1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Secure Encrypted Virtualization (SEV) interface
4 *
5 * Copyright (C) 2016,2019 Advanced Micro Devices, Inc.
6 *
7 * Author: Brijesh Singh <brijesh.singh@amd.com>
8 */
9
10#include <linux/bitfield.h>
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/kthread.h>
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/spinlock.h>
17#include <linux/spinlock_types.h>
18#include <linux/types.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/hw_random.h>
22#include <linux/ccp.h>
23#include <linux/firmware.h>
24#include <linux/panic_notifier.h>
25#include <linux/gfp.h>
26#include <linux/cpufeature.h>
27#include <linux/fs.h>
28#include <linux/fs_struct.h>
29#include <linux/psp.h>
30#include <linux/amd-iommu.h>
31
32#include <asm/smp.h>
33#include <asm/cacheflush.h>
34#include <asm/e820/types.h>
35#include <asm/sev.h>
36
37#include "psp-dev.h"
38#include "sev-dev.h"
39
40#define DEVICE_NAME "sev"
41#define SEV_FW_FILE "amd/sev.fw"
42#define SEV_FW_NAME_SIZE 64
43
44/* Minimum firmware version required for the SEV-SNP support */
45#define SNP_MIN_API_MAJOR 1
46#define SNP_MIN_API_MINOR 51
47
48/*
49 * Maximum number of firmware-writable buffers that might be specified
50 * in the parameters of a legacy SEV command buffer.
51 */
52#define CMD_BUF_FW_WRITABLE_MAX 2
53
54/* Leave room in the descriptor array for an end-of-list indicator. */
55#define CMD_BUF_DESC_MAX (CMD_BUF_FW_WRITABLE_MAX + 1)
56
57static DEFINE_MUTEX(sev_cmd_mutex);
58static struct sev_misc_dev *misc_dev;
59
60static int psp_cmd_timeout = 100;
61module_param(psp_cmd_timeout, int, 0644);
62MODULE_PARM_DESC(psp_cmd_timeout, " default timeout value, in seconds, for PSP commands");
63
64static int psp_probe_timeout = 5;
65module_param(psp_probe_timeout, int, 0644);
66MODULE_PARM_DESC(psp_probe_timeout, " default timeout value, in seconds, during PSP device probe");
67
68static char *init_ex_path;
69module_param(init_ex_path, charp, 0444);
70MODULE_PARM_DESC(init_ex_path, " Path for INIT_EX data; if set try INIT_EX");
71
72static bool psp_init_on_probe = true;
73module_param(psp_init_on_probe, bool, 0444);
74MODULE_PARM_DESC(psp_init_on_probe, " if true, the PSP will be initialized on module init. Else the PSP will be initialized on the first command requiring it");
75
76MODULE_FIRMWARE("amd/amd_sev_fam17h_model0xh.sbin"); /* 1st gen EPYC */
77MODULE_FIRMWARE("amd/amd_sev_fam17h_model3xh.sbin"); /* 2nd gen EPYC */
78MODULE_FIRMWARE("amd/amd_sev_fam19h_model0xh.sbin"); /* 3rd gen EPYC */
79MODULE_FIRMWARE("amd/amd_sev_fam19h_model1xh.sbin"); /* 4th gen EPYC */
80
81static bool psp_dead;
82static int psp_timeout;
83
84/* Trusted Memory Region (TMR):
85 * The TMR is a 1MB area that must be 1MB aligned. Use the page allocator
86 * to allocate the memory, which will return aligned memory for the specified
87 * allocation order.
88 *
89 * When SEV-SNP is enabled the TMR needs to be 2MB aligned and 2MB sized.
90 */
91#define SEV_TMR_SIZE (1024 * 1024)
92#define SNP_TMR_SIZE (2 * 1024 * 1024)
93
94static void *sev_es_tmr;
95static size_t sev_es_tmr_size = SEV_TMR_SIZE;
96
97/* INIT_EX NV Storage:
98 * The NV Storage is a 32Kb area and must be 4Kb page aligned. Use the page
99 * allocator to allocate the memory, which will return aligned memory for the
100 * specified allocation order.
101 */
102#define NV_LENGTH (32 * 1024)
103static void *sev_init_ex_buffer;
104
105/*
106 * SEV_DATA_RANGE_LIST:
107 * Array containing range of pages that firmware transitions to HV-fixed
108 * page state.
109 */
110static struct sev_data_range_list *snp_range_list;
111
112static inline bool sev_version_greater_or_equal(u8 maj, u8 min)
113{
114 struct sev_device *sev = psp_master->sev_data;
115
116 if (sev->api_major > maj)
117 return true;
118
119 if (sev->api_major == maj && sev->api_minor >= min)
120 return true;
121
122 return false;
123}
124
125static void sev_irq_handler(int irq, void *data, unsigned int status)
126{
127 struct sev_device *sev = data;
128 int reg;
129
130 /* Check if it is command completion: */
131 if (!(status & SEV_CMD_COMPLETE))
132 return;
133
134 /* Check if it is SEV command completion: */
135 reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
136 if (FIELD_GET(PSP_CMDRESP_RESP, reg)) {
137 sev->int_rcvd = 1;
138 wake_up(&sev->int_queue);
139 }
140}
141
142static int sev_wait_cmd_ioc(struct sev_device *sev,
143 unsigned int *reg, unsigned int timeout)
144{
145 int ret;
146
147 /*
148 * If invoked during panic handling, local interrupts are disabled,
149 * so the PSP command completion interrupt can't be used. Poll for
150 * PSP command completion instead.
151 */
152 if (irqs_disabled()) {
153 unsigned long timeout_usecs = (timeout * USEC_PER_SEC) / 10;
154
155 /* Poll for SEV command completion: */
156 while (timeout_usecs--) {
157 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
158 if (*reg & PSP_CMDRESP_RESP)
159 return 0;
160
161 udelay(10);
162 }
163 return -ETIMEDOUT;
164 }
165
166 ret = wait_event_timeout(sev->int_queue,
167 sev->int_rcvd, timeout * HZ);
168 if (!ret)
169 return -ETIMEDOUT;
170
171 *reg = ioread32(sev->io_regs + sev->vdata->cmdresp_reg);
172
173 return 0;
174}
175
176static int sev_cmd_buffer_len(int cmd)
177{
178 switch (cmd) {
179 case SEV_CMD_INIT: return sizeof(struct sev_data_init);
180 case SEV_CMD_INIT_EX: return sizeof(struct sev_data_init_ex);
181 case SEV_CMD_SNP_SHUTDOWN_EX: return sizeof(struct sev_data_snp_shutdown_ex);
182 case SEV_CMD_SNP_INIT_EX: return sizeof(struct sev_data_snp_init_ex);
183 case SEV_CMD_PLATFORM_STATUS: return sizeof(struct sev_user_data_status);
184 case SEV_CMD_PEK_CSR: return sizeof(struct sev_data_pek_csr);
185 case SEV_CMD_PEK_CERT_IMPORT: return sizeof(struct sev_data_pek_cert_import);
186 case SEV_CMD_PDH_CERT_EXPORT: return sizeof(struct sev_data_pdh_cert_export);
187 case SEV_CMD_LAUNCH_START: return sizeof(struct sev_data_launch_start);
188 case SEV_CMD_LAUNCH_UPDATE_DATA: return sizeof(struct sev_data_launch_update_data);
189 case SEV_CMD_LAUNCH_UPDATE_VMSA: return sizeof(struct sev_data_launch_update_vmsa);
190 case SEV_CMD_LAUNCH_FINISH: return sizeof(struct sev_data_launch_finish);
191 case SEV_CMD_LAUNCH_MEASURE: return sizeof(struct sev_data_launch_measure);
192 case SEV_CMD_ACTIVATE: return sizeof(struct sev_data_activate);
193 case SEV_CMD_DEACTIVATE: return sizeof(struct sev_data_deactivate);
194 case SEV_CMD_DECOMMISSION: return sizeof(struct sev_data_decommission);
195 case SEV_CMD_GUEST_STATUS: return sizeof(struct sev_data_guest_status);
196 case SEV_CMD_DBG_DECRYPT: return sizeof(struct sev_data_dbg);
197 case SEV_CMD_DBG_ENCRYPT: return sizeof(struct sev_data_dbg);
198 case SEV_CMD_SEND_START: return sizeof(struct sev_data_send_start);
199 case SEV_CMD_SEND_UPDATE_DATA: return sizeof(struct sev_data_send_update_data);
200 case SEV_CMD_SEND_UPDATE_VMSA: return sizeof(struct sev_data_send_update_vmsa);
201 case SEV_CMD_SEND_FINISH: return sizeof(struct sev_data_send_finish);
202 case SEV_CMD_RECEIVE_START: return sizeof(struct sev_data_receive_start);
203 case SEV_CMD_RECEIVE_FINISH: return sizeof(struct sev_data_receive_finish);
204 case SEV_CMD_RECEIVE_UPDATE_DATA: return sizeof(struct sev_data_receive_update_data);
205 case SEV_CMD_RECEIVE_UPDATE_VMSA: return sizeof(struct sev_data_receive_update_vmsa);
206 case SEV_CMD_LAUNCH_UPDATE_SECRET: return sizeof(struct sev_data_launch_secret);
207 case SEV_CMD_DOWNLOAD_FIRMWARE: return sizeof(struct sev_data_download_firmware);
208 case SEV_CMD_GET_ID: return sizeof(struct sev_data_get_id);
209 case SEV_CMD_ATTESTATION_REPORT: return sizeof(struct sev_data_attestation_report);
210 case SEV_CMD_SEND_CANCEL: return sizeof(struct sev_data_send_cancel);
211 case SEV_CMD_SNP_GCTX_CREATE: return sizeof(struct sev_data_snp_addr);
212 case SEV_CMD_SNP_LAUNCH_START: return sizeof(struct sev_data_snp_launch_start);
213 case SEV_CMD_SNP_LAUNCH_UPDATE: return sizeof(struct sev_data_snp_launch_update);
214 case SEV_CMD_SNP_ACTIVATE: return sizeof(struct sev_data_snp_activate);
215 case SEV_CMD_SNP_DECOMMISSION: return sizeof(struct sev_data_snp_addr);
216 case SEV_CMD_SNP_PAGE_RECLAIM: return sizeof(struct sev_data_snp_page_reclaim);
217 case SEV_CMD_SNP_GUEST_STATUS: return sizeof(struct sev_data_snp_guest_status);
218 case SEV_CMD_SNP_LAUNCH_FINISH: return sizeof(struct sev_data_snp_launch_finish);
219 case SEV_CMD_SNP_DBG_DECRYPT: return sizeof(struct sev_data_snp_dbg);
220 case SEV_CMD_SNP_DBG_ENCRYPT: return sizeof(struct sev_data_snp_dbg);
221 case SEV_CMD_SNP_PAGE_UNSMASH: return sizeof(struct sev_data_snp_page_unsmash);
222 case SEV_CMD_SNP_PLATFORM_STATUS: return sizeof(struct sev_data_snp_addr);
223 case SEV_CMD_SNP_GUEST_REQUEST: return sizeof(struct sev_data_snp_guest_request);
224 case SEV_CMD_SNP_CONFIG: return sizeof(struct sev_user_data_snp_config);
225 case SEV_CMD_SNP_COMMIT: return sizeof(struct sev_data_snp_commit);
226 default: return 0;
227 }
228
229 return 0;
230}
231
232static struct file *open_file_as_root(const char *filename, int flags, umode_t mode)
233{
234 struct file *fp;
235 struct path root;
236 struct cred *cred;
237 const struct cred *old_cred;
238
239 task_lock(p: &init_task);
240 get_fs_root(fs: init_task.fs, root: &root);
241 task_unlock(p: &init_task);
242
243 cred = prepare_creds();
244 if (!cred)
245 return ERR_PTR(error: -ENOMEM);
246 cred->fsuid = GLOBAL_ROOT_UID;
247 old_cred = override_creds(cred);
248
249 fp = file_open_root(&root, filename, flags, mode);
250 path_put(&root);
251
252 revert_creds(old_cred);
253
254 return fp;
255}
256
257static int sev_read_init_ex_file(void)
258{
259 struct sev_device *sev = psp_master->sev_data;
260 struct file *fp;
261 ssize_t nread;
262
263 lockdep_assert_held(&sev_cmd_mutex);
264
265 if (!sev_init_ex_buffer)
266 return -EOPNOTSUPP;
267
268 fp = open_file_as_root(filename: init_ex_path, O_RDONLY, mode: 0);
269 if (IS_ERR(ptr: fp)) {
270 int ret = PTR_ERR(ptr: fp);
271
272 if (ret == -ENOENT) {
273 dev_info(sev->dev,
274 "SEV: %s does not exist and will be created later.\n",
275 init_ex_path);
276 ret = 0;
277 } else {
278 dev_err(sev->dev,
279 "SEV: could not open %s for read, error %d\n",
280 init_ex_path, ret);
281 }
282 return ret;
283 }
284
285 nread = kernel_read(fp, sev_init_ex_buffer, NV_LENGTH, NULL);
286 if (nread != NV_LENGTH) {
287 dev_info(sev->dev,
288 "SEV: could not read %u bytes to non volatile memory area, ret %ld\n",
289 NV_LENGTH, nread);
290 }
291
292 dev_dbg(sev->dev, "SEV: read %ld bytes from NV file\n", nread);
293 filp_close(fp, NULL);
294
295 return 0;
296}
297
298static int sev_write_init_ex_file(void)
299{
300 struct sev_device *sev = psp_master->sev_data;
301 struct file *fp;
302 loff_t offset = 0;
303 ssize_t nwrite;
304
305 lockdep_assert_held(&sev_cmd_mutex);
306
307 if (!sev_init_ex_buffer)
308 return 0;
309
310 fp = open_file_as_root(filename: init_ex_path, O_CREAT | O_WRONLY, mode: 0600);
311 if (IS_ERR(ptr: fp)) {
312 int ret = PTR_ERR(ptr: fp);
313
314 dev_err(sev->dev,
315 "SEV: could not open file for write, error %d\n",
316 ret);
317 return ret;
318 }
319
320 nwrite = kernel_write(fp, sev_init_ex_buffer, NV_LENGTH, &offset);
321 vfs_fsync(file: fp, datasync: 0);
322 filp_close(fp, NULL);
323
324 if (nwrite != NV_LENGTH) {
325 dev_err(sev->dev,
326 "SEV: failed to write %u bytes to non volatile memory area, ret %ld\n",
327 NV_LENGTH, nwrite);
328 return -EIO;
329 }
330
331 dev_dbg(sev->dev, "SEV: write successful to NV file\n");
332
333 return 0;
334}
335
336static int sev_write_init_ex_file_if_required(int cmd_id)
337{
338 lockdep_assert_held(&sev_cmd_mutex);
339
340 if (!sev_init_ex_buffer)
341 return 0;
342
343 /*
344 * Only a few platform commands modify the SPI/NV area, but none of the
345 * non-platform commands do. Only INIT(_EX), PLATFORM_RESET, PEK_GEN,
346 * PEK_CERT_IMPORT, and PDH_GEN do.
347 */
348 switch (cmd_id) {
349 case SEV_CMD_FACTORY_RESET:
350 case SEV_CMD_INIT_EX:
351 case SEV_CMD_PDH_GEN:
352 case SEV_CMD_PEK_CERT_IMPORT:
353 case SEV_CMD_PEK_GEN:
354 break;
355 default:
356 return 0;
357 }
358
359 return sev_write_init_ex_file();
360}
361
362/*
363 * snp_reclaim_pages() needs __sev_do_cmd_locked(), and __sev_do_cmd_locked()
364 * needs snp_reclaim_pages(), so a forward declaration is needed.
365 */
366static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret);
367
368static int snp_reclaim_pages(unsigned long paddr, unsigned int npages, bool locked)
369{
370 int ret, err, i;
371
372 paddr = __sme_clr(ALIGN_DOWN(paddr, PAGE_SIZE));
373
374 for (i = 0; i < npages; i++, paddr += PAGE_SIZE) {
375 struct sev_data_snp_page_reclaim data = {0};
376
377 data.paddr = paddr;
378
379 if (locked)
380 ret = __sev_do_cmd_locked(cmd: SEV_CMD_SNP_PAGE_RECLAIM, data: &data, psp_ret: &err);
381 else
382 ret = sev_do_cmd(cmd: SEV_CMD_SNP_PAGE_RECLAIM, data: &data, psp_ret: &err);
383
384 if (ret)
385 goto cleanup;
386
387 ret = rmp_make_shared(__phys_to_pfn(paddr), level: PG_LEVEL_4K);
388 if (ret)
389 goto cleanup;
390 }
391
392 return 0;
393
394cleanup:
395 /*
396 * If there was a failure reclaiming the page then it is no longer safe
397 * to release it back to the system; leak it instead.
398 */
399 snp_leak_pages(__phys_to_pfn(paddr), npages: npages - i);
400 return ret;
401}
402
403static int rmp_mark_pages_firmware(unsigned long paddr, unsigned int npages, bool locked)
404{
405 unsigned long pfn = __sme_clr(paddr) >> PAGE_SHIFT;
406 int rc, i;
407
408 for (i = 0; i < npages; i++, pfn++) {
409 rc = rmp_make_private(pfn, gpa: 0, level: PG_LEVEL_4K, asid: 0, immutable: true);
410 if (rc)
411 goto cleanup;
412 }
413
414 return 0;
415
416cleanup:
417 /*
418 * Try unrolling the firmware state changes by
419 * reclaiming the pages which were already changed to the
420 * firmware state.
421 */
422 snp_reclaim_pages(paddr, npages: i, locked);
423
424 return rc;
425}
426
427static struct page *__snp_alloc_firmware_pages(gfp_t gfp_mask, int order)
428{
429 unsigned long npages = 1ul << order, paddr;
430 struct sev_device *sev;
431 struct page *page;
432
433 if (!psp_master || !psp_master->sev_data)
434 return NULL;
435
436 page = alloc_pages(gfp: gfp_mask, order);
437 if (!page)
438 return NULL;
439
440 /* If SEV-SNP is initialized then add the page in RMP table. */
441 sev = psp_master->sev_data;
442 if (!sev->snp_initialized)
443 return page;
444
445 paddr = __pa((unsigned long)page_address(page));
446 if (rmp_mark_pages_firmware(paddr, npages, locked: false))
447 return NULL;
448
449 return page;
450}
451
452void *snp_alloc_firmware_page(gfp_t gfp_mask)
453{
454 struct page *page;
455
456 page = __snp_alloc_firmware_pages(gfp_mask, order: 0);
457
458 return page ? page_address(page) : NULL;
459}
460EXPORT_SYMBOL_GPL(snp_alloc_firmware_page);
461
462static void __snp_free_firmware_pages(struct page *page, int order, bool locked)
463{
464 struct sev_device *sev = psp_master->sev_data;
465 unsigned long paddr, npages = 1ul << order;
466
467 if (!page)
468 return;
469
470 paddr = __pa((unsigned long)page_address(page));
471 if (sev->snp_initialized &&
472 snp_reclaim_pages(paddr, npages, locked))
473 return;
474
475 __free_pages(page, order);
476}
477
478void snp_free_firmware_page(void *addr)
479{
480 if (!addr)
481 return;
482
483 __snp_free_firmware_pages(virt_to_page(addr), order: 0, locked: false);
484}
485EXPORT_SYMBOL_GPL(snp_free_firmware_page);
486
487static void *sev_fw_alloc(unsigned long len)
488{
489 struct page *page;
490
491 page = __snp_alloc_firmware_pages(GFP_KERNEL, order: get_order(size: len));
492 if (!page)
493 return NULL;
494
495 return page_address(page);
496}
497
498/**
499 * struct cmd_buf_desc - descriptors for managing legacy SEV command address
500 * parameters corresponding to buffers that may be written to by firmware.
501 *
502 * @paddr_ptr: pointer to the address parameter in the command buffer which may
503 * need to be saved/restored depending on whether a bounce buffer
504 * is used. In the case of a bounce buffer, the command buffer
505 * needs to be updated with the address of the new bounce buffer
506 * snp_map_cmd_buf_desc() has allocated specifically for it. Must
507 * be NULL if this descriptor is only an end-of-list indicator.
508 *
509 * @paddr_orig: storage for the original address parameter, which can be used to
510 * restore the original value in @paddr_ptr in cases where it is
511 * replaced with the address of a bounce buffer.
512 *
513 * @len: length of buffer located at the address originally stored at @paddr_ptr
514 *
515 * @guest_owned: true if the address corresponds to guest-owned pages, in which
516 * case bounce buffers are not needed.
517 */
518struct cmd_buf_desc {
519 u64 *paddr_ptr;
520 u64 paddr_orig;
521 u32 len;
522 bool guest_owned;
523};
524
525/*
526 * If a legacy SEV command parameter is a memory address, those pages in
527 * turn need to be transitioned to/from firmware-owned before/after
528 * executing the firmware command.
529 *
530 * Additionally, in cases where those pages are not guest-owned, a bounce
531 * buffer is needed in place of the original memory address parameter.
532 *
533 * A set of descriptors are used to keep track of this handling, and
534 * initialized here based on the specific commands being executed.
535 */
536static void snp_populate_cmd_buf_desc_list(int cmd, void *cmd_buf,
537 struct cmd_buf_desc *desc_list)
538{
539 switch (cmd) {
540 case SEV_CMD_PDH_CERT_EXPORT: {
541 struct sev_data_pdh_cert_export *data = cmd_buf;
542
543 desc_list[0].paddr_ptr = &data->pdh_cert_address;
544 desc_list[0].len = data->pdh_cert_len;
545 desc_list[1].paddr_ptr = &data->cert_chain_address;
546 desc_list[1].len = data->cert_chain_len;
547 break;
548 }
549 case SEV_CMD_GET_ID: {
550 struct sev_data_get_id *data = cmd_buf;
551
552 desc_list[0].paddr_ptr = &data->address;
553 desc_list[0].len = data->len;
554 break;
555 }
556 case SEV_CMD_PEK_CSR: {
557 struct sev_data_pek_csr *data = cmd_buf;
558
559 desc_list[0].paddr_ptr = &data->address;
560 desc_list[0].len = data->len;
561 break;
562 }
563 case SEV_CMD_LAUNCH_UPDATE_DATA: {
564 struct sev_data_launch_update_data *data = cmd_buf;
565
566 desc_list[0].paddr_ptr = &data->address;
567 desc_list[0].len = data->len;
568 desc_list[0].guest_owned = true;
569 break;
570 }
571 case SEV_CMD_LAUNCH_UPDATE_VMSA: {
572 struct sev_data_launch_update_vmsa *data = cmd_buf;
573
574 desc_list[0].paddr_ptr = &data->address;
575 desc_list[0].len = data->len;
576 desc_list[0].guest_owned = true;
577 break;
578 }
579 case SEV_CMD_LAUNCH_MEASURE: {
580 struct sev_data_launch_measure *data = cmd_buf;
581
582 desc_list[0].paddr_ptr = &data->address;
583 desc_list[0].len = data->len;
584 break;
585 }
586 case SEV_CMD_LAUNCH_UPDATE_SECRET: {
587 struct sev_data_launch_secret *data = cmd_buf;
588
589 desc_list[0].paddr_ptr = &data->guest_address;
590 desc_list[0].len = data->guest_len;
591 desc_list[0].guest_owned = true;
592 break;
593 }
594 case SEV_CMD_DBG_DECRYPT: {
595 struct sev_data_dbg *data = cmd_buf;
596
597 desc_list[0].paddr_ptr = &data->dst_addr;
598 desc_list[0].len = data->len;
599 desc_list[0].guest_owned = true;
600 break;
601 }
602 case SEV_CMD_DBG_ENCRYPT: {
603 struct sev_data_dbg *data = cmd_buf;
604
605 desc_list[0].paddr_ptr = &data->dst_addr;
606 desc_list[0].len = data->len;
607 desc_list[0].guest_owned = true;
608 break;
609 }
610 case SEV_CMD_ATTESTATION_REPORT: {
611 struct sev_data_attestation_report *data = cmd_buf;
612
613 desc_list[0].paddr_ptr = &data->address;
614 desc_list[0].len = data->len;
615 break;
616 }
617 case SEV_CMD_SEND_START: {
618 struct sev_data_send_start *data = cmd_buf;
619
620 desc_list[0].paddr_ptr = &data->session_address;
621 desc_list[0].len = data->session_len;
622 break;
623 }
624 case SEV_CMD_SEND_UPDATE_DATA: {
625 struct sev_data_send_update_data *data = cmd_buf;
626
627 desc_list[0].paddr_ptr = &data->hdr_address;
628 desc_list[0].len = data->hdr_len;
629 desc_list[1].paddr_ptr = &data->trans_address;
630 desc_list[1].len = data->trans_len;
631 break;
632 }
633 case SEV_CMD_SEND_UPDATE_VMSA: {
634 struct sev_data_send_update_vmsa *data = cmd_buf;
635
636 desc_list[0].paddr_ptr = &data->hdr_address;
637 desc_list[0].len = data->hdr_len;
638 desc_list[1].paddr_ptr = &data->trans_address;
639 desc_list[1].len = data->trans_len;
640 break;
641 }
642 case SEV_CMD_RECEIVE_UPDATE_DATA: {
643 struct sev_data_receive_update_data *data = cmd_buf;
644
645 desc_list[0].paddr_ptr = &data->guest_address;
646 desc_list[0].len = data->guest_len;
647 desc_list[0].guest_owned = true;
648 break;
649 }
650 case SEV_CMD_RECEIVE_UPDATE_VMSA: {
651 struct sev_data_receive_update_vmsa *data = cmd_buf;
652
653 desc_list[0].paddr_ptr = &data->guest_address;
654 desc_list[0].len = data->guest_len;
655 desc_list[0].guest_owned = true;
656 break;
657 }
658 default:
659 break;
660 }
661}
662
663static int snp_map_cmd_buf_desc(struct cmd_buf_desc *desc)
664{
665 unsigned int npages;
666
667 if (!desc->len)
668 return 0;
669
670 /* Allocate a bounce buffer if this isn't a guest owned page. */
671 if (!desc->guest_owned) {
672 struct page *page;
673
674 page = alloc_pages(GFP_KERNEL_ACCOUNT, order: get_order(size: desc->len));
675 if (!page) {
676 pr_warn("Failed to allocate bounce buffer for SEV legacy command.\n");
677 return -ENOMEM;
678 }
679
680 desc->paddr_orig = *desc->paddr_ptr;
681 *desc->paddr_ptr = __psp_pa(page_to_virt(page));
682 }
683
684 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
685
686 /* Transition the buffer to firmware-owned. */
687 if (rmp_mark_pages_firmware(paddr: *desc->paddr_ptr, npages, locked: true)) {
688 pr_warn("Error moving pages to firmware-owned state for SEV legacy command.\n");
689 return -EFAULT;
690 }
691
692 return 0;
693}
694
695static int snp_unmap_cmd_buf_desc(struct cmd_buf_desc *desc)
696{
697 unsigned int npages;
698
699 if (!desc->len)
700 return 0;
701
702 npages = PAGE_ALIGN(desc->len) >> PAGE_SHIFT;
703
704 /* Transition the buffers back to hypervisor-owned. */
705 if (snp_reclaim_pages(paddr: *desc->paddr_ptr, npages, locked: true)) {
706 pr_warn("Failed to reclaim firmware-owned pages while issuing SEV legacy command.\n");
707 return -EFAULT;
708 }
709
710 /* Copy data from bounce buffer and then free it. */
711 if (!desc->guest_owned) {
712 void *bounce_buf = __va(__sme_clr(*desc->paddr_ptr));
713 void *dst_buf = __va(__sme_clr(desc->paddr_orig));
714
715 memcpy(dst_buf, bounce_buf, desc->len);
716 __free_pages(virt_to_page(bounce_buf), order: get_order(size: desc->len));
717
718 /* Restore the original address in the command buffer. */
719 *desc->paddr_ptr = desc->paddr_orig;
720 }
721
722 return 0;
723}
724
725static int snp_map_cmd_buf_desc_list(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
726{
727 int i;
728
729 snp_populate_cmd_buf_desc_list(cmd, cmd_buf, desc_list);
730
731 for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
732 struct cmd_buf_desc *desc = &desc_list[i];
733
734 if (!desc->paddr_ptr)
735 break;
736
737 if (snp_map_cmd_buf_desc(desc))
738 goto err_unmap;
739 }
740
741 return 0;
742
743err_unmap:
744 for (i--; i >= 0; i--)
745 snp_unmap_cmd_buf_desc(desc: &desc_list[i]);
746
747 return -EFAULT;
748}
749
750static int snp_unmap_cmd_buf_desc_list(struct cmd_buf_desc *desc_list)
751{
752 int i, ret = 0;
753
754 for (i = 0; i < CMD_BUF_DESC_MAX; i++) {
755 struct cmd_buf_desc *desc = &desc_list[i];
756
757 if (!desc->paddr_ptr)
758 break;
759
760 if (snp_unmap_cmd_buf_desc(desc: &desc_list[i]))
761 ret = -EFAULT;
762 }
763
764 return ret;
765}
766
767static bool sev_cmd_buf_writable(int cmd)
768{
769 switch (cmd) {
770 case SEV_CMD_PLATFORM_STATUS:
771 case SEV_CMD_GUEST_STATUS:
772 case SEV_CMD_LAUNCH_START:
773 case SEV_CMD_RECEIVE_START:
774 case SEV_CMD_LAUNCH_MEASURE:
775 case SEV_CMD_SEND_START:
776 case SEV_CMD_SEND_UPDATE_DATA:
777 case SEV_CMD_SEND_UPDATE_VMSA:
778 case SEV_CMD_PEK_CSR:
779 case SEV_CMD_PDH_CERT_EXPORT:
780 case SEV_CMD_GET_ID:
781 case SEV_CMD_ATTESTATION_REPORT:
782 return true;
783 default:
784 return false;
785 }
786}
787
788/* After SNP is INIT'ed, the behavior of legacy SEV commands is changed. */
789static bool snp_legacy_handling_needed(int cmd)
790{
791 struct sev_device *sev = psp_master->sev_data;
792
793 return cmd < SEV_CMD_SNP_INIT && sev->snp_initialized;
794}
795
796static int snp_prep_cmd_buf(int cmd, void *cmd_buf, struct cmd_buf_desc *desc_list)
797{
798 if (!snp_legacy_handling_needed(cmd))
799 return 0;
800
801 if (snp_map_cmd_buf_desc_list(cmd, cmd_buf, desc_list))
802 return -EFAULT;
803
804 /*
805 * Before command execution, the command buffer needs to be put into
806 * the firmware-owned state.
807 */
808 if (sev_cmd_buf_writable(cmd)) {
809 if (rmp_mark_pages_firmware(__pa(cmd_buf), npages: 1, locked: true))
810 return -EFAULT;
811 }
812
813 return 0;
814}
815
816static int snp_reclaim_cmd_buf(int cmd, void *cmd_buf)
817{
818 if (!snp_legacy_handling_needed(cmd))
819 return 0;
820
821 /*
822 * After command completion, the command buffer needs to be put back
823 * into the hypervisor-owned state.
824 */
825 if (sev_cmd_buf_writable(cmd))
826 if (snp_reclaim_pages(__pa(cmd_buf), npages: 1, locked: true))
827 return -EFAULT;
828
829 return 0;
830}
831
832static int __sev_do_cmd_locked(int cmd, void *data, int *psp_ret)
833{
834 struct cmd_buf_desc desc_list[CMD_BUF_DESC_MAX] = {0};
835 struct psp_device *psp = psp_master;
836 struct sev_device *sev;
837 unsigned int cmdbuff_hi, cmdbuff_lo;
838 unsigned int phys_lsb, phys_msb;
839 unsigned int reg, ret = 0;
840 void *cmd_buf;
841 int buf_len;
842
843 if (!psp || !psp->sev_data)
844 return -ENODEV;
845
846 if (psp_dead)
847 return -EBUSY;
848
849 sev = psp->sev_data;
850
851 buf_len = sev_cmd_buffer_len(cmd);
852 if (WARN_ON_ONCE(!data != !buf_len))
853 return -EINVAL;
854
855 /*
856 * Copy the incoming data to driver's scratch buffer as __pa() will not
857 * work for some memory, e.g. vmalloc'd addresses, and @data may not be
858 * physically contiguous.
859 */
860 if (data) {
861 /*
862 * Commands are generally issued one at a time and require the
863 * sev_cmd_mutex, but there could be recursive firmware requests
864 * due to SEV_CMD_SNP_PAGE_RECLAIM needing to be issued while
865 * preparing buffers for another command. This is the only known
866 * case of nesting in the current code, so exactly one
867 * additional command buffer is available for that purpose.
868 */
869 if (!sev->cmd_buf_active) {
870 cmd_buf = sev->cmd_buf;
871 sev->cmd_buf_active = true;
872 } else if (!sev->cmd_buf_backup_active) {
873 cmd_buf = sev->cmd_buf_backup;
874 sev->cmd_buf_backup_active = true;
875 } else {
876 dev_err(sev->dev,
877 "SEV: too many firmware commands in progress, no command buffers available.\n");
878 return -EBUSY;
879 }
880
881 memcpy(cmd_buf, data, buf_len);
882
883 /*
884 * The behavior of the SEV-legacy commands is altered when the
885 * SNP firmware is in the INIT state.
886 */
887 ret = snp_prep_cmd_buf(cmd, cmd_buf, desc_list);
888 if (ret) {
889 dev_err(sev->dev,
890 "SEV: failed to prepare buffer for legacy command 0x%x. Error: %d\n",
891 cmd, ret);
892 return ret;
893 }
894 } else {
895 cmd_buf = sev->cmd_buf;
896 }
897
898 /* Get the physical address of the command buffer */
899 phys_lsb = data ? lower_32_bits(__psp_pa(cmd_buf)) : 0;
900 phys_msb = data ? upper_32_bits(__psp_pa(cmd_buf)) : 0;
901
902 dev_dbg(sev->dev, "sev command id %#x buffer 0x%08x%08x timeout %us\n",
903 cmd, phys_msb, phys_lsb, psp_timeout);
904
905 print_hex_dump_debug("(in): ", DUMP_PREFIX_OFFSET, 16, 2, data,
906 buf_len, false);
907
908 iowrite32(phys_lsb, sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
909 iowrite32(phys_msb, sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
910
911 sev->int_rcvd = 0;
912
913 reg = FIELD_PREP(SEV_CMDRESP_CMD, cmd) | SEV_CMDRESP_IOC;
914 iowrite32(reg, sev->io_regs + sev->vdata->cmdresp_reg);
915
916 /* wait for command completion */
917 ret = sev_wait_cmd_ioc(sev, reg: &reg, timeout: psp_timeout);
918 if (ret) {
919 if (psp_ret)
920 *psp_ret = 0;
921
922 dev_err(sev->dev, "sev command %#x timed out, disabling PSP\n", cmd);
923 psp_dead = true;
924
925 return ret;
926 }
927
928 psp_timeout = psp_cmd_timeout;
929
930 if (psp_ret)
931 *psp_ret = FIELD_GET(PSP_CMDRESP_STS, reg);
932
933 if (FIELD_GET(PSP_CMDRESP_STS, reg)) {
934 dev_dbg(sev->dev, "sev command %#x failed (%#010lx)\n",
935 cmd, FIELD_GET(PSP_CMDRESP_STS, reg));
936
937 /*
938 * PSP firmware may report additional error information in the
939 * command buffer registers on error. Print contents of command
940 * buffer registers if they changed.
941 */
942 cmdbuff_hi = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_hi_reg);
943 cmdbuff_lo = ioread32(sev->io_regs + sev->vdata->cmdbuff_addr_lo_reg);
944 if (cmdbuff_hi != phys_msb || cmdbuff_lo != phys_lsb) {
945 dev_dbg(sev->dev, "Additional error information reported in cmdbuff:");
946 dev_dbg(sev->dev, " cmdbuff hi: %#010x\n", cmdbuff_hi);
947 dev_dbg(sev->dev, " cmdbuff lo: %#010x\n", cmdbuff_lo);
948 }
949 ret = -EIO;
950 } else {
951 ret = sev_write_init_ex_file_if_required(cmd_id: cmd);
952 }
953
954 /*
955 * Copy potential output from the PSP back to data. Do this even on
956 * failure in case the caller wants to glean something from the error.
957 */
958 if (data) {
959 int ret_reclaim;
960 /*
961 * Restore the page state after the command completes.
962 */
963 ret_reclaim = snp_reclaim_cmd_buf(cmd, cmd_buf);
964 if (ret_reclaim) {
965 dev_err(sev->dev,
966 "SEV: failed to reclaim buffer for legacy command %#x. Error: %d\n",
967 cmd, ret_reclaim);
968 return ret_reclaim;
969 }
970
971 memcpy(data, cmd_buf, buf_len);
972
973 if (sev->cmd_buf_backup_active)
974 sev->cmd_buf_backup_active = false;
975 else
976 sev->cmd_buf_active = false;
977
978 if (snp_unmap_cmd_buf_desc_list(desc_list))
979 return -EFAULT;
980 }
981
982 print_hex_dump_debug("(out): ", DUMP_PREFIX_OFFSET, 16, 2, data,
983 buf_len, false);
984
985 return ret;
986}
987
988int sev_do_cmd(int cmd, void *data, int *psp_ret)
989{
990 int rc;
991
992 mutex_lock(&sev_cmd_mutex);
993 rc = __sev_do_cmd_locked(cmd, data, psp_ret);
994 mutex_unlock(lock: &sev_cmd_mutex);
995
996 return rc;
997}
998EXPORT_SYMBOL_GPL(sev_do_cmd);
999
1000static int __sev_init_locked(int *error)
1001{
1002 struct sev_data_init data;
1003
1004 memset(&data, 0, sizeof(data));
1005 if (sev_es_tmr) {
1006 /*
1007 * Do not include the encryption mask on the physical
1008 * address of the TMR (firmware should clear it anyway).
1009 */
1010 data.tmr_address = __pa(sev_es_tmr);
1011
1012 data.flags |= SEV_INIT_FLAGS_SEV_ES;
1013 data.tmr_len = sev_es_tmr_size;
1014 }
1015
1016 return __sev_do_cmd_locked(cmd: SEV_CMD_INIT, data: &data, psp_ret: error);
1017}
1018
1019static int __sev_init_ex_locked(int *error)
1020{
1021 struct sev_data_init_ex data;
1022
1023 memset(&data, 0, sizeof(data));
1024 data.length = sizeof(data);
1025 data.nv_address = __psp_pa(sev_init_ex_buffer);
1026 data.nv_len = NV_LENGTH;
1027
1028 if (sev_es_tmr) {
1029 /*
1030 * Do not include the encryption mask on the physical
1031 * address of the TMR (firmware should clear it anyway).
1032 */
1033 data.tmr_address = __pa(sev_es_tmr);
1034
1035 data.flags |= SEV_INIT_FLAGS_SEV_ES;
1036 data.tmr_len = sev_es_tmr_size;
1037 }
1038
1039 return __sev_do_cmd_locked(cmd: SEV_CMD_INIT_EX, data: &data, psp_ret: error);
1040}
1041
1042static inline int __sev_do_init_locked(int *psp_ret)
1043{
1044 if (sev_init_ex_buffer)
1045 return __sev_init_ex_locked(error: psp_ret);
1046 else
1047 return __sev_init_locked(error: psp_ret);
1048}
1049
1050static void snp_set_hsave_pa(void *arg)
1051{
1052 wrmsrl(MSR_VM_HSAVE_PA, val: 0);
1053}
1054
1055static int snp_filter_reserved_mem_regions(struct resource *rs, void *arg)
1056{
1057 struct sev_data_range_list *range_list = arg;
1058 struct sev_data_range *range = &range_list->ranges[range_list->num_elements];
1059 size_t size;
1060
1061 /*
1062 * Ensure the list of HV_FIXED pages that will be passed to firmware
1063 * do not exceed the page-sized argument buffer.
1064 */
1065 if ((range_list->num_elements * sizeof(struct sev_data_range) +
1066 sizeof(struct sev_data_range_list)) > PAGE_SIZE)
1067 return -E2BIG;
1068
1069 switch (rs->desc) {
1070 case E820_TYPE_RESERVED:
1071 case E820_TYPE_PMEM:
1072 case E820_TYPE_ACPI:
1073 range->base = rs->start & PAGE_MASK;
1074 size = PAGE_ALIGN((rs->end + 1) - rs->start);
1075 range->page_count = size >> PAGE_SHIFT;
1076 range_list->num_elements++;
1077 break;
1078 default:
1079 break;
1080 }
1081
1082 return 0;
1083}
1084
1085static int __sev_snp_init_locked(int *error)
1086{
1087 struct psp_device *psp = psp_master;
1088 struct sev_data_snp_init_ex data;
1089 struct sev_device *sev;
1090 void *arg = &data;
1091 int cmd, rc = 0;
1092
1093 if (!cc_platform_has(attr: CC_ATTR_HOST_SEV_SNP))
1094 return -ENODEV;
1095
1096 sev = psp->sev_data;
1097
1098 if (sev->snp_initialized)
1099 return 0;
1100
1101 if (!sev_version_greater_or_equal(SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR)) {
1102 dev_dbg(sev->dev, "SEV-SNP support requires firmware version >= %d:%d\n",
1103 SNP_MIN_API_MAJOR, SNP_MIN_API_MINOR);
1104 return 0;
1105 }
1106
1107 /* SNP_INIT requires MSR_VM_HSAVE_PA to be cleared on all CPUs. */
1108 on_each_cpu(func: snp_set_hsave_pa, NULL, wait: 1);
1109
1110 /*
1111 * Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list
1112 * of system physical address ranges to convert into HV-fixed page
1113 * states during the RMP initialization. For instance, the memory that
1114 * UEFI reserves should be included in the that list. This allows system
1115 * components that occasionally write to memory (e.g. logging to UEFI
1116 * reserved regions) to not fail due to RMP initialization and SNP
1117 * enablement.
1118 *
1119 */
1120 if (sev_version_greater_or_equal(SNP_MIN_API_MAJOR, min: 52)) {
1121 /*
1122 * Firmware checks that the pages containing the ranges enumerated
1123 * in the RANGES structure are either in the default page state or in the
1124 * firmware page state.
1125 */
1126 snp_range_list = kzalloc(PAGE_SIZE, GFP_KERNEL);
1127 if (!snp_range_list) {
1128 dev_err(sev->dev,
1129 "SEV: SNP_INIT_EX range list memory allocation failed\n");
1130 return -ENOMEM;
1131 }
1132
1133 /*
1134 * Retrieve all reserved memory regions from the e820 memory map
1135 * to be setup as HV-fixed pages.
1136 */
1137 rc = walk_iomem_res_desc(desc: IORES_DESC_NONE, IORESOURCE_MEM, start: 0, end: ~0,
1138 arg: snp_range_list, func: snp_filter_reserved_mem_regions);
1139 if (rc) {
1140 dev_err(sev->dev,
1141 "SEV: SNP_INIT_EX walk_iomem_res_desc failed rc = %d\n", rc);
1142 return rc;
1143 }
1144
1145 memset(&data, 0, sizeof(data));
1146 data.init_rmp = 1;
1147 data.list_paddr_en = 1;
1148 data.list_paddr = __psp_pa(snp_range_list);
1149 cmd = SEV_CMD_SNP_INIT_EX;
1150 } else {
1151 cmd = SEV_CMD_SNP_INIT;
1152 arg = NULL;
1153 }
1154
1155 /*
1156 * The following sequence must be issued before launching the first SNP
1157 * guest to ensure all dirty cache lines are flushed, including from
1158 * updates to the RMP table itself via the RMPUPDATE instruction:
1159 *
1160 * - WBINVD on all running CPUs
1161 * - SEV_CMD_SNP_INIT[_EX] firmware command
1162 * - WBINVD on all running CPUs
1163 * - SEV_CMD_SNP_DF_FLUSH firmware command
1164 */
1165 wbinvd_on_all_cpus();
1166
1167 rc = __sev_do_cmd_locked(cmd, data: arg, psp_ret: error);
1168 if (rc)
1169 return rc;
1170
1171 /* Prepare for first SNP guest launch after INIT. */
1172 wbinvd_on_all_cpus();
1173 rc = __sev_do_cmd_locked(cmd: SEV_CMD_SNP_DF_FLUSH, NULL, psp_ret: error);
1174 if (rc)
1175 return rc;
1176
1177 sev->snp_initialized = true;
1178 dev_dbg(sev->dev, "SEV-SNP firmware initialized\n");
1179
1180 sev_es_tmr_size = SNP_TMR_SIZE;
1181
1182 return rc;
1183}
1184
1185static void __sev_platform_init_handle_tmr(struct sev_device *sev)
1186{
1187 if (sev_es_tmr)
1188 return;
1189
1190 /* Obtain the TMR memory area for SEV-ES use */
1191 sev_es_tmr = sev_fw_alloc(len: sev_es_tmr_size);
1192 if (sev_es_tmr) {
1193 /* Must flush the cache before giving it to the firmware */
1194 if (!sev->snp_initialized)
1195 clflush_cache_range(addr: sev_es_tmr, size: sev_es_tmr_size);
1196 } else {
1197 dev_warn(sev->dev, "SEV: TMR allocation failed, SEV-ES support unavailable\n");
1198 }
1199}
1200
1201/*
1202 * If an init_ex_path is provided allocate a buffer for the file and
1203 * read in the contents. Additionally, if SNP is initialized, convert
1204 * the buffer pages to firmware pages.
1205 */
1206static int __sev_platform_init_handle_init_ex_path(struct sev_device *sev)
1207{
1208 struct page *page;
1209 int rc;
1210
1211 if (!init_ex_path)
1212 return 0;
1213
1214 if (sev_init_ex_buffer)
1215 return 0;
1216
1217 page = alloc_pages(GFP_KERNEL, order: get_order(NV_LENGTH));
1218 if (!page) {
1219 dev_err(sev->dev, "SEV: INIT_EX NV memory allocation failed\n");
1220 return -ENOMEM;
1221 }
1222
1223 sev_init_ex_buffer = page_address(page);
1224
1225 rc = sev_read_init_ex_file();
1226 if (rc)
1227 return rc;
1228
1229 /* If SEV-SNP is initialized, transition to firmware page. */
1230 if (sev->snp_initialized) {
1231 unsigned long npages;
1232
1233 npages = 1UL << get_order(NV_LENGTH);
1234 if (rmp_mark_pages_firmware(__pa(sev_init_ex_buffer), npages, locked: false)) {
1235 dev_err(sev->dev, "SEV: INIT_EX NV memory page state change failed.\n");
1236 return -ENOMEM;
1237 }
1238 }
1239
1240 return 0;
1241}
1242
1243static int __sev_platform_init_locked(int *error)
1244{
1245 int rc, psp_ret = SEV_RET_NO_FW_CALL;
1246 struct sev_device *sev;
1247
1248 if (!psp_master || !psp_master->sev_data)
1249 return -ENODEV;
1250
1251 sev = psp_master->sev_data;
1252
1253 if (sev->state == SEV_STATE_INIT)
1254 return 0;
1255
1256 __sev_platform_init_handle_tmr(sev);
1257
1258 rc = __sev_platform_init_handle_init_ex_path(sev);
1259 if (rc)
1260 return rc;
1261
1262 rc = __sev_do_init_locked(psp_ret: &psp_ret);
1263 if (rc && psp_ret == SEV_RET_SECURE_DATA_INVALID) {
1264 /*
1265 * Initialization command returned an integrity check failure
1266 * status code, meaning that firmware load and validation of SEV
1267 * related persistent data has failed. Retrying the
1268 * initialization function should succeed by replacing the state
1269 * with a reset state.
1270 */
1271 dev_err(sev->dev,
1272"SEV: retrying INIT command because of SECURE_DATA_INVALID error. Retrying once to reset PSP SEV state.");
1273 rc = __sev_do_init_locked(psp_ret: &psp_ret);
1274 }
1275
1276 if (error)
1277 *error = psp_ret;
1278
1279 if (rc)
1280 return rc;
1281
1282 sev->state = SEV_STATE_INIT;
1283
1284 /* Prepare for first SEV guest launch after INIT */
1285 wbinvd_on_all_cpus();
1286 rc = __sev_do_cmd_locked(cmd: SEV_CMD_DF_FLUSH, NULL, psp_ret: error);
1287 if (rc)
1288 return rc;
1289
1290 dev_dbg(sev->dev, "SEV firmware initialized\n");
1291
1292 dev_info(sev->dev, "SEV API:%d.%d build:%d\n", sev->api_major,
1293 sev->api_minor, sev->build);
1294
1295 return 0;
1296}
1297
1298static int _sev_platform_init_locked(struct sev_platform_init_args *args)
1299{
1300 struct sev_device *sev;
1301 int rc;
1302
1303 if (!psp_master || !psp_master->sev_data)
1304 return -ENODEV;
1305
1306 sev = psp_master->sev_data;
1307
1308 if (sev->state == SEV_STATE_INIT)
1309 return 0;
1310
1311 /*
1312 * Legacy guests cannot be running while SNP_INIT(_EX) is executing,
1313 * so perform SEV-SNP initialization at probe time.
1314 */
1315 rc = __sev_snp_init_locked(error: &args->error);
1316 if (rc && rc != -ENODEV) {
1317 /*
1318 * Don't abort the probe if SNP INIT failed,
1319 * continue to initialize the legacy SEV firmware.
1320 */
1321 dev_err(sev->dev, "SEV-SNP: failed to INIT rc %d, error %#x\n",
1322 rc, args->error);
1323 }
1324
1325 /* Defer legacy SEV/SEV-ES support if allowed by caller/module. */
1326 if (args->probe && !psp_init_on_probe)
1327 return 0;
1328
1329 return __sev_platform_init_locked(error: &args->error);
1330}
1331
1332int sev_platform_init(struct sev_platform_init_args *args)
1333{
1334 int rc;
1335
1336 mutex_lock(&sev_cmd_mutex);
1337 rc = _sev_platform_init_locked(args);
1338 mutex_unlock(lock: &sev_cmd_mutex);
1339
1340 return rc;
1341}
1342EXPORT_SYMBOL_GPL(sev_platform_init);
1343
1344static int __sev_platform_shutdown_locked(int *error)
1345{
1346 struct psp_device *psp = psp_master;
1347 struct sev_device *sev;
1348 int ret;
1349
1350 if (!psp || !psp->sev_data)
1351 return 0;
1352
1353 sev = psp->sev_data;
1354
1355 if (sev->state == SEV_STATE_UNINIT)
1356 return 0;
1357
1358 ret = __sev_do_cmd_locked(cmd: SEV_CMD_SHUTDOWN, NULL, psp_ret: error);
1359 if (ret)
1360 return ret;
1361
1362 sev->state = SEV_STATE_UNINIT;
1363 dev_dbg(sev->dev, "SEV firmware shutdown\n");
1364
1365 return ret;
1366}
1367
1368static int sev_get_platform_state(int *state, int *error)
1369{
1370 struct sev_user_data_status data;
1371 int rc;
1372
1373 rc = __sev_do_cmd_locked(cmd: SEV_CMD_PLATFORM_STATUS, data: &data, psp_ret: error);
1374 if (rc)
1375 return rc;
1376
1377 *state = data.state;
1378 return rc;
1379}
1380
1381static int sev_ioctl_do_reset(struct sev_issue_cmd *argp, bool writable)
1382{
1383 int state, rc;
1384
1385 if (!writable)
1386 return -EPERM;
1387
1388 /*
1389 * The SEV spec requires that FACTORY_RESET must be issued in
1390 * UNINIT state. Before we go further lets check if any guest is
1391 * active.
1392 *
1393 * If FW is in WORKING state then deny the request otherwise issue
1394 * SHUTDOWN command do INIT -> UNINIT before issuing the FACTORY_RESET.
1395 *
1396 */
1397 rc = sev_get_platform_state(state: &state, error: &argp->error);
1398 if (rc)
1399 return rc;
1400
1401 if (state == SEV_STATE_WORKING)
1402 return -EBUSY;
1403
1404 if (state == SEV_STATE_INIT) {
1405 rc = __sev_platform_shutdown_locked(error: &argp->error);
1406 if (rc)
1407 return rc;
1408 }
1409
1410 return __sev_do_cmd_locked(cmd: SEV_CMD_FACTORY_RESET, NULL, psp_ret: &argp->error);
1411}
1412
1413static int sev_ioctl_do_platform_status(struct sev_issue_cmd *argp)
1414{
1415 struct sev_user_data_status data;
1416 int ret;
1417
1418 memset(&data, 0, sizeof(data));
1419
1420 ret = __sev_do_cmd_locked(cmd: SEV_CMD_PLATFORM_STATUS, data: &data, psp_ret: &argp->error);
1421 if (ret)
1422 return ret;
1423
1424 if (copy_to_user(to: (void __user *)argp->data, from: &data, n: sizeof(data)))
1425 ret = -EFAULT;
1426
1427 return ret;
1428}
1429
1430static int sev_ioctl_do_pek_pdh_gen(int cmd, struct sev_issue_cmd *argp, bool writable)
1431{
1432 struct sev_device *sev = psp_master->sev_data;
1433 int rc;
1434
1435 if (!writable)
1436 return -EPERM;
1437
1438 if (sev->state == SEV_STATE_UNINIT) {
1439 rc = __sev_platform_init_locked(error: &argp->error);
1440 if (rc)
1441 return rc;
1442 }
1443
1444 return __sev_do_cmd_locked(cmd, NULL, psp_ret: &argp->error);
1445}
1446
1447static int sev_ioctl_do_pek_csr(struct sev_issue_cmd *argp, bool writable)
1448{
1449 struct sev_device *sev = psp_master->sev_data;
1450 struct sev_user_data_pek_csr input;
1451 struct sev_data_pek_csr data;
1452 void __user *input_address;
1453 void *blob = NULL;
1454 int ret;
1455
1456 if (!writable)
1457 return -EPERM;
1458
1459 if (copy_from_user(to: &input, from: (void __user *)argp->data, n: sizeof(input)))
1460 return -EFAULT;
1461
1462 memset(&data, 0, sizeof(data));
1463
1464 /* userspace wants to query CSR length */
1465 if (!input.address || !input.length)
1466 goto cmd;
1467
1468 /* allocate a physically contiguous buffer to store the CSR blob */
1469 input_address = (void __user *)input.address;
1470 if (input.length > SEV_FW_BLOB_MAX_SIZE)
1471 return -EFAULT;
1472
1473 blob = kzalloc(size: input.length, GFP_KERNEL);
1474 if (!blob)
1475 return -ENOMEM;
1476
1477 data.address = __psp_pa(blob);
1478 data.len = input.length;
1479
1480cmd:
1481 if (sev->state == SEV_STATE_UNINIT) {
1482 ret = __sev_platform_init_locked(error: &argp->error);
1483 if (ret)
1484 goto e_free_blob;
1485 }
1486
1487 ret = __sev_do_cmd_locked(cmd: SEV_CMD_PEK_CSR, data: &data, psp_ret: &argp->error);
1488
1489 /* If we query the CSR length, FW responded with expected data. */
1490 input.length = data.len;
1491
1492 if (copy_to_user(to: (void __user *)argp->data, from: &input, n: sizeof(input))) {
1493 ret = -EFAULT;
1494 goto e_free_blob;
1495 }
1496
1497 if (blob) {
1498 if (copy_to_user(to: input_address, from: blob, n: input.length))
1499 ret = -EFAULT;
1500 }
1501
1502e_free_blob:
1503 kfree(objp: blob);
1504 return ret;
1505}
1506
1507void *psp_copy_user_blob(u64 uaddr, u32 len)
1508{
1509 if (!uaddr || !len)
1510 return ERR_PTR(error: -EINVAL);
1511
1512 /* verify that blob length does not exceed our limit */
1513 if (len > SEV_FW_BLOB_MAX_SIZE)
1514 return ERR_PTR(error: -EINVAL);
1515
1516 return memdup_user((void __user *)uaddr, len);
1517}
1518EXPORT_SYMBOL_GPL(psp_copy_user_blob);
1519
1520static int sev_get_api_version(void)
1521{
1522 struct sev_device *sev = psp_master->sev_data;
1523 struct sev_user_data_status status;
1524 int error = 0, ret;
1525
1526 ret = sev_platform_status(status: &status, error: &error);
1527 if (ret) {
1528 dev_err(sev->dev,
1529 "SEV: failed to get status. Error: %#x\n", error);
1530 return 1;
1531 }
1532
1533 sev->api_major = status.api_major;
1534 sev->api_minor = status.api_minor;
1535 sev->build = status.build;
1536 sev->state = status.state;
1537
1538 return 0;
1539}
1540
1541static int sev_get_firmware(struct device *dev,
1542 const struct firmware **firmware)
1543{
1544 char fw_name_specific[SEV_FW_NAME_SIZE];
1545 char fw_name_subset[SEV_FW_NAME_SIZE];
1546
1547 snprintf(buf: fw_name_specific, size: sizeof(fw_name_specific),
1548 fmt: "amd/amd_sev_fam%.2xh_model%.2xh.sbin",
1549 boot_cpu_data.x86, boot_cpu_data.x86_model);
1550
1551 snprintf(buf: fw_name_subset, size: sizeof(fw_name_subset),
1552 fmt: "amd/amd_sev_fam%.2xh_model%.1xxh.sbin",
1553 boot_cpu_data.x86, (boot_cpu_data.x86_model & 0xf0) >> 4);
1554
1555 /* Check for SEV FW for a particular model.
1556 * Ex. amd_sev_fam17h_model00h.sbin for Family 17h Model 00h
1557 *
1558 * or
1559 *
1560 * Check for SEV FW common to a subset of models.
1561 * Ex. amd_sev_fam17h_model0xh.sbin for
1562 * Family 17h Model 00h -- Family 17h Model 0Fh
1563 *
1564 * or
1565 *
1566 * Fall-back to using generic name: sev.fw
1567 */
1568 if ((firmware_request_nowarn(fw: firmware, name: fw_name_specific, device: dev) >= 0) ||
1569 (firmware_request_nowarn(fw: firmware, name: fw_name_subset, device: dev) >= 0) ||
1570 (firmware_request_nowarn(fw: firmware, SEV_FW_FILE, device: dev) >= 0))
1571 return 0;
1572
1573 return -ENOENT;
1574}
1575
1576/* Don't fail if SEV FW couldn't be updated. Continue with existing SEV FW */
1577static int sev_update_firmware(struct device *dev)
1578{
1579 struct sev_data_download_firmware *data;
1580 const struct firmware *firmware;
1581 int ret, error, order;
1582 struct page *p;
1583 u64 data_size;
1584
1585 if (!sev_version_greater_or_equal(maj: 0, min: 15)) {
1586 dev_dbg(dev, "DOWNLOAD_FIRMWARE not supported\n");
1587 return -1;
1588 }
1589
1590 if (sev_get_firmware(dev, firmware: &firmware) == -ENOENT) {
1591 dev_dbg(dev, "No SEV firmware file present\n");
1592 return -1;
1593 }
1594
1595 /*
1596 * SEV FW expects the physical address given to it to be 32
1597 * byte aligned. Memory allocated has structure placed at the
1598 * beginning followed by the firmware being passed to the SEV
1599 * FW. Allocate enough memory for data structure + alignment
1600 * padding + SEV FW.
1601 */
1602 data_size = ALIGN(sizeof(struct sev_data_download_firmware), 32);
1603
1604 order = get_order(size: firmware->size + data_size);
1605 p = alloc_pages(GFP_KERNEL, order);
1606 if (!p) {
1607 ret = -1;
1608 goto fw_err;
1609 }
1610
1611 /*
1612 * Copy firmware data to a kernel allocated contiguous
1613 * memory region.
1614 */
1615 data = page_address(p);
1616 memcpy(page_address(p) + data_size, firmware->data, firmware->size);
1617
1618 data->address = __psp_pa(page_address(p) + data_size);
1619 data->len = firmware->size;
1620
1621 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1622
1623 /*
1624 * A quirk for fixing the committed TCB version, when upgrading from
1625 * earlier firmware version than 1.50.
1626 */
1627 if (!ret && !sev_version_greater_or_equal(maj: 1, min: 50))
1628 ret = sev_do_cmd(SEV_CMD_DOWNLOAD_FIRMWARE, data, &error);
1629
1630 if (ret)
1631 dev_dbg(dev, "Failed to update SEV firmware: %#x\n", error);
1632 else
1633 dev_info(dev, "SEV firmware update successful\n");
1634
1635 __free_pages(page: p, order);
1636
1637fw_err:
1638 release_firmware(fw: firmware);
1639
1640 return ret;
1641}
1642
1643static int __sev_snp_shutdown_locked(int *error, bool panic)
1644{
1645 struct sev_device *sev = psp_master->sev_data;
1646 struct sev_data_snp_shutdown_ex data;
1647 int ret;
1648
1649 if (!sev->snp_initialized)
1650 return 0;
1651
1652 memset(&data, 0, sizeof(data));
1653 data.len = sizeof(data);
1654 data.iommu_snp_shutdown = 1;
1655
1656 /*
1657 * If invoked during panic handling, local interrupts are disabled
1658 * and all CPUs are stopped, so wbinvd_on_all_cpus() can't be called.
1659 * In that case, a wbinvd() is done on remote CPUs via the NMI
1660 * callback, so only a local wbinvd() is needed here.
1661 */
1662 if (!panic)
1663 wbinvd_on_all_cpus();
1664 else
1665 wbinvd();
1666
1667 ret = __sev_do_cmd_locked(cmd: SEV_CMD_SNP_SHUTDOWN_EX, data: &data, psp_ret: error);
1668 /* SHUTDOWN may require DF_FLUSH */
1669 if (*error == SEV_RET_DFFLUSH_REQUIRED) {
1670 ret = __sev_do_cmd_locked(cmd: SEV_CMD_SNP_DF_FLUSH, NULL, NULL);
1671 if (ret) {
1672 dev_err(sev->dev, "SEV-SNP DF_FLUSH failed\n");
1673 return ret;
1674 }
1675 /* reissue the shutdown command */
1676 ret = __sev_do_cmd_locked(cmd: SEV_CMD_SNP_SHUTDOWN_EX, data: &data,
1677 psp_ret: error);
1678 }
1679 if (ret) {
1680 dev_err(sev->dev, "SEV-SNP firmware shutdown failed\n");
1681 return ret;
1682 }
1683
1684 /*
1685 * SNP_SHUTDOWN_EX with IOMMU_SNP_SHUTDOWN set to 1 disables SNP
1686 * enforcement by the IOMMU and also transitions all pages
1687 * associated with the IOMMU to the Reclaim state.
1688 * Firmware was transitioning the IOMMU pages to Hypervisor state
1689 * before version 1.53. But, accounting for the number of assigned
1690 * 4kB pages in a 2M page was done incorrectly by not transitioning
1691 * to the Reclaim state. This resulted in RMP #PF when later accessing
1692 * the 2M page containing those pages during kexec boot. Hence, the
1693 * firmware now transitions these pages to Reclaim state and hypervisor
1694 * needs to transition these pages to shared state. SNP Firmware
1695 * version 1.53 and above are needed for kexec boot.
1696 */
1697 ret = amd_iommu_snp_disable();
1698 if (ret) {
1699 dev_err(sev->dev, "SNP IOMMU shutdown failed\n");
1700 return ret;
1701 }
1702
1703 sev->snp_initialized = false;
1704 dev_dbg(sev->dev, "SEV-SNP firmware shutdown\n");
1705
1706 return ret;
1707}
1708
1709static int sev_ioctl_do_pek_import(struct sev_issue_cmd *argp, bool writable)
1710{
1711 struct sev_device *sev = psp_master->sev_data;
1712 struct sev_user_data_pek_cert_import input;
1713 struct sev_data_pek_cert_import data;
1714 void *pek_blob, *oca_blob;
1715 int ret;
1716
1717 if (!writable)
1718 return -EPERM;
1719
1720 if (copy_from_user(to: &input, from: (void __user *)argp->data, n: sizeof(input)))
1721 return -EFAULT;
1722
1723 /* copy PEK certificate blobs from userspace */
1724 pek_blob = psp_copy_user_blob(input.pek_cert_address, input.pek_cert_len);
1725 if (IS_ERR(ptr: pek_blob))
1726 return PTR_ERR(ptr: pek_blob);
1727
1728 data.reserved = 0;
1729 data.pek_cert_address = __psp_pa(pek_blob);
1730 data.pek_cert_len = input.pek_cert_len;
1731
1732 /* copy PEK certificate blobs from userspace */
1733 oca_blob = psp_copy_user_blob(input.oca_cert_address, input.oca_cert_len);
1734 if (IS_ERR(ptr: oca_blob)) {
1735 ret = PTR_ERR(ptr: oca_blob);
1736 goto e_free_pek;
1737 }
1738
1739 data.oca_cert_address = __psp_pa(oca_blob);
1740 data.oca_cert_len = input.oca_cert_len;
1741
1742 /* If platform is not in INIT state then transition it to INIT */
1743 if (sev->state != SEV_STATE_INIT) {
1744 ret = __sev_platform_init_locked(error: &argp->error);
1745 if (ret)
1746 goto e_free_oca;
1747 }
1748
1749 ret = __sev_do_cmd_locked(cmd: SEV_CMD_PEK_CERT_IMPORT, data: &data, psp_ret: &argp->error);
1750
1751e_free_oca:
1752 kfree(objp: oca_blob);
1753e_free_pek:
1754 kfree(objp: pek_blob);
1755 return ret;
1756}
1757
1758static int sev_ioctl_do_get_id2(struct sev_issue_cmd *argp)
1759{
1760 struct sev_user_data_get_id2 input;
1761 struct sev_data_get_id data;
1762 void __user *input_address;
1763 void *id_blob = NULL;
1764 int ret;
1765
1766 /* SEV GET_ID is available from SEV API v0.16 and up */
1767 if (!sev_version_greater_or_equal(maj: 0, min: 16))
1768 return -ENOTSUPP;
1769
1770 if (copy_from_user(to: &input, from: (void __user *)argp->data, n: sizeof(input)))
1771 return -EFAULT;
1772
1773 input_address = (void __user *)input.address;
1774
1775 if (input.address && input.length) {
1776 /*
1777 * The length of the ID shouldn't be assumed by software since
1778 * it may change in the future. The allocation size is limited
1779 * to 1 << (PAGE_SHIFT + MAX_PAGE_ORDER) by the page allocator.
1780 * If the allocation fails, simply return ENOMEM rather than
1781 * warning in the kernel log.
1782 */
1783 id_blob = kzalloc(size: input.length, GFP_KERNEL | __GFP_NOWARN);
1784 if (!id_blob)
1785 return -ENOMEM;
1786
1787 data.address = __psp_pa(id_blob);
1788 data.len = input.length;
1789 } else {
1790 data.address = 0;
1791 data.len = 0;
1792 }
1793
1794 ret = __sev_do_cmd_locked(cmd: SEV_CMD_GET_ID, data: &data, psp_ret: &argp->error);
1795
1796 /*
1797 * Firmware will return the length of the ID value (either the minimum
1798 * required length or the actual length written), return it to the user.
1799 */
1800 input.length = data.len;
1801
1802 if (copy_to_user(to: (void __user *)argp->data, from: &input, n: sizeof(input))) {
1803 ret = -EFAULT;
1804 goto e_free;
1805 }
1806
1807 if (id_blob) {
1808 if (copy_to_user(to: input_address, from: id_blob, n: data.len)) {
1809 ret = -EFAULT;
1810 goto e_free;
1811 }
1812 }
1813
1814e_free:
1815 kfree(objp: id_blob);
1816
1817 return ret;
1818}
1819
1820static int sev_ioctl_do_get_id(struct sev_issue_cmd *argp)
1821{
1822 struct sev_data_get_id *data;
1823 u64 data_size, user_size;
1824 void *id_blob, *mem;
1825 int ret;
1826
1827 /* SEV GET_ID available from SEV API v0.16 and up */
1828 if (!sev_version_greater_or_equal(maj: 0, min: 16))
1829 return -ENOTSUPP;
1830
1831 /* SEV FW expects the buffer it fills with the ID to be
1832 * 8-byte aligned. Memory allocated should be enough to
1833 * hold data structure + alignment padding + memory
1834 * where SEV FW writes the ID.
1835 */
1836 data_size = ALIGN(sizeof(struct sev_data_get_id), 8);
1837 user_size = sizeof(struct sev_user_data_get_id);
1838
1839 mem = kzalloc(size: data_size + user_size, GFP_KERNEL);
1840 if (!mem)
1841 return -ENOMEM;
1842
1843 data = mem;
1844 id_blob = mem + data_size;
1845
1846 data->address = __psp_pa(id_blob);
1847 data->len = user_size;
1848
1849 ret = __sev_do_cmd_locked(cmd: SEV_CMD_GET_ID, data, psp_ret: &argp->error);
1850 if (!ret) {
1851 if (copy_to_user(to: (void __user *)argp->data, from: id_blob, n: data->len))
1852 ret = -EFAULT;
1853 }
1854
1855 kfree(objp: mem);
1856
1857 return ret;
1858}
1859
1860static int sev_ioctl_do_pdh_export(struct sev_issue_cmd *argp, bool writable)
1861{
1862 struct sev_device *sev = psp_master->sev_data;
1863 struct sev_user_data_pdh_cert_export input;
1864 void *pdh_blob = NULL, *cert_blob = NULL;
1865 struct sev_data_pdh_cert_export data;
1866 void __user *input_cert_chain_address;
1867 void __user *input_pdh_cert_address;
1868 int ret;
1869
1870 /* If platform is not in INIT state then transition it to INIT. */
1871 if (sev->state != SEV_STATE_INIT) {
1872 if (!writable)
1873 return -EPERM;
1874
1875 ret = __sev_platform_init_locked(error: &argp->error);
1876 if (ret)
1877 return ret;
1878 }
1879
1880 if (copy_from_user(to: &input, from: (void __user *)argp->data, n: sizeof(input)))
1881 return -EFAULT;
1882
1883 memset(&data, 0, sizeof(data));
1884
1885 /* Userspace wants to query the certificate length. */
1886 if (!input.pdh_cert_address ||
1887 !input.pdh_cert_len ||
1888 !input.cert_chain_address)
1889 goto cmd;
1890
1891 input_pdh_cert_address = (void __user *)input.pdh_cert_address;
1892 input_cert_chain_address = (void __user *)input.cert_chain_address;
1893
1894 /* Allocate a physically contiguous buffer to store the PDH blob. */
1895 if (input.pdh_cert_len > SEV_FW_BLOB_MAX_SIZE)
1896 return -EFAULT;
1897
1898 /* Allocate a physically contiguous buffer to store the cert chain blob. */
1899 if (input.cert_chain_len > SEV_FW_BLOB_MAX_SIZE)
1900 return -EFAULT;
1901
1902 pdh_blob = kzalloc(size: input.pdh_cert_len, GFP_KERNEL);
1903 if (!pdh_blob)
1904 return -ENOMEM;
1905
1906 data.pdh_cert_address = __psp_pa(pdh_blob);
1907 data.pdh_cert_len = input.pdh_cert_len;
1908
1909 cert_blob = kzalloc(size: input.cert_chain_len, GFP_KERNEL);
1910 if (!cert_blob) {
1911 ret = -ENOMEM;
1912 goto e_free_pdh;
1913 }
1914
1915 data.cert_chain_address = __psp_pa(cert_blob);
1916 data.cert_chain_len = input.cert_chain_len;
1917
1918cmd:
1919 ret = __sev_do_cmd_locked(cmd: SEV_CMD_PDH_CERT_EXPORT, data: &data, psp_ret: &argp->error);
1920
1921 /* If we query the length, FW responded with expected data. */
1922 input.cert_chain_len = data.cert_chain_len;
1923 input.pdh_cert_len = data.pdh_cert_len;
1924
1925 if (copy_to_user(to: (void __user *)argp->data, from: &input, n: sizeof(input))) {
1926 ret = -EFAULT;
1927 goto e_free_cert;
1928 }
1929
1930 if (pdh_blob) {
1931 if (copy_to_user(to: input_pdh_cert_address,
1932 from: pdh_blob, n: input.pdh_cert_len)) {
1933 ret = -EFAULT;
1934 goto e_free_cert;
1935 }
1936 }
1937
1938 if (cert_blob) {
1939 if (copy_to_user(to: input_cert_chain_address,
1940 from: cert_blob, n: input.cert_chain_len))
1941 ret = -EFAULT;
1942 }
1943
1944e_free_cert:
1945 kfree(objp: cert_blob);
1946e_free_pdh:
1947 kfree(objp: pdh_blob);
1948 return ret;
1949}
1950
1951static int sev_ioctl_do_snp_platform_status(struct sev_issue_cmd *argp)
1952{
1953 struct sev_device *sev = psp_master->sev_data;
1954 struct sev_data_snp_addr buf;
1955 struct page *status_page;
1956 void *data;
1957 int ret;
1958
1959 if (!sev->snp_initialized || !argp->data)
1960 return -EINVAL;
1961
1962 status_page = alloc_page(GFP_KERNEL_ACCOUNT);
1963 if (!status_page)
1964 return -ENOMEM;
1965
1966 data = page_address(status_page);
1967
1968 /*
1969 * Firmware expects status page to be in firmware-owned state, otherwise
1970 * it will report firmware error code INVALID_PAGE_STATE (0x1A).
1971 */
1972 if (rmp_mark_pages_firmware(__pa(data), npages: 1, locked: true)) {
1973 ret = -EFAULT;
1974 goto cleanup;
1975 }
1976
1977 buf.address = __psp_pa(data);
1978 ret = __sev_do_cmd_locked(cmd: SEV_CMD_SNP_PLATFORM_STATUS, data: &buf, psp_ret: &argp->error);
1979
1980 /*
1981 * Status page will be transitioned to Reclaim state upon success, or
1982 * left in Firmware state in failure. Use snp_reclaim_pages() to
1983 * transition either case back to Hypervisor-owned state.
1984 */
1985 if (snp_reclaim_pages(__pa(data), npages: 1, locked: true))
1986 return -EFAULT;
1987
1988 if (ret)
1989 goto cleanup;
1990
1991 if (copy_to_user(to: (void __user *)argp->data, from: data,
1992 n: sizeof(struct sev_user_data_snp_status)))
1993 ret = -EFAULT;
1994
1995cleanup:
1996 __free_pages(page: status_page, order: 0);
1997 return ret;
1998}
1999
2000static int sev_ioctl_do_snp_commit(struct sev_issue_cmd *argp)
2001{
2002 struct sev_device *sev = psp_master->sev_data;
2003 struct sev_data_snp_commit buf;
2004
2005 if (!sev->snp_initialized)
2006 return -EINVAL;
2007
2008 buf.len = sizeof(buf);
2009
2010 return __sev_do_cmd_locked(cmd: SEV_CMD_SNP_COMMIT, data: &buf, psp_ret: &argp->error);
2011}
2012
2013static int sev_ioctl_do_snp_set_config(struct sev_issue_cmd *argp, bool writable)
2014{
2015 struct sev_device *sev = psp_master->sev_data;
2016 struct sev_user_data_snp_config config;
2017
2018 if (!sev->snp_initialized || !argp->data)
2019 return -EINVAL;
2020
2021 if (!writable)
2022 return -EPERM;
2023
2024 if (copy_from_user(to: &config, from: (void __user *)argp->data, n: sizeof(config)))
2025 return -EFAULT;
2026
2027 return __sev_do_cmd_locked(cmd: SEV_CMD_SNP_CONFIG, data: &config, psp_ret: &argp->error);
2028}
2029
2030static long sev_ioctl(struct file *file, unsigned int ioctl, unsigned long arg)
2031{
2032 void __user *argp = (void __user *)arg;
2033 struct sev_issue_cmd input;
2034 int ret = -EFAULT;
2035 bool writable = file->f_mode & FMODE_WRITE;
2036
2037 if (!psp_master || !psp_master->sev_data)
2038 return -ENODEV;
2039
2040 if (ioctl != SEV_ISSUE_CMD)
2041 return -EINVAL;
2042
2043 if (copy_from_user(to: &input, from: argp, n: sizeof(struct sev_issue_cmd)))
2044 return -EFAULT;
2045
2046 if (input.cmd > SEV_MAX)
2047 return -EINVAL;
2048
2049 mutex_lock(&sev_cmd_mutex);
2050
2051 switch (input.cmd) {
2052
2053 case SEV_FACTORY_RESET:
2054 ret = sev_ioctl_do_reset(argp: &input, writable);
2055 break;
2056 case SEV_PLATFORM_STATUS:
2057 ret = sev_ioctl_do_platform_status(argp: &input);
2058 break;
2059 case SEV_PEK_GEN:
2060 ret = sev_ioctl_do_pek_pdh_gen(cmd: SEV_CMD_PEK_GEN, argp: &input, writable);
2061 break;
2062 case SEV_PDH_GEN:
2063 ret = sev_ioctl_do_pek_pdh_gen(cmd: SEV_CMD_PDH_GEN, argp: &input, writable);
2064 break;
2065 case SEV_PEK_CSR:
2066 ret = sev_ioctl_do_pek_csr(argp: &input, writable);
2067 break;
2068 case SEV_PEK_CERT_IMPORT:
2069 ret = sev_ioctl_do_pek_import(argp: &input, writable);
2070 break;
2071 case SEV_PDH_CERT_EXPORT:
2072 ret = sev_ioctl_do_pdh_export(argp: &input, writable);
2073 break;
2074 case SEV_GET_ID:
2075 pr_warn_once("SEV_GET_ID command is deprecated, use SEV_GET_ID2\n");
2076 ret = sev_ioctl_do_get_id(argp: &input);
2077 break;
2078 case SEV_GET_ID2:
2079 ret = sev_ioctl_do_get_id2(argp: &input);
2080 break;
2081 case SNP_PLATFORM_STATUS:
2082 ret = sev_ioctl_do_snp_platform_status(argp: &input);
2083 break;
2084 case SNP_COMMIT:
2085 ret = sev_ioctl_do_snp_commit(argp: &input);
2086 break;
2087 case SNP_SET_CONFIG:
2088 ret = sev_ioctl_do_snp_set_config(argp: &input, writable);
2089 break;
2090 default:
2091 ret = -EINVAL;
2092 goto out;
2093 }
2094
2095 if (copy_to_user(to: argp, from: &input, n: sizeof(struct sev_issue_cmd)))
2096 ret = -EFAULT;
2097out:
2098 mutex_unlock(lock: &sev_cmd_mutex);
2099
2100 return ret;
2101}
2102
2103static const struct file_operations sev_fops = {
2104 .owner = THIS_MODULE,
2105 .unlocked_ioctl = sev_ioctl,
2106};
2107
2108int sev_platform_status(struct sev_user_data_status *data, int *error)
2109{
2110 return sev_do_cmd(SEV_CMD_PLATFORM_STATUS, data, error);
2111}
2112EXPORT_SYMBOL_GPL(sev_platform_status);
2113
2114int sev_guest_deactivate(struct sev_data_deactivate *data, int *error)
2115{
2116 return sev_do_cmd(SEV_CMD_DEACTIVATE, data, error);
2117}
2118EXPORT_SYMBOL_GPL(sev_guest_deactivate);
2119
2120int sev_guest_activate(struct sev_data_activate *data, int *error)
2121{
2122 return sev_do_cmd(SEV_CMD_ACTIVATE, data, error);
2123}
2124EXPORT_SYMBOL_GPL(sev_guest_activate);
2125
2126int sev_guest_decommission(struct sev_data_decommission *data, int *error)
2127{
2128 return sev_do_cmd(SEV_CMD_DECOMMISSION, data, error);
2129}
2130EXPORT_SYMBOL_GPL(sev_guest_decommission);
2131
2132int sev_guest_df_flush(int *error)
2133{
2134 return sev_do_cmd(SEV_CMD_DF_FLUSH, NULL, error);
2135}
2136EXPORT_SYMBOL_GPL(sev_guest_df_flush);
2137
2138static void sev_exit(struct kref *ref)
2139{
2140 misc_deregister(misc: &misc_dev->misc);
2141 kfree(objp: misc_dev);
2142 misc_dev = NULL;
2143}
2144
2145static int sev_misc_init(struct sev_device *sev)
2146{
2147 struct device *dev = sev->dev;
2148 int ret;
2149
2150 /*
2151 * SEV feature support can be detected on multiple devices but the SEV
2152 * FW commands must be issued on the master. During probe, we do not
2153 * know the master hence we create /dev/sev on the first device probe.
2154 * sev_do_cmd() finds the right master device to which to issue the
2155 * command to the firmware.
2156 */
2157 if (!misc_dev) {
2158 struct miscdevice *misc;
2159
2160 misc_dev = kzalloc(size: sizeof(*misc_dev), GFP_KERNEL);
2161 if (!misc_dev)
2162 return -ENOMEM;
2163
2164 misc = &misc_dev->misc;
2165 misc->minor = MISC_DYNAMIC_MINOR;
2166 misc->name = DEVICE_NAME;
2167 misc->fops = &sev_fops;
2168
2169 ret = misc_register(misc);
2170 if (ret)
2171 return ret;
2172
2173 kref_init(kref: &misc_dev->refcount);
2174 } else {
2175 kref_get(kref: &misc_dev->refcount);
2176 }
2177
2178 init_waitqueue_head(&sev->int_queue);
2179 sev->misc = misc_dev;
2180 dev_dbg(dev, "registered SEV device\n");
2181
2182 return 0;
2183}
2184
2185int sev_dev_init(struct psp_device *psp)
2186{
2187 struct device *dev = psp->dev;
2188 struct sev_device *sev;
2189 int ret = -ENOMEM;
2190
2191 if (!boot_cpu_has(X86_FEATURE_SEV)) {
2192 dev_info_once(dev, "SEV: memory encryption not enabled by BIOS\n");
2193 return 0;
2194 }
2195
2196 sev = devm_kzalloc(dev, size: sizeof(*sev), GFP_KERNEL);
2197 if (!sev)
2198 goto e_err;
2199
2200 sev->cmd_buf = (void *)devm_get_free_pages(dev, GFP_KERNEL, order: 1);
2201 if (!sev->cmd_buf)
2202 goto e_sev;
2203
2204 sev->cmd_buf_backup = (uint8_t *)sev->cmd_buf + PAGE_SIZE;
2205
2206 psp->sev_data = sev;
2207
2208 sev->dev = dev;
2209 sev->psp = psp;
2210
2211 sev->io_regs = psp->io_regs;
2212
2213 sev->vdata = (struct sev_vdata *)psp->vdata->sev;
2214 if (!sev->vdata) {
2215 ret = -ENODEV;
2216 dev_err(dev, "sev: missing driver data\n");
2217 goto e_buf;
2218 }
2219
2220 psp_set_sev_irq_handler(psp, handler: sev_irq_handler, data: sev);
2221
2222 ret = sev_misc_init(sev);
2223 if (ret)
2224 goto e_irq;
2225
2226 dev_notice(dev, "sev enabled\n");
2227
2228 return 0;
2229
2230e_irq:
2231 psp_clear_sev_irq_handler(psp);
2232e_buf:
2233 devm_free_pages(dev, addr: (unsigned long)sev->cmd_buf);
2234e_sev:
2235 devm_kfree(dev, p: sev);
2236e_err:
2237 psp->sev_data = NULL;
2238
2239 dev_notice(dev, "sev initialization failed\n");
2240
2241 return ret;
2242}
2243
2244static void __sev_firmware_shutdown(struct sev_device *sev, bool panic)
2245{
2246 int error;
2247
2248 __sev_platform_shutdown_locked(NULL);
2249
2250 if (sev_es_tmr) {
2251 /*
2252 * The TMR area was encrypted, flush it from the cache.
2253 *
2254 * If invoked during panic handling, local interrupts are
2255 * disabled and all CPUs are stopped, so wbinvd_on_all_cpus()
2256 * can't be used. In that case, wbinvd() is done on remote CPUs
2257 * via the NMI callback, and done for this CPU later during
2258 * SNP shutdown, so wbinvd_on_all_cpus() can be skipped.
2259 */
2260 if (!panic)
2261 wbinvd_on_all_cpus();
2262
2263 __snp_free_firmware_pages(virt_to_page(sev_es_tmr),
2264 order: get_order(size: sev_es_tmr_size),
2265 locked: true);
2266 sev_es_tmr = NULL;
2267 }
2268
2269 if (sev_init_ex_buffer) {
2270 __snp_free_firmware_pages(virt_to_page(sev_init_ex_buffer),
2271 order: get_order(NV_LENGTH),
2272 locked: true);
2273 sev_init_ex_buffer = NULL;
2274 }
2275
2276 if (snp_range_list) {
2277 kfree(objp: snp_range_list);
2278 snp_range_list = NULL;
2279 }
2280
2281 __sev_snp_shutdown_locked(error: &error, panic);
2282}
2283
2284static void sev_firmware_shutdown(struct sev_device *sev)
2285{
2286 mutex_lock(&sev_cmd_mutex);
2287 __sev_firmware_shutdown(sev, panic: false);
2288 mutex_unlock(lock: &sev_cmd_mutex);
2289}
2290
2291void sev_dev_destroy(struct psp_device *psp)
2292{
2293 struct sev_device *sev = psp->sev_data;
2294
2295 if (!sev)
2296 return;
2297
2298 sev_firmware_shutdown(sev);
2299
2300 if (sev->misc)
2301 kref_put(kref: &misc_dev->refcount, release: sev_exit);
2302
2303 psp_clear_sev_irq_handler(psp);
2304}
2305
2306static int snp_shutdown_on_panic(struct notifier_block *nb,
2307 unsigned long reason, void *arg)
2308{
2309 struct sev_device *sev = psp_master->sev_data;
2310
2311 /*
2312 * If sev_cmd_mutex is already acquired, then it's likely
2313 * another PSP command is in flight and issuing a shutdown
2314 * would fail in unexpected ways. Rather than create even
2315 * more confusion during a panic, just bail out here.
2316 */
2317 if (mutex_is_locked(lock: &sev_cmd_mutex))
2318 return NOTIFY_DONE;
2319
2320 __sev_firmware_shutdown(sev, panic: true);
2321
2322 return NOTIFY_DONE;
2323}
2324
2325static struct notifier_block snp_panic_notifier = {
2326 .notifier_call = snp_shutdown_on_panic,
2327};
2328
2329int sev_issue_cmd_external_user(struct file *filep, unsigned int cmd,
2330 void *data, int *error)
2331{
2332 if (!filep || filep->f_op != &sev_fops)
2333 return -EBADF;
2334
2335 return sev_do_cmd(cmd, data, error);
2336}
2337EXPORT_SYMBOL_GPL(sev_issue_cmd_external_user);
2338
2339void sev_pci_init(void)
2340{
2341 struct sev_device *sev = psp_master->sev_data;
2342 struct sev_platform_init_args args = {0};
2343 int rc;
2344
2345 if (!sev)
2346 return;
2347
2348 psp_timeout = psp_probe_timeout;
2349
2350 if (sev_get_api_version())
2351 goto err;
2352
2353 if (sev_update_firmware(dev: sev->dev) == 0)
2354 sev_get_api_version();
2355
2356 /* Initialize the platform */
2357 args.probe = true;
2358 rc = sev_platform_init(&args);
2359 if (rc)
2360 dev_err(sev->dev, "SEV: failed to INIT error %#x, rc %d\n",
2361 args.error, rc);
2362
2363 dev_info(sev->dev, "SEV%s API:%d.%d build:%d\n", sev->snp_initialized ?
2364 "-SNP" : "", sev->api_major, sev->api_minor, sev->build);
2365
2366 atomic_notifier_chain_register(nh: &panic_notifier_list,
2367 nb: &snp_panic_notifier);
2368 return;
2369
2370err:
2371 psp_master->sev_data = NULL;
2372}
2373
2374void sev_pci_exit(void)
2375{
2376 struct sev_device *sev = psp_master->sev_data;
2377
2378 if (!sev)
2379 return;
2380
2381 sev_firmware_shutdown(sev);
2382
2383 atomic_notifier_chain_unregister(nh: &panic_notifier_list,
2384 nb: &snp_panic_notifier);
2385}
2386

source code of linux/drivers/crypto/ccp/sev-dev.c