */
1139 if (policy->last_policy) {
1140 pol = policy->last_policy;
1141 } else {
1142 pol = cpufreq_parse_policy(str_governor: default_governor);
1143 /*
1144 * In case the default governor is neither "performance"
1145 * nor "powersave", fall back to the initial policy
1146 * value set by the driver.
1147 */
1148 if (pol == CPUFREQ_POLICY_UNKNOWN)
1149 pol = policy->policy;
1150 }
1151 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1152 pol != CPUFREQ_POLICY_POWERSAVE)
1153 return -ENODATA;
1154 }
1155
1156 ret = cpufreq_set_policy(policy, new_gov: gov, new_pol: pol);
1157 if (gov)
1158 module_put(module: gov->owner);
1159
1160 return ret;
1161}
1162
1163static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1164{
1165 int ret = 0;
1166
1167 /* Has this CPU been taken care of already? */
1168 if (cpumask_test_cpu(cpu, cpumask: policy->cpus))
1169 return 0;
1170
1171 down_write(sem: &policy->rwsem);
1172 if (has_target())
1173 cpufreq_stop_governor(policy);
1174
1175 cpumask_set_cpu(cpu, dstp: policy->cpus);
1176
1177 if (has_target()) {
1178 ret = cpufreq_start_governor(policy);
1179 if (ret)
1180 pr_err("%s: Failed to start governor\n", __func__);
1181 }
1182 up_write(sem: &policy->rwsem);
1183 return ret;
1184}
1185
1186void refresh_frequency_limits(struct cpufreq_policy *policy)
1187{
1188 if (!policy_is_inactive(policy)) {
1189 pr_debug("updating policy for CPU %u\n", policy->cpu);
1190
1191 cpufreq_set_policy(policy, new_gov: policy->governor, new_pol: policy->policy);
1192 }
1193}
1194EXPORT_SYMBOL(refresh_frequency_limits);
1195
1196static void handle_update(struct work_struct *work)
1197{
1198 struct cpufreq_policy *policy =
1199 container_of(work, struct cpufreq_policy, update);
1200
1201 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1202 down_write(sem: &policy->rwsem);
1203 refresh_frequency_limits(policy);
1204 up_write(sem: &policy->rwsem);
1205}
1206
1207static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1208 void *data)
1209{
1210 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1211
1212 schedule_work(work: &policy->update);
1213 return 0;
1214}
1215
1216static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1217 void *data)
1218{
1219 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1220
1221 schedule_work(work: &policy->update);
1222 return 0;
1223}
1224
1225static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1226{
1227 struct kobject *kobj;
1228 struct completion *cmp;
1229
1230 down_write(sem: &policy->rwsem);
1231 cpufreq_stats_free_table(policy);
1232 kobj = &policy->kobj;
1233 cmp = &policy->kobj_unregister;
1234 up_write(sem: &policy->rwsem);
1235 kobject_put(kobj);
1236
1237 /*
1238 * We need to make sure that the underlying kobj is
1239 * actually not referenced anymore by anybody before we
1240 * proceed with unloading.
1241 */
1242 pr_debug("waiting for dropping of refcount\n");
1243 wait_for_completion(cmp);
1244 pr_debug("wait complete\n");
1245}
1246
1247static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1248{
1249 struct cpufreq_policy *policy;
1250 struct device *dev = get_cpu_device(cpu);
1251 int ret;
1252
1253 if (!dev)
1254 return NULL;
1255
1256 policy = kzalloc(size: sizeof(*policy), GFP_KERNEL);
1257 if (!policy)
1258 return NULL;
1259
1260 if (!alloc_cpumask_var(mask: &policy->cpus, GFP_KERNEL))
1261 goto err_free_policy;
1262
1263 if (!zalloc_cpumask_var(mask: &policy->related_cpus, GFP_KERNEL))
1264 goto err_free_cpumask;
1265
1266 if (!zalloc_cpumask_var(mask: &policy->real_cpus, GFP_KERNEL))
1267 goto err_free_rcpumask;
1268
1269 init_completion(x: &policy->kobj_unregister);
1270 ret = kobject_init_and_add(kobj: &policy->kobj, ktype: &ktype_cpufreq,
1271 parent: cpufreq_global_kobject, fmt: "policy%u", cpu);
1272 if (ret) {
1273 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1274 /*
1275 * The entire policy object will be freed below, but the extra
1276 * memory allocated for the kobject name needs to be freed by
1277 * releasing the kobject.
1278 */
1279 kobject_put(kobj: &policy->kobj);
1280 goto err_free_real_cpus;
1281 }
1282
1283 freq_constraints_init(qos: &policy->constraints);
1284
1285 policy->nb_min.notifier_call = cpufreq_notifier_min;
1286 policy->nb_max.notifier_call = cpufreq_notifier_max;
1287
1288 ret = freq_qos_add_notifier(qos: &policy->constraints, type: FREQ_QOS_MIN,
1289 notifier: &policy->nb_min);
1290 if (ret) {
1291 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1292 ret, cpu);
1293 goto err_kobj_remove;
1294 }
1295
1296 ret = freq_qos_add_notifier(qos: &policy->constraints, type: FREQ_QOS_MAX,
1297 notifier: &policy->nb_max);
1298 if (ret) {
1299 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1300 ret, cpu);
1301 goto err_min_qos_notifier;
1302 }
1303
1304 INIT_LIST_HEAD(list: &policy->policy_list);
1305 init_rwsem(&policy->rwsem);
1306 spin_lock_init(&policy->transition_lock);
1307 init_waitqueue_head(&policy->transition_wait);
1308 INIT_WORK(&policy->update, handle_update);
1309
1310 policy->cpu = cpu;
1311 return policy;
1312
1313err_min_qos_notifier:
1314 freq_qos_remove_notifier(qos: &policy->constraints, type: FREQ_QOS_MIN,
1315 notifier: &policy->nb_min);
1316err_kobj_remove:
1317 cpufreq_policy_put_kobj(policy);
1318err_free_real_cpus:
1319 free_cpumask_var(mask: policy->real_cpus);
1320err_free_rcpumask:
1321 free_cpumask_var(mask: policy->related_cpus);
1322err_free_cpumask:
1323 free_cpumask_var(mask: policy->cpus);
1324err_free_policy:
1325 kfree(objp: policy);
1326
1327 return NULL;
1328}
1329
1330static void cpufreq_policy_free(struct cpufreq_policy *policy)
1331{
1332 unsigned long flags;
1333 int cpu;
1334
1335 /*
1336 * The callers must ensure the policy is inactive by now, to avoid any
1337 * races with show()/store() callbacks.
1338 */
1339 if (unlikely(!policy_is_inactive(policy)))
1340 pr_warn("%s: Freeing active policy\n", __func__);
1341
1342 /* Remove policy from list */
1343 write_lock_irqsave(&cpufreq_driver_lock, flags);
1344 list_del(entry: &policy->policy_list);
1345
1346 for_each_cpu(cpu, policy->related_cpus)
1347 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1348 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1349
1350 freq_qos_remove_notifier(qos: &policy->constraints, type: FREQ_QOS_MAX,
1351 notifier: &policy->nb_max);
1352 freq_qos_remove_notifier(qos: &policy->constraints, type: FREQ_QOS_MIN,
1353 notifier: &policy->nb_min);
1354
1355 /* Cancel any pending policy->update work before freeing the policy. */
1356 cancel_work_sync(work: &policy->update);
1357
1358 if (policy->max_freq_req) {
1359 /*
1360 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1361 * notification, since CPUFREQ_CREATE_POLICY notification was
1362 * sent after adding max_freq_req earlier.
1363 */
1364 blocking_notifier_call_chain(nh: &cpufreq_policy_notifier_list,
1365 CPUFREQ_REMOVE_POLICY, v: policy);
1366 freq_qos_remove_request(req: policy->max_freq_req);
1367 }
1368
1369 freq_qos_remove_request(req: policy->min_freq_req);
1370 kfree(objp: policy->min_freq_req);
1371
1372 cpufreq_policy_put_kobj(policy);
1373 free_cpumask_var(mask: policy->real_cpus);
1374 free_cpumask_var(mask: policy->related_cpus);
1375 free_cpumask_var(mask: policy->cpus);
1376 kfree(objp: policy);
1377}
1378
1379static int cpufreq_online(unsigned int cpu)
1380{
1381 struct cpufreq_policy *policy;
1382 bool new_policy;
1383 unsigned long flags;
1384 unsigned int j;
1385 int ret;
1386
1387 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1388
1389 /* Check if this CPU already has a policy to manage it */
1390 policy = per_cpu(cpufreq_cpu_data, cpu);
1391 if (policy) {
1392 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1393 if (!policy_is_inactive(policy))
1394 return cpufreq_add_policy_cpu(policy, cpu);
1395
1396 /* This is the only online CPU for the policy. Start over. */
1397 new_policy = false;
1398 down_write(sem: &policy->rwsem);
1399 policy->cpu = cpu;
1400 policy->governor = NULL;
1401 } else {
1402 new_policy = true;
1403 policy = cpufreq_policy_alloc(cpu);
1404 if (!policy)
1405 return -ENOMEM;
1406 down_write(sem: &policy->rwsem);
1407 }
1408
1409 if (!new_policy && cpufreq_driver->online) {
1410 /* Recover policy->cpus using related_cpus */
1411 cpumask_copy(dstp: policy->cpus, srcp: policy->related_cpus);
1412
1413 ret = cpufreq_driver->online(policy);
1414 if (ret) {
1415 pr_debug("%s: %d: initialization failed\n", __func__,
1416 __LINE__);
1417 goto out_exit_policy;
1418 }
1419 } else {
1420 cpumask_copy(dstp: policy->cpus, cpumask_of(cpu));
1421
1422 /*
1423 * Call driver. From then on the cpufreq must be able
1424 * to accept all calls to ->verify and ->setpolicy for this CPU.
1425 */
1426 ret = cpufreq_driver->init(policy);
1427 if (ret) {
1428 pr_debug("%s: %d: initialization failed\n", __func__,
1429 __LINE__);
1430 goto out_free_policy;
1431 }
1432
1433 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1434 policy->boost_enabled = cpufreq_boost_enabled() && policy_has_boost_freq(policy);
1435
1436 /*
1437 * The initialization has succeeded and the policy is online.
1438 * If there is a problem with its frequency table, take it
1439 * offline and drop it.
1440 */
1441 ret = cpufreq_table_validate_and_sort(policy);
1442 if (ret)
1443 goto out_offline_policy;
1444
1445 /* related_cpus should at least include policy->cpus. */
1446 cpumask_copy(dstp: policy->related_cpus, srcp: policy->cpus);
1447 }
1448
1449 /*
1450 * affected cpus must always be the one, which are online. We aren't
1451 * managing offline cpus here.
1452 */
1453 cpumask_and(dstp: policy->cpus, src1p: policy->cpus, cpu_online_mask);
1454
1455 if (new_policy) {
1456 for_each_cpu(j, policy->related_cpus) {
1457 per_cpu(cpufreq_cpu_data, j) = policy;
1458 add_cpu_dev_symlink(policy, cpu: j, dev: get_cpu_device(cpu: j));
1459 }
1460
1461 policy->min_freq_req = kzalloc(size: 2 * sizeof(*policy->min_freq_req),
1462 GFP_KERNEL);
1463 if (!policy->min_freq_req) {
1464 ret = -ENOMEM;
1465 goto out_destroy_policy;
1466 }
1467
1468 ret = freq_qos_add_request(qos: &policy->constraints,
1469 req: policy->min_freq_req, type: FREQ_QOS_MIN,
1470 FREQ_QOS_MIN_DEFAULT_VALUE);
1471 if (ret < 0) {
1472 /*
1473 * So we don't call freq_qos_remove_request() for an
1474 * uninitialized request.
1475 */
1476 kfree(objp: policy->min_freq_req);
1477 policy->min_freq_req = NULL;
1478 goto out_destroy_policy;
1479 }
1480
1481 /*
1482 * This must be initialized right here to avoid calling
1483 * freq_qos_remove_request() on uninitialized request in case
1484 * of errors.
1485 */
1486 policy->max_freq_req = policy->min_freq_req + 1;
1487
1488 ret = freq_qos_add_request(qos: &policy->constraints,
1489 req: policy->max_freq_req, type: FREQ_QOS_MAX,
1490 FREQ_QOS_MAX_DEFAULT_VALUE);
1491 if (ret < 0) {
1492 policy->max_freq_req = NULL;
1493 goto out_destroy_policy;
1494 }
1495
1496 blocking_notifier_call_chain(nh: &cpufreq_policy_notifier_list,
1497 CPUFREQ_CREATE_POLICY, v: policy);
1498 }
1499
1500 if (cpufreq_driver->get && has_target()) {
1501 policy->cur = cpufreq_driver->get(policy->cpu);
1502 if (!policy->cur) {
1503 ret = -EIO;
1504 pr_err("%s: ->get() failed\n", __func__);
1505 goto out_destroy_policy;
1506 }
1507 }
1508
1509 /*
1510 * Sometimes boot loaders set CPU frequency to a value outside of
1511 * frequency table present with cpufreq core. In such cases CPU might be
1512 * unstable if it has to run on that frequency for long duration of time
1513 * and so its better to set it to a frequency which is specified in
1514 * freq-table. This also makes cpufreq stats inconsistent as
1515 * cpufreq-stats would fail to register because current frequency of CPU
1516 * isn't found in freq-table.
1517 *
1518 * Because we don't want this change to effect boot process badly, we go
1519 * for the next freq which is >= policy->cur ('cur' must be set by now,
1520 * otherwise we will end up setting freq to lowest of the table as 'cur'
1521 * is initialized to zero).
1522 *
1523 * We are passing target-freq as "policy->cur - 1" otherwise
1524 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1525 * equal to target-freq.
1526 */
1527 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1528 && has_target()) {
1529 unsigned int old_freq = policy->cur;
1530
1531 /* Are we running at unknown frequency ? */
1532 ret = cpufreq_frequency_table_get_index(policy, freq: old_freq);
1533 if (ret == -EINVAL) {
1534 ret = __cpufreq_driver_target(policy, target_freq: old_freq - 1,
1535 CPUFREQ_RELATION_L);
1536
1537 /*
1538 * Reaching here after boot in a few seconds may not
1539 * mean that system will remain stable at "unknown"
1540 * frequency for longer duration. Hence, a BUG_ON().
1541 */
1542 BUG_ON(ret);
1543 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1544 __func__, policy->cpu, old_freq, policy->cur);
1545 }
1546 }
1547
1548 if (new_policy) {
1549 ret = cpufreq_add_dev_interface(policy);
1550 if (ret)
1551 goto out_destroy_policy;
1552
1553 cpufreq_stats_create_table(policy);
1554
1555 write_lock_irqsave(&cpufreq_driver_lock, flags);
1556 list_add(new: &policy->policy_list, head: &cpufreq_policy_list);
1557 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1558
1559 /*
1560 * Register with the energy model before
1561 * sugov_eas_rebuild_sd() is called, which will result
1562 * in rebuilding of the sched domains, which should only be done
1563 * once the energy model is properly initialized for the policy
1564 * first.
1565 *
1566 * Also, this should be called before the policy is registered
1567 * with cooling framework.
1568 */
1569 if (cpufreq_driver->register_em)
1570 cpufreq_driver->register_em(policy);
1571 }
1572
1573 ret = cpufreq_init_policy(policy);
1574 if (ret) {
1575 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1576 __func__, cpu, ret);
1577 goto out_destroy_policy;
1578 }
1579
1580 up_write(sem: &policy->rwsem);
1581
1582 kobject_uevent(kobj: &policy->kobj, action: KOBJ_ADD);
1583
1584 /* Callback for handling stuff after policy is ready */
1585 if (cpufreq_driver->ready)
1586 cpufreq_driver->ready(policy);
1587
1588 /* Register cpufreq cooling only for a new policy */
1589 if (new_policy && cpufreq_thermal_control_enabled(drv: cpufreq_driver))
1590 policy->cdev = of_cpufreq_cooling_register(policy);
1591
1592 pr_debug("initialization complete\n");
1593
1594 return 0;
1595
1596out_destroy_policy:
1597 for_each_cpu(j, policy->real_cpus)
1598 remove_cpu_dev_symlink(policy, cpu: j, dev: get_cpu_device(cpu: j));
1599
1600out_offline_policy:
1601 if (cpufreq_driver->offline)
1602 cpufreq_driver->offline(policy);
1603
1604out_exit_policy:
1605 if (cpufreq_driver->exit)
1606 cpufreq_driver->exit(policy);
1607
1608out_free_policy:
1609 cpumask_clear(dstp: policy->cpus);
1610 up_write(sem: &policy->rwsem);
1611
1612 cpufreq_policy_free(policy);
1613 return ret;
1614}
1615
1616/**
1617 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1618 * @dev: CPU device.
1619 * @sif: Subsystem interface structure pointer (not used)
1620 */
1621static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1622{
1623 struct cpufreq_policy *policy;
1624 unsigned cpu = dev->id;
1625 int ret;
1626
1627 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1628
1629 if (cpu_online(cpu)) {
1630 ret = cpufreq_online(cpu);
1631 if (ret)
1632 return ret;
1633 }
1634
1635 /* Create sysfs link on CPU registration */
1636 policy = per_cpu(cpufreq_cpu_data, cpu);
1637 if (policy)
1638 add_cpu_dev_symlink(policy, cpu, dev);
1639
1640 return 0;
1641}
1642
1643static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1644{
1645 int ret;
1646
1647 if (has_target())
1648 cpufreq_stop_governor(policy);
1649
1650 cpumask_clear_cpu(cpu, dstp: policy->cpus);
1651
1652 if (!policy_is_inactive(policy)) {
1653 /* Nominate a new CPU if necessary. */
1654 if (cpu == policy->cpu)
1655 policy->cpu = cpumask_any(policy->cpus);
1656
1657 /* Start the governor again for the active policy. */
1658 if (has_target()) {
1659 ret = cpufreq_start_governor(policy);
1660 if (ret)
1661 pr_err("%s: Failed to start governor\n", __func__);
1662 }
1663
1664 return;
1665 }
1666
1667 if (has_target())
1668 strscpy(policy->last_governor, policy->governor->name,
1669 CPUFREQ_NAME_LEN);
1670 else
1671 policy->last_policy = policy->policy;
1672
1673 if (has_target())
1674 cpufreq_exit_governor(policy);
1675
1676 /*
1677 * Perform the ->offline() during light-weight tear-down, as
1678 * that allows fast recovery when the CPU comes back.
1679 */
1680 if (cpufreq_driver->offline) {
1681 cpufreq_driver->offline(policy);
1682 } else if (cpufreq_driver->exit) {
1683 cpufreq_driver->exit(policy);
1684 policy->freq_table = NULL;
1685 }
1686}
1687
1688static int cpufreq_offline(unsigned int cpu)
1689{
1690 struct cpufreq_policy *policy;
1691
1692 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1693
1694 policy = cpufreq_cpu_get_raw(cpu);
1695 if (!policy) {
1696 pr_debug("%s: No cpu_data found\n", __func__);
1697 return 0;
1698 }
1699
1700 down_write(sem: &policy->rwsem);
1701
1702 __cpufreq_offline(cpu, policy);
1703
1704 up_write(sem: &policy->rwsem);
1705 return 0;
1706}
1707
1708/*
1709 * cpufreq_remove_dev - remove a CPU device
1710 *
1711 * Removes the cpufreq interface for a CPU device.
1712 */
1713static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1714{
1715 unsigned int cpu = dev->id;
1716 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1717
1718 if (!policy)
1719 return;
1720
1721 down_write(sem: &policy->rwsem);
1722
1723 if (cpu_online(cpu))
1724 __cpufreq_offline(cpu, policy);
1725
1726 remove_cpu_dev_symlink(policy, cpu, dev);
1727
1728 if (!cpumask_empty(srcp: policy->real_cpus)) {
1729 up_write(sem: &policy->rwsem);
1730 return;
1731 }
1732
1733 /*
1734 * Unregister cpufreq cooling once all the CPUs of the policy are
1735 * removed.
1736 */
1737 if (cpufreq_thermal_control_enabled(drv: cpufreq_driver)) {
1738 cpufreq_cooling_unregister(cdev: policy->cdev);
1739 policy->cdev = NULL;
1740 }
1741
1742 /* We did light-weight exit earlier, do full tear down now */
1743 if (cpufreq_driver->offline)
1744 cpufreq_driver->exit(policy);
1745
1746 up_write(sem: &policy->rwsem);
1747
1748 cpufreq_policy_free(policy);
1749}
1750
1751/**
1752 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1753 * @policy: Policy managing CPUs.
1754 * @new_freq: New CPU frequency.
1755 *
1756 * Adjust to the current frequency first and clean up later by either calling
1757 * cpufreq_update_policy(), or scheduling handle_update().
1758 */
1759static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1760 unsigned int new_freq)
1761{
1762 struct cpufreq_freqs freqs;
1763
1764 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1765 policy->cur, new_freq);
1766
1767 freqs.old = policy->cur;
1768 freqs.new = new_freq;
1769
1770 cpufreq_freq_transition_begin(policy, &freqs);
1771 cpufreq_freq_transition_end(policy, &freqs, 0);
1772}
1773
1774static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1775{
1776 unsigned int new_freq;
1777
1778 new_freq = cpufreq_driver->get(policy->cpu);
1779 if (!new_freq)
1780 return 0;
1781
1782 /*
1783 * If fast frequency switching is used with the given policy, the check
1784 * against policy->cur is pointless, so skip it in that case.
1785 */
1786 if (policy->fast_switch_enabled || !has_target())
1787 return new_freq;
1788
1789 if (policy->cur != new_freq) {
1790 /*
1791 * For some platforms, the frequency returned by hardware may be
1792 * slightly different from what is provided in the frequency
1793 * table, for example hardware may return 499 MHz instead of 500
1794 * MHz. In such cases it is better to avoid getting into
1795 * unnecessary frequency updates.
1796 */
1797 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1798 return policy->cur;
1799
1800 cpufreq_out_of_sync(policy, new_freq);
1801 if (update)
1802 schedule_work(work: &policy->update);
1803 }
1804
1805 return new_freq;
1806}
1807
1808/**
1809 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1810 * @cpu: CPU number
1811 *
1812 * This is the last known freq, without actually getting it from the driver.
1813 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1814 */
1815unsigned int cpufreq_quick_get(unsigned int cpu)
1816{
1817 struct cpufreq_policy *policy;
1818 unsigned int ret_freq = 0;
1819 unsigned long flags;
1820
1821 read_lock_irqsave(&cpufreq_driver_lock, flags);
1822
1823 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1824 ret_freq = cpufreq_driver->get(cpu);
1825 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1826 return ret_freq;
1827 }
1828
1829 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1830
1831 policy = cpufreq_cpu_get(cpu);
1832 if (policy) {
1833 ret_freq = policy->cur;
1834 cpufreq_cpu_put(policy);
1835 }
1836
1837 return ret_freq;
1838}
1839EXPORT_SYMBOL(cpufreq_quick_get);
1840
1841/**
1842 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1843 * @cpu: CPU number
1844 *
1845 * Just return the max possible frequency for a given CPU.
1846 */
1847unsigned int cpufreq_quick_get_max(unsigned int cpu)
1848{
1849 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1850 unsigned int ret_freq = 0;
1851
1852 if (policy) {
1853 ret_freq = policy->max;
1854 cpufreq_cpu_put(policy);
1855 }
1856
1857 return ret_freq;
1858}
1859EXPORT_SYMBOL(cpufreq_quick_get_max);
1860
1861/**
1862 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1863 * @cpu: CPU number
1864 *
1865 * The default return value is the max_freq field of cpuinfo.
1866 */
1867__weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1868{
1869 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1870 unsigned int ret_freq = 0;
1871
1872 if (policy) {
1873 ret_freq = policy->cpuinfo.max_freq;
1874 cpufreq_cpu_put(policy);
1875 }
1876
1877 return ret_freq;
1878}
1879EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1880
1881static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1882{
1883 if (unlikely(policy_is_inactive(policy)))
1884 return 0;
1885
1886 return cpufreq_verify_current_freq(policy, update: true);
1887}
1888
1889/**
1890 * cpufreq_get - get the current CPU frequency (in kHz)
1891 * @cpu: CPU number
1892 *
1893 * Get the CPU current (static) CPU frequency
1894 */
1895unsigned int cpufreq_get(unsigned int cpu)
1896{
1897 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1898 unsigned int ret_freq = 0;
1899
1900 if (policy) {
1901 down_read(sem: &policy->rwsem);
1902 if (cpufreq_driver->get)
1903 ret_freq = __cpufreq_get(policy);
1904 up_read(sem: &policy->rwsem);
1905
1906 cpufreq_cpu_put(policy);
1907 }
1908
1909 return ret_freq;
1910}
1911EXPORT_SYMBOL(cpufreq_get);
1912
1913static struct subsys_interface cpufreq_interface = {
1914 .name = "cpufreq",
1915 .subsys = &cpu_subsys,
1916 .add_dev = cpufreq_add_dev,
1917 .remove_dev = cpufreq_remove_dev,
1918};
1919
1920/*
1921 * In case platform wants some specific frequency to be configured
1922 * during suspend..
1923 */
1924int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1925{
1926 int ret;
1927
1928 if (!policy->suspend_freq) {
1929 pr_debug("%s: suspend_freq not defined\n", __func__);
1930 return 0;
1931 }
1932
1933 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1934 policy->suspend_freq);
1935
1936 ret = __cpufreq_driver_target(policy, target_freq: policy->suspend_freq,
1937 CPUFREQ_RELATION_H);
1938 if (ret)
1939 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1940 __func__, policy->suspend_freq, ret);
1941
1942 return ret;
1943}
1944EXPORT_SYMBOL(cpufreq_generic_suspend);
1945
1946/**
1947 * cpufreq_suspend() - Suspend CPUFreq governors.
1948 *
1949 * Called during system wide Suspend/Hibernate cycles for suspending governors
1950 * as some platforms can't change frequency after this point in suspend cycle.
1951 * Because some of the devices (like: i2c, regulators, etc) they use for
1952 * changing frequency are suspended quickly after this point.
1953 */
1954void cpufreq_suspend(void)
1955{
1956 struct cpufreq_policy *policy;
1957
1958 if (!cpufreq_driver)
1959 return;
1960
1961 if (!has_target() && !cpufreq_driver->suspend)
1962 goto suspend;
1963
1964 pr_debug("%s: Suspending Governors\n", __func__);
1965
1966 for_each_active_policy(policy) {
1967 if (has_target()) {
1968 down_write(sem: &policy->rwsem);
1969 cpufreq_stop_governor(policy);
1970 up_write(sem: &policy->rwsem);
1971 }
1972
1973 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1974 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1975 cpufreq_driver->name);
1976 }
1977
1978suspend:
1979 cpufreq_suspended = true;
1980}
1981
1982/**
1983 * cpufreq_resume() - Resume CPUFreq governors.
1984 *
1985 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1986 * are suspended with cpufreq_suspend().
1987 */
1988void cpufreq_resume(void)
1989{
1990 struct cpufreq_policy *policy;
1991 int ret;
1992
1993 if (!cpufreq_driver)
1994 return;
1995
1996 if (unlikely(!cpufreq_suspended))
1997 return;
1998
1999 cpufreq_suspended = false;
2000
2001 if (!has_target() && !cpufreq_driver->resume)
2002 return;
2003
2004 pr_debug("%s: Resuming Governors\n", __func__);
2005
2006 for_each_active_policy(policy) {
2007 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2008 pr_err("%s: Failed to resume driver: %s\n", __func__,
2009 cpufreq_driver->name);
2010 } else if (has_target()) {
2011 down_write(sem: &policy->rwsem);
2012 ret = cpufreq_start_governor(policy);
2013 up_write(sem: &policy->rwsem);
2014
2015 if (ret)
2016 pr_err("%s: Failed to start governor for CPU%u's policy\n",
2017 __func__, policy->cpu);
2018 }
2019 }
2020}
2021
2022/**
2023 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2024 * @flags: Flags to test against the current cpufreq driver's flags.
2025 *
2026 * Assumes that the driver is there, so callers must ensure that this is the
2027 * case.
2028 */
2029bool cpufreq_driver_test_flags(u16 flags)
2030{
2031 return !!(cpufreq_driver->flags & flags);
2032}
2033
2034/**
2035 * cpufreq_get_current_driver - Return the current driver's name.
2036 *
2037 * Return the name string of the currently registered cpufreq driver or NULL if
2038 * none.
2039 */
2040const char *cpufreq_get_current_driver(void)
2041{
2042 if (cpufreq_driver)
2043 return cpufreq_driver->name;
2044
2045 return NULL;
2046}
2047EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2048
2049/**
2050 * cpufreq_get_driver_data - Return current driver data.
2051 *
2052 * Return the private data of the currently registered cpufreq driver, or NULL
2053 * if no cpufreq driver has been registered.
2054 */
2055void *cpufreq_get_driver_data(void)
2056{
2057 if (cpufreq_driver)
2058 return cpufreq_driver->driver_data;
2059
2060 return NULL;
2061}
2062EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2063
2064/*********************************************************************
2065 * NOTIFIER LISTS INTERFACE *
2066 *********************************************************************/
2067
2068/**
2069 * cpufreq_register_notifier - Register a notifier with cpufreq.
2070 * @nb: notifier function to register.
2071 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2072 *
2073 * Add a notifier to one of two lists: either a list of notifiers that run on
2074 * clock rate changes (once before and once after every transition), or a list
2075 * of notifiers that ron on cpufreq policy changes.
2076 *
2077 * This function may sleep and it has the same return values as
2078 * blocking_notifier_chain_register().
2079 */
2080int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2081{
2082 int ret;
2083
2084 if (cpufreq_disabled())
2085 return -EINVAL;
2086
2087 switch (list) {
2088 case CPUFREQ_TRANSITION_NOTIFIER:
2089 mutex_lock(&cpufreq_fast_switch_lock);
2090
2091 if (cpufreq_fast_switch_count > 0) {
2092 mutex_unlock(lock: &cpufreq_fast_switch_lock);
2093 return -EBUSY;
2094 }
2095 ret = srcu_notifier_chain_register(
2096 nh: &cpufreq_transition_notifier_list, nb);
2097 if (!ret)
2098 cpufreq_fast_switch_count--;
2099
2100 mutex_unlock(lock: &cpufreq_fast_switch_lock);
2101 break;
2102 case CPUFREQ_POLICY_NOTIFIER:
2103 ret = blocking_notifier_chain_register(
2104 nh: &cpufreq_policy_notifier_list, nb);
2105 break;
2106 default:
2107 ret = -EINVAL;
2108 }
2109
2110 return ret;
2111}
2112EXPORT_SYMBOL(cpufreq_register_notifier);
2113
2114/**
2115 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2116 * @nb: notifier block to be unregistered.
2117 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2118 *
2119 * Remove a notifier from one of the cpufreq notifier lists.
2120 *
2121 * This function may sleep and it has the same return values as
2122 * blocking_notifier_chain_unregister().
2123 */
2124int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2125{
2126 int ret;
2127
2128 if (cpufreq_disabled())
2129 return -EINVAL;
2130
2131 switch (list) {
2132 case CPUFREQ_TRANSITION_NOTIFIER:
2133 mutex_lock(&cpufreq_fast_switch_lock);
2134
2135 ret = srcu_notifier_chain_unregister(
2136 nh: &cpufreq_transition_notifier_list, nb);
2137 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2138 cpufreq_fast_switch_count++;
2139
2140 mutex_unlock(lock: &cpufreq_fast_switch_lock);
2141 break;
2142 case CPUFREQ_POLICY_NOTIFIER:
2143 ret = blocking_notifier_chain_unregister(
2144 nh: &cpufreq_policy_notifier_list, nb);
2145 break;
2146 default:
2147 ret = -EINVAL;
2148 }
2149
2150 return ret;
2151}
2152EXPORT_SYMBOL(cpufreq_unregister_notifier);
2153
2154
2155/*********************************************************************
2156 * GOVERNORS *
2157 *********************************************************************/
2158
2159/**
2160 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2161 * @policy: cpufreq policy to switch the frequency for.
2162 * @target_freq: New frequency to set (may be approximate).
2163 *
2164 * Carry out a fast frequency switch without sleeping.
2165 *
2166 * The driver's ->fast_switch() callback invoked by this function must be
2167 * suitable for being called from within RCU-sched read-side critical sections
2168 * and it is expected to select the minimum available frequency greater than or
2169 * equal to @target_freq (CPUFREQ_RELATION_L).
2170 *
2171 * This function must not be called if policy->fast_switch_enabled is unset.
2172 *
2173 * Governors calling this function must guarantee that it will never be invoked
2174 * twice in parallel for the same policy and that it will never be called in
2175 * parallel with either ->target() or ->target_index() for the same policy.
2176 *
2177 * Returns the actual frequency set for the CPU.
2178 *
2179 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2180 * error condition, the hardware configuration must be preserved.
2181 */
2182unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2183 unsigned int target_freq)
2184{
2185 unsigned int freq;
2186 int cpu;
2187
2188 target_freq = clamp_val(target_freq, policy->min, policy->max);
2189 freq = cpufreq_driver->fast_switch(policy, target_freq);
2190
2191 if (!freq)
2192 return 0;
2193
2194 policy->cur = freq;
2195 arch_set_freq_scale(cpus: policy->related_cpus, cur_freq: freq,
2196 max_freq: arch_scale_freq_ref(cpu: policy->cpu));
2197 cpufreq_stats_record_transition(policy, new_freq: freq);
2198
2199 if (trace_cpu_frequency_enabled()) {
2200 for_each_cpu(cpu, policy->cpus)
2201 trace_cpu_frequency(frequency: freq, cpu_id: cpu);
2202 }
2203
2204 return freq;
2205}
2206EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2207
2208/**
2209 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2210 * @cpu: Target CPU.
2211 * @min_perf: Minimum (required) performance level (units of @capacity).
2212 * @target_perf: Target (desired) performance level (units of @capacity).
2213 * @capacity: Capacity of the target CPU.
2214 *
2215 * Carry out a fast performance level switch of @cpu without sleeping.
2216 *
2217 * The driver's ->adjust_perf() callback invoked by this function must be
2218 * suitable for being called from within RCU-sched read-side critical sections
2219 * and it is expected to select a suitable performance level equal to or above
2220 * @min_perf and preferably equal to or below @target_perf.
2221 *
2222 * This function must not be called if policy->fast_switch_enabled is unset.
2223 *
2224 * Governors calling this function must guarantee that it will never be invoked
2225 * twice in parallel for the same CPU and that it will never be called in
2226 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2227 * the same CPU.
2228 */
2229void cpufreq_driver_adjust_perf(unsigned int cpu,
2230 unsigned long min_perf,
2231 unsigned long target_perf,
2232 unsigned long capacity)
2233{
2234 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2235}
2236
2237/**
2238 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2239 *
2240 * Return 'true' if the ->adjust_perf callback is present for the
2241 * current driver or 'false' otherwise.
2242 */
2243bool cpufreq_driver_has_adjust_perf(void)
2244{
2245 return !!cpufreq_driver->adjust_perf;
2246}
2247
2248/* Must set freqs->new to intermediate frequency */
2249static int __target_intermediate(struct cpufreq_policy *policy,
2250 struct cpufreq_freqs *freqs, int index)
2251{
2252 int ret;
2253
2254 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2255
2256 /* We don't need to switch to intermediate freq */
2257 if (!freqs->new)
2258 return 0;
2259
2260 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2261 __func__, policy->cpu, freqs->old, freqs->new);
2262
2263 cpufreq_freq_transition_begin(policy, freqs);
2264 ret = cpufreq_driver->target_intermediate(policy, index);
2265 cpufreq_freq_transition_end(policy, freqs, ret);
2266
2267 if (ret)
2268 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2269 __func__, ret);
2270
2271 return ret;
2272}
2273
2274static int __target_index(struct cpufreq_policy *policy, int index)
2275{
2276 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2277 unsigned int restore_freq, intermediate_freq = 0;
2278 unsigned int newfreq = policy->freq_table[index].frequency;
2279 int retval = -EINVAL;
2280 bool notify;
2281
2282 if (newfreq == policy->cur)
2283 return 0;
2284
2285 /* Save last value to restore later on errors */
2286 restore_freq = policy->cur;
2287
2288 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2289 if (notify) {
2290 /* Handle switching to intermediate frequency */
2291 if (cpufreq_driver->get_intermediate) {
2292 retval = __target_intermediate(policy, freqs: &freqs, index);
2293 if (retval)
2294 return retval;
2295
2296 intermediate_freq = freqs.new;
2297 /* Set old freq to intermediate */
2298 if (intermediate_freq)
2299 freqs.old = freqs.new;
2300 }
2301
2302 freqs.new = newfreq;
2303 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2304 __func__, policy->cpu, freqs.old, freqs.new);
2305
2306 cpufreq_freq_transition_begin(policy, &freqs);
2307 }
2308
2309 retval = cpufreq_driver->target_index(policy, index);
2310 if (retval)
2311 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2312 retval);
2313
2314 if (notify) {
2315 cpufreq_freq_transition_end(policy, &freqs, retval);
2316
2317 /*
2318 * Failed after setting to intermediate freq? Driver should have
2319 * reverted back to initial frequency and so should we. Check
2320 * here for intermediate_freq instead of get_intermediate, in
2321 * case we haven't switched to intermediate freq at all.
2322 */
2323 if (unlikely(retval && intermediate_freq)) {
2324 freqs.old = intermediate_freq;
2325 freqs.new = restore_freq;
2326 cpufreq_freq_transition_begin(policy, &freqs);
2327 cpufreq_freq_transition_end(policy, &freqs, 0);
2328 }
2329 }
2330
2331 return retval;
2332}
2333
2334int __cpufreq_driver_target(struct cpufreq_policy *policy,
2335 unsigned int target_freq,
2336 unsigned int relation)
2337{
2338 unsigned int old_target_freq = target_freq;
2339
2340 if (cpufreq_disabled())
2341 return -ENODEV;
2342
2343 target_freq = __resolve_freq(policy, target_freq, relation);
2344
2345 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2346 policy->cpu, target_freq, relation, old_target_freq);
2347
2348 /*
2349 * This might look like a redundant call as we are checking it again
2350 * after finding index. But it is left intentionally for cases where
2351 * exactly same freq is called again and so we can save on few function
2352 * calls.
2353 */
2354 if (target_freq == policy->cur &&
2355 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2356 return 0;
2357
2358 if (cpufreq_driver->target) {
2359 /*
2360 * If the driver hasn't setup a single inefficient frequency,
2361 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2362 */
2363 if (!policy->efficiencies_available)
2364 relation &= ~CPUFREQ_RELATION_E;
2365
2366 return cpufreq_driver->target(policy, target_freq, relation);
2367 }
2368
2369 if (!cpufreq_driver->target_index)
2370 return -EINVAL;
2371
2372 return __target_index(policy, index: policy->cached_resolved_idx);
2373}
2374EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2375
2376int cpufreq_driver_target(struct cpufreq_policy *policy,
2377 unsigned int target_freq,
2378 unsigned int relation)
2379{
2380 int ret;
2381
2382 down_write(sem: &policy->rwsem);
2383
2384 ret = __cpufreq_driver_target(policy, target_freq, relation);
2385
2386 up_write(sem: &policy->rwsem);
2387
2388 return ret;
2389}
2390EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2391
2392__weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2393{
2394 return NULL;
2395}
2396
2397static int cpufreq_init_governor(struct cpufreq_policy *policy)
2398{
2399 int ret;
2400
2401 /* Don't start any governor operations if we are entering suspend */
2402 if (cpufreq_suspended)
2403 return 0;
2404 /*
2405 * Governor might not be initiated here if ACPI _PPC changed
2406 * notification happened, so check it.
2407 */
2408 if (!policy->governor)
2409 return -EINVAL;
2410
2411 /* Platform doesn't want dynamic frequency switching ? */
2412 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2413 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2414 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2415
2416 if (gov) {
2417 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2418 policy->governor->name, gov->name);
2419 policy->governor = gov;
2420 } else {
2421 return -EINVAL;
2422 }
2423 }
2424
2425 if (!try_module_get(module: policy->governor->owner))
2426 return -EINVAL;
2427
2428 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2429
2430 if (policy->governor->init) {
2431 ret = policy->governor->init(policy);
2432 if (ret) {
2433 module_put(module: policy->governor->owner);
2434 return ret;
2435 }
2436 }
2437
2438 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2439
2440 return 0;
2441}
2442
2443static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2444{
2445 if (cpufreq_suspended || !policy->governor)
2446 return;
2447
2448 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2449
2450 if (policy->governor->exit)
2451 policy->governor->exit(policy);
2452
2453 module_put(module: policy->governor->owner);
2454}
2455
2456int cpufreq_start_governor(struct cpufreq_policy *policy)
2457{
2458 int ret;
2459
2460 if (cpufreq_suspended)
2461 return 0;
2462
2463 if (!policy->governor)
2464 return -EINVAL;
2465
2466 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2467
2468 if (cpufreq_driver->get)
2469 cpufreq_verify_current_freq(policy, update: false);
2470
2471 if (policy->governor->start) {
2472 ret = policy->governor->start(policy);
2473 if (ret)
2474 return ret;
2475 }
2476
2477 if (policy->governor->limits)
2478 policy->governor->limits(policy);
2479
2480 return 0;
2481}
2482
2483void cpufreq_stop_governor(struct cpufreq_policy *policy)
2484{
2485 if (cpufreq_suspended || !policy->governor)
2486 return;
2487
2488 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2489
2490 if (policy->governor->stop)
2491 policy->governor->stop(policy);
2492}
2493
2494static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2495{
2496 if (cpufreq_suspended || !policy->governor)
2497 return;
2498
2499 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2500
2501 if (policy->governor->limits)
2502 policy->governor->limits(policy);
2503}
2504
2505int cpufreq_register_governor(struct cpufreq_governor *governor)
2506{
2507 int err;
2508
2509 if (!governor)
2510 return -EINVAL;
2511
2512 if (cpufreq_disabled())
2513 return -ENODEV;
2514
2515 mutex_lock(&cpufreq_governor_mutex);
2516
2517 err = -EBUSY;
2518 if (!find_governor(str_governor: governor->name)) {
2519 err = 0;
2520 list_add(new: &governor->governor_list, head: &cpufreq_governor_list);
2521 }
2522
2523 mutex_unlock(lock: &cpufreq_governor_mutex);
2524 return err;
2525}
2526EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2527
2528void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2529{
2530 struct cpufreq_policy *policy;
2531 unsigned long flags;
2532
2533 if (!governor)
2534 return;
2535
2536 if (cpufreq_disabled())
2537 return;
2538
2539 /* clear last_governor for all inactive policies */
2540 read_lock_irqsave(&cpufreq_driver_lock, flags);
2541 for_each_inactive_policy(policy) {
2542 if (!strcmp(policy->last_governor, governor->name)) {
2543 policy->governor = NULL;
2544 strcpy(p: policy->last_governor, q: "\0");
2545 }
2546 }
2547 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2548
2549 mutex_lock(&cpufreq_governor_mutex);
2550 list_del(entry: &governor->governor_list);
2551 mutex_unlock(lock: &cpufreq_governor_mutex);
2552}
2553EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2554
2555
2556/*********************************************************************
2557 * POLICY INTERFACE *
2558 *********************************************************************/
2559
2560/**
2561 * cpufreq_get_policy - get the current cpufreq_policy
2562 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2563 * is written
2564 * @cpu: CPU to find the policy for
2565 *
2566 * Reads the current cpufreq policy.
2567 */
2568int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2569{
2570 struct cpufreq_policy *cpu_policy;
2571 if (!policy)
2572 return -EINVAL;
2573
2574 cpu_policy = cpufreq_cpu_get(cpu);
2575 if (!cpu_policy)
2576 return -EINVAL;
2577
2578 memcpy(policy, cpu_policy, sizeof(*policy));
2579
2580 cpufreq_cpu_put(cpu_policy);
2581 return 0;
2582}
2583EXPORT_SYMBOL(cpufreq_get_policy);
2584
2585/**
2586 * cpufreq_set_policy - Modify cpufreq policy parameters.
2587 * @policy: Policy object to modify.
2588 * @new_gov: Policy governor pointer.
2589 * @new_pol: Policy value (for drivers with built-in governors).
2590 *
2591 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2592 * limits to be set for the policy, update @policy with the verified limits
2593 * values and either invoke the driver's ->setpolicy() callback (if present) or
2594 * carry out a governor update for @policy. That is, run the current governor's
2595 * ->limits() callback (if @new_gov points to the same object as the one in
2596 * @policy) or replace the governor for @policy with @new_gov.
2597 *
2598 * The cpuinfo part of @policy is not updated by this function.
2599 */
2600static int cpufreq_set_policy(struct cpufreq_policy *policy,
2601 struct cpufreq_governor *new_gov,
2602 unsigned int new_pol)
2603{
2604 struct cpufreq_policy_data new_data;
2605 struct cpufreq_governor *old_gov;
2606 int ret;
2607
2608 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2609 new_data.freq_table = policy->freq_table;
2610 new_data.cpu = policy->cpu;
2611 /*
2612 * PM QoS framework collects all the requests from users and provide us
2613 * the final aggregated value here.
2614 */
2615 new_data.min = freq_qos_read_value(qos: &policy->constraints, type: FREQ_QOS_MIN);
2616 new_data.max = freq_qos_read_value(qos: &policy->constraints, type: FREQ_QOS_MAX);
2617
2618 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2619 new_data.cpu, new_data.min, new_data.max);
2620
2621 /*
2622 * Verify that the CPU speed can be set within these limits and make sure
2623 * that min <= max.
2624 */
2625 ret = cpufreq_driver->verify(&new_data);
2626 if (ret)
2627 return ret;
2628
2629 /*
2630 * Resolve policy min/max to available frequencies. It ensures
2631 * no frequency resolution will neither overshoot the requested maximum
2632 * nor undershoot the requested minimum.
2633 */
2634 policy->min = new_data.min;
2635 policy->max = new_data.max;
2636 policy->min = __resolve_freq(policy, target_freq: policy->min, CPUFREQ_RELATION_L);
2637 policy->max = __resolve_freq(policy, target_freq: policy->max, CPUFREQ_RELATION_H);
2638 trace_cpu_frequency_limits(policy);
2639
2640 policy->cached_target_freq = UINT_MAX;
2641
2642 pr_debug("new min and max freqs are %u - %u kHz\n",
2643 policy->min, policy->max);
2644
2645 if (cpufreq_driver->setpolicy) {
2646 policy->policy = new_pol;
2647 pr_debug("setting range\n");
2648 return cpufreq_driver->setpolicy(policy);
2649 }
2650
2651 if (new_gov == policy->governor) {
2652 pr_debug("governor limits update\n");
2653 cpufreq_governor_limits(policy);
2654 return 0;
2655 }
2656
2657 pr_debug("governor switch\n");
2658
2659 /* save old, working values */
2660 old_gov = policy->governor;
2661 /* end old governor */
2662 if (old_gov) {
2663 cpufreq_stop_governor(policy);
2664 cpufreq_exit_governor(policy);
2665 }
2666
2667 /* start new governor */
2668 policy->governor = new_gov;
2669 ret = cpufreq_init_governor(policy);
2670 if (!ret) {
2671 ret = cpufreq_start_governor(policy);
2672 if (!ret) {
2673 pr_debug("governor change\n");
2674 return 0;
2675 }
2676 cpufreq_exit_governor(policy);
2677 }
2678
2679 /* new governor failed, so re-start old one */
2680 pr_debug("starting governor %s failed\n", policy->governor->name);
2681 if (old_gov) {
2682 policy->governor = old_gov;
2683 if (cpufreq_init_governor(policy))
2684 policy->governor = NULL;
2685 else
2686 cpufreq_start_governor(policy);
2687 }
2688
2689 return ret;
2690}
2691
2692/**
2693 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2694 * @cpu: CPU to re-evaluate the policy for.
2695 *
2696 * Update the current frequency for the cpufreq policy of @cpu and use
2697 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2698 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2699 * for the policy in question, among other things.
2700 */
2701void cpufreq_update_policy(unsigned int cpu)
2702{
2703 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2704
2705 if (!policy)
2706 return;
2707
2708 /*
2709 * BIOS might change freq behind our back
2710 * -> ask driver for current freq and notify governors about a change
2711 */
2712 if (cpufreq_driver->get && has_target() &&
2713 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2714 goto unlock;
2715
2716 refresh_frequency_limits(policy);
2717
2718unlock:
2719 cpufreq_cpu_release(policy);
2720}
2721EXPORT_SYMBOL(cpufreq_update_policy);
2722
2723/**
2724 * cpufreq_update_limits - Update policy limits for a given CPU.
2725 * @cpu: CPU to update the policy limits for.
2726 *
2727 * Invoke the driver's ->update_limits callback if present or call
2728 * cpufreq_update_policy() for @cpu.
2729 */
2730void cpufreq_update_limits(unsigned int cpu)
2731{
2732 if (cpufreq_driver->update_limits)
2733 cpufreq_driver->update_limits(cpu);
2734 else
2735 cpufreq_update_policy(cpu);
2736}
2737EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2738
2739/*********************************************************************
2740 * BOOST *
2741 *********************************************************************/
2742static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2743{
2744 int ret;
2745
2746 if (!policy->freq_table)
2747 return -ENXIO;
2748
2749 ret = cpufreq_frequency_table_cpuinfo(policy, table: policy->freq_table);
2750 if (ret) {
2751 pr_err("%s: Policy frequency update failed\n", __func__);
2752 return ret;
2753 }
2754
2755 ret = freq_qos_update_request(req: policy->max_freq_req, new_value: policy->max);
2756 if (ret < 0)
2757 return ret;
2758
2759 return 0;
2760}
2761
2762int cpufreq_boost_trigger_state(int state)
2763{
2764 struct cpufreq_policy *policy;
2765 unsigned long flags;
2766 int ret = 0;
2767
2768 if (cpufreq_driver->boost_enabled == state)
2769 return 0;
2770
2771 write_lock_irqsave(&cpufreq_driver_lock, flags);
2772 cpufreq_driver->boost_enabled = state;
2773 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2774
2775 cpus_read_lock();
2776 for_each_active_policy(policy) {
2777 policy->boost_enabled = state;
2778 ret = cpufreq_driver->set_boost(policy, state);
2779 if (ret) {
2780 policy->boost_enabled = !policy->boost_enabled;
2781 goto err_reset_state;
2782 }
2783 }
2784 cpus_read_unlock();
2785
2786 return 0;
2787
2788err_reset_state:
2789 cpus_read_unlock();
2790
2791 write_lock_irqsave(&cpufreq_driver_lock, flags);
2792 cpufreq_driver->boost_enabled = !state;
2793 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2794
2795 pr_err("%s: Cannot %s BOOST\n",
2796 __func__, state ? "enable" : "disable");
2797
2798 return ret;
2799}
2800
2801static bool cpufreq_boost_supported(void)
2802{
2803 return cpufreq_driver->set_boost;
2804}
2805
2806static int create_boost_sysfs_file(void)
2807{
2808 int ret;
2809
2810 ret = sysfs_create_file(kobj: cpufreq_global_kobject, attr: &boost.attr);
2811 if (ret)
2812 pr_err("%s: cannot register global BOOST sysfs file\n",
2813 __func__);
2814
2815 return ret;
2816}
2817
2818static void remove_boost_sysfs_file(void)
2819{
2820 if (cpufreq_boost_supported())
2821 sysfs_remove_file(kobj: cpufreq_global_kobject, attr: &boost.attr);
2822}
2823
2824int cpufreq_enable_boost_support(void)
2825{
2826 if (!cpufreq_driver)
2827 return -EINVAL;
2828
2829 if (cpufreq_boost_supported())
2830 return 0;
2831
2832 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2833
2834 /* This will get removed on driver unregister */
2835 return create_boost_sysfs_file();
2836}
2837EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2838
2839int cpufreq_boost_enabled(void)
2840{
2841 return cpufreq_driver->boost_enabled;
2842}
2843EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2844
2845/*********************************************************************
2846 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2847 *********************************************************************/
2848static enum cpuhp_state hp_online;
2849
2850static int cpuhp_cpufreq_online(unsigned int cpu)
2851{
2852 cpufreq_online(cpu);
2853
2854 return 0;
2855}
2856
2857static int cpuhp_cpufreq_offline(unsigned int cpu)
2858{
2859 cpufreq_offline(cpu);
2860
2861 return 0;
2862}
2863
2864/**
2865 * cpufreq_register_driver - register a CPU Frequency driver
2866 * @driver_data: A struct cpufreq_driver containing the values#
2867 * submitted by the CPU Frequency driver.
2868 *
2869 * Registers a CPU Frequency driver to this core code. This code
2870 * returns zero on success, -EEXIST when another driver got here first
2871 * (and isn't unregistered in the meantime).
2872 *
2873 */
2874int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2875{
2876 unsigned long flags;
2877 int ret;
2878
2879 if (cpufreq_disabled())
2880 return -ENODEV;
2881
2882 /*
2883 * The cpufreq core depends heavily on the availability of device
2884 * structure, make sure they are available before proceeding further.
2885 */
2886 if (!get_cpu_device(cpu: 0))
2887 return -EPROBE_DEFER;
2888
2889 if (!driver_data || !driver_data->verify || !driver_data->init ||
2890 !(driver_data->setpolicy || driver_data->target_index ||
2891 driver_data->target) ||
2892 (driver_data->setpolicy && (driver_data->target_index ||
2893 driver_data->target)) ||
2894 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2895 (!driver_data->online != !driver_data->offline) ||
2896 (driver_data->adjust_perf && !driver_data->fast_switch))
2897 return -EINVAL;
2898
2899 pr_debug("trying to register driver %s\n", driver_data->name);
2900
2901 /* Protect against concurrent CPU online/offline. */
2902 cpus_read_lock();
2903
2904 write_lock_irqsave(&cpufreq_driver_lock, flags);
2905 if (cpufreq_driver) {
2906 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2907 ret = -EEXIST;
2908 goto out;
2909 }
2910 cpufreq_driver = driver_data;
2911 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2912
2913 /*
2914 * Mark support for the scheduler's frequency invariance engine for
2915 * drivers that implement target(), target_index() or fast_switch().
2916 */
2917 if (!cpufreq_driver->setpolicy) {
2918 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2919 pr_debug("supports frequency invariance");
2920 }
2921
2922 if (driver_data->setpolicy)
2923 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2924
2925 if (cpufreq_boost_supported()) {
2926 ret = create_boost_sysfs_file();
2927 if (ret)
2928 goto err_null_driver;
2929 }
2930
2931 ret = subsys_interface_register(sif: &cpufreq_interface);
2932 if (ret)
2933 goto err_boost_unreg;
2934
2935 if (unlikely(list_empty(&cpufreq_policy_list))) {
2936 /* if all ->init() calls failed, unregister */
2937 ret = -ENODEV;
2938 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2939 driver_data->name);
2940 goto err_if_unreg;
2941 }
2942
2943 ret = cpuhp_setup_state_nocalls_cpuslocked(state: CPUHP_AP_ONLINE_DYN,
2944 name: "cpufreq:online",
2945 startup: cpuhp_cpufreq_online,
2946 teardown: cpuhp_cpufreq_offline);
2947 if (ret < 0)
2948 goto err_if_unreg;
2949 hp_online = ret;
2950 ret = 0;
2951
2952 pr_debug("driver %s up and running\n", driver_data->name);
2953 goto out;
2954
2955err_if_unreg:
2956 subsys_interface_unregister(sif: &cpufreq_interface);
2957err_boost_unreg:
2958 remove_boost_sysfs_file();
2959err_null_driver:
2960 write_lock_irqsave(&cpufreq_driver_lock, flags);
2961 cpufreq_driver = NULL;
2962 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2963out:
2964 cpus_read_unlock();
2965 return ret;
2966}
2967EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2968
2969/*
2970 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2971 *
2972 * Unregister the current CPUFreq driver. Only call this if you have
2973 * the right to do so, i.e. if you have succeeded in initialising before!
2974 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2975 * currently not initialised.
2976 */
2977void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2978{
2979 unsigned long flags;
2980
2981 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
2982 return;
2983
2984 pr_debug("unregistering driver %s\n", driver->name);
2985
2986 /* Protect against concurrent cpu hotplug */
2987 cpus_read_lock();
2988 subsys_interface_unregister(sif: &cpufreq_interface);
2989 remove_boost_sysfs_file();
2990 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2991 cpuhp_remove_state_nocalls_cpuslocked(state: hp_online);
2992
2993 write_lock_irqsave(&cpufreq_driver_lock, flags);
2994
2995 cpufreq_driver = NULL;
2996
2997 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2998 cpus_read_unlock();
2999}
3000EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3001
3002static int __init cpufreq_core_init(void)
3003{
3004 struct cpufreq_governor *gov = cpufreq_default_governor();
3005 struct device *dev_root;
3006
3007 if (cpufreq_disabled())
3008 return -ENODEV;
3009
3010 dev_root = bus_get_dev_root(bus: &cpu_subsys);
3011 if (dev_root) {
3012 cpufreq_global_kobject = kobject_create_and_add(name: "cpufreq", parent: &dev_root->kobj);
3013 put_device(dev: dev_root);
3014 }
3015 BUG_ON(!cpufreq_global_kobject);
3016
3017 if (!strlen(default_governor))
3018 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3019
3020 return 0;
3021}
3022module_param(off, int, 0444);
3023module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3024core_initcall(cpufreq_core_init);
3025

source code of linux/drivers/cpufreq/cpufreq.c