1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
7 *
8 * This file is released under the GPL.
9 */
10
11#include <linux/completion.h>
12#include <linux/err.h>
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/key.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/blk-integrity.h>
20#include <linux/mempool.h>
21#include <linux/slab.h>
22#include <linux/crypto.h>
23#include <linux/workqueue.h>
24#include <linux/kthread.h>
25#include <linux/backing-dev.h>
26#include <linux/atomic.h>
27#include <linux/scatterlist.h>
28#include <linux/rbtree.h>
29#include <linux/ctype.h>
30#include <asm/page.h>
31#include <asm/unaligned.h>
32#include <crypto/hash.h>
33#include <crypto/md5.h>
34#include <crypto/skcipher.h>
35#include <crypto/aead.h>
36#include <crypto/authenc.h>
37#include <crypto/utils.h>
38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
39#include <linux/key-type.h>
40#include <keys/user-type.h>
41#include <keys/encrypted-type.h>
42#include <keys/trusted-type.h>
43
44#include <linux/device-mapper.h>
45
46#include "dm-audit.h"
47
48#define DM_MSG_PREFIX "crypt"
49
50/*
51 * context holding the current state of a multi-part conversion
52 */
53struct convert_context {
54 struct completion restart;
55 struct bio *bio_in;
56 struct bvec_iter iter_in;
57 struct bio *bio_out;
58 struct bvec_iter iter_out;
59 atomic_t cc_pending;
60 u64 cc_sector;
61 union {
62 struct skcipher_request *req;
63 struct aead_request *req_aead;
64 } r;
65 bool aead_recheck;
66 bool aead_failed;
67
68};
69
70/*
71 * per bio private data
72 */
73struct dm_crypt_io {
74 struct crypt_config *cc;
75 struct bio *base_bio;
76 u8 *integrity_metadata;
77 bool integrity_metadata_from_pool:1;
78
79 struct work_struct work;
80
81 struct convert_context ctx;
82
83 atomic_t io_pending;
84 blk_status_t error;
85 sector_t sector;
86
87 struct bvec_iter saved_bi_iter;
88
89 struct rb_node rb_node;
90} CRYPTO_MINALIGN_ATTR;
91
92struct dm_crypt_request {
93 struct convert_context *ctx;
94 struct scatterlist sg_in[4];
95 struct scatterlist sg_out[4];
96 u64 iv_sector;
97};
98
99struct crypt_config;
100
101struct crypt_iv_operations {
102 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
103 const char *opts);
104 void (*dtr)(struct crypt_config *cc);
105 int (*init)(struct crypt_config *cc);
106 int (*wipe)(struct crypt_config *cc);
107 int (*generator)(struct crypt_config *cc, u8 *iv,
108 struct dm_crypt_request *dmreq);
109 int (*post)(struct crypt_config *cc, u8 *iv,
110 struct dm_crypt_request *dmreq);
111};
112
113struct iv_benbi_private {
114 int shift;
115};
116
117#define LMK_SEED_SIZE 64 /* hash + 0 */
118struct iv_lmk_private {
119 struct crypto_shash *hash_tfm;
120 u8 *seed;
121};
122
123#define TCW_WHITENING_SIZE 16
124struct iv_tcw_private {
125 struct crypto_shash *crc32_tfm;
126 u8 *iv_seed;
127 u8 *whitening;
128};
129
130#define ELEPHANT_MAX_KEY_SIZE 32
131struct iv_elephant_private {
132 struct crypto_skcipher *tfm;
133};
134
135/*
136 * Crypt: maps a linear range of a block device
137 * and encrypts / decrypts at the same time.
138 */
139enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
140 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
141 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
142 DM_CRYPT_WRITE_INLINE };
143
144enum cipher_flags {
145 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
146 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
147 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
148};
149
150/*
151 * The fields in here must be read only after initialization.
152 */
153struct crypt_config {
154 struct dm_dev *dev;
155 sector_t start;
156
157 struct percpu_counter n_allocated_pages;
158
159 struct workqueue_struct *io_queue;
160 struct workqueue_struct *crypt_queue;
161
162 spinlock_t write_thread_lock;
163 struct task_struct *write_thread;
164 struct rb_root write_tree;
165
166 char *cipher_string;
167 char *cipher_auth;
168 char *key_string;
169
170 const struct crypt_iv_operations *iv_gen_ops;
171 union {
172 struct iv_benbi_private benbi;
173 struct iv_lmk_private lmk;
174 struct iv_tcw_private tcw;
175 struct iv_elephant_private elephant;
176 } iv_gen_private;
177 u64 iv_offset;
178 unsigned int iv_size;
179 unsigned short sector_size;
180 unsigned char sector_shift;
181
182 union {
183 struct crypto_skcipher **tfms;
184 struct crypto_aead **tfms_aead;
185 } cipher_tfm;
186 unsigned int tfms_count;
187 unsigned long cipher_flags;
188
189 /*
190 * Layout of each crypto request:
191 *
192 * struct skcipher_request
193 * context
194 * padding
195 * struct dm_crypt_request
196 * padding
197 * IV
198 *
199 * The padding is added so that dm_crypt_request and the IV are
200 * correctly aligned.
201 */
202 unsigned int dmreq_start;
203
204 unsigned int per_bio_data_size;
205
206 unsigned long flags;
207 unsigned int key_size;
208 unsigned int key_parts; /* independent parts in key buffer */
209 unsigned int key_extra_size; /* additional keys length */
210 unsigned int key_mac_size; /* MAC key size for authenc(...) */
211
212 unsigned int integrity_tag_size;
213 unsigned int integrity_iv_size;
214 unsigned int on_disk_tag_size;
215
216 /*
217 * pool for per bio private data, crypto requests,
218 * encryption requeusts/buffer pages and integrity tags
219 */
220 unsigned int tag_pool_max_sectors;
221 mempool_t tag_pool;
222 mempool_t req_pool;
223 mempool_t page_pool;
224
225 struct bio_set bs;
226 struct mutex bio_alloc_lock;
227
228 u8 *authenc_key; /* space for keys in authenc() format (if used) */
229 u8 key[] __counted_by(key_size);
230};
231
232#define MIN_IOS 64
233#define MAX_TAG_SIZE 480
234#define POOL_ENTRY_SIZE 512
235
236static DEFINE_SPINLOCK(dm_crypt_clients_lock);
237static unsigned int dm_crypt_clients_n;
238static volatile unsigned long dm_crypt_pages_per_client;
239#define DM_CRYPT_MEMORY_PERCENT 2
240#define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
241
242static void crypt_endio(struct bio *clone);
243static void kcryptd_queue_crypt(struct dm_crypt_io *io);
244static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
245 struct scatterlist *sg);
246
247static bool crypt_integrity_aead(struct crypt_config *cc);
248
249/*
250 * Use this to access cipher attributes that are independent of the key.
251 */
252static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
253{
254 return cc->cipher_tfm.tfms[0];
255}
256
257static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
258{
259 return cc->cipher_tfm.tfms_aead[0];
260}
261
262/*
263 * Different IV generation algorithms:
264 *
265 * plain: the initial vector is the 32-bit little-endian version of the sector
266 * number, padded with zeros if necessary.
267 *
268 * plain64: the initial vector is the 64-bit little-endian version of the sector
269 * number, padded with zeros if necessary.
270 *
271 * plain64be: the initial vector is the 64-bit big-endian version of the sector
272 * number, padded with zeros if necessary.
273 *
274 * essiv: "encrypted sector|salt initial vector", the sector number is
275 * encrypted with the bulk cipher using a salt as key. The salt
276 * should be derived from the bulk cipher's key via hashing.
277 *
278 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
279 * (needed for LRW-32-AES and possible other narrow block modes)
280 *
281 * null: the initial vector is always zero. Provides compatibility with
282 * obsolete loop_fish2 devices. Do not use for new devices.
283 *
284 * lmk: Compatible implementation of the block chaining mode used
285 * by the Loop-AES block device encryption system
286 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
287 * It operates on full 512 byte sectors and uses CBC
288 * with an IV derived from the sector number, the data and
289 * optionally extra IV seed.
290 * This means that after decryption the first block
291 * of sector must be tweaked according to decrypted data.
292 * Loop-AES can use three encryption schemes:
293 * version 1: is plain aes-cbc mode
294 * version 2: uses 64 multikey scheme with lmk IV generator
295 * version 3: the same as version 2 with additional IV seed
296 * (it uses 65 keys, last key is used as IV seed)
297 *
298 * tcw: Compatible implementation of the block chaining mode used
299 * by the TrueCrypt device encryption system (prior to version 4.1).
300 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
301 * It operates on full 512 byte sectors and uses CBC
302 * with an IV derived from initial key and the sector number.
303 * In addition, whitening value is applied on every sector, whitening
304 * is calculated from initial key, sector number and mixed using CRC32.
305 * Note that this encryption scheme is vulnerable to watermarking attacks
306 * and should be used for old compatible containers access only.
307 *
308 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
309 * The IV is encrypted little-endian byte-offset (with the same key
310 * and cipher as the volume).
311 *
312 * elephant: The extended version of eboiv with additional Elephant diffuser
313 * used with Bitlocker CBC mode.
314 * This mode was used in older Windows systems
315 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
316 */
317
318static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
319 struct dm_crypt_request *dmreq)
320{
321 memset(iv, 0, cc->iv_size);
322 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
323
324 return 0;
325}
326
327static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
328 struct dm_crypt_request *dmreq)
329{
330 memset(iv, 0, cc->iv_size);
331 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
332
333 return 0;
334}
335
336static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
337 struct dm_crypt_request *dmreq)
338{
339 memset(iv, 0, cc->iv_size);
340 /* iv_size is at least of size u64; usually it is 16 bytes */
341 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
342
343 return 0;
344}
345
346static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
347 struct dm_crypt_request *dmreq)
348{
349 /*
350 * ESSIV encryption of the IV is now handled by the crypto API,
351 * so just pass the plain sector number here.
352 */
353 memset(iv, 0, cc->iv_size);
354 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
355
356 return 0;
357}
358
359static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
360 const char *opts)
361{
362 unsigned int bs;
363 int log;
364
365 if (crypt_integrity_aead(cc))
366 bs = crypto_aead_blocksize(tfm: any_tfm_aead(cc));
367 else
368 bs = crypto_skcipher_blocksize(tfm: any_tfm(cc));
369 log = ilog2(bs);
370
371 /*
372 * We need to calculate how far we must shift the sector count
373 * to get the cipher block count, we use this shift in _gen.
374 */
375 if (1 << log != bs) {
376 ti->error = "cypher blocksize is not a power of 2";
377 return -EINVAL;
378 }
379
380 if (log > 9) {
381 ti->error = "cypher blocksize is > 512";
382 return -EINVAL;
383 }
384
385 cc->iv_gen_private.benbi.shift = 9 - log;
386
387 return 0;
388}
389
390static void crypt_iv_benbi_dtr(struct crypt_config *cc)
391{
392}
393
394static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
395 struct dm_crypt_request *dmreq)
396{
397 __be64 val;
398
399 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
400
401 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
402 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
403
404 return 0;
405}
406
407static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
408 struct dm_crypt_request *dmreq)
409{
410 memset(iv, 0, cc->iv_size);
411
412 return 0;
413}
414
415static void crypt_iv_lmk_dtr(struct crypt_config *cc)
416{
417 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
418
419 if (lmk->hash_tfm && !IS_ERR(ptr: lmk->hash_tfm))
420 crypto_free_shash(tfm: lmk->hash_tfm);
421 lmk->hash_tfm = NULL;
422
423 kfree_sensitive(objp: lmk->seed);
424 lmk->seed = NULL;
425}
426
427static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
428 const char *opts)
429{
430 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
431
432 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
433 ti->error = "Unsupported sector size for LMK";
434 return -EINVAL;
435 }
436
437 lmk->hash_tfm = crypto_alloc_shash(alg_name: "md5", type: 0,
438 CRYPTO_ALG_ALLOCATES_MEMORY);
439 if (IS_ERR(ptr: lmk->hash_tfm)) {
440 ti->error = "Error initializing LMK hash";
441 return PTR_ERR(ptr: lmk->hash_tfm);
442 }
443
444 /* No seed in LMK version 2 */
445 if (cc->key_parts == cc->tfms_count) {
446 lmk->seed = NULL;
447 return 0;
448 }
449
450 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
451 if (!lmk->seed) {
452 crypt_iv_lmk_dtr(cc);
453 ti->error = "Error kmallocing seed storage in LMK";
454 return -ENOMEM;
455 }
456
457 return 0;
458}
459
460static int crypt_iv_lmk_init(struct crypt_config *cc)
461{
462 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
463 int subkey_size = cc->key_size / cc->key_parts;
464
465 /* LMK seed is on the position of LMK_KEYS + 1 key */
466 if (lmk->seed)
467 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
468 crypto_shash_digestsize(lmk->hash_tfm));
469
470 return 0;
471}
472
473static int crypt_iv_lmk_wipe(struct crypt_config *cc)
474{
475 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476
477 if (lmk->seed)
478 memset(lmk->seed, 0, LMK_SEED_SIZE);
479
480 return 0;
481}
482
483static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
484 struct dm_crypt_request *dmreq,
485 u8 *data)
486{
487 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
488 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
489 struct md5_state md5state;
490 __le32 buf[4];
491 int i, r;
492
493 desc->tfm = lmk->hash_tfm;
494
495 r = crypto_shash_init(desc);
496 if (r)
497 return r;
498
499 if (lmk->seed) {
500 r = crypto_shash_update(desc, data: lmk->seed, LMK_SEED_SIZE);
501 if (r)
502 return r;
503 }
504
505 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
506 r = crypto_shash_update(desc, data: data + 16, len: 16 * 31);
507 if (r)
508 return r;
509
510 /* Sector is cropped to 56 bits here */
511 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
512 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
513 buf[2] = cpu_to_le32(4024);
514 buf[3] = 0;
515 r = crypto_shash_update(desc, data: (u8 *)buf, len: sizeof(buf));
516 if (r)
517 return r;
518
519 /* No MD5 padding here */
520 r = crypto_shash_export(desc, out: &md5state);
521 if (r)
522 return r;
523
524 for (i = 0; i < MD5_HASH_WORDS; i++)
525 __cpu_to_le32s(&md5state.hash[i]);
526 memcpy(iv, &md5state.hash, cc->iv_size);
527
528 return 0;
529}
530
531static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
532 struct dm_crypt_request *dmreq)
533{
534 struct scatterlist *sg;
535 u8 *src;
536 int r = 0;
537
538 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
539 sg = crypt_get_sg_data(cc, sg: dmreq->sg_in);
540 src = kmap_local_page(page: sg_page(sg));
541 r = crypt_iv_lmk_one(cc, iv, dmreq, data: src + sg->offset);
542 kunmap_local(src);
543 } else
544 memset(iv, 0, cc->iv_size);
545
546 return r;
547}
548
549static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
550 struct dm_crypt_request *dmreq)
551{
552 struct scatterlist *sg;
553 u8 *dst;
554 int r;
555
556 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
557 return 0;
558
559 sg = crypt_get_sg_data(cc, sg: dmreq->sg_out);
560 dst = kmap_local_page(page: sg_page(sg));
561 r = crypt_iv_lmk_one(cc, iv, dmreq, data: dst + sg->offset);
562
563 /* Tweak the first block of plaintext sector */
564 if (!r)
565 crypto_xor(dst: dst + sg->offset, src: iv, size: cc->iv_size);
566
567 kunmap_local(dst);
568 return r;
569}
570
571static void crypt_iv_tcw_dtr(struct crypt_config *cc)
572{
573 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
574
575 kfree_sensitive(objp: tcw->iv_seed);
576 tcw->iv_seed = NULL;
577 kfree_sensitive(objp: tcw->whitening);
578 tcw->whitening = NULL;
579
580 if (tcw->crc32_tfm && !IS_ERR(ptr: tcw->crc32_tfm))
581 crypto_free_shash(tfm: tcw->crc32_tfm);
582 tcw->crc32_tfm = NULL;
583}
584
585static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
586 const char *opts)
587{
588 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
589
590 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
591 ti->error = "Unsupported sector size for TCW";
592 return -EINVAL;
593 }
594
595 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
596 ti->error = "Wrong key size for TCW";
597 return -EINVAL;
598 }
599
600 tcw->crc32_tfm = crypto_alloc_shash(alg_name: "crc32", type: 0,
601 CRYPTO_ALG_ALLOCATES_MEMORY);
602 if (IS_ERR(ptr: tcw->crc32_tfm)) {
603 ti->error = "Error initializing CRC32 in TCW";
604 return PTR_ERR(ptr: tcw->crc32_tfm);
605 }
606
607 tcw->iv_seed = kzalloc(size: cc->iv_size, GFP_KERNEL);
608 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
609 if (!tcw->iv_seed || !tcw->whitening) {
610 crypt_iv_tcw_dtr(cc);
611 ti->error = "Error allocating seed storage in TCW";
612 return -ENOMEM;
613 }
614
615 return 0;
616}
617
618static int crypt_iv_tcw_init(struct crypt_config *cc)
619{
620 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
621 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
622
623 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
624 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
625 TCW_WHITENING_SIZE);
626
627 return 0;
628}
629
630static int crypt_iv_tcw_wipe(struct crypt_config *cc)
631{
632 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
633
634 memset(tcw->iv_seed, 0, cc->iv_size);
635 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
636
637 return 0;
638}
639
640static int crypt_iv_tcw_whitening(struct crypt_config *cc,
641 struct dm_crypt_request *dmreq,
642 u8 *data)
643{
644 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
645 __le64 sector = cpu_to_le64(dmreq->iv_sector);
646 u8 buf[TCW_WHITENING_SIZE];
647 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
648 int i, r;
649
650 /* xor whitening with sector number */
651 crypto_xor_cpy(dst: buf, src1: tcw->whitening, src2: (u8 *)&sector, size: 8);
652 crypto_xor_cpy(dst: &buf[8], src1: tcw->whitening + 8, src2: (u8 *)&sector, size: 8);
653
654 /* calculate crc32 for every 32bit part and xor it */
655 desc->tfm = tcw->crc32_tfm;
656 for (i = 0; i < 4; i++) {
657 r = crypto_shash_digest(desc, data: &buf[i * 4], len: 4, out: &buf[i * 4]);
658 if (r)
659 goto out;
660 }
661 crypto_xor(dst: &buf[0], src: &buf[12], size: 4);
662 crypto_xor(dst: &buf[4], src: &buf[8], size: 4);
663
664 /* apply whitening (8 bytes) to whole sector */
665 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
666 crypto_xor(dst: data + i * 8, src: buf, size: 8);
667out:
668 memzero_explicit(s: buf, count: sizeof(buf));
669 return r;
670}
671
672static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
673 struct dm_crypt_request *dmreq)
674{
675 struct scatterlist *sg;
676 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
677 __le64 sector = cpu_to_le64(dmreq->iv_sector);
678 u8 *src;
679 int r = 0;
680
681 /* Remove whitening from ciphertext */
682 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
683 sg = crypt_get_sg_data(cc, sg: dmreq->sg_in);
684 src = kmap_local_page(page: sg_page(sg));
685 r = crypt_iv_tcw_whitening(cc, dmreq, data: src + sg->offset);
686 kunmap_local(src);
687 }
688
689 /* Calculate IV */
690 crypto_xor_cpy(dst: iv, src1: tcw->iv_seed, src2: (u8 *)&sector, size: 8);
691 if (cc->iv_size > 8)
692 crypto_xor_cpy(dst: &iv[8], src1: tcw->iv_seed + 8, src2: (u8 *)&sector,
693 size: cc->iv_size - 8);
694
695 return r;
696}
697
698static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
699 struct dm_crypt_request *dmreq)
700{
701 struct scatterlist *sg;
702 u8 *dst;
703 int r;
704
705 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
706 return 0;
707
708 /* Apply whitening on ciphertext */
709 sg = crypt_get_sg_data(cc, sg: dmreq->sg_out);
710 dst = kmap_local_page(page: sg_page(sg));
711 r = crypt_iv_tcw_whitening(cc, dmreq, data: dst + sg->offset);
712 kunmap_local(dst);
713
714 return r;
715}
716
717static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
718 struct dm_crypt_request *dmreq)
719{
720 /* Used only for writes, there must be an additional space to store IV */
721 get_random_bytes(buf: iv, len: cc->iv_size);
722 return 0;
723}
724
725static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
726 const char *opts)
727{
728 if (crypt_integrity_aead(cc)) {
729 ti->error = "AEAD transforms not supported for EBOIV";
730 return -EINVAL;
731 }
732
733 if (crypto_skcipher_blocksize(tfm: any_tfm(cc)) != cc->iv_size) {
734 ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
735 return -EINVAL;
736 }
737
738 return 0;
739}
740
741static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
742 struct dm_crypt_request *dmreq)
743{
744 struct crypto_skcipher *tfm = any_tfm(cc);
745 struct skcipher_request *req;
746 struct scatterlist src, dst;
747 DECLARE_CRYPTO_WAIT(wait);
748 unsigned int reqsize;
749 int err;
750 u8 *buf;
751
752 reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
753 reqsize = ALIGN(reqsize, __alignof__(__le64));
754
755 req = kmalloc(size: reqsize + cc->iv_size, GFP_NOIO);
756 if (!req)
757 return -ENOMEM;
758
759 skcipher_request_set_tfm(req, tfm);
760
761 buf = (u8 *)req + reqsize;
762 memset(buf, 0, cc->iv_size);
763 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
764
765 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
766 sg_init_one(&dst, iv, cc->iv_size);
767 skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: cc->iv_size, iv: buf);
768 skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait);
769 err = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait);
770 kfree_sensitive(objp: req);
771
772 return err;
773}
774
775static void crypt_iv_elephant_dtr(struct crypt_config *cc)
776{
777 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
778
779 crypto_free_skcipher(tfm: elephant->tfm);
780 elephant->tfm = NULL;
781}
782
783static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
784 const char *opts)
785{
786 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
787 int r;
788
789 elephant->tfm = crypto_alloc_skcipher(alg_name: "ecb(aes)", type: 0,
790 CRYPTO_ALG_ALLOCATES_MEMORY);
791 if (IS_ERR(ptr: elephant->tfm)) {
792 r = PTR_ERR(ptr: elephant->tfm);
793 elephant->tfm = NULL;
794 return r;
795 }
796
797 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
798 if (r)
799 crypt_iv_elephant_dtr(cc);
800 return r;
801}
802
803static void diffuser_disk_to_cpu(u32 *d, size_t n)
804{
805#ifndef __LITTLE_ENDIAN
806 int i;
807
808 for (i = 0; i < n; i++)
809 d[i] = le32_to_cpu((__le32)d[i]);
810#endif
811}
812
813static void diffuser_cpu_to_disk(__le32 *d, size_t n)
814{
815#ifndef __LITTLE_ENDIAN
816 int i;
817
818 for (i = 0; i < n; i++)
819 d[i] = cpu_to_le32((u32)d[i]);
820#endif
821}
822
823static void diffuser_a_decrypt(u32 *d, size_t n)
824{
825 int i, i1, i2, i3;
826
827 for (i = 0; i < 5; i++) {
828 i1 = 0;
829 i2 = n - 2;
830 i3 = n - 5;
831
832 while (i1 < (n - 1)) {
833 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
834 i1++; i2++; i3++;
835
836 if (i3 >= n)
837 i3 -= n;
838
839 d[i1] += d[i2] ^ d[i3];
840 i1++; i2++; i3++;
841
842 if (i2 >= n)
843 i2 -= n;
844
845 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
846 i1++; i2++; i3++;
847
848 d[i1] += d[i2] ^ d[i3];
849 i1++; i2++; i3++;
850 }
851 }
852}
853
854static void diffuser_a_encrypt(u32 *d, size_t n)
855{
856 int i, i1, i2, i3;
857
858 for (i = 0; i < 5; i++) {
859 i1 = n - 1;
860 i2 = n - 2 - 1;
861 i3 = n - 5 - 1;
862
863 while (i1 > 0) {
864 d[i1] -= d[i2] ^ d[i3];
865 i1--; i2--; i3--;
866
867 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
868 i1--; i2--; i3--;
869
870 if (i2 < 0)
871 i2 += n;
872
873 d[i1] -= d[i2] ^ d[i3];
874 i1--; i2--; i3--;
875
876 if (i3 < 0)
877 i3 += n;
878
879 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
880 i1--; i2--; i3--;
881 }
882 }
883}
884
885static void diffuser_b_decrypt(u32 *d, size_t n)
886{
887 int i, i1, i2, i3;
888
889 for (i = 0; i < 3; i++) {
890 i1 = 0;
891 i2 = 2;
892 i3 = 5;
893
894 while (i1 < (n - 1)) {
895 d[i1] += d[i2] ^ d[i3];
896 i1++; i2++; i3++;
897
898 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
899 i1++; i2++; i3++;
900
901 if (i2 >= n)
902 i2 -= n;
903
904 d[i1] += d[i2] ^ d[i3];
905 i1++; i2++; i3++;
906
907 if (i3 >= n)
908 i3 -= n;
909
910 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
911 i1++; i2++; i3++;
912 }
913 }
914}
915
916static void diffuser_b_encrypt(u32 *d, size_t n)
917{
918 int i, i1, i2, i3;
919
920 for (i = 0; i < 3; i++) {
921 i1 = n - 1;
922 i2 = 2 - 1;
923 i3 = 5 - 1;
924
925 while (i1 > 0) {
926 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
927 i1--; i2--; i3--;
928
929 if (i3 < 0)
930 i3 += n;
931
932 d[i1] -= d[i2] ^ d[i3];
933 i1--; i2--; i3--;
934
935 if (i2 < 0)
936 i2 += n;
937
938 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
939 i1--; i2--; i3--;
940
941 d[i1] -= d[i2] ^ d[i3];
942 i1--; i2--; i3--;
943 }
944 }
945}
946
947static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
948{
949 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
950 u8 *es, *ks, *data, *data2, *data_offset;
951 struct skcipher_request *req;
952 struct scatterlist *sg, *sg2, src, dst;
953 DECLARE_CRYPTO_WAIT(wait);
954 int i, r;
955
956 req = skcipher_request_alloc(tfm: elephant->tfm, GFP_NOIO);
957 es = kzalloc(size: 16, GFP_NOIO); /* Key for AES */
958 ks = kzalloc(size: 32, GFP_NOIO); /* Elephant sector key */
959
960 if (!req || !es || !ks) {
961 r = -ENOMEM;
962 goto out;
963 }
964
965 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
966
967 /* E(Ks, e(s)) */
968 sg_init_one(&src, es, 16);
969 sg_init_one(&dst, ks, 16);
970 skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: 16, NULL);
971 skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait);
972 r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait);
973 if (r)
974 goto out;
975
976 /* E(Ks, e'(s)) */
977 es[15] = 0x80;
978 sg_init_one(&dst, &ks[16], 16);
979 r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait);
980 if (r)
981 goto out;
982
983 sg = crypt_get_sg_data(cc, sg: dmreq->sg_out);
984 data = kmap_local_page(page: sg_page(sg));
985 data_offset = data + sg->offset;
986
987 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
988 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
989 sg2 = crypt_get_sg_data(cc, sg: dmreq->sg_in);
990 data2 = kmap_local_page(page: sg_page(sg: sg2));
991 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
992 kunmap_local(data2);
993 }
994
995 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
996 diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
997 diffuser_b_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
998 diffuser_a_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
999 diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32));
1000 }
1001
1002 for (i = 0; i < (cc->sector_size / 32); i++)
1003 crypto_xor(dst: data_offset + i * 32, src: ks, size: 32);
1004
1005 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1006 diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
1007 diffuser_a_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
1008 diffuser_b_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32));
1009 diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32));
1010 }
1011
1012 kunmap_local(data);
1013out:
1014 kfree_sensitive(objp: ks);
1015 kfree_sensitive(objp: es);
1016 skcipher_request_free(req);
1017 return r;
1018}
1019
1020static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1021 struct dm_crypt_request *dmreq)
1022{
1023 int r;
1024
1025 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1026 r = crypt_iv_elephant(cc, dmreq);
1027 if (r)
1028 return r;
1029 }
1030
1031 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1032}
1033
1034static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1035 struct dm_crypt_request *dmreq)
1036{
1037 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1038 return crypt_iv_elephant(cc, dmreq);
1039
1040 return 0;
1041}
1042
1043static int crypt_iv_elephant_init(struct crypt_config *cc)
1044{
1045 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1046 int key_offset = cc->key_size - cc->key_extra_size;
1047
1048 return crypto_skcipher_setkey(tfm: elephant->tfm, key: &cc->key[key_offset], keylen: cc->key_extra_size);
1049}
1050
1051static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1052{
1053 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1054 u8 key[ELEPHANT_MAX_KEY_SIZE];
1055
1056 memset(key, 0, cc->key_extra_size);
1057 return crypto_skcipher_setkey(tfm: elephant->tfm, key, keylen: cc->key_extra_size);
1058}
1059
1060static const struct crypt_iv_operations crypt_iv_plain_ops = {
1061 .generator = crypt_iv_plain_gen
1062};
1063
1064static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1065 .generator = crypt_iv_plain64_gen
1066};
1067
1068static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1069 .generator = crypt_iv_plain64be_gen
1070};
1071
1072static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1073 .generator = crypt_iv_essiv_gen
1074};
1075
1076static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1077 .ctr = crypt_iv_benbi_ctr,
1078 .dtr = crypt_iv_benbi_dtr,
1079 .generator = crypt_iv_benbi_gen
1080};
1081
1082static const struct crypt_iv_operations crypt_iv_null_ops = {
1083 .generator = crypt_iv_null_gen
1084};
1085
1086static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1087 .ctr = crypt_iv_lmk_ctr,
1088 .dtr = crypt_iv_lmk_dtr,
1089 .init = crypt_iv_lmk_init,
1090 .wipe = crypt_iv_lmk_wipe,
1091 .generator = crypt_iv_lmk_gen,
1092 .post = crypt_iv_lmk_post
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1096 .ctr = crypt_iv_tcw_ctr,
1097 .dtr = crypt_iv_tcw_dtr,
1098 .init = crypt_iv_tcw_init,
1099 .wipe = crypt_iv_tcw_wipe,
1100 .generator = crypt_iv_tcw_gen,
1101 .post = crypt_iv_tcw_post
1102};
1103
1104static const struct crypt_iv_operations crypt_iv_random_ops = {
1105 .generator = crypt_iv_random_gen
1106};
1107
1108static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1109 .ctr = crypt_iv_eboiv_ctr,
1110 .generator = crypt_iv_eboiv_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1114 .ctr = crypt_iv_elephant_ctr,
1115 .dtr = crypt_iv_elephant_dtr,
1116 .init = crypt_iv_elephant_init,
1117 .wipe = crypt_iv_elephant_wipe,
1118 .generator = crypt_iv_elephant_gen,
1119 .post = crypt_iv_elephant_post
1120};
1121
1122/*
1123 * Integrity extensions
1124 */
1125static bool crypt_integrity_aead(struct crypt_config *cc)
1126{
1127 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1128}
1129
1130static bool crypt_integrity_hmac(struct crypt_config *cc)
1131{
1132 return crypt_integrity_aead(cc) && cc->key_mac_size;
1133}
1134
1135/* Get sg containing data */
1136static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1137 struct scatterlist *sg)
1138{
1139 if (unlikely(crypt_integrity_aead(cc)))
1140 return &sg[2];
1141
1142 return sg;
1143}
1144
1145static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1146{
1147 struct bio_integrity_payload *bip;
1148 unsigned int tag_len;
1149 int ret;
1150
1151 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1152 return 0;
1153
1154 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1155 if (IS_ERR(ptr: bip))
1156 return PTR_ERR(ptr: bip);
1157
1158 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1159
1160 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1161
1162 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1163 tag_len, offset_in_page(io->integrity_metadata));
1164 if (unlikely(ret != tag_len))
1165 return -ENOMEM;
1166
1167 return 0;
1168}
1169
1170static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1171{
1172#ifdef CONFIG_BLK_DEV_INTEGRITY
1173 struct blk_integrity *bi = blk_get_integrity(disk: cc->dev->bdev->bd_disk);
1174 struct mapped_device *md = dm_table_get_md(t: ti->table);
1175
1176 /* From now we require underlying device with our integrity profile */
1177 if (!bi || strcasecmp(s1: bi->profile->name, s2: "DM-DIF-EXT-TAG")) {
1178 ti->error = "Integrity profile not supported.";
1179 return -EINVAL;
1180 }
1181
1182 if (bi->tag_size != cc->on_disk_tag_size ||
1183 bi->tuple_size != cc->on_disk_tag_size) {
1184 ti->error = "Integrity profile tag size mismatch.";
1185 return -EINVAL;
1186 }
1187 if (1 << bi->interval_exp != cc->sector_size) {
1188 ti->error = "Integrity profile sector size mismatch.";
1189 return -EINVAL;
1190 }
1191
1192 if (crypt_integrity_aead(cc)) {
1193 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1194 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1195 cc->integrity_tag_size, cc->integrity_iv_size);
1196
1197 if (crypto_aead_setauthsize(tfm: any_tfm_aead(cc), authsize: cc->integrity_tag_size)) {
1198 ti->error = "Integrity AEAD auth tag size is not supported.";
1199 return -EINVAL;
1200 }
1201 } else if (cc->integrity_iv_size)
1202 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1203 cc->integrity_iv_size);
1204
1205 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1206 ti->error = "Not enough space for integrity tag in the profile.";
1207 return -EINVAL;
1208 }
1209
1210 return 0;
1211#else
1212 ti->error = "Integrity profile not supported.";
1213 return -EINVAL;
1214#endif
1215}
1216
1217static void crypt_convert_init(struct crypt_config *cc,
1218 struct convert_context *ctx,
1219 struct bio *bio_out, struct bio *bio_in,
1220 sector_t sector)
1221{
1222 ctx->bio_in = bio_in;
1223 ctx->bio_out = bio_out;
1224 if (bio_in)
1225 ctx->iter_in = bio_in->bi_iter;
1226 if (bio_out)
1227 ctx->iter_out = bio_out->bi_iter;
1228 ctx->cc_sector = sector + cc->iv_offset;
1229 init_completion(x: &ctx->restart);
1230}
1231
1232static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1233 void *req)
1234{
1235 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1236}
1237
1238static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1239{
1240 return (void *)((char *)dmreq - cc->dmreq_start);
1241}
1242
1243static u8 *iv_of_dmreq(struct crypt_config *cc,
1244 struct dm_crypt_request *dmreq)
1245{
1246 if (crypt_integrity_aead(cc))
1247 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1248 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1249 else
1250 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1251 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1252}
1253
1254static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1255 struct dm_crypt_request *dmreq)
1256{
1257 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1258}
1259
1260static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1261 struct dm_crypt_request *dmreq)
1262{
1263 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1264
1265 return (__le64 *) ptr;
1266}
1267
1268static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1269 struct dm_crypt_request *dmreq)
1270{
1271 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1272 cc->iv_size + sizeof(uint64_t);
1273
1274 return (unsigned int *)ptr;
1275}
1276
1277static void *tag_from_dmreq(struct crypt_config *cc,
1278 struct dm_crypt_request *dmreq)
1279{
1280 struct convert_context *ctx = dmreq->ctx;
1281 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1282
1283 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1284 cc->on_disk_tag_size];
1285}
1286
1287static void *iv_tag_from_dmreq(struct crypt_config *cc,
1288 struct dm_crypt_request *dmreq)
1289{
1290 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1291}
1292
1293static int crypt_convert_block_aead(struct crypt_config *cc,
1294 struct convert_context *ctx,
1295 struct aead_request *req,
1296 unsigned int tag_offset)
1297{
1298 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1299 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1300 struct dm_crypt_request *dmreq;
1301 u8 *iv, *org_iv, *tag_iv, *tag;
1302 __le64 *sector;
1303 int r = 0;
1304
1305 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1306
1307 /* Reject unexpected unaligned bio. */
1308 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1309 return -EIO;
1310
1311 dmreq = dmreq_of_req(cc, req);
1312 dmreq->iv_sector = ctx->cc_sector;
1313 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1314 dmreq->iv_sector >>= cc->sector_shift;
1315 dmreq->ctx = ctx;
1316
1317 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1318
1319 sector = org_sector_of_dmreq(cc, dmreq);
1320 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1321
1322 iv = iv_of_dmreq(cc, dmreq);
1323 org_iv = org_iv_of_dmreq(cc, dmreq);
1324 tag = tag_from_dmreq(cc, dmreq);
1325 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1326
1327 /* AEAD request:
1328 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1329 * | (authenticated) | (auth+encryption) | |
1330 * | sector_LE | IV | sector in/out | tag in/out |
1331 */
1332 sg_init_table(dmreq->sg_in, 4);
1333 sg_set_buf(sg: &dmreq->sg_in[0], buf: sector, buflen: sizeof(uint64_t));
1334 sg_set_buf(sg: &dmreq->sg_in[1], buf: org_iv, buflen: cc->iv_size);
1335 sg_set_page(sg: &dmreq->sg_in[2], page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset);
1336 sg_set_buf(sg: &dmreq->sg_in[3], buf: tag, buflen: cc->integrity_tag_size);
1337
1338 sg_init_table(dmreq->sg_out, 4);
1339 sg_set_buf(sg: &dmreq->sg_out[0], buf: sector, buflen: sizeof(uint64_t));
1340 sg_set_buf(sg: &dmreq->sg_out[1], buf: org_iv, buflen: cc->iv_size);
1341 sg_set_page(sg: &dmreq->sg_out[2], page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset);
1342 sg_set_buf(sg: &dmreq->sg_out[3], buf: tag, buflen: cc->integrity_tag_size);
1343
1344 if (cc->iv_gen_ops) {
1345 /* For READs use IV stored in integrity metadata */
1346 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1347 memcpy(org_iv, tag_iv, cc->iv_size);
1348 } else {
1349 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1350 if (r < 0)
1351 return r;
1352 /* Store generated IV in integrity metadata */
1353 if (cc->integrity_iv_size)
1354 memcpy(tag_iv, org_iv, cc->iv_size);
1355 }
1356 /* Working copy of IV, to be modified in crypto API */
1357 memcpy(iv, org_iv, cc->iv_size);
1358 }
1359
1360 aead_request_set_ad(req, assoclen: sizeof(uint64_t) + cc->iv_size);
1361 if (bio_data_dir(ctx->bio_in) == WRITE) {
1362 aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out,
1363 cryptlen: cc->sector_size, iv);
1364 r = crypto_aead_encrypt(req);
1365 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1366 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1367 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1368 } else {
1369 aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out,
1370 cryptlen: cc->sector_size + cc->integrity_tag_size, iv);
1371 r = crypto_aead_decrypt(req);
1372 }
1373
1374 if (r == -EBADMSG) {
1375 sector_t s = le64_to_cpu(*sector);
1376
1377 ctx->aead_failed = true;
1378 if (ctx->aead_recheck) {
1379 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1380 ctx->bio_in->bi_bdev, s);
1381 dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead",
1382 bio: ctx->bio_in, sector: s, result: 0);
1383 }
1384 }
1385
1386 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1387 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1388
1389 bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size);
1390 bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size);
1391
1392 return r;
1393}
1394
1395static int crypt_convert_block_skcipher(struct crypt_config *cc,
1396 struct convert_context *ctx,
1397 struct skcipher_request *req,
1398 unsigned int tag_offset)
1399{
1400 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1401 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1402 struct scatterlist *sg_in, *sg_out;
1403 struct dm_crypt_request *dmreq;
1404 u8 *iv, *org_iv, *tag_iv;
1405 __le64 *sector;
1406 int r = 0;
1407
1408 /* Reject unexpected unaligned bio. */
1409 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1410 return -EIO;
1411
1412 dmreq = dmreq_of_req(cc, req);
1413 dmreq->iv_sector = ctx->cc_sector;
1414 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1415 dmreq->iv_sector >>= cc->sector_shift;
1416 dmreq->ctx = ctx;
1417
1418 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1419
1420 iv = iv_of_dmreq(cc, dmreq);
1421 org_iv = org_iv_of_dmreq(cc, dmreq);
1422 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1423
1424 sector = org_sector_of_dmreq(cc, dmreq);
1425 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1426
1427 /* For skcipher we use only the first sg item */
1428 sg_in = &dmreq->sg_in[0];
1429 sg_out = &dmreq->sg_out[0];
1430
1431 sg_init_table(sg_in, 1);
1432 sg_set_page(sg: sg_in, page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset);
1433
1434 sg_init_table(sg_out, 1);
1435 sg_set_page(sg: sg_out, page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset);
1436
1437 if (cc->iv_gen_ops) {
1438 /* For READs use IV stored in integrity metadata */
1439 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1440 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1441 } else {
1442 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1443 if (r < 0)
1444 return r;
1445 /* Data can be already preprocessed in generator */
1446 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1447 sg_in = sg_out;
1448 /* Store generated IV in integrity metadata */
1449 if (cc->integrity_iv_size)
1450 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1451 }
1452 /* Working copy of IV, to be modified in crypto API */
1453 memcpy(iv, org_iv, cc->iv_size);
1454 }
1455
1456 skcipher_request_set_crypt(req, src: sg_in, dst: sg_out, cryptlen: cc->sector_size, iv);
1457
1458 if (bio_data_dir(ctx->bio_in) == WRITE)
1459 r = crypto_skcipher_encrypt(req);
1460 else
1461 r = crypto_skcipher_decrypt(req);
1462
1463 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1464 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1465
1466 bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size);
1467 bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size);
1468
1469 return r;
1470}
1471
1472static void kcryptd_async_done(void *async_req, int error);
1473
1474static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1475 struct convert_context *ctx)
1476{
1477 unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1478
1479 if (!ctx->r.req) {
1480 ctx->r.req = mempool_alloc(pool: &cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1481 if (!ctx->r.req)
1482 return -ENOMEM;
1483 }
1484
1485 skcipher_request_set_tfm(req: ctx->r.req, tfm: cc->cipher_tfm.tfms[key_index]);
1486
1487 /*
1488 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1489 * requests if driver request queue is full.
1490 */
1491 skcipher_request_set_callback(req: ctx->r.req,
1492 CRYPTO_TFM_REQ_MAY_BACKLOG,
1493 compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req));
1494
1495 return 0;
1496}
1497
1498static int crypt_alloc_req_aead(struct crypt_config *cc,
1499 struct convert_context *ctx)
1500{
1501 if (!ctx->r.req_aead) {
1502 ctx->r.req_aead = mempool_alloc(pool: &cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1503 if (!ctx->r.req_aead)
1504 return -ENOMEM;
1505 }
1506
1507 aead_request_set_tfm(req: ctx->r.req_aead, tfm: cc->cipher_tfm.tfms_aead[0]);
1508
1509 /*
1510 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1511 * requests if driver request queue is full.
1512 */
1513 aead_request_set_callback(req: ctx->r.req_aead,
1514 CRYPTO_TFM_REQ_MAY_BACKLOG,
1515 compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req_aead));
1516
1517 return 0;
1518}
1519
1520static int crypt_alloc_req(struct crypt_config *cc,
1521 struct convert_context *ctx)
1522{
1523 if (crypt_integrity_aead(cc))
1524 return crypt_alloc_req_aead(cc, ctx);
1525 else
1526 return crypt_alloc_req_skcipher(cc, ctx);
1527}
1528
1529static void crypt_free_req_skcipher(struct crypt_config *cc,
1530 struct skcipher_request *req, struct bio *base_bio)
1531{
1532 struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size);
1533
1534 if ((struct skcipher_request *)(io + 1) != req)
1535 mempool_free(element: req, pool: &cc->req_pool);
1536}
1537
1538static void crypt_free_req_aead(struct crypt_config *cc,
1539 struct aead_request *req, struct bio *base_bio)
1540{
1541 struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size);
1542
1543 if ((struct aead_request *)(io + 1) != req)
1544 mempool_free(element: req, pool: &cc->req_pool);
1545}
1546
1547static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1548{
1549 if (crypt_integrity_aead(cc))
1550 crypt_free_req_aead(cc, req, base_bio);
1551 else
1552 crypt_free_req_skcipher(cc, req, base_bio);
1553}
1554
1555/*
1556 * Encrypt / decrypt data from one bio to another one (can be the same one)
1557 */
1558static blk_status_t crypt_convert(struct crypt_config *cc,
1559 struct convert_context *ctx, bool atomic, bool reset_pending)
1560{
1561 unsigned int tag_offset = 0;
1562 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1563 int r;
1564
1565 /*
1566 * if reset_pending is set we are dealing with the bio for the first time,
1567 * else we're continuing to work on the previous bio, so don't mess with
1568 * the cc_pending counter
1569 */
1570 if (reset_pending)
1571 atomic_set(v: &ctx->cc_pending, i: 1);
1572
1573 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1574
1575 r = crypt_alloc_req(cc, ctx);
1576 if (r) {
1577 complete(&ctx->restart);
1578 return BLK_STS_DEV_RESOURCE;
1579 }
1580
1581 atomic_inc(v: &ctx->cc_pending);
1582
1583 if (crypt_integrity_aead(cc))
1584 r = crypt_convert_block_aead(cc, ctx, req: ctx->r.req_aead, tag_offset);
1585 else
1586 r = crypt_convert_block_skcipher(cc, ctx, req: ctx->r.req, tag_offset);
1587
1588 switch (r) {
1589 /*
1590 * The request was queued by a crypto driver
1591 * but the driver request queue is full, let's wait.
1592 */
1593 case -EBUSY:
1594 if (in_interrupt()) {
1595 if (try_wait_for_completion(x: &ctx->restart)) {
1596 /*
1597 * we don't have to block to wait for completion,
1598 * so proceed
1599 */
1600 } else {
1601 /*
1602 * we can't wait for completion without blocking
1603 * exit and continue processing in a workqueue
1604 */
1605 ctx->r.req = NULL;
1606 ctx->cc_sector += sector_step;
1607 tag_offset++;
1608 return BLK_STS_DEV_RESOURCE;
1609 }
1610 } else {
1611 wait_for_completion(&ctx->restart);
1612 }
1613 reinit_completion(x: &ctx->restart);
1614 fallthrough;
1615 /*
1616 * The request is queued and processed asynchronously,
1617 * completion function kcryptd_async_done() will be called.
1618 */
1619 case -EINPROGRESS:
1620 ctx->r.req = NULL;
1621 ctx->cc_sector += sector_step;
1622 tag_offset++;
1623 continue;
1624 /*
1625 * The request was already processed (synchronously).
1626 */
1627 case 0:
1628 atomic_dec(v: &ctx->cc_pending);
1629 ctx->cc_sector += sector_step;
1630 tag_offset++;
1631 if (!atomic)
1632 cond_resched();
1633 continue;
1634 /*
1635 * There was a data integrity error.
1636 */
1637 case -EBADMSG:
1638 atomic_dec(v: &ctx->cc_pending);
1639 return BLK_STS_PROTECTION;
1640 /*
1641 * There was an error while processing the request.
1642 */
1643 default:
1644 atomic_dec(v: &ctx->cc_pending);
1645 return BLK_STS_IOERR;
1646 }
1647 }
1648
1649 return 0;
1650}
1651
1652static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1653
1654/*
1655 * Generate a new unfragmented bio with the given size
1656 * This should never violate the device limitations (but only because
1657 * max_segment_size is being constrained to PAGE_SIZE).
1658 *
1659 * This function may be called concurrently. If we allocate from the mempool
1660 * concurrently, there is a possibility of deadlock. For example, if we have
1661 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1662 * the mempool concurrently, it may deadlock in a situation where both processes
1663 * have allocated 128 pages and the mempool is exhausted.
1664 *
1665 * In order to avoid this scenario we allocate the pages under a mutex.
1666 *
1667 * In order to not degrade performance with excessive locking, we try
1668 * non-blocking allocations without a mutex first but on failure we fallback
1669 * to blocking allocations with a mutex.
1670 *
1671 * In order to reduce allocation overhead, we try to allocate compound pages in
1672 * the first pass. If they are not available, we fall back to the mempool.
1673 */
1674static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1675{
1676 struct crypt_config *cc = io->cc;
1677 struct bio *clone;
1678 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1679 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1680 unsigned int remaining_size;
1681 unsigned int order = MAX_PAGE_ORDER;
1682
1683retry:
1684 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1685 mutex_lock(&cc->bio_alloc_lock);
1686
1687 clone = bio_alloc_bioset(bdev: cc->dev->bdev, nr_vecs: nr_iovecs, opf: io->base_bio->bi_opf,
1688 GFP_NOIO, bs: &cc->bs);
1689 clone->bi_private = io;
1690 clone->bi_end_io = crypt_endio;
1691 clone->bi_ioprio = io->base_bio->bi_ioprio;
1692
1693 remaining_size = size;
1694
1695 while (remaining_size) {
1696 struct page *pages;
1697 unsigned size_to_add;
1698 unsigned remaining_order = __fls(word: (remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1699 order = min(order, remaining_order);
1700
1701 while (order > 0) {
1702 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1703 (1 << order) > dm_crypt_pages_per_client))
1704 goto decrease_order;
1705 pages = alloc_pages(gfp: gfp_mask
1706 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1707 order);
1708 if (likely(pages != NULL)) {
1709 percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1 << order);
1710 goto have_pages;
1711 }
1712decrease_order:
1713 order--;
1714 }
1715
1716 pages = mempool_alloc(pool: &cc->page_pool, gfp_mask);
1717 if (!pages) {
1718 crypt_free_buffer_pages(cc, clone);
1719 bio_put(clone);
1720 gfp_mask |= __GFP_DIRECT_RECLAIM;
1721 order = 0;
1722 goto retry;
1723 }
1724
1725have_pages:
1726 size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1727 __bio_add_page(bio: clone, page: pages, len: size_to_add, off: 0);
1728 remaining_size -= size_to_add;
1729 }
1730
1731 /* Allocate space for integrity tags */
1732 if (dm_crypt_integrity_io_alloc(io, bio: clone)) {
1733 crypt_free_buffer_pages(cc, clone);
1734 bio_put(clone);
1735 clone = NULL;
1736 }
1737
1738 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1739 mutex_unlock(lock: &cc->bio_alloc_lock);
1740
1741 return clone;
1742}
1743
1744static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1745{
1746 struct folio_iter fi;
1747
1748 if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1749 bio_for_each_folio_all(fi, clone) {
1750 if (folio_test_large(folio: fi.folio)) {
1751 percpu_counter_sub(fbc: &cc->n_allocated_pages,
1752 amount: 1 << folio_order(folio: fi.folio));
1753 folio_put(folio: fi.folio);
1754 } else {
1755 mempool_free(element: &fi.folio->page, pool: &cc->page_pool);
1756 }
1757 }
1758 }
1759}
1760
1761static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1762 struct bio *bio, sector_t sector)
1763{
1764 io->cc = cc;
1765 io->base_bio = bio;
1766 io->sector = sector;
1767 io->error = 0;
1768 io->ctx.aead_recheck = false;
1769 io->ctx.aead_failed = false;
1770 io->ctx.r.req = NULL;
1771 io->integrity_metadata = NULL;
1772 io->integrity_metadata_from_pool = false;
1773 atomic_set(v: &io->io_pending, i: 0);
1774}
1775
1776static void crypt_inc_pending(struct dm_crypt_io *io)
1777{
1778 atomic_inc(v: &io->io_pending);
1779}
1780
1781static void kcryptd_queue_read(struct dm_crypt_io *io);
1782
1783/*
1784 * One of the bios was finished. Check for completion of
1785 * the whole request and correctly clean up the buffer.
1786 */
1787static void crypt_dec_pending(struct dm_crypt_io *io)
1788{
1789 struct crypt_config *cc = io->cc;
1790 struct bio *base_bio = io->base_bio;
1791 blk_status_t error = io->error;
1792
1793 if (!atomic_dec_and_test(v: &io->io_pending))
1794 return;
1795
1796 if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1797 cc->on_disk_tag_size && bio_data_dir(base_bio) == READ) {
1798 io->ctx.aead_recheck = true;
1799 io->ctx.aead_failed = false;
1800 io->error = 0;
1801 kcryptd_queue_read(io);
1802 return;
1803 }
1804
1805 if (io->ctx.r.req)
1806 crypt_free_req(cc, req: io->ctx.r.req, base_bio);
1807
1808 if (unlikely(io->integrity_metadata_from_pool))
1809 mempool_free(element: io->integrity_metadata, pool: &io->cc->tag_pool);
1810 else
1811 kfree(objp: io->integrity_metadata);
1812
1813 base_bio->bi_status = error;
1814
1815 bio_endio(base_bio);
1816}
1817
1818/*
1819 * kcryptd/kcryptd_io:
1820 *
1821 * Needed because it would be very unwise to do decryption in an
1822 * interrupt context.
1823 *
1824 * kcryptd performs the actual encryption or decryption.
1825 *
1826 * kcryptd_io performs the IO submission.
1827 *
1828 * They must be separated as otherwise the final stages could be
1829 * starved by new requests which can block in the first stages due
1830 * to memory allocation.
1831 *
1832 * The work is done per CPU global for all dm-crypt instances.
1833 * They should not depend on each other and do not block.
1834 */
1835static void crypt_endio(struct bio *clone)
1836{
1837 struct dm_crypt_io *io = clone->bi_private;
1838 struct crypt_config *cc = io->cc;
1839 unsigned int rw = bio_data_dir(clone);
1840 blk_status_t error = clone->bi_status;
1841
1842 if (io->ctx.aead_recheck && !error) {
1843 kcryptd_queue_crypt(io);
1844 return;
1845 }
1846
1847 /*
1848 * free the processed pages
1849 */
1850 if (rw == WRITE || io->ctx.aead_recheck)
1851 crypt_free_buffer_pages(cc, clone);
1852
1853 bio_put(clone);
1854
1855 if (rw == READ && !error) {
1856 kcryptd_queue_crypt(io);
1857 return;
1858 }
1859
1860 if (unlikely(error))
1861 io->error = error;
1862
1863 crypt_dec_pending(io);
1864}
1865
1866#define CRYPT_MAP_READ_GFP GFP_NOWAIT
1867
1868static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1869{
1870 struct crypt_config *cc = io->cc;
1871 struct bio *clone;
1872
1873 if (io->ctx.aead_recheck) {
1874 if (!(gfp & __GFP_DIRECT_RECLAIM))
1875 return 1;
1876 crypt_inc_pending(io);
1877 clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size);
1878 if (unlikely(!clone)) {
1879 crypt_dec_pending(io);
1880 return 1;
1881 }
1882 clone->bi_iter.bi_sector = cc->start + io->sector;
1883 crypt_convert_init(cc, ctx: &io->ctx, bio_out: clone, bio_in: clone, sector: io->sector);
1884 io->saved_bi_iter = clone->bi_iter;
1885 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
1886 return 0;
1887 }
1888
1889 /*
1890 * We need the original biovec array in order to decrypt the whole bio
1891 * data *afterwards* -- thanks to immutable biovecs we don't need to
1892 * worry about the block layer modifying the biovec array; so leverage
1893 * bio_alloc_clone().
1894 */
1895 clone = bio_alloc_clone(bdev: cc->dev->bdev, bio_src: io->base_bio, gfp, bs: &cc->bs);
1896 if (!clone)
1897 return 1;
1898 clone->bi_private = io;
1899 clone->bi_end_io = crypt_endio;
1900
1901 crypt_inc_pending(io);
1902
1903 clone->bi_iter.bi_sector = cc->start + io->sector;
1904
1905 if (dm_crypt_integrity_io_alloc(io, bio: clone)) {
1906 crypt_dec_pending(io);
1907 bio_put(clone);
1908 return 1;
1909 }
1910
1911 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
1912 return 0;
1913}
1914
1915static void kcryptd_io_read_work(struct work_struct *work)
1916{
1917 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1918
1919 crypt_inc_pending(io);
1920 if (kcryptd_io_read(io, GFP_NOIO))
1921 io->error = BLK_STS_RESOURCE;
1922 crypt_dec_pending(io);
1923}
1924
1925static void kcryptd_queue_read(struct dm_crypt_io *io)
1926{
1927 struct crypt_config *cc = io->cc;
1928
1929 INIT_WORK(&io->work, kcryptd_io_read_work);
1930 queue_work(wq: cc->io_queue, work: &io->work);
1931}
1932
1933static void kcryptd_io_write(struct dm_crypt_io *io)
1934{
1935 struct bio *clone = io->ctx.bio_out;
1936
1937 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
1938}
1939
1940#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1941
1942static int dmcrypt_write(void *data)
1943{
1944 struct crypt_config *cc = data;
1945 struct dm_crypt_io *io;
1946
1947 while (1) {
1948 struct rb_root write_tree;
1949 struct blk_plug plug;
1950
1951 spin_lock_irq(lock: &cc->write_thread_lock);
1952continue_locked:
1953
1954 if (!RB_EMPTY_ROOT(&cc->write_tree))
1955 goto pop_from_list;
1956
1957 set_current_state(TASK_INTERRUPTIBLE);
1958
1959 spin_unlock_irq(lock: &cc->write_thread_lock);
1960
1961 if (unlikely(kthread_should_stop())) {
1962 set_current_state(TASK_RUNNING);
1963 break;
1964 }
1965
1966 schedule();
1967
1968 spin_lock_irq(lock: &cc->write_thread_lock);
1969 goto continue_locked;
1970
1971pop_from_list:
1972 write_tree = cc->write_tree;
1973 cc->write_tree = RB_ROOT;
1974 spin_unlock_irq(lock: &cc->write_thread_lock);
1975
1976 BUG_ON(rb_parent(write_tree.rb_node));
1977
1978 /*
1979 * Note: we cannot walk the tree here with rb_next because
1980 * the structures may be freed when kcryptd_io_write is called.
1981 */
1982 blk_start_plug(&plug);
1983 do {
1984 io = crypt_io_from_node(rb_first(&write_tree));
1985 rb_erase(&io->rb_node, &write_tree);
1986 kcryptd_io_write(io);
1987 cond_resched();
1988 } while (!RB_EMPTY_ROOT(&write_tree));
1989 blk_finish_plug(&plug);
1990 }
1991 return 0;
1992}
1993
1994static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1995{
1996 struct bio *clone = io->ctx.bio_out;
1997 struct crypt_config *cc = io->cc;
1998 unsigned long flags;
1999 sector_t sector;
2000 struct rb_node **rbp, *parent;
2001
2002 if (unlikely(io->error)) {
2003 crypt_free_buffer_pages(cc, clone);
2004 bio_put(clone);
2005 crypt_dec_pending(io);
2006 return;
2007 }
2008
2009 /* crypt_convert should have filled the clone bio */
2010 BUG_ON(io->ctx.iter_out.bi_size);
2011
2012 clone->bi_iter.bi_sector = cc->start + io->sector;
2013
2014 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2015 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2016 dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone);
2017 return;
2018 }
2019
2020 spin_lock_irqsave(&cc->write_thread_lock, flags);
2021 if (RB_EMPTY_ROOT(&cc->write_tree))
2022 wake_up_process(tsk: cc->write_thread);
2023 rbp = &cc->write_tree.rb_node;
2024 parent = NULL;
2025 sector = io->sector;
2026 while (*rbp) {
2027 parent = *rbp;
2028 if (sector < crypt_io_from_node(parent)->sector)
2029 rbp = &(*rbp)->rb_left;
2030 else
2031 rbp = &(*rbp)->rb_right;
2032 }
2033 rb_link_node(node: &io->rb_node, parent, rb_link: rbp);
2034 rb_insert_color(&io->rb_node, &cc->write_tree);
2035 spin_unlock_irqrestore(lock: &cc->write_thread_lock, flags);
2036}
2037
2038static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2039 struct convert_context *ctx)
2040
2041{
2042 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2043 return false;
2044
2045 /*
2046 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2047 * constraints so they do not need to be issued inline by
2048 * kcryptd_crypt_write_convert().
2049 */
2050 switch (bio_op(bio: ctx->bio_in)) {
2051 case REQ_OP_WRITE:
2052 case REQ_OP_WRITE_ZEROES:
2053 return true;
2054 default:
2055 return false;
2056 }
2057}
2058
2059static void kcryptd_crypt_write_continue(struct work_struct *work)
2060{
2061 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2062 struct crypt_config *cc = io->cc;
2063 struct convert_context *ctx = &io->ctx;
2064 int crypt_finished;
2065 sector_t sector = io->sector;
2066 blk_status_t r;
2067
2068 wait_for_completion(&ctx->restart);
2069 reinit_completion(x: &ctx->restart);
2070
2071 r = crypt_convert(cc, ctx: &io->ctx, atomic: true, reset_pending: false);
2072 if (r)
2073 io->error = r;
2074 crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending);
2075 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2076 /* Wait for completion signaled by kcryptd_async_done() */
2077 wait_for_completion(&ctx->restart);
2078 crypt_finished = 1;
2079 }
2080
2081 /* Encryption was already finished, submit io now */
2082 if (crypt_finished) {
2083 kcryptd_crypt_write_io_submit(io, async: 0);
2084 io->sector = sector;
2085 }
2086
2087 crypt_dec_pending(io);
2088}
2089
2090static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2091{
2092 struct crypt_config *cc = io->cc;
2093 struct convert_context *ctx = &io->ctx;
2094 struct bio *clone;
2095 int crypt_finished;
2096 sector_t sector = io->sector;
2097 blk_status_t r;
2098
2099 /*
2100 * Prevent io from disappearing until this function completes.
2101 */
2102 crypt_inc_pending(io);
2103 crypt_convert_init(cc, ctx, NULL, bio_in: io->base_bio, sector);
2104
2105 clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size);
2106 if (unlikely(!clone)) {
2107 io->error = BLK_STS_IOERR;
2108 goto dec;
2109 }
2110
2111 io->ctx.bio_out = clone;
2112 io->ctx.iter_out = clone->bi_iter;
2113
2114 if (crypt_integrity_aead(cc)) {
2115 bio_copy_data(dst: clone, src: io->base_bio);
2116 io->ctx.bio_in = clone;
2117 io->ctx.iter_in = clone->bi_iter;
2118 }
2119
2120 sector += bio_sectors(clone);
2121
2122 crypt_inc_pending(io);
2123 r = crypt_convert(cc, ctx,
2124 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), reset_pending: true);
2125 /*
2126 * Crypto API backlogged the request, because its queue was full
2127 * and we're in softirq context, so continue from a workqueue
2128 * (TODO: is it actually possible to be in softirq in the write path?)
2129 */
2130 if (r == BLK_STS_DEV_RESOURCE) {
2131 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2132 queue_work(wq: cc->crypt_queue, work: &io->work);
2133 return;
2134 }
2135 if (r)
2136 io->error = r;
2137 crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending);
2138 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2139 /* Wait for completion signaled by kcryptd_async_done() */
2140 wait_for_completion(&ctx->restart);
2141 crypt_finished = 1;
2142 }
2143
2144 /* Encryption was already finished, submit io now */
2145 if (crypt_finished) {
2146 kcryptd_crypt_write_io_submit(io, async: 0);
2147 io->sector = sector;
2148 }
2149
2150dec:
2151 crypt_dec_pending(io);
2152}
2153
2154static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2155{
2156 if (io->ctx.aead_recheck) {
2157 if (!io->error) {
2158 io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2159 bio_copy_data(dst: io->base_bio, src: io->ctx.bio_in);
2160 }
2161 crypt_free_buffer_pages(cc: io->cc, clone: io->ctx.bio_in);
2162 bio_put(io->ctx.bio_in);
2163 }
2164 crypt_dec_pending(io);
2165}
2166
2167static void kcryptd_crypt_read_continue(struct work_struct *work)
2168{
2169 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2170 struct crypt_config *cc = io->cc;
2171 blk_status_t r;
2172
2173 wait_for_completion(&io->ctx.restart);
2174 reinit_completion(x: &io->ctx.restart);
2175
2176 r = crypt_convert(cc, ctx: &io->ctx, atomic: true, reset_pending: false);
2177 if (r)
2178 io->error = r;
2179
2180 if (atomic_dec_and_test(v: &io->ctx.cc_pending))
2181 kcryptd_crypt_read_done(io);
2182
2183 crypt_dec_pending(io);
2184}
2185
2186static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2187{
2188 struct crypt_config *cc = io->cc;
2189 blk_status_t r;
2190
2191 crypt_inc_pending(io);
2192
2193 if (io->ctx.aead_recheck) {
2194 io->ctx.cc_sector = io->sector + cc->iv_offset;
2195 r = crypt_convert(cc, ctx: &io->ctx,
2196 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true);
2197 } else {
2198 crypt_convert_init(cc, ctx: &io->ctx, bio_out: io->base_bio, bio_in: io->base_bio,
2199 sector: io->sector);
2200
2201 r = crypt_convert(cc, ctx: &io->ctx,
2202 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true);
2203 }
2204 /*
2205 * Crypto API backlogged the request, because its queue was full
2206 * and we're in softirq context, so continue from a workqueue
2207 */
2208 if (r == BLK_STS_DEV_RESOURCE) {
2209 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2210 queue_work(wq: cc->crypt_queue, work: &io->work);
2211 return;
2212 }
2213 if (r)
2214 io->error = r;
2215
2216 if (atomic_dec_and_test(v: &io->ctx.cc_pending))
2217 kcryptd_crypt_read_done(io);
2218
2219 crypt_dec_pending(io);
2220}
2221
2222static void kcryptd_async_done(void *data, int error)
2223{
2224 struct dm_crypt_request *dmreq = data;
2225 struct convert_context *ctx = dmreq->ctx;
2226 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2227 struct crypt_config *cc = io->cc;
2228
2229 /*
2230 * A request from crypto driver backlog is going to be processed now,
2231 * finish the completion and continue in crypt_convert().
2232 * (Callback will be called for the second time for this request.)
2233 */
2234 if (error == -EINPROGRESS) {
2235 complete(&ctx->restart);
2236 return;
2237 }
2238
2239 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2240 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2241
2242 if (error == -EBADMSG) {
2243 sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2244
2245 ctx->aead_failed = true;
2246 if (ctx->aead_recheck) {
2247 DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2248 ctx->bio_in->bi_bdev, s);
2249 dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead",
2250 bio: ctx->bio_in, sector: s, result: 0);
2251 }
2252 io->error = BLK_STS_PROTECTION;
2253 } else if (error < 0)
2254 io->error = BLK_STS_IOERR;
2255
2256 crypt_free_req(cc, req: req_of_dmreq(cc, dmreq), base_bio: io->base_bio);
2257
2258 if (!atomic_dec_and_test(v: &ctx->cc_pending))
2259 return;
2260
2261 /*
2262 * The request is fully completed: for inline writes, let
2263 * kcryptd_crypt_write_convert() do the IO submission.
2264 */
2265 if (bio_data_dir(io->base_bio) == READ) {
2266 kcryptd_crypt_read_done(io);
2267 return;
2268 }
2269
2270 if (kcryptd_crypt_write_inline(cc, ctx)) {
2271 complete(&ctx->restart);
2272 return;
2273 }
2274
2275 kcryptd_crypt_write_io_submit(io, async: 1);
2276}
2277
2278static void kcryptd_crypt(struct work_struct *work)
2279{
2280 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2281
2282 if (bio_data_dir(io->base_bio) == READ)
2283 kcryptd_crypt_read_convert(io);
2284 else
2285 kcryptd_crypt_write_convert(io);
2286}
2287
2288static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2289{
2290 struct crypt_config *cc = io->cc;
2291
2292 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2293 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2294 /*
2295 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2296 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2297 * it is being executed with irqs disabled.
2298 */
2299 if (in_hardirq() || irqs_disabled()) {
2300 INIT_WORK(&io->work, kcryptd_crypt);
2301 queue_work(wq: system_bh_wq, work: &io->work);
2302 return;
2303 } else {
2304 kcryptd_crypt(work: &io->work);
2305 return;
2306 }
2307 }
2308
2309 INIT_WORK(&io->work, kcryptd_crypt);
2310 queue_work(wq: cc->crypt_queue, work: &io->work);
2311}
2312
2313static void crypt_free_tfms_aead(struct crypt_config *cc)
2314{
2315 if (!cc->cipher_tfm.tfms_aead)
2316 return;
2317
2318 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) {
2319 crypto_free_aead(tfm: cc->cipher_tfm.tfms_aead[0]);
2320 cc->cipher_tfm.tfms_aead[0] = NULL;
2321 }
2322
2323 kfree(objp: cc->cipher_tfm.tfms_aead);
2324 cc->cipher_tfm.tfms_aead = NULL;
2325}
2326
2327static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2328{
2329 unsigned int i;
2330
2331 if (!cc->cipher_tfm.tfms)
2332 return;
2333
2334 for (i = 0; i < cc->tfms_count; i++)
2335 if (cc->cipher_tfm.tfms[i] && !IS_ERR(ptr: cc->cipher_tfm.tfms[i])) {
2336 crypto_free_skcipher(tfm: cc->cipher_tfm.tfms[i]);
2337 cc->cipher_tfm.tfms[i] = NULL;
2338 }
2339
2340 kfree(objp: cc->cipher_tfm.tfms);
2341 cc->cipher_tfm.tfms = NULL;
2342}
2343
2344static void crypt_free_tfms(struct crypt_config *cc)
2345{
2346 if (crypt_integrity_aead(cc))
2347 crypt_free_tfms_aead(cc);
2348 else
2349 crypt_free_tfms_skcipher(cc);
2350}
2351
2352static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2353{
2354 unsigned int i;
2355 int err;
2356
2357 cc->cipher_tfm.tfms = kcalloc(n: cc->tfms_count,
2358 size: sizeof(struct crypto_skcipher *),
2359 GFP_KERNEL);
2360 if (!cc->cipher_tfm.tfms)
2361 return -ENOMEM;
2362
2363 for (i = 0; i < cc->tfms_count; i++) {
2364 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(alg_name: ciphermode, type: 0,
2365 CRYPTO_ALG_ALLOCATES_MEMORY);
2366 if (IS_ERR(ptr: cc->cipher_tfm.tfms[i])) {
2367 err = PTR_ERR(ptr: cc->cipher_tfm.tfms[i]);
2368 crypt_free_tfms(cc);
2369 return err;
2370 }
2371 }
2372
2373 /*
2374 * dm-crypt performance can vary greatly depending on which crypto
2375 * algorithm implementation is used. Help people debug performance
2376 * problems by logging the ->cra_driver_name.
2377 */
2378 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2379 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2380 return 0;
2381}
2382
2383static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2384{
2385 int err;
2386
2387 cc->cipher_tfm.tfms = kmalloc(size: sizeof(struct crypto_aead *), GFP_KERNEL);
2388 if (!cc->cipher_tfm.tfms)
2389 return -ENOMEM;
2390
2391 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(alg_name: ciphermode, type: 0,
2392 CRYPTO_ALG_ALLOCATES_MEMORY);
2393 if (IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) {
2394 err = PTR_ERR(ptr: cc->cipher_tfm.tfms_aead[0]);
2395 crypt_free_tfms(cc);
2396 return err;
2397 }
2398
2399 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2400 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2401 return 0;
2402}
2403
2404static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2405{
2406 if (crypt_integrity_aead(cc))
2407 return crypt_alloc_tfms_aead(cc, ciphermode);
2408 else
2409 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2410}
2411
2412static unsigned int crypt_subkey_size(struct crypt_config *cc)
2413{
2414 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2415}
2416
2417static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2418{
2419 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2420}
2421
2422/*
2423 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2424 * the key must be for some reason in special format.
2425 * This funcion converts cc->key to this special format.
2426 */
2427static void crypt_copy_authenckey(char *p, const void *key,
2428 unsigned int enckeylen, unsigned int authkeylen)
2429{
2430 struct crypto_authenc_key_param *param;
2431 struct rtattr *rta;
2432
2433 rta = (struct rtattr *)p;
2434 param = RTA_DATA(rta);
2435 param->enckeylen = cpu_to_be32(enckeylen);
2436 rta->rta_len = RTA_LENGTH(sizeof(*param));
2437 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2438 p += RTA_SPACE(sizeof(*param));
2439 memcpy(p, key + enckeylen, authkeylen);
2440 p += authkeylen;
2441 memcpy(p, key, enckeylen);
2442}
2443
2444static int crypt_setkey(struct crypt_config *cc)
2445{
2446 unsigned int subkey_size;
2447 int err = 0, i, r;
2448
2449 /* Ignore extra keys (which are used for IV etc) */
2450 subkey_size = crypt_subkey_size(cc);
2451
2452 if (crypt_integrity_hmac(cc)) {
2453 if (subkey_size < cc->key_mac_size)
2454 return -EINVAL;
2455
2456 crypt_copy_authenckey(p: cc->authenc_key, key: cc->key,
2457 enckeylen: subkey_size - cc->key_mac_size,
2458 authkeylen: cc->key_mac_size);
2459 }
2460
2461 for (i = 0; i < cc->tfms_count; i++) {
2462 if (crypt_integrity_hmac(cc))
2463 r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i],
2464 key: cc->authenc_key, keylen: crypt_authenckey_size(cc));
2465 else if (crypt_integrity_aead(cc))
2466 r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i],
2467 key: cc->key + (i * subkey_size),
2468 keylen: subkey_size);
2469 else
2470 r = crypto_skcipher_setkey(tfm: cc->cipher_tfm.tfms[i],
2471 key: cc->key + (i * subkey_size),
2472 keylen: subkey_size);
2473 if (r)
2474 err = r;
2475 }
2476
2477 if (crypt_integrity_hmac(cc))
2478 memzero_explicit(s: cc->authenc_key, count: crypt_authenckey_size(cc));
2479
2480 return err;
2481}
2482
2483#ifdef CONFIG_KEYS
2484
2485static bool contains_whitespace(const char *str)
2486{
2487 while (*str)
2488 if (isspace(*str++))
2489 return true;
2490 return false;
2491}
2492
2493static int set_key_user(struct crypt_config *cc, struct key *key)
2494{
2495 const struct user_key_payload *ukp;
2496
2497 ukp = user_key_payload_locked(key);
2498 if (!ukp)
2499 return -EKEYREVOKED;
2500
2501 if (cc->key_size != ukp->datalen)
2502 return -EINVAL;
2503
2504 memcpy(cc->key, ukp->data, cc->key_size);
2505
2506 return 0;
2507}
2508
2509static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2510{
2511 const struct encrypted_key_payload *ekp;
2512
2513 ekp = key->payload.data[0];
2514 if (!ekp)
2515 return -EKEYREVOKED;
2516
2517 if (cc->key_size != ekp->decrypted_datalen)
2518 return -EINVAL;
2519
2520 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2521
2522 return 0;
2523}
2524
2525static int set_key_trusted(struct crypt_config *cc, struct key *key)
2526{
2527 const struct trusted_key_payload *tkp;
2528
2529 tkp = key->payload.data[0];
2530 if (!tkp)
2531 return -EKEYREVOKED;
2532
2533 if (cc->key_size != tkp->key_len)
2534 return -EINVAL;
2535
2536 memcpy(cc->key, tkp->key, cc->key_size);
2537
2538 return 0;
2539}
2540
2541static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2542{
2543 char *new_key_string, *key_desc;
2544 int ret;
2545 struct key_type *type;
2546 struct key *key;
2547 int (*set_key)(struct crypt_config *cc, struct key *key);
2548
2549 /*
2550 * Reject key_string with whitespace. dm core currently lacks code for
2551 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2552 */
2553 if (contains_whitespace(str: key_string)) {
2554 DMERR("whitespace chars not allowed in key string");
2555 return -EINVAL;
2556 }
2557
2558 /* look for next ':' separating key_type from key_description */
2559 key_desc = strchr(key_string, ':');
2560 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2561 return -EINVAL;
2562
2563 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2564 type = &key_type_logon;
2565 set_key = set_key_user;
2566 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2567 type = &key_type_user;
2568 set_key = set_key_user;
2569 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2570 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2571 type = &key_type_encrypted;
2572 set_key = set_key_encrypted;
2573 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2574 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2575 type = &key_type_trusted;
2576 set_key = set_key_trusted;
2577 } else {
2578 return -EINVAL;
2579 }
2580
2581 new_key_string = kstrdup(s: key_string, GFP_KERNEL);
2582 if (!new_key_string)
2583 return -ENOMEM;
2584
2585 key = request_key(type, description: key_desc + 1, NULL);
2586 if (IS_ERR(ptr: key)) {
2587 kfree_sensitive(objp: new_key_string);
2588 return PTR_ERR(ptr: key);
2589 }
2590
2591 down_read(sem: &key->sem);
2592
2593 ret = set_key(cc, key);
2594 if (ret < 0) {
2595 up_read(sem: &key->sem);
2596 key_put(key);
2597 kfree_sensitive(objp: new_key_string);
2598 return ret;
2599 }
2600
2601 up_read(sem: &key->sem);
2602 key_put(key);
2603
2604 /* clear the flag since following operations may invalidate previously valid key */
2605 clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2606
2607 ret = crypt_setkey(cc);
2608
2609 if (!ret) {
2610 set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2611 kfree_sensitive(objp: cc->key_string);
2612 cc->key_string = new_key_string;
2613 } else
2614 kfree_sensitive(objp: new_key_string);
2615
2616 return ret;
2617}
2618
2619static int get_key_size(char **key_string)
2620{
2621 char *colon, dummy;
2622 int ret;
2623
2624 if (*key_string[0] != ':')
2625 return strlen(*key_string) >> 1;
2626
2627 /* look for next ':' in key string */
2628 colon = strpbrk(*key_string + 1, ":");
2629 if (!colon)
2630 return -EINVAL;
2631
2632 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2633 return -EINVAL;
2634
2635 *key_string = colon;
2636
2637 /* remaining key string should be :<logon|user>:<key_desc> */
2638
2639 return ret;
2640}
2641
2642#else
2643
2644static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2645{
2646 return -EINVAL;
2647}
2648
2649static int get_key_size(char **key_string)
2650{
2651 return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2652}
2653
2654#endif /* CONFIG_KEYS */
2655
2656static int crypt_set_key(struct crypt_config *cc, char *key)
2657{
2658 int r = -EINVAL;
2659 int key_string_len = strlen(key);
2660
2661 /* Hyphen (which gives a key_size of zero) means there is no key. */
2662 if (!cc->key_size && strcmp(key, "-"))
2663 goto out;
2664
2665 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2666 if (key[0] == ':') {
2667 r = crypt_set_keyring_key(cc, key_string: key + 1);
2668 goto out;
2669 }
2670
2671 /* clear the flag since following operations may invalidate previously valid key */
2672 clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2673
2674 /* wipe references to any kernel keyring key */
2675 kfree_sensitive(objp: cc->key_string);
2676 cc->key_string = NULL;
2677
2678 /* Decode key from its hex representation. */
2679 if (cc->key_size && hex2bin(dst: cc->key, src: key, count: cc->key_size) < 0)
2680 goto out;
2681
2682 r = crypt_setkey(cc);
2683 if (!r)
2684 set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2685
2686out:
2687 /* Hex key string not needed after here, so wipe it. */
2688 memset(key, '0', key_string_len);
2689
2690 return r;
2691}
2692
2693static int crypt_wipe_key(struct crypt_config *cc)
2694{
2695 int r;
2696
2697 clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags);
2698 get_random_bytes(buf: &cc->key, len: cc->key_size);
2699
2700 /* Wipe IV private keys */
2701 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2702 r = cc->iv_gen_ops->wipe(cc);
2703 if (r)
2704 return r;
2705 }
2706
2707 kfree_sensitive(objp: cc->key_string);
2708 cc->key_string = NULL;
2709 r = crypt_setkey(cc);
2710 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2711
2712 return r;
2713}
2714
2715static void crypt_calculate_pages_per_client(void)
2716{
2717 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2718
2719 if (!dm_crypt_clients_n)
2720 return;
2721
2722 pages /= dm_crypt_clients_n;
2723 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2724 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2725 dm_crypt_pages_per_client = pages;
2726}
2727
2728static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2729{
2730 struct crypt_config *cc = pool_data;
2731 struct page *page;
2732
2733 /*
2734 * Note, percpu_counter_read_positive() may over (and under) estimate
2735 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2736 * but avoids potential spinlock contention of an exact result.
2737 */
2738 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2739 likely(gfp_mask & __GFP_NORETRY))
2740 return NULL;
2741
2742 page = alloc_page(gfp_mask);
2743 if (likely(page != NULL))
2744 percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1);
2745
2746 return page;
2747}
2748
2749static void crypt_page_free(void *page, void *pool_data)
2750{
2751 struct crypt_config *cc = pool_data;
2752
2753 __free_page(page);
2754 percpu_counter_sub(fbc: &cc->n_allocated_pages, amount: 1);
2755}
2756
2757static void crypt_dtr(struct dm_target *ti)
2758{
2759 struct crypt_config *cc = ti->private;
2760
2761 ti->private = NULL;
2762
2763 if (!cc)
2764 return;
2765
2766 if (cc->write_thread)
2767 kthread_stop(k: cc->write_thread);
2768
2769 if (cc->io_queue)
2770 destroy_workqueue(wq: cc->io_queue);
2771 if (cc->crypt_queue)
2772 destroy_workqueue(wq: cc->crypt_queue);
2773
2774 crypt_free_tfms(cc);
2775
2776 bioset_exit(&cc->bs);
2777
2778 mempool_exit(pool: &cc->page_pool);
2779 mempool_exit(pool: &cc->req_pool);
2780 mempool_exit(pool: &cc->tag_pool);
2781
2782 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2783 percpu_counter_destroy(fbc: &cc->n_allocated_pages);
2784
2785 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2786 cc->iv_gen_ops->dtr(cc);
2787
2788 if (cc->dev)
2789 dm_put_device(ti, d: cc->dev);
2790
2791 kfree_sensitive(objp: cc->cipher_string);
2792 kfree_sensitive(objp: cc->key_string);
2793 kfree_sensitive(objp: cc->cipher_auth);
2794 kfree_sensitive(objp: cc->authenc_key);
2795
2796 mutex_destroy(lock: &cc->bio_alloc_lock);
2797
2798 /* Must zero key material before freeing */
2799 kfree_sensitive(objp: cc);
2800
2801 spin_lock(lock: &dm_crypt_clients_lock);
2802 WARN_ON(!dm_crypt_clients_n);
2803 dm_crypt_clients_n--;
2804 crypt_calculate_pages_per_client();
2805 spin_unlock(lock: &dm_crypt_clients_lock);
2806
2807 dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1);
2808}
2809
2810static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2811{
2812 struct crypt_config *cc = ti->private;
2813
2814 if (crypt_integrity_aead(cc))
2815 cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc));
2816 else
2817 cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc));
2818
2819 if (cc->iv_size)
2820 /* at least a 64 bit sector number should fit in our buffer */
2821 cc->iv_size = max(cc->iv_size,
2822 (unsigned int)(sizeof(u64) / sizeof(u8)));
2823 else if (ivmode) {
2824 DMWARN("Selected cipher does not support IVs");
2825 ivmode = NULL;
2826 }
2827
2828 /* Choose ivmode, see comments at iv code. */
2829 if (ivmode == NULL)
2830 cc->iv_gen_ops = NULL;
2831 else if (strcmp(ivmode, "plain") == 0)
2832 cc->iv_gen_ops = &crypt_iv_plain_ops;
2833 else if (strcmp(ivmode, "plain64") == 0)
2834 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2835 else if (strcmp(ivmode, "plain64be") == 0)
2836 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2837 else if (strcmp(ivmode, "essiv") == 0)
2838 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2839 else if (strcmp(ivmode, "benbi") == 0)
2840 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2841 else if (strcmp(ivmode, "null") == 0)
2842 cc->iv_gen_ops = &crypt_iv_null_ops;
2843 else if (strcmp(ivmode, "eboiv") == 0)
2844 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2845 else if (strcmp(ivmode, "elephant") == 0) {
2846 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2847 cc->key_parts = 2;
2848 cc->key_extra_size = cc->key_size / 2;
2849 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2850 return -EINVAL;
2851 set_bit(nr: CRYPT_ENCRYPT_PREPROCESS, addr: &cc->cipher_flags);
2852 } else if (strcmp(ivmode, "lmk") == 0) {
2853 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2854 /*
2855 * Version 2 and 3 is recognised according
2856 * to length of provided multi-key string.
2857 * If present (version 3), last key is used as IV seed.
2858 * All keys (including IV seed) are always the same size.
2859 */
2860 if (cc->key_size % cc->key_parts) {
2861 cc->key_parts++;
2862 cc->key_extra_size = cc->key_size / cc->key_parts;
2863 }
2864 } else if (strcmp(ivmode, "tcw") == 0) {
2865 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2866 cc->key_parts += 2; /* IV + whitening */
2867 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2868 } else if (strcmp(ivmode, "random") == 0) {
2869 cc->iv_gen_ops = &crypt_iv_random_ops;
2870 /* Need storage space in integrity fields. */
2871 cc->integrity_iv_size = cc->iv_size;
2872 } else {
2873 ti->error = "Invalid IV mode";
2874 return -EINVAL;
2875 }
2876
2877 return 0;
2878}
2879
2880/*
2881 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2882 * The HMAC is needed to calculate tag size (HMAC digest size).
2883 * This should be probably done by crypto-api calls (once available...)
2884 */
2885static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2886{
2887 char *start, *end, *mac_alg = NULL;
2888 struct crypto_ahash *mac;
2889
2890 if (!strstarts(str: cipher_api, prefix: "authenc("))
2891 return 0;
2892
2893 start = strchr(cipher_api, '(');
2894 end = strchr(cipher_api, ',');
2895 if (!start || !end || ++start > end)
2896 return -EINVAL;
2897
2898 mac_alg = kmemdup_nul(s: start, len: end - start, GFP_KERNEL);
2899 if (!mac_alg)
2900 return -ENOMEM;
2901
2902 mac = crypto_alloc_ahash(alg_name: mac_alg, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2903 kfree(objp: mac_alg);
2904
2905 if (IS_ERR(ptr: mac))
2906 return PTR_ERR(ptr: mac);
2907
2908 cc->key_mac_size = crypto_ahash_digestsize(tfm: mac);
2909 crypto_free_ahash(tfm: mac);
2910
2911 cc->authenc_key = kmalloc(size: crypt_authenckey_size(cc), GFP_KERNEL);
2912 if (!cc->authenc_key)
2913 return -ENOMEM;
2914
2915 return 0;
2916}
2917
2918static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2919 char **ivmode, char **ivopts)
2920{
2921 struct crypt_config *cc = ti->private;
2922 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2923 int ret = -EINVAL;
2924
2925 cc->tfms_count = 1;
2926
2927 /*
2928 * New format (capi: prefix)
2929 * capi:cipher_api_spec-iv:ivopts
2930 */
2931 tmp = &cipher_in[strlen("capi:")];
2932
2933 /* Separate IV options if present, it can contain another '-' in hash name */
2934 *ivopts = strrchr(tmp, ':');
2935 if (*ivopts) {
2936 **ivopts = '\0';
2937 (*ivopts)++;
2938 }
2939 /* Parse IV mode */
2940 *ivmode = strrchr(tmp, '-');
2941 if (*ivmode) {
2942 **ivmode = '\0';
2943 (*ivmode)++;
2944 }
2945 /* The rest is crypto API spec */
2946 cipher_api = tmp;
2947
2948 /* Alloc AEAD, can be used only in new format. */
2949 if (crypt_integrity_aead(cc)) {
2950 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2951 if (ret < 0) {
2952 ti->error = "Invalid AEAD cipher spec";
2953 return ret;
2954 }
2955 }
2956
2957 if (*ivmode && !strcmp(*ivmode, "lmk"))
2958 cc->tfms_count = 64;
2959
2960 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2961 if (!*ivopts) {
2962 ti->error = "Digest algorithm missing for ESSIV mode";
2963 return -EINVAL;
2964 }
2965 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, fmt: "essiv(%s,%s)",
2966 cipher_api, *ivopts);
2967 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2968 ti->error = "Cannot allocate cipher string";
2969 return -ENOMEM;
2970 }
2971 cipher_api = buf;
2972 }
2973
2974 cc->key_parts = cc->tfms_count;
2975
2976 /* Allocate cipher */
2977 ret = crypt_alloc_tfms(cc, ciphermode: cipher_api);
2978 if (ret < 0) {
2979 ti->error = "Error allocating crypto tfm";
2980 return ret;
2981 }
2982
2983 if (crypt_integrity_aead(cc))
2984 cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc));
2985 else
2986 cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc));
2987
2988 return 0;
2989}
2990
2991static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2992 char **ivmode, char **ivopts)
2993{
2994 struct crypt_config *cc = ti->private;
2995 char *tmp, *cipher, *chainmode, *keycount;
2996 char *cipher_api = NULL;
2997 int ret = -EINVAL;
2998 char dummy;
2999
3000 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
3001 ti->error = "Bad cipher specification";
3002 return -EINVAL;
3003 }
3004
3005 /*
3006 * Legacy dm-crypt cipher specification
3007 * cipher[:keycount]-mode-iv:ivopts
3008 */
3009 tmp = cipher_in;
3010 keycount = strsep(&tmp, "-");
3011 cipher = strsep(&keycount, ":");
3012
3013 if (!keycount)
3014 cc->tfms_count = 1;
3015 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3016 !is_power_of_2(n: cc->tfms_count)) {
3017 ti->error = "Bad cipher key count specification";
3018 return -EINVAL;
3019 }
3020 cc->key_parts = cc->tfms_count;
3021
3022 chainmode = strsep(&tmp, "-");
3023 *ivmode = strsep(&tmp, ":");
3024 *ivopts = tmp;
3025
3026 /*
3027 * For compatibility with the original dm-crypt mapping format, if
3028 * only the cipher name is supplied, use cbc-plain.
3029 */
3030 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3031 chainmode = "cbc";
3032 *ivmode = "plain";
3033 }
3034
3035 if (strcmp(chainmode, "ecb") && !*ivmode) {
3036 ti->error = "IV mechanism required";
3037 return -EINVAL;
3038 }
3039
3040 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3041 if (!cipher_api)
3042 goto bad_mem;
3043
3044 if (*ivmode && !strcmp(*ivmode, "essiv")) {
3045 if (!*ivopts) {
3046 ti->error = "Digest algorithm missing for ESSIV mode";
3047 kfree(objp: cipher_api);
3048 return -EINVAL;
3049 }
3050 ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME,
3051 fmt: "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3052 } else {
3053 ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME,
3054 fmt: "%s(%s)", chainmode, cipher);
3055 }
3056 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3057 kfree(objp: cipher_api);
3058 goto bad_mem;
3059 }
3060
3061 /* Allocate cipher */
3062 ret = crypt_alloc_tfms(cc, ciphermode: cipher_api);
3063 if (ret < 0) {
3064 ti->error = "Error allocating crypto tfm";
3065 kfree(objp: cipher_api);
3066 return ret;
3067 }
3068 kfree(objp: cipher_api);
3069
3070 return 0;
3071bad_mem:
3072 ti->error = "Cannot allocate cipher strings";
3073 return -ENOMEM;
3074}
3075
3076static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3077{
3078 struct crypt_config *cc = ti->private;
3079 char *ivmode = NULL, *ivopts = NULL;
3080 int ret;
3081
3082 cc->cipher_string = kstrdup(s: cipher_in, GFP_KERNEL);
3083 if (!cc->cipher_string) {
3084 ti->error = "Cannot allocate cipher strings";
3085 return -ENOMEM;
3086 }
3087
3088 if (strstarts(str: cipher_in, prefix: "capi:"))
3089 ret = crypt_ctr_cipher_new(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts);
3090 else
3091 ret = crypt_ctr_cipher_old(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts);
3092 if (ret)
3093 return ret;
3094
3095 /* Initialize IV */
3096 ret = crypt_ctr_ivmode(ti, ivmode);
3097 if (ret < 0)
3098 return ret;
3099
3100 /* Initialize and set key */
3101 ret = crypt_set_key(cc, key);
3102 if (ret < 0) {
3103 ti->error = "Error decoding and setting key";
3104 return ret;
3105 }
3106
3107 /* Allocate IV */
3108 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3109 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3110 if (ret < 0) {
3111 ti->error = "Error creating IV";
3112 return ret;
3113 }
3114 }
3115
3116 /* Initialize IV (set keys for ESSIV etc) */
3117 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3118 ret = cc->iv_gen_ops->init(cc);
3119 if (ret < 0) {
3120 ti->error = "Error initialising IV";
3121 return ret;
3122 }
3123 }
3124
3125 /* wipe the kernel key payload copy */
3126 if (cc->key_string)
3127 memset(cc->key, 0, cc->key_size * sizeof(u8));
3128
3129 return ret;
3130}
3131
3132static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3133{
3134 struct crypt_config *cc = ti->private;
3135 struct dm_arg_set as;
3136 static const struct dm_arg _args[] = {
3137 {0, 8, "Invalid number of feature args"},
3138 };
3139 unsigned int opt_params, val;
3140 const char *opt_string, *sval;
3141 char dummy;
3142 int ret;
3143
3144 /* Optional parameters */
3145 as.argc = argc;
3146 as.argv = argv;
3147
3148 ret = dm_read_arg_group(arg: _args, arg_set: &as, num_args: &opt_params, error: &ti->error);
3149 if (ret)
3150 return ret;
3151
3152 while (opt_params--) {
3153 opt_string = dm_shift_arg(as: &as);
3154 if (!opt_string) {
3155 ti->error = "Not enough feature arguments";
3156 return -EINVAL;
3157 }
3158
3159 if (!strcasecmp(s1: opt_string, s2: "allow_discards"))
3160 ti->num_discard_bios = 1;
3161
3162 else if (!strcasecmp(s1: opt_string, s2: "same_cpu_crypt"))
3163 set_bit(nr: DM_CRYPT_SAME_CPU, addr: &cc->flags);
3164
3165 else if (!strcasecmp(s1: opt_string, s2: "submit_from_crypt_cpus"))
3166 set_bit(nr: DM_CRYPT_NO_OFFLOAD, addr: &cc->flags);
3167 else if (!strcasecmp(s1: opt_string, s2: "no_read_workqueue"))
3168 set_bit(nr: DM_CRYPT_NO_READ_WORKQUEUE, addr: &cc->flags);
3169 else if (!strcasecmp(s1: opt_string, s2: "no_write_workqueue"))
3170 set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags);
3171 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3172 if (val == 0 || val > MAX_TAG_SIZE) {
3173 ti->error = "Invalid integrity arguments";
3174 return -EINVAL;
3175 }
3176 cc->on_disk_tag_size = val;
3177 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3178 if (!strcasecmp(s1: sval, s2: "aead")) {
3179 set_bit(nr: CRYPT_MODE_INTEGRITY_AEAD, addr: &cc->cipher_flags);
3180 } else if (strcasecmp(s1: sval, s2: "none")) {
3181 ti->error = "Unknown integrity profile";
3182 return -EINVAL;
3183 }
3184
3185 cc->cipher_auth = kstrdup(s: sval, GFP_KERNEL);
3186 if (!cc->cipher_auth)
3187 return -ENOMEM;
3188 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3189 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3190 cc->sector_size > 4096 ||
3191 (cc->sector_size & (cc->sector_size - 1))) {
3192 ti->error = "Invalid feature value for sector_size";
3193 return -EINVAL;
3194 }
3195 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3196 ti->error = "Device size is not multiple of sector_size feature";
3197 return -EINVAL;
3198 }
3199 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3200 } else if (!strcasecmp(s1: opt_string, s2: "iv_large_sectors"))
3201 set_bit(nr: CRYPT_IV_LARGE_SECTORS, addr: &cc->cipher_flags);
3202 else {
3203 ti->error = "Invalid feature arguments";
3204 return -EINVAL;
3205 }
3206 }
3207
3208 return 0;
3209}
3210
3211#ifdef CONFIG_BLK_DEV_ZONED
3212static int crypt_report_zones(struct dm_target *ti,
3213 struct dm_report_zones_args *args, unsigned int nr_zones)
3214{
3215 struct crypt_config *cc = ti->private;
3216
3217 return dm_report_zones(bdev: cc->dev->bdev, start: cc->start,
3218 sector: cc->start + dm_target_offset(ti, args->next_sector),
3219 args, nr_zones);
3220}
3221#else
3222#define crypt_report_zones NULL
3223#endif
3224
3225/*
3226 * Construct an encryption mapping:
3227 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3228 */
3229static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3230{
3231 struct crypt_config *cc;
3232 const char *devname = dm_table_device_name(t: ti->table);
3233 int key_size;
3234 unsigned int align_mask;
3235 unsigned long long tmpll;
3236 int ret;
3237 size_t iv_size_padding, additional_req_size;
3238 char dummy;
3239
3240 if (argc < 5) {
3241 ti->error = "Not enough arguments";
3242 return -EINVAL;
3243 }
3244
3245 key_size = get_key_size(key_string: &argv[1]);
3246 if (key_size < 0) {
3247 ti->error = "Cannot parse key size";
3248 return -EINVAL;
3249 }
3250
3251 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3252 if (!cc) {
3253 ti->error = "Cannot allocate encryption context";
3254 return -ENOMEM;
3255 }
3256 cc->key_size = key_size;
3257 cc->sector_size = (1 << SECTOR_SHIFT);
3258 cc->sector_shift = 0;
3259
3260 ti->private = cc;
3261
3262 spin_lock(lock: &dm_crypt_clients_lock);
3263 dm_crypt_clients_n++;
3264 crypt_calculate_pages_per_client();
3265 spin_unlock(lock: &dm_crypt_clients_lock);
3266
3267 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3268 if (ret < 0)
3269 goto bad;
3270
3271 /* Optional parameters need to be read before cipher constructor */
3272 if (argc > 5) {
3273 ret = crypt_ctr_optional(ti, argc: argc - 5, argv: &argv[5]);
3274 if (ret)
3275 goto bad;
3276 }
3277
3278 ret = crypt_ctr_cipher(ti, cipher_in: argv[0], key: argv[1]);
3279 if (ret < 0)
3280 goto bad;
3281
3282 if (crypt_integrity_aead(cc)) {
3283 cc->dmreq_start = sizeof(struct aead_request);
3284 cc->dmreq_start += crypto_aead_reqsize(tfm: any_tfm_aead(cc));
3285 align_mask = crypto_aead_alignmask(tfm: any_tfm_aead(cc));
3286 } else {
3287 cc->dmreq_start = sizeof(struct skcipher_request);
3288 cc->dmreq_start += crypto_skcipher_reqsize(tfm: any_tfm(cc));
3289 align_mask = crypto_skcipher_alignmask(tfm: any_tfm(cc));
3290 }
3291 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3292
3293 if (align_mask < CRYPTO_MINALIGN) {
3294 /* Allocate the padding exactly */
3295 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3296 & align_mask;
3297 } else {
3298 /*
3299 * If the cipher requires greater alignment than kmalloc
3300 * alignment, we don't know the exact position of the
3301 * initialization vector. We must assume worst case.
3302 */
3303 iv_size_padding = align_mask;
3304 }
3305
3306 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3307 additional_req_size = sizeof(struct dm_crypt_request) +
3308 iv_size_padding + cc->iv_size +
3309 cc->iv_size +
3310 sizeof(uint64_t) +
3311 sizeof(unsigned int);
3312
3313 ret = mempool_init_kmalloc_pool(pool: &cc->req_pool, MIN_IOS, size: cc->dmreq_start + additional_req_size);
3314 if (ret) {
3315 ti->error = "Cannot allocate crypt request mempool";
3316 goto bad;
3317 }
3318
3319 cc->per_bio_data_size = ti->per_io_data_size =
3320 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3321 ARCH_DMA_MINALIGN);
3322
3323 ret = mempool_init(pool: &cc->page_pool, BIO_MAX_VECS, alloc_fn: crypt_page_alloc, free_fn: crypt_page_free, pool_data: cc);
3324 if (ret) {
3325 ti->error = "Cannot allocate page mempool";
3326 goto bad;
3327 }
3328
3329 ret = bioset_init(&cc->bs, MIN_IOS, 0, flags: BIOSET_NEED_BVECS);
3330 if (ret) {
3331 ti->error = "Cannot allocate crypt bioset";
3332 goto bad;
3333 }
3334
3335 mutex_init(&cc->bio_alloc_lock);
3336
3337 ret = -EINVAL;
3338 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3339 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3340 ti->error = "Invalid iv_offset sector";
3341 goto bad;
3342 }
3343 cc->iv_offset = tmpll;
3344
3345 ret = dm_get_device(ti, path: argv[3], mode: dm_table_get_mode(t: ti->table), result: &cc->dev);
3346 if (ret) {
3347 ti->error = "Device lookup failed";
3348 goto bad;
3349 }
3350
3351 ret = -EINVAL;
3352 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3353 ti->error = "Invalid device sector";
3354 goto bad;
3355 }
3356 cc->start = tmpll;
3357
3358 if (bdev_is_zoned(bdev: cc->dev->bdev)) {
3359 /*
3360 * For zoned block devices, we need to preserve the issuer write
3361 * ordering. To do so, disable write workqueues and force inline
3362 * encryption completion.
3363 */
3364 set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags);
3365 set_bit(nr: DM_CRYPT_WRITE_INLINE, addr: &cc->flags);
3366
3367 /*
3368 * All zone append writes to a zone of a zoned block device will
3369 * have the same BIO sector, the start of the zone. When the
3370 * cypher IV mode uses sector values, all data targeting a
3371 * zone will be encrypted using the first sector numbers of the
3372 * zone. This will not result in write errors but will
3373 * cause most reads to fail as reads will use the sector values
3374 * for the actual data locations, resulting in IV mismatch.
3375 * To avoid this problem, ask DM core to emulate zone append
3376 * operations with regular writes.
3377 */
3378 DMDEBUG("Zone append operations will be emulated");
3379 ti->emulate_zone_append = true;
3380 }
3381
3382 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3383 ret = crypt_integrity_ctr(cc, ti);
3384 if (ret)
3385 goto bad;
3386
3387 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3388 if (!cc->tag_pool_max_sectors)
3389 cc->tag_pool_max_sectors = 1;
3390
3391 ret = mempool_init_kmalloc_pool(pool: &cc->tag_pool, MIN_IOS,
3392 size: cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3393 if (ret) {
3394 ti->error = "Cannot allocate integrity tags mempool";
3395 goto bad;
3396 }
3397
3398 cc->tag_pool_max_sectors <<= cc->sector_shift;
3399 }
3400
3401 ret = -ENOMEM;
3402 cc->io_queue = alloc_workqueue(fmt: "kcryptd_io/%s", flags: WQ_MEM_RECLAIM, max_active: 1, devname);
3403 if (!cc->io_queue) {
3404 ti->error = "Couldn't create kcryptd io queue";
3405 goto bad;
3406 }
3407
3408 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3409 cc->crypt_queue = alloc_workqueue(fmt: "kcryptd/%s", flags: WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3410 max_active: 1, devname);
3411 else
3412 cc->crypt_queue = alloc_workqueue(fmt: "kcryptd/%s",
3413 flags: WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3414 max_active: num_online_cpus(), devname);
3415 if (!cc->crypt_queue) {
3416 ti->error = "Couldn't create kcryptd queue";
3417 goto bad;
3418 }
3419
3420 spin_lock_init(&cc->write_thread_lock);
3421 cc->write_tree = RB_ROOT;
3422
3423 cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3424 if (IS_ERR(ptr: cc->write_thread)) {
3425 ret = PTR_ERR(ptr: cc->write_thread);
3426 cc->write_thread = NULL;
3427 ti->error = "Couldn't spawn write thread";
3428 goto bad;
3429 }
3430
3431 ti->num_flush_bios = 1;
3432 ti->limit_swap_bios = true;
3433 ti->accounts_remapped_io = true;
3434
3435 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1);
3436 return 0;
3437
3438bad:
3439 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0);
3440 crypt_dtr(ti);
3441 return ret;
3442}
3443
3444static int crypt_map(struct dm_target *ti, struct bio *bio)
3445{
3446 struct dm_crypt_io *io;
3447 struct crypt_config *cc = ti->private;
3448
3449 /*
3450 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3451 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3452 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3453 */
3454 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3455 bio_op(bio) == REQ_OP_DISCARD)) {
3456 bio_set_dev(bio, bdev: cc->dev->bdev);
3457 if (bio_sectors(bio))
3458 bio->bi_iter.bi_sector = cc->start +
3459 dm_target_offset(ti, bio->bi_iter.bi_sector);
3460 return DM_MAPIO_REMAPPED;
3461 }
3462
3463 /*
3464 * Check if bio is too large, split as needed.
3465 */
3466 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3467 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3468 dm_accept_partial_bio(bio, n_sectors: ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3469
3470 /*
3471 * Ensure that bio is a multiple of internal sector encryption size
3472 * and is aligned to this size as defined in IO hints.
3473 */
3474 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3475 return DM_MAPIO_KILL;
3476
3477 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3478 return DM_MAPIO_KILL;
3479
3480 io = dm_per_bio_data(bio, data_size: cc->per_bio_data_size);
3481 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3482
3483 if (cc->on_disk_tag_size) {
3484 unsigned int tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3485
3486 if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3487 io->integrity_metadata = NULL;
3488 else
3489 io->integrity_metadata = kmalloc(size: tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3490
3491 if (unlikely(!io->integrity_metadata)) {
3492 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3493 dm_accept_partial_bio(bio, n_sectors: cc->tag_pool_max_sectors);
3494 io->integrity_metadata = mempool_alloc(pool: &cc->tag_pool, GFP_NOIO);
3495 io->integrity_metadata_from_pool = true;
3496 }
3497 }
3498
3499 if (crypt_integrity_aead(cc))
3500 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3501 else
3502 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3503
3504 if (bio_data_dir(io->base_bio) == READ) {
3505 if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3506 kcryptd_queue_read(io);
3507 } else
3508 kcryptd_queue_crypt(io);
3509
3510 return DM_MAPIO_SUBMITTED;
3511}
3512
3513static char hex2asc(unsigned char c)
3514{
3515 return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3516}
3517
3518static void crypt_status(struct dm_target *ti, status_type_t type,
3519 unsigned int status_flags, char *result, unsigned int maxlen)
3520{
3521 struct crypt_config *cc = ti->private;
3522 unsigned int i, sz = 0;
3523 int num_feature_args = 0;
3524
3525 switch (type) {
3526 case STATUSTYPE_INFO:
3527 result[0] = '\0';
3528 break;
3529
3530 case STATUSTYPE_TABLE:
3531 DMEMIT("%s ", cc->cipher_string);
3532
3533 if (cc->key_size > 0) {
3534 if (cc->key_string)
3535 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3536 else {
3537 for (i = 0; i < cc->key_size; i++) {
3538 DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3539 hex2asc(cc->key[i] & 0xf));
3540 }
3541 }
3542 } else
3543 DMEMIT("-");
3544
3545 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3546 cc->dev->name, (unsigned long long)cc->start);
3547
3548 num_feature_args += !!ti->num_discard_bios;
3549 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3550 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3551 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3552 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3553 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3554 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3555 if (cc->on_disk_tag_size)
3556 num_feature_args++;
3557 if (num_feature_args) {
3558 DMEMIT(" %d", num_feature_args);
3559 if (ti->num_discard_bios)
3560 DMEMIT(" allow_discards");
3561 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3562 DMEMIT(" same_cpu_crypt");
3563 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3564 DMEMIT(" submit_from_crypt_cpus");
3565 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3566 DMEMIT(" no_read_workqueue");
3567 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3568 DMEMIT(" no_write_workqueue");
3569 if (cc->on_disk_tag_size)
3570 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3571 if (cc->sector_size != (1 << SECTOR_SHIFT))
3572 DMEMIT(" sector_size:%d", cc->sector_size);
3573 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3574 DMEMIT(" iv_large_sectors");
3575 }
3576 break;
3577
3578 case STATUSTYPE_IMA:
3579 DMEMIT_TARGET_NAME_VERSION(ti->type);
3580 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3581 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3582 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3583 'y' : 'n');
3584 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3585 'y' : 'n');
3586 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3587 'y' : 'n');
3588 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3589 'y' : 'n');
3590
3591 if (cc->on_disk_tag_size)
3592 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3593 cc->on_disk_tag_size, cc->cipher_auth);
3594 if (cc->sector_size != (1 << SECTOR_SHIFT))
3595 DMEMIT(",sector_size=%d", cc->sector_size);
3596 if (cc->cipher_string)
3597 DMEMIT(",cipher_string=%s", cc->cipher_string);
3598
3599 DMEMIT(",key_size=%u", cc->key_size);
3600 DMEMIT(",key_parts=%u", cc->key_parts);
3601 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3602 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3603 DMEMIT(";");
3604 break;
3605 }
3606}
3607
3608static void crypt_postsuspend(struct dm_target *ti)
3609{
3610 struct crypt_config *cc = ti->private;
3611
3612 set_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags);
3613}
3614
3615static int crypt_preresume(struct dm_target *ti)
3616{
3617 struct crypt_config *cc = ti->private;
3618
3619 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3620 DMERR("aborting resume - crypt key is not set.");
3621 return -EAGAIN;
3622 }
3623
3624 return 0;
3625}
3626
3627static void crypt_resume(struct dm_target *ti)
3628{
3629 struct crypt_config *cc = ti->private;
3630
3631 clear_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags);
3632}
3633
3634/* Message interface
3635 * key set <key>
3636 * key wipe
3637 */
3638static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3639 char *result, unsigned int maxlen)
3640{
3641 struct crypt_config *cc = ti->private;
3642 int key_size, ret = -EINVAL;
3643
3644 if (argc < 2)
3645 goto error;
3646
3647 if (!strcasecmp(s1: argv[0], s2: "key")) {
3648 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3649 DMWARN("not suspended during key manipulation.");
3650 return -EINVAL;
3651 }
3652 if (argc == 3 && !strcasecmp(s1: argv[1], s2: "set")) {
3653 /* The key size may not be changed. */
3654 key_size = get_key_size(key_string: &argv[2]);
3655 if (key_size < 0 || cc->key_size != key_size) {
3656 memset(argv[2], '0', strlen(argv[2]));
3657 return -EINVAL;
3658 }
3659
3660 ret = crypt_set_key(cc, key: argv[2]);
3661 if (ret)
3662 return ret;
3663 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3664 ret = cc->iv_gen_ops->init(cc);
3665 /* wipe the kernel key payload copy */
3666 if (cc->key_string)
3667 memset(cc->key, 0, cc->key_size * sizeof(u8));
3668 return ret;
3669 }
3670 if (argc == 2 && !strcasecmp(s1: argv[1], s2: "wipe"))
3671 return crypt_wipe_key(cc);
3672 }
3673
3674error:
3675 DMWARN("unrecognised message received.");
3676 return -EINVAL;
3677}
3678
3679static int crypt_iterate_devices(struct dm_target *ti,
3680 iterate_devices_callout_fn fn, void *data)
3681{
3682 struct crypt_config *cc = ti->private;
3683
3684 return fn(ti, cc->dev, cc->start, ti->len, data);
3685}
3686
3687static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3688{
3689 struct crypt_config *cc = ti->private;
3690
3691 /*
3692 * Unfortunate constraint that is required to avoid the potential
3693 * for exceeding underlying device's max_segments limits -- due to
3694 * crypt_alloc_buffer() possibly allocating pages for the encryption
3695 * bio that are not as physically contiguous as the original bio.
3696 */
3697 limits->max_segment_size = PAGE_SIZE;
3698
3699 limits->logical_block_size =
3700 max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3701 limits->physical_block_size =
3702 max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3703 limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3704 limits->dma_alignment = limits->logical_block_size - 1;
3705}
3706
3707static struct target_type crypt_target = {
3708 .name = "crypt",
3709 .version = {1, 25, 0},
3710 .module = THIS_MODULE,
3711 .ctr = crypt_ctr,
3712 .dtr = crypt_dtr,
3713 .features = DM_TARGET_ZONED_HM,
3714 .report_zones = crypt_report_zones,
3715 .map = crypt_map,
3716 .status = crypt_status,
3717 .postsuspend = crypt_postsuspend,
3718 .preresume = crypt_preresume,
3719 .resume = crypt_resume,
3720 .message = crypt_message,
3721 .iterate_devices = crypt_iterate_devices,
3722 .io_hints = crypt_io_hints,
3723};
3724module_dm(crypt);
3725
3726MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3727MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3728MODULE_LICENSE("GPL");
3729

source code of linux/drivers/md/dm-crypt.c