1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10#include "dm-bio-record.h"
11
12#include <linux/compiler.h>
13#include <linux/module.h>
14#include <linux/device-mapper.h>
15#include <linux/dm-io.h>
16#include <linux/vmalloc.h>
17#include <linux/sort.h>
18#include <linux/rbtree.h>
19#include <linux/delay.h>
20#include <linux/random.h>
21#include <linux/reboot.h>
22#include <crypto/hash.h>
23#include <crypto/skcipher.h>
24#include <linux/async_tx.h>
25#include <linux/dm-bufio.h>
26
27#include "dm-audit.h"
28
29#define DM_MSG_PREFIX "integrity"
30
31#define DEFAULT_INTERLEAVE_SECTORS 32768
32#define DEFAULT_JOURNAL_SIZE_FACTOR 7
33#define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
34#define DEFAULT_BUFFER_SECTORS 128
35#define DEFAULT_JOURNAL_WATERMARK 50
36#define DEFAULT_SYNC_MSEC 10000
37#define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
38#define MIN_LOG2_INTERLEAVE_SECTORS 3
39#define MAX_LOG2_INTERLEAVE_SECTORS 31
40#define METADATA_WORKQUEUE_MAX_ACTIVE 16
41#define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
42#define RECALC_WRITE_SUPER 16
43#define BITMAP_BLOCK_SIZE 4096 /* don't change it */
44#define BITMAP_FLUSH_INTERVAL (10 * HZ)
45#define DISCARD_FILLER 0xf6
46#define SALT_SIZE 16
47
48/*
49 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
50 * so it should not be enabled in the official kernel
51 */
52//#define DEBUG_PRINT
53//#define INTERNAL_VERIFY
54
55/*
56 * On disk structures
57 */
58
59#define SB_MAGIC "integrt"
60#define SB_VERSION_1 1
61#define SB_VERSION_2 2
62#define SB_VERSION_3 3
63#define SB_VERSION_4 4
64#define SB_VERSION_5 5
65#define SB_SECTORS 8
66#define MAX_SECTORS_PER_BLOCK 8
67
68struct superblock {
69 __u8 magic[8];
70 __u8 version;
71 __u8 log2_interleave_sectors;
72 __le16 integrity_tag_size;
73 __le32 journal_sections;
74 __le64 provided_data_sectors; /* userspace uses this value */
75 __le32 flags;
76 __u8 log2_sectors_per_block;
77 __u8 log2_blocks_per_bitmap_bit;
78 __u8 pad[2];
79 __le64 recalc_sector;
80 __u8 pad2[8];
81 __u8 salt[SALT_SIZE];
82};
83
84#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
85#define SB_FLAG_RECALCULATING 0x2
86#define SB_FLAG_DIRTY_BITMAP 0x4
87#define SB_FLAG_FIXED_PADDING 0x8
88#define SB_FLAG_FIXED_HMAC 0x10
89
90#define JOURNAL_ENTRY_ROUNDUP 8
91
92typedef __le64 commit_id_t;
93#define JOURNAL_MAC_PER_SECTOR 8
94
95struct journal_entry {
96 union {
97 struct {
98 __le32 sector_lo;
99 __le32 sector_hi;
100 } s;
101 __le64 sector;
102 } u;
103 commit_id_t last_bytes[];
104 /* __u8 tag[0]; */
105};
106
107#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
108
109#if BITS_PER_LONG == 64
110#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
111#else
112#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
113#endif
114#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
115#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
116#define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
117#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
118#define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
119
120#define JOURNAL_BLOCK_SECTORS 8
121#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
122#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
123
124struct journal_sector {
125 struct_group(sectors,
126 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
127 __u8 mac[JOURNAL_MAC_PER_SECTOR];
128 );
129 commit_id_t commit_id;
130};
131
132#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
133
134#define METADATA_PADDING_SECTORS 8
135
136#define N_COMMIT_IDS 4
137
138static unsigned char prev_commit_seq(unsigned char seq)
139{
140 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
141}
142
143static unsigned char next_commit_seq(unsigned char seq)
144{
145 return (seq + 1) % N_COMMIT_IDS;
146}
147
148/*
149 * In-memory structures
150 */
151
152struct journal_node {
153 struct rb_node node;
154 sector_t sector;
155};
156
157struct alg_spec {
158 char *alg_string;
159 char *key_string;
160 __u8 *key;
161 unsigned int key_size;
162};
163
164struct dm_integrity_c {
165 struct dm_dev *dev;
166 struct dm_dev *meta_dev;
167 unsigned int tag_size;
168 __s8 log2_tag_size;
169 sector_t start;
170 mempool_t journal_io_mempool;
171 struct dm_io_client *io;
172 struct dm_bufio_client *bufio;
173 struct workqueue_struct *metadata_wq;
174 struct superblock *sb;
175 unsigned int journal_pages;
176 unsigned int n_bitmap_blocks;
177
178 struct page_list *journal;
179 struct page_list *journal_io;
180 struct page_list *journal_xor;
181 struct page_list *recalc_bitmap;
182 struct page_list *may_write_bitmap;
183 struct bitmap_block_status *bbs;
184 unsigned int bitmap_flush_interval;
185 int synchronous_mode;
186 struct bio_list synchronous_bios;
187 struct delayed_work bitmap_flush_work;
188
189 struct crypto_skcipher *journal_crypt;
190 struct scatterlist **journal_scatterlist;
191 struct scatterlist **journal_io_scatterlist;
192 struct skcipher_request **sk_requests;
193
194 struct crypto_shash *journal_mac;
195
196 struct journal_node *journal_tree;
197 struct rb_root journal_tree_root;
198
199 sector_t provided_data_sectors;
200
201 unsigned short journal_entry_size;
202 unsigned char journal_entries_per_sector;
203 unsigned char journal_section_entries;
204 unsigned short journal_section_sectors;
205 unsigned int journal_sections;
206 unsigned int journal_entries;
207 sector_t data_device_sectors;
208 sector_t meta_device_sectors;
209 unsigned int initial_sectors;
210 unsigned int metadata_run;
211 __s8 log2_metadata_run;
212 __u8 log2_buffer_sectors;
213 __u8 sectors_per_block;
214 __u8 log2_blocks_per_bitmap_bit;
215
216 unsigned char mode;
217
218 int failed;
219
220 struct crypto_shash *internal_hash;
221
222 struct dm_target *ti;
223
224 /* these variables are locked with endio_wait.lock */
225 struct rb_root in_progress;
226 struct list_head wait_list;
227 wait_queue_head_t endio_wait;
228 struct workqueue_struct *wait_wq;
229 struct workqueue_struct *offload_wq;
230
231 unsigned char commit_seq;
232 commit_id_t commit_ids[N_COMMIT_IDS];
233
234 unsigned int committed_section;
235 unsigned int n_committed_sections;
236
237 unsigned int uncommitted_section;
238 unsigned int n_uncommitted_sections;
239
240 unsigned int free_section;
241 unsigned char free_section_entry;
242 unsigned int free_sectors;
243
244 unsigned int free_sectors_threshold;
245
246 struct workqueue_struct *commit_wq;
247 struct work_struct commit_work;
248
249 struct workqueue_struct *writer_wq;
250 struct work_struct writer_work;
251
252 struct workqueue_struct *recalc_wq;
253 struct work_struct recalc_work;
254
255 struct bio_list flush_bio_list;
256
257 unsigned long autocommit_jiffies;
258 struct timer_list autocommit_timer;
259 unsigned int autocommit_msec;
260
261 wait_queue_head_t copy_to_journal_wait;
262
263 struct completion crypto_backoff;
264
265 bool wrote_to_journal;
266 bool journal_uptodate;
267 bool just_formatted;
268 bool recalculate_flag;
269 bool reset_recalculate_flag;
270 bool discard;
271 bool fix_padding;
272 bool fix_hmac;
273 bool legacy_recalculate;
274
275 struct alg_spec internal_hash_alg;
276 struct alg_spec journal_crypt_alg;
277 struct alg_spec journal_mac_alg;
278
279 atomic64_t number_of_mismatches;
280
281 mempool_t recheck_pool;
282
283 struct notifier_block reboot_notifier;
284};
285
286struct dm_integrity_range {
287 sector_t logical_sector;
288 sector_t n_sectors;
289 bool waiting;
290 union {
291 struct rb_node node;
292 struct {
293 struct task_struct *task;
294 struct list_head wait_entry;
295 };
296 };
297};
298
299struct dm_integrity_io {
300 struct work_struct work;
301
302 struct dm_integrity_c *ic;
303 enum req_op op;
304 bool fua;
305
306 struct dm_integrity_range range;
307
308 sector_t metadata_block;
309 unsigned int metadata_offset;
310
311 atomic_t in_flight;
312 blk_status_t bi_status;
313
314 struct completion *completion;
315
316 struct dm_bio_details bio_details;
317};
318
319struct journal_completion {
320 struct dm_integrity_c *ic;
321 atomic_t in_flight;
322 struct completion comp;
323};
324
325struct journal_io {
326 struct dm_integrity_range range;
327 struct journal_completion *comp;
328};
329
330struct bitmap_block_status {
331 struct work_struct work;
332 struct dm_integrity_c *ic;
333 unsigned int idx;
334 unsigned long *bitmap;
335 struct bio_list bio_queue;
336 spinlock_t bio_queue_lock;
337
338};
339
340static struct kmem_cache *journal_io_cache;
341
342#define JOURNAL_IO_MEMPOOL 32
343
344#ifdef DEBUG_PRINT
345#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
346#define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
347 len ? ": " : "", len, bytes)
348#else
349#define DEBUG_print(x, ...) do { } while (0)
350#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
351#endif
352
353static void dm_integrity_prepare(struct request *rq)
354{
355}
356
357static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
358{
359}
360
361/*
362 * DM Integrity profile, protection is performed layer above (dm-crypt)
363 */
364static const struct blk_integrity_profile dm_integrity_profile = {
365 .name = "DM-DIF-EXT-TAG",
366 .generate_fn = NULL,
367 .verify_fn = NULL,
368 .prepare_fn = dm_integrity_prepare,
369 .complete_fn = dm_integrity_complete,
370};
371
372static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
373static void integrity_bio_wait(struct work_struct *w);
374static void dm_integrity_dtr(struct dm_target *ti);
375
376static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
377{
378 if (err == -EILSEQ)
379 atomic64_inc(v: &ic->number_of_mismatches);
380 if (!cmpxchg(&ic->failed, 0, err))
381 DMERR("Error on %s: %d", msg, err);
382}
383
384static int dm_integrity_failed(struct dm_integrity_c *ic)
385{
386 return READ_ONCE(ic->failed);
387}
388
389static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
390{
391 if (ic->legacy_recalculate)
392 return false;
393 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
394 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
395 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
396 return true;
397 return false;
398}
399
400static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
401 unsigned int j, unsigned char seq)
402{
403 /*
404 * Xor the number with section and sector, so that if a piece of
405 * journal is written at wrong place, it is detected.
406 */
407 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
408}
409
410static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
411 sector_t *area, sector_t *offset)
412{
413 if (!ic->meta_dev) {
414 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
415 *area = data_sector >> log2_interleave_sectors;
416 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
417 } else {
418 *area = 0;
419 *offset = data_sector;
420 }
421}
422
423#define sector_to_block(ic, n) \
424do { \
425 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
426 (n) >>= (ic)->sb->log2_sectors_per_block; \
427} while (0)
428
429static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
430 sector_t offset, unsigned int *metadata_offset)
431{
432 __u64 ms;
433 unsigned int mo;
434
435 ms = area << ic->sb->log2_interleave_sectors;
436 if (likely(ic->log2_metadata_run >= 0))
437 ms += area << ic->log2_metadata_run;
438 else
439 ms += area * ic->metadata_run;
440 ms >>= ic->log2_buffer_sectors;
441
442 sector_to_block(ic, offset);
443
444 if (likely(ic->log2_tag_size >= 0)) {
445 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
446 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
447 } else {
448 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
449 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
450 }
451 *metadata_offset = mo;
452 return ms;
453}
454
455static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
456{
457 sector_t result;
458
459 if (ic->meta_dev)
460 return offset;
461
462 result = area << ic->sb->log2_interleave_sectors;
463 if (likely(ic->log2_metadata_run >= 0))
464 result += (area + 1) << ic->log2_metadata_run;
465 else
466 result += (area + 1) * ic->metadata_run;
467
468 result += (sector_t)ic->initial_sectors + offset;
469 result += ic->start;
470
471 return result;
472}
473
474static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
475{
476 if (unlikely(*sec_ptr >= ic->journal_sections))
477 *sec_ptr -= ic->journal_sections;
478}
479
480static void sb_set_version(struct dm_integrity_c *ic)
481{
482 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
483 ic->sb->version = SB_VERSION_5;
484 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
485 ic->sb->version = SB_VERSION_4;
486 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
487 ic->sb->version = SB_VERSION_3;
488 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
489 ic->sb->version = SB_VERSION_2;
490 else
491 ic->sb->version = SB_VERSION_1;
492}
493
494static int sb_mac(struct dm_integrity_c *ic, bool wr)
495{
496 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
497 int r;
498 unsigned int mac_size = crypto_shash_digestsize(tfm: ic->journal_mac);
499 __u8 *sb = (__u8 *)ic->sb;
500 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
501
502 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT) {
503 dm_integrity_io_error(ic, msg: "digest is too long", err: -EINVAL);
504 return -EINVAL;
505 }
506
507 desc->tfm = ic->journal_mac;
508
509 if (likely(wr)) {
510 r = crypto_shash_digest(desc, data: sb, len: mac - sb, out: mac);
511 if (unlikely(r < 0)) {
512 dm_integrity_io_error(ic, msg: "crypto_shash_digest", err: r);
513 return r;
514 }
515 } else {
516 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
517
518 r = crypto_shash_digest(desc, data: sb, len: mac - sb, out: actual_mac);
519 if (unlikely(r < 0)) {
520 dm_integrity_io_error(ic, msg: "crypto_shash_digest", err: r);
521 return r;
522 }
523 if (memcmp(p: mac, q: actual_mac, size: mac_size)) {
524 dm_integrity_io_error(ic, msg: "superblock mac", err: -EILSEQ);
525 dm_audit_log_target(DM_MSG_PREFIX, op: "mac-superblock", ti: ic->ti, result: 0);
526 return -EILSEQ;
527 }
528 }
529
530 return 0;
531}
532
533static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
534{
535 struct dm_io_request io_req;
536 struct dm_io_region io_loc;
537 const enum req_op op = opf & REQ_OP_MASK;
538 int r;
539
540 io_req.bi_opf = opf;
541 io_req.mem.type = DM_IO_KMEM;
542 io_req.mem.ptr.addr = ic->sb;
543 io_req.notify.fn = NULL;
544 io_req.client = ic->io;
545 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
546 io_loc.sector = ic->start;
547 io_loc.count = SB_SECTORS;
548
549 if (op == REQ_OP_WRITE) {
550 sb_set_version(ic);
551 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
552 r = sb_mac(ic, wr: true);
553 if (unlikely(r))
554 return r;
555 }
556 }
557
558 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL, IOPRIO_DEFAULT);
559 if (unlikely(r))
560 return r;
561
562 if (op == REQ_OP_READ) {
563 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
564 r = sb_mac(ic, wr: false);
565 if (unlikely(r))
566 return r;
567 }
568 }
569
570 return 0;
571}
572
573#define BITMAP_OP_TEST_ALL_SET 0
574#define BITMAP_OP_TEST_ALL_CLEAR 1
575#define BITMAP_OP_SET 2
576#define BITMAP_OP_CLEAR 3
577
578static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
579 sector_t sector, sector_t n_sectors, int mode)
580{
581 unsigned long bit, end_bit, this_end_bit, page, end_page;
582 unsigned long *data;
583
584 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
585 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
586 sector,
587 n_sectors,
588 ic->sb->log2_sectors_per_block,
589 ic->log2_blocks_per_bitmap_bit,
590 mode);
591 BUG();
592 }
593
594 if (unlikely(!n_sectors))
595 return true;
596
597 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
598 end_bit = (sector + n_sectors - 1) >>
599 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
600
601 page = bit / (PAGE_SIZE * 8);
602 bit %= PAGE_SIZE * 8;
603
604 end_page = end_bit / (PAGE_SIZE * 8);
605 end_bit %= PAGE_SIZE * 8;
606
607repeat:
608 if (page < end_page)
609 this_end_bit = PAGE_SIZE * 8 - 1;
610 else
611 this_end_bit = end_bit;
612
613 data = lowmem_page_address(page: bitmap[page].page);
614
615 if (mode == BITMAP_OP_TEST_ALL_SET) {
616 while (bit <= this_end_bit) {
617 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
618 do {
619 if (data[bit / BITS_PER_LONG] != -1)
620 return false;
621 bit += BITS_PER_LONG;
622 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
623 continue;
624 }
625 if (!test_bit(bit, data))
626 return false;
627 bit++;
628 }
629 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
630 while (bit <= this_end_bit) {
631 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
632 do {
633 if (data[bit / BITS_PER_LONG] != 0)
634 return false;
635 bit += BITS_PER_LONG;
636 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
637 continue;
638 }
639 if (test_bit(bit, data))
640 return false;
641 bit++;
642 }
643 } else if (mode == BITMAP_OP_SET) {
644 while (bit <= this_end_bit) {
645 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
646 do {
647 data[bit / BITS_PER_LONG] = -1;
648 bit += BITS_PER_LONG;
649 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
650 continue;
651 }
652 __set_bit(bit, data);
653 bit++;
654 }
655 } else if (mode == BITMAP_OP_CLEAR) {
656 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
657 clear_page(page: data);
658 else {
659 while (bit <= this_end_bit) {
660 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
661 do {
662 data[bit / BITS_PER_LONG] = 0;
663 bit += BITS_PER_LONG;
664 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
665 continue;
666 }
667 __clear_bit(bit, data);
668 bit++;
669 }
670 }
671 } else {
672 BUG();
673 }
674
675 if (unlikely(page < end_page)) {
676 bit = 0;
677 page++;
678 goto repeat;
679 }
680
681 return true;
682}
683
684static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
685{
686 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
687 unsigned int i;
688
689 for (i = 0; i < n_bitmap_pages; i++) {
690 unsigned long *dst_data = lowmem_page_address(page: dst[i].page);
691 unsigned long *src_data = lowmem_page_address(page: src[i].page);
692
693 copy_page(to: dst_data, from: src_data);
694 }
695}
696
697static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
698{
699 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
700 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
701
702 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
703 return &ic->bbs[bitmap_block];
704}
705
706static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
707 bool e, const char *function)
708{
709#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
710 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
711
712 if (unlikely(section >= ic->journal_sections) ||
713 unlikely(offset >= limit)) {
714 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
715 function, section, offset, ic->journal_sections, limit);
716 BUG();
717 }
718#endif
719}
720
721static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
722 unsigned int *pl_index, unsigned int *pl_offset)
723{
724 unsigned int sector;
725
726 access_journal_check(ic, section, offset, e: false, function: "page_list_location");
727
728 sector = section * ic->journal_section_sectors + offset;
729
730 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
731 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
732}
733
734static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
735 unsigned int section, unsigned int offset, unsigned int *n_sectors)
736{
737 unsigned int pl_index, pl_offset;
738 char *va;
739
740 page_list_location(ic, section, offset, pl_index: &pl_index, pl_offset: &pl_offset);
741
742 if (n_sectors)
743 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
744
745 va = lowmem_page_address(page: pl[pl_index].page);
746
747 return (struct journal_sector *)(va + pl_offset);
748}
749
750static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
751{
752 return access_page_list(ic, pl: ic->journal, section, offset, NULL);
753}
754
755static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
756{
757 unsigned int rel_sector, offset;
758 struct journal_sector *js;
759
760 access_journal_check(ic, section, offset: n, e: true, function: "access_journal_entry");
761
762 rel_sector = n % JOURNAL_BLOCK_SECTORS;
763 offset = n / JOURNAL_BLOCK_SECTORS;
764
765 js = access_journal(ic, section, offset: rel_sector);
766 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
767}
768
769static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
770{
771 n <<= ic->sb->log2_sectors_per_block;
772
773 n += JOURNAL_BLOCK_SECTORS;
774
775 access_journal_check(ic, section, offset: n, e: false, function: "access_journal_data");
776
777 return access_journal(ic, section, offset: n);
778}
779
780static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
781{
782 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
783 int r;
784 unsigned int j, size;
785
786 desc->tfm = ic->journal_mac;
787
788 r = crypto_shash_init(desc);
789 if (unlikely(r < 0)) {
790 dm_integrity_io_error(ic, msg: "crypto_shash_init", err: r);
791 goto err;
792 }
793
794 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
795 __le64 section_le;
796
797 r = crypto_shash_update(desc, data: (__u8 *)&ic->sb->salt, SALT_SIZE);
798 if (unlikely(r < 0)) {
799 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
800 goto err;
801 }
802
803 section_le = cpu_to_le64(section);
804 r = crypto_shash_update(desc, data: (__u8 *)&section_le, len: sizeof(section_le));
805 if (unlikely(r < 0)) {
806 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
807 goto err;
808 }
809 }
810
811 for (j = 0; j < ic->journal_section_entries; j++) {
812 struct journal_entry *je = access_journal_entry(ic, section, n: j);
813
814 r = crypto_shash_update(desc, data: (__u8 *)&je->u.sector, len: sizeof(je->u.sector));
815 if (unlikely(r < 0)) {
816 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
817 goto err;
818 }
819 }
820
821 size = crypto_shash_digestsize(tfm: ic->journal_mac);
822
823 if (likely(size <= JOURNAL_MAC_SIZE)) {
824 r = crypto_shash_final(desc, out: result);
825 if (unlikely(r < 0)) {
826 dm_integrity_io_error(ic, msg: "crypto_shash_final", err: r);
827 goto err;
828 }
829 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
830 } else {
831 __u8 digest[HASH_MAX_DIGESTSIZE];
832
833 if (WARN_ON(size > sizeof(digest))) {
834 dm_integrity_io_error(ic, msg: "digest_size", err: -EINVAL);
835 goto err;
836 }
837 r = crypto_shash_final(desc, out: digest);
838 if (unlikely(r < 0)) {
839 dm_integrity_io_error(ic, msg: "crypto_shash_final", err: r);
840 goto err;
841 }
842 memcpy(result, digest, JOURNAL_MAC_SIZE);
843 }
844
845 return;
846err:
847 memset(result, 0, JOURNAL_MAC_SIZE);
848}
849
850static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
851{
852 __u8 result[JOURNAL_MAC_SIZE];
853 unsigned int j;
854
855 if (!ic->journal_mac)
856 return;
857
858 section_mac(ic, section, result);
859
860 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
861 struct journal_sector *js = access_journal(ic, section, offset: j);
862
863 if (likely(wr))
864 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
865 else {
866 if (memcmp(p: &js->mac, q: result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
867 dm_integrity_io_error(ic, msg: "journal mac", err: -EILSEQ);
868 dm_audit_log_target(DM_MSG_PREFIX, op: "mac-journal", ti: ic->ti, result: 0);
869 }
870 }
871 }
872}
873
874static void complete_journal_op(void *context)
875{
876 struct journal_completion *comp = context;
877
878 BUG_ON(!atomic_read(&comp->in_flight));
879 if (likely(atomic_dec_and_test(&comp->in_flight)))
880 complete(&comp->comp);
881}
882
883static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
884 unsigned int n_sections, struct journal_completion *comp)
885{
886 struct async_submit_ctl submit;
887 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
888 unsigned int pl_index, pl_offset, section_index;
889 struct page_list *source_pl, *target_pl;
890
891 if (likely(encrypt)) {
892 source_pl = ic->journal;
893 target_pl = ic->journal_io;
894 } else {
895 source_pl = ic->journal_io;
896 target_pl = ic->journal;
897 }
898
899 page_list_location(ic, section, offset: 0, pl_index: &pl_index, pl_offset: &pl_offset);
900
901 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, v: &comp->in_flight);
902
903 init_async_submit(args: &submit, flags: ASYNC_TX_XOR_ZERO_DST, NULL, cb_fn: complete_journal_op, cb_param: comp, NULL);
904
905 section_index = pl_index;
906
907 do {
908 size_t this_step;
909 struct page *src_pages[2];
910 struct page *dst_page;
911
912 while (unlikely(pl_index == section_index)) {
913 unsigned int dummy;
914
915 if (likely(encrypt))
916 rw_section_mac(ic, section, wr: true);
917 section++;
918 n_sections--;
919 if (!n_sections)
920 break;
921 page_list_location(ic, section, offset: 0, pl_index: &section_index, pl_offset: &dummy);
922 }
923
924 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
925 dst_page = target_pl[pl_index].page;
926 src_pages[0] = source_pl[pl_index].page;
927 src_pages[1] = ic->journal_xor[pl_index].page;
928
929 async_xor(dest: dst_page, src_list: src_pages, offset: pl_offset, src_cnt: 2, len: this_step, submit: &submit);
930
931 pl_index++;
932 pl_offset = 0;
933 n_bytes -= this_step;
934 } while (n_bytes);
935
936 BUG_ON(n_sections);
937
938 async_tx_issue_pending_all();
939}
940
941static void complete_journal_encrypt(void *data, int err)
942{
943 struct journal_completion *comp = data;
944
945 if (unlikely(err)) {
946 if (likely(err == -EINPROGRESS)) {
947 complete(&comp->ic->crypto_backoff);
948 return;
949 }
950 dm_integrity_io_error(ic: comp->ic, msg: "asynchronous encrypt", err);
951 }
952 complete_journal_op(context: comp);
953}
954
955static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
956{
957 int r;
958
959 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
960 compl: complete_journal_encrypt, data: comp);
961 if (likely(encrypt))
962 r = crypto_skcipher_encrypt(req);
963 else
964 r = crypto_skcipher_decrypt(req);
965 if (likely(!r))
966 return false;
967 if (likely(r == -EINPROGRESS))
968 return true;
969 if (likely(r == -EBUSY)) {
970 wait_for_completion(&comp->ic->crypto_backoff);
971 reinit_completion(x: &comp->ic->crypto_backoff);
972 return true;
973 }
974 dm_integrity_io_error(ic: comp->ic, msg: "encrypt", err: r);
975 return false;
976}
977
978static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
979 unsigned int n_sections, struct journal_completion *comp)
980{
981 struct scatterlist **source_sg;
982 struct scatterlist **target_sg;
983
984 atomic_add(i: 2, v: &comp->in_flight);
985
986 if (likely(encrypt)) {
987 source_sg = ic->journal_scatterlist;
988 target_sg = ic->journal_io_scatterlist;
989 } else {
990 source_sg = ic->journal_io_scatterlist;
991 target_sg = ic->journal_scatterlist;
992 }
993
994 do {
995 struct skcipher_request *req;
996 unsigned int ivsize;
997 char *iv;
998
999 if (likely(encrypt))
1000 rw_section_mac(ic, section, wr: true);
1001
1002 req = ic->sk_requests[section];
1003 ivsize = crypto_skcipher_ivsize(tfm: ic->journal_crypt);
1004 iv = req->iv;
1005
1006 memcpy(iv, iv + ivsize, ivsize);
1007
1008 req->src = source_sg[section];
1009 req->dst = target_sg[section];
1010
1011 if (unlikely(do_crypt(encrypt, req, comp)))
1012 atomic_inc(v: &comp->in_flight);
1013
1014 section++;
1015 n_sections--;
1016 } while (n_sections);
1017
1018 atomic_dec(v: &comp->in_flight);
1019 complete_journal_op(context: comp);
1020}
1021
1022static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1023 unsigned int n_sections, struct journal_completion *comp)
1024{
1025 if (ic->journal_xor)
1026 return xor_journal(ic, encrypt, section, n_sections, comp);
1027 else
1028 return crypt_journal(ic, encrypt, section, n_sections, comp);
1029}
1030
1031static void complete_journal_io(unsigned long error, void *context)
1032{
1033 struct journal_completion *comp = context;
1034
1035 if (unlikely(error != 0))
1036 dm_integrity_io_error(ic: comp->ic, msg: "writing journal", err: -EIO);
1037 complete_journal_op(context: comp);
1038}
1039
1040static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1041 unsigned int sector, unsigned int n_sectors,
1042 struct journal_completion *comp)
1043{
1044 struct dm_io_request io_req;
1045 struct dm_io_region io_loc;
1046 unsigned int pl_index, pl_offset;
1047 int r;
1048
1049 if (unlikely(dm_integrity_failed(ic))) {
1050 if (comp)
1051 complete_journal_io(error: -1UL, context: comp);
1052 return;
1053 }
1054
1055 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1056 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1057
1058 io_req.bi_opf = opf;
1059 io_req.mem.type = DM_IO_PAGE_LIST;
1060 if (ic->journal_io)
1061 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1062 else
1063 io_req.mem.ptr.pl = &ic->journal[pl_index];
1064 io_req.mem.offset = pl_offset;
1065 if (likely(comp != NULL)) {
1066 io_req.notify.fn = complete_journal_io;
1067 io_req.notify.context = comp;
1068 } else {
1069 io_req.notify.fn = NULL;
1070 }
1071 io_req.client = ic->io;
1072 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1073 io_loc.sector = ic->start + SB_SECTORS + sector;
1074 io_loc.count = n_sectors;
1075
1076 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL, IOPRIO_DEFAULT);
1077 if (unlikely(r)) {
1078 dm_integrity_io_error(ic, msg: (opf & REQ_OP_MASK) == REQ_OP_READ ?
1079 "reading journal" : "writing journal", err: r);
1080 if (comp) {
1081 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1082 complete_journal_io(error: -1UL, context: comp);
1083 }
1084 }
1085}
1086
1087static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1088 unsigned int section, unsigned int n_sections,
1089 struct journal_completion *comp)
1090{
1091 unsigned int sector, n_sectors;
1092
1093 sector = section * ic->journal_section_sectors;
1094 n_sectors = n_sections * ic->journal_section_sectors;
1095
1096 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1097}
1098
1099static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1100{
1101 struct journal_completion io_comp;
1102 struct journal_completion crypt_comp_1;
1103 struct journal_completion crypt_comp_2;
1104 unsigned int i;
1105
1106 io_comp.ic = ic;
1107 init_completion(x: &io_comp.comp);
1108
1109 if (commit_start + commit_sections <= ic->journal_sections) {
1110 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1111 if (ic->journal_io) {
1112 crypt_comp_1.ic = ic;
1113 init_completion(x: &crypt_comp_1.comp);
1114 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1115 encrypt_journal(ic, encrypt: true, section: commit_start, n_sections: commit_sections, comp: &crypt_comp_1);
1116 wait_for_completion_io(&crypt_comp_1.comp);
1117 } else {
1118 for (i = 0; i < commit_sections; i++)
1119 rw_section_mac(ic, section: commit_start + i, wr: true);
1120 }
1121 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, section: commit_start,
1122 n_sections: commit_sections, comp: &io_comp);
1123 } else {
1124 unsigned int to_end;
1125
1126 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1127 to_end = ic->journal_sections - commit_start;
1128 if (ic->journal_io) {
1129 crypt_comp_1.ic = ic;
1130 init_completion(x: &crypt_comp_1.comp);
1131 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1132 encrypt_journal(ic, encrypt: true, section: commit_start, n_sections: to_end, comp: &crypt_comp_1);
1133 if (try_wait_for_completion(x: &crypt_comp_1.comp)) {
1134 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA,
1135 section: commit_start, n_sections: to_end, comp: &io_comp);
1136 reinit_completion(x: &crypt_comp_1.comp);
1137 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1138 encrypt_journal(ic, encrypt: true, section: 0, n_sections: commit_sections - to_end, comp: &crypt_comp_1);
1139 wait_for_completion_io(&crypt_comp_1.comp);
1140 } else {
1141 crypt_comp_2.ic = ic;
1142 init_completion(x: &crypt_comp_2.comp);
1143 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1144 encrypt_journal(ic, encrypt: true, section: 0, n_sections: commit_sections - to_end, comp: &crypt_comp_2);
1145 wait_for_completion_io(&crypt_comp_1.comp);
1146 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA, section: commit_start, n_sections: to_end, comp: &io_comp);
1147 wait_for_completion_io(&crypt_comp_2.comp);
1148 }
1149 } else {
1150 for (i = 0; i < to_end; i++)
1151 rw_section_mac(ic, section: commit_start + i, wr: true);
1152 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA, section: commit_start, n_sections: to_end, comp: &io_comp);
1153 for (i = 0; i < commit_sections - to_end; i++)
1154 rw_section_mac(ic, section: i, wr: true);
1155 }
1156 rw_journal(ic, opf: REQ_OP_WRITE | REQ_FUA, section: 0, n_sections: commit_sections - to_end, comp: &io_comp);
1157 }
1158
1159 wait_for_completion_io(&io_comp.comp);
1160}
1161
1162static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1163 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1164{
1165 struct dm_io_request io_req;
1166 struct dm_io_region io_loc;
1167 int r;
1168 unsigned int sector, pl_index, pl_offset;
1169
1170 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1171
1172 if (unlikely(dm_integrity_failed(ic))) {
1173 fn(-1UL, data);
1174 return;
1175 }
1176
1177 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1178
1179 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1180 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1181
1182 io_req.bi_opf = REQ_OP_WRITE;
1183 io_req.mem.type = DM_IO_PAGE_LIST;
1184 io_req.mem.ptr.pl = &ic->journal[pl_index];
1185 io_req.mem.offset = pl_offset;
1186 io_req.notify.fn = fn;
1187 io_req.notify.context = data;
1188 io_req.client = ic->io;
1189 io_loc.bdev = ic->dev->bdev;
1190 io_loc.sector = target;
1191 io_loc.count = n_sectors;
1192
1193 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL, IOPRIO_DEFAULT);
1194 if (unlikely(r)) {
1195 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1196 fn(-1UL, data);
1197 }
1198}
1199
1200static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1201{
1202 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1203 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1204}
1205
1206static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1207{
1208 struct rb_node **n = &ic->in_progress.rb_node;
1209 struct rb_node *parent;
1210
1211 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1212
1213 if (likely(check_waiting)) {
1214 struct dm_integrity_range *range;
1215
1216 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1217 if (unlikely(ranges_overlap(range, new_range)))
1218 return false;
1219 }
1220 }
1221
1222 parent = NULL;
1223
1224 while (*n) {
1225 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1226
1227 parent = *n;
1228 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1229 n = &range->node.rb_left;
1230 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1231 n = &range->node.rb_right;
1232 else
1233 return false;
1234 }
1235
1236 rb_link_node(node: &new_range->node, parent, rb_link: n);
1237 rb_insert_color(&new_range->node, &ic->in_progress);
1238
1239 return true;
1240}
1241
1242static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1243{
1244 rb_erase(&range->node, &ic->in_progress);
1245 while (unlikely(!list_empty(&ic->wait_list))) {
1246 struct dm_integrity_range *last_range =
1247 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1248 struct task_struct *last_range_task;
1249
1250 last_range_task = last_range->task;
1251 list_del(entry: &last_range->wait_entry);
1252 if (!add_new_range(ic, new_range: last_range, check_waiting: false)) {
1253 last_range->task = last_range_task;
1254 list_add(new: &last_range->wait_entry, head: &ic->wait_list);
1255 break;
1256 }
1257 last_range->waiting = false;
1258 wake_up_process(tsk: last_range_task);
1259 }
1260}
1261
1262static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1263{
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1267 remove_range_unlocked(ic, range);
1268 spin_unlock_irqrestore(lock: &ic->endio_wait.lock, flags);
1269}
1270
1271static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1272{
1273 new_range->waiting = true;
1274 list_add_tail(new: &new_range->wait_entry, head: &ic->wait_list);
1275 new_range->task = current;
1276 do {
1277 __set_current_state(TASK_UNINTERRUPTIBLE);
1278 spin_unlock_irq(lock: &ic->endio_wait.lock);
1279 io_schedule();
1280 spin_lock_irq(lock: &ic->endio_wait.lock);
1281 } while (unlikely(new_range->waiting));
1282}
1283
1284static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1285{
1286 if (unlikely(!add_new_range(ic, new_range, true)))
1287 wait_and_add_new_range(ic, new_range);
1288}
1289
1290static void init_journal_node(struct journal_node *node)
1291{
1292 RB_CLEAR_NODE(&node->node);
1293 node->sector = (sector_t)-1;
1294}
1295
1296static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1297{
1298 struct rb_node **link;
1299 struct rb_node *parent;
1300
1301 node->sector = sector;
1302 BUG_ON(!RB_EMPTY_NODE(&node->node));
1303
1304 link = &ic->journal_tree_root.rb_node;
1305 parent = NULL;
1306
1307 while (*link) {
1308 struct journal_node *j;
1309
1310 parent = *link;
1311 j = container_of(parent, struct journal_node, node);
1312 if (sector < j->sector)
1313 link = &j->node.rb_left;
1314 else
1315 link = &j->node.rb_right;
1316 }
1317
1318 rb_link_node(node: &node->node, parent, rb_link: link);
1319 rb_insert_color(&node->node, &ic->journal_tree_root);
1320}
1321
1322static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1323{
1324 BUG_ON(RB_EMPTY_NODE(&node->node));
1325 rb_erase(&node->node, &ic->journal_tree_root);
1326 init_journal_node(node);
1327}
1328
1329#define NOT_FOUND (-1U)
1330
1331static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1332{
1333 struct rb_node *n = ic->journal_tree_root.rb_node;
1334 unsigned int found = NOT_FOUND;
1335
1336 *next_sector = (sector_t)-1;
1337 while (n) {
1338 struct journal_node *j = container_of(n, struct journal_node, node);
1339
1340 if (sector == j->sector)
1341 found = j - ic->journal_tree;
1342
1343 if (sector < j->sector) {
1344 *next_sector = j->sector;
1345 n = j->node.rb_left;
1346 } else
1347 n = j->node.rb_right;
1348 }
1349
1350 return found;
1351}
1352
1353static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1354{
1355 struct journal_node *node, *next_node;
1356 struct rb_node *next;
1357
1358 if (unlikely(pos >= ic->journal_entries))
1359 return false;
1360 node = &ic->journal_tree[pos];
1361 if (unlikely(RB_EMPTY_NODE(&node->node)))
1362 return false;
1363 if (unlikely(node->sector != sector))
1364 return false;
1365
1366 next = rb_next(&node->node);
1367 if (unlikely(!next))
1368 return true;
1369
1370 next_node = container_of(next, struct journal_node, node);
1371 return next_node->sector != sector;
1372}
1373
1374static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1375{
1376 struct rb_node *next;
1377 struct journal_node *next_node;
1378 unsigned int next_section;
1379
1380 BUG_ON(RB_EMPTY_NODE(&node->node));
1381
1382 next = rb_next(&node->node);
1383 if (unlikely(!next))
1384 return false;
1385
1386 next_node = container_of(next, struct journal_node, node);
1387
1388 if (next_node->sector != node->sector)
1389 return false;
1390
1391 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1392 if (next_section >= ic->committed_section &&
1393 next_section < ic->committed_section + ic->n_committed_sections)
1394 return true;
1395 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1396 return true;
1397
1398 return false;
1399}
1400
1401#define TAG_READ 0
1402#define TAG_WRITE 1
1403#define TAG_CMP 2
1404
1405static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1406 unsigned int *metadata_offset, unsigned int total_size, int op)
1407{
1408#define MAY_BE_FILLER 1
1409#define MAY_BE_HASH 2
1410 unsigned int hash_offset = 0;
1411 unsigned int may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1412
1413 do {
1414 unsigned char *data, *dp;
1415 struct dm_buffer *b;
1416 unsigned int to_copy;
1417 int r;
1418
1419 r = dm_integrity_failed(ic);
1420 if (unlikely(r))
1421 return r;
1422
1423 data = dm_bufio_read(c: ic->bufio, block: *metadata_block, bp: &b);
1424 if (IS_ERR(ptr: data))
1425 return PTR_ERR(ptr: data);
1426
1427 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1428 dp = data + *metadata_offset;
1429 if (op == TAG_READ) {
1430 memcpy(tag, dp, to_copy);
1431 } else if (op == TAG_WRITE) {
1432 if (memcmp(p: dp, q: tag, size: to_copy)) {
1433 memcpy(dp, tag, to_copy);
1434 dm_bufio_mark_partial_buffer_dirty(b, start: *metadata_offset, end: *metadata_offset + to_copy);
1435 }
1436 } else {
1437 /* e.g.: op == TAG_CMP */
1438
1439 if (likely(is_power_of_2(ic->tag_size))) {
1440 if (unlikely(memcmp(dp, tag, to_copy)))
1441 if (unlikely(!ic->discard) ||
1442 unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1443 goto thorough_test;
1444 }
1445 } else {
1446 unsigned int i, ts;
1447thorough_test:
1448 ts = total_size;
1449
1450 for (i = 0; i < to_copy; i++, ts--) {
1451 if (unlikely(dp[i] != tag[i]))
1452 may_be &= ~MAY_BE_HASH;
1453 if (likely(dp[i] != DISCARD_FILLER))
1454 may_be &= ~MAY_BE_FILLER;
1455 hash_offset++;
1456 if (unlikely(hash_offset == ic->tag_size)) {
1457 if (unlikely(!may_be)) {
1458 dm_bufio_release(b);
1459 return ts;
1460 }
1461 hash_offset = 0;
1462 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1463 }
1464 }
1465 }
1466 }
1467 dm_bufio_release(b);
1468
1469 tag += to_copy;
1470 *metadata_offset += to_copy;
1471 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1472 (*metadata_block)++;
1473 *metadata_offset = 0;
1474 }
1475
1476 if (unlikely(!is_power_of_2(ic->tag_size)))
1477 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1478
1479 total_size -= to_copy;
1480 } while (unlikely(total_size));
1481
1482 return 0;
1483#undef MAY_BE_FILLER
1484#undef MAY_BE_HASH
1485}
1486
1487struct flush_request {
1488 struct dm_io_request io_req;
1489 struct dm_io_region io_reg;
1490 struct dm_integrity_c *ic;
1491 struct completion comp;
1492};
1493
1494static void flush_notify(unsigned long error, void *fr_)
1495{
1496 struct flush_request *fr = fr_;
1497
1498 if (unlikely(error != 0))
1499 dm_integrity_io_error(ic: fr->ic, msg: "flushing disk cache", err: -EIO);
1500 complete(&fr->comp);
1501}
1502
1503static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1504{
1505 int r;
1506 struct flush_request fr;
1507
1508 if (!ic->meta_dev)
1509 flush_data = false;
1510 if (flush_data) {
1511 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC,
1512 fr.io_req.mem.type = DM_IO_KMEM,
1513 fr.io_req.mem.ptr.addr = NULL,
1514 fr.io_req.notify.fn = flush_notify,
1515 fr.io_req.notify.context = &fr;
1516 fr.io_req.client = dm_bufio_get_dm_io_client(c: ic->bufio),
1517 fr.io_reg.bdev = ic->dev->bdev,
1518 fr.io_reg.sector = 0,
1519 fr.io_reg.count = 0,
1520 fr.ic = ic;
1521 init_completion(x: &fr.comp);
1522 r = dm_io(io_req: &fr.io_req, num_regions: 1, region: &fr.io_reg, NULL, IOPRIO_DEFAULT);
1523 BUG_ON(r);
1524 }
1525
1526 r = dm_bufio_write_dirty_buffers(c: ic->bufio);
1527 if (unlikely(r))
1528 dm_integrity_io_error(ic, msg: "writing tags", err: r);
1529
1530 if (flush_data)
1531 wait_for_completion(&fr.comp);
1532}
1533
1534static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1535{
1536 DECLARE_WAITQUEUE(wait, current);
1537
1538 __add_wait_queue(wq_head: &ic->endio_wait, wq_entry: &wait);
1539 __set_current_state(TASK_UNINTERRUPTIBLE);
1540 spin_unlock_irq(lock: &ic->endio_wait.lock);
1541 io_schedule();
1542 spin_lock_irq(lock: &ic->endio_wait.lock);
1543 __remove_wait_queue(wq_head: &ic->endio_wait, wq_entry: &wait);
1544}
1545
1546static void autocommit_fn(struct timer_list *t)
1547{
1548 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1549
1550 if (likely(!dm_integrity_failed(ic)))
1551 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
1552}
1553
1554static void schedule_autocommit(struct dm_integrity_c *ic)
1555{
1556 if (!timer_pending(timer: &ic->autocommit_timer))
1557 mod_timer(timer: &ic->autocommit_timer, expires: jiffies + ic->autocommit_jiffies);
1558}
1559
1560static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1561{
1562 struct bio *bio;
1563 unsigned long flags;
1564
1565 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1566 bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1567 bio_list_add(bl: &ic->flush_bio_list, bio);
1568 spin_unlock_irqrestore(lock: &ic->endio_wait.lock, flags);
1569
1570 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
1571}
1572
1573static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1574{
1575 int r;
1576
1577 r = dm_integrity_failed(ic);
1578 if (unlikely(r) && !bio->bi_status)
1579 bio->bi_status = errno_to_blk_status(errno: r);
1580 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1581 unsigned long flags;
1582
1583 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1584 bio_list_add(bl: &ic->synchronous_bios, bio);
1585 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: 0);
1586 spin_unlock_irqrestore(lock: &ic->endio_wait.lock, flags);
1587 return;
1588 }
1589 bio_endio(bio);
1590}
1591
1592static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1593{
1594 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1595
1596 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1597 submit_flush_bio(ic, dio);
1598 else
1599 do_endio(ic, bio);
1600}
1601
1602static void dec_in_flight(struct dm_integrity_io *dio)
1603{
1604 if (atomic_dec_and_test(v: &dio->in_flight)) {
1605 struct dm_integrity_c *ic = dio->ic;
1606 struct bio *bio;
1607
1608 remove_range(ic, range: &dio->range);
1609
1610 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1611 schedule_autocommit(ic);
1612
1613 bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1614 if (unlikely(dio->bi_status) && !bio->bi_status)
1615 bio->bi_status = dio->bi_status;
1616 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1617 dio->range.logical_sector += dio->range.n_sectors;
1618 bio_advance(bio, nbytes: dio->range.n_sectors << SECTOR_SHIFT);
1619 INIT_WORK(&dio->work, integrity_bio_wait);
1620 queue_work(wq: ic->offload_wq, work: &dio->work);
1621 return;
1622 }
1623 do_endio_flush(ic, dio);
1624 }
1625}
1626
1627static void integrity_end_io(struct bio *bio)
1628{
1629 struct dm_integrity_io *dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
1630
1631 dm_bio_restore(bd: &dio->bio_details, bio);
1632 if (bio->bi_integrity)
1633 bio->bi_opf |= REQ_INTEGRITY;
1634
1635 if (dio->completion)
1636 complete(dio->completion);
1637
1638 dec_in_flight(dio);
1639}
1640
1641static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1642 const char *data, char *result)
1643{
1644 __le64 sector_le = cpu_to_le64(sector);
1645 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1646 int r;
1647 unsigned int digest_size;
1648
1649 req->tfm = ic->internal_hash;
1650
1651 r = crypto_shash_init(desc: req);
1652 if (unlikely(r < 0)) {
1653 dm_integrity_io_error(ic, msg: "crypto_shash_init", err: r);
1654 goto failed;
1655 }
1656
1657 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1658 r = crypto_shash_update(desc: req, data: (__u8 *)&ic->sb->salt, SALT_SIZE);
1659 if (unlikely(r < 0)) {
1660 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
1661 goto failed;
1662 }
1663 }
1664
1665 r = crypto_shash_update(desc: req, data: (const __u8 *)&sector_le, len: sizeof(sector_le));
1666 if (unlikely(r < 0)) {
1667 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
1668 goto failed;
1669 }
1670
1671 r = crypto_shash_update(desc: req, data, len: ic->sectors_per_block << SECTOR_SHIFT);
1672 if (unlikely(r < 0)) {
1673 dm_integrity_io_error(ic, msg: "crypto_shash_update", err: r);
1674 goto failed;
1675 }
1676
1677 r = crypto_shash_final(desc: req, out: result);
1678 if (unlikely(r < 0)) {
1679 dm_integrity_io_error(ic, msg: "crypto_shash_final", err: r);
1680 goto failed;
1681 }
1682
1683 digest_size = crypto_shash_digestsize(tfm: ic->internal_hash);
1684 if (unlikely(digest_size < ic->tag_size))
1685 memset(result + digest_size, 0, ic->tag_size - digest_size);
1686
1687 return;
1688
1689failed:
1690 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1691 get_random_bytes(buf: result, len: ic->tag_size);
1692}
1693
1694static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1695{
1696 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1697 struct dm_integrity_c *ic = dio->ic;
1698 struct bvec_iter iter;
1699 struct bio_vec bv;
1700 sector_t sector, logical_sector, area, offset;
1701 struct page *page;
1702
1703 get_area_and_offset(ic, data_sector: dio->range.logical_sector, area: &area, offset: &offset);
1704 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1705 metadata_offset: &dio->metadata_offset);
1706 sector = get_data_sector(ic, area, offset);
1707 logical_sector = dio->range.logical_sector;
1708
1709 page = mempool_alloc(pool: &ic->recheck_pool, GFP_NOIO);
1710
1711 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1712 unsigned pos = 0;
1713
1714 do {
1715 sector_t alignment;
1716 char *mem;
1717 char *buffer = page_to_virt(page);
1718 int r;
1719 struct dm_io_request io_req;
1720 struct dm_io_region io_loc;
1721 io_req.bi_opf = REQ_OP_READ;
1722 io_req.mem.type = DM_IO_KMEM;
1723 io_req.mem.ptr.addr = buffer;
1724 io_req.notify.fn = NULL;
1725 io_req.client = ic->io;
1726 io_loc.bdev = ic->dev->bdev;
1727 io_loc.sector = sector;
1728 io_loc.count = ic->sectors_per_block;
1729
1730 /* Align the bio to logical block size */
1731 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1732 alignment &= -alignment;
1733 io_loc.sector = round_down(io_loc.sector, alignment);
1734 io_loc.count += sector - io_loc.sector;
1735 buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1736 io_loc.count = round_up(io_loc.count, alignment);
1737
1738 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL, IOPRIO_DEFAULT);
1739 if (unlikely(r)) {
1740 dio->bi_status = errno_to_blk_status(errno: r);
1741 goto free_ret;
1742 }
1743
1744 integrity_sector_checksum(ic, sector: logical_sector, data: buffer, result: checksum);
1745 r = dm_integrity_rw_tag(ic, tag: checksum, metadata_block: &dio->metadata_block,
1746 metadata_offset: &dio->metadata_offset, total_size: ic->tag_size, TAG_CMP);
1747 if (r) {
1748 if (r > 0) {
1749 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1750 bio->bi_bdev, logical_sector);
1751 atomic64_inc(v: &ic->number_of_mismatches);
1752 dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-checksum",
1753 bio, sector: logical_sector, result: 0);
1754 r = -EILSEQ;
1755 }
1756 dio->bi_status = errno_to_blk_status(errno: r);
1757 goto free_ret;
1758 }
1759
1760 mem = bvec_kmap_local(bvec: &bv);
1761 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1762 kunmap_local(mem);
1763
1764 pos += ic->sectors_per_block << SECTOR_SHIFT;
1765 sector += ic->sectors_per_block;
1766 logical_sector += ic->sectors_per_block;
1767 } while (pos < bv.bv_len);
1768 }
1769free_ret:
1770 mempool_free(element: page, pool: &ic->recheck_pool);
1771}
1772
1773static void integrity_metadata(struct work_struct *w)
1774{
1775 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1776 struct dm_integrity_c *ic = dio->ic;
1777
1778 int r;
1779
1780 if (ic->internal_hash) {
1781 struct bvec_iter iter;
1782 struct bio_vec bv;
1783 unsigned int digest_size = crypto_shash_digestsize(tfm: ic->internal_hash);
1784 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
1785 char *checksums;
1786 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1787 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1788 sector_t sector;
1789 unsigned int sectors_to_process;
1790
1791 if (unlikely(ic->mode == 'R'))
1792 goto skip_io;
1793
1794 if (likely(dio->op != REQ_OP_DISCARD))
1795 checksums = kmalloc(size: (PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1796 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1797 else
1798 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1799 if (!checksums) {
1800 checksums = checksums_onstack;
1801 if (WARN_ON(extra_space &&
1802 digest_size > sizeof(checksums_onstack))) {
1803 r = -EINVAL;
1804 goto error;
1805 }
1806 }
1807
1808 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1809 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1810 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1811 unsigned int max_blocks = max_size / ic->tag_size;
1812
1813 memset(checksums, DISCARD_FILLER, max_size);
1814
1815 while (bi_size) {
1816 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1817
1818 this_step_blocks = min(this_step_blocks, max_blocks);
1819 r = dm_integrity_rw_tag(ic, tag: checksums, metadata_block: &dio->metadata_block, metadata_offset: &dio->metadata_offset,
1820 total_size: this_step_blocks * ic->tag_size, TAG_WRITE);
1821 if (unlikely(r)) {
1822 if (likely(checksums != checksums_onstack))
1823 kfree(objp: checksums);
1824 goto error;
1825 }
1826
1827 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1828 }
1829
1830 if (likely(checksums != checksums_onstack))
1831 kfree(objp: checksums);
1832 goto skip_io;
1833 }
1834
1835 sector = dio->range.logical_sector;
1836 sectors_to_process = dio->range.n_sectors;
1837
1838 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1839 struct bio_vec bv_copy = bv;
1840 unsigned int pos;
1841 char *mem, *checksums_ptr;
1842
1843again:
1844 mem = bvec_kmap_local(bvec: &bv_copy);
1845 pos = 0;
1846 checksums_ptr = checksums;
1847 do {
1848 integrity_sector_checksum(ic, sector, data: mem + pos, result: checksums_ptr);
1849 checksums_ptr += ic->tag_size;
1850 sectors_to_process -= ic->sectors_per_block;
1851 pos += ic->sectors_per_block << SECTOR_SHIFT;
1852 sector += ic->sectors_per_block;
1853 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1854 kunmap_local(mem);
1855
1856 r = dm_integrity_rw_tag(ic, tag: checksums, metadata_block: &dio->metadata_block, metadata_offset: &dio->metadata_offset,
1857 total_size: checksums_ptr - checksums, op: dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1858 if (unlikely(r)) {
1859 if (likely(checksums != checksums_onstack))
1860 kfree(objp: checksums);
1861 if (r > 0) {
1862 integrity_recheck(dio, checksum: checksums_onstack);
1863 goto skip_io;
1864 }
1865 goto error;
1866 }
1867
1868 if (!sectors_to_process)
1869 break;
1870
1871 if (unlikely(pos < bv_copy.bv_len)) {
1872 bv_copy.bv_offset += pos;
1873 bv_copy.bv_len -= pos;
1874 goto again;
1875 }
1876 }
1877
1878 if (likely(checksums != checksums_onstack))
1879 kfree(objp: checksums);
1880 } else {
1881 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1882
1883 if (bip) {
1884 struct bio_vec biv;
1885 struct bvec_iter iter;
1886 unsigned int data_to_process = dio->range.n_sectors;
1887
1888 sector_to_block(ic, data_to_process);
1889 data_to_process *= ic->tag_size;
1890
1891 bip_for_each_vec(biv, bip, iter) {
1892 unsigned char *tag;
1893 unsigned int this_len;
1894
1895 BUG_ON(PageHighMem(biv.bv_page));
1896 tag = bvec_virt(bvec: &biv);
1897 this_len = min(biv.bv_len, data_to_process);
1898 r = dm_integrity_rw_tag(ic, tag, metadata_block: &dio->metadata_block, metadata_offset: &dio->metadata_offset,
1899 total_size: this_len, op: dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1900 if (unlikely(r))
1901 goto error;
1902 data_to_process -= this_len;
1903 if (!data_to_process)
1904 break;
1905 }
1906 }
1907 }
1908skip_io:
1909 dec_in_flight(dio);
1910 return;
1911error:
1912 dio->bi_status = errno_to_blk_status(errno: r);
1913 dec_in_flight(dio);
1914}
1915
1916static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1917{
1918 struct dm_integrity_c *ic = ti->private;
1919 struct dm_integrity_io *dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
1920 struct bio_integrity_payload *bip;
1921
1922 sector_t area, offset;
1923
1924 dio->ic = ic;
1925 dio->bi_status = 0;
1926 dio->op = bio_op(bio);
1927
1928 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1929 if (ti->max_io_len) {
1930 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1931 unsigned int log2_max_io_len = __fls(word: ti->max_io_len);
1932 sector_t start_boundary = sec >> log2_max_io_len;
1933 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1934
1935 if (start_boundary < end_boundary) {
1936 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1937
1938 dm_accept_partial_bio(bio, n_sectors: len);
1939 }
1940 }
1941 }
1942
1943 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1944 submit_flush_bio(ic, dio);
1945 return DM_MAPIO_SUBMITTED;
1946 }
1947
1948 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1949 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1950 if (unlikely(dio->fua)) {
1951 /*
1952 * Don't pass down the FUA flag because we have to flush
1953 * disk cache anyway.
1954 */
1955 bio->bi_opf &= ~REQ_FUA;
1956 }
1957 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1958 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1959 dio->range.logical_sector, bio_sectors(bio),
1960 ic->provided_data_sectors);
1961 return DM_MAPIO_KILL;
1962 }
1963 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1964 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1965 ic->sectors_per_block,
1966 dio->range.logical_sector, bio_sectors(bio));
1967 return DM_MAPIO_KILL;
1968 }
1969
1970 if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1971 struct bvec_iter iter;
1972 struct bio_vec bv;
1973
1974 bio_for_each_segment(bv, bio, iter) {
1975 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1976 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1977 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1978 return DM_MAPIO_KILL;
1979 }
1980 }
1981 }
1982
1983 bip = bio_integrity(bio);
1984 if (!ic->internal_hash) {
1985 if (bip) {
1986 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1987
1988 if (ic->log2_tag_size >= 0)
1989 wanted_tag_size <<= ic->log2_tag_size;
1990 else
1991 wanted_tag_size *= ic->tag_size;
1992 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1993 DMERR("Invalid integrity data size %u, expected %u",
1994 bip->bip_iter.bi_size, wanted_tag_size);
1995 return DM_MAPIO_KILL;
1996 }
1997 }
1998 } else {
1999 if (unlikely(bip != NULL)) {
2000 DMERR("Unexpected integrity data when using internal hash");
2001 return DM_MAPIO_KILL;
2002 }
2003 }
2004
2005 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2006 return DM_MAPIO_KILL;
2007
2008 get_area_and_offset(ic, data_sector: dio->range.logical_sector, area: &area, offset: &offset);
2009 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &dio->metadata_offset);
2010 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2011
2012 dm_integrity_map_continue(dio, from_map: true);
2013 return DM_MAPIO_SUBMITTED;
2014}
2015
2016static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2017 unsigned int journal_section, unsigned int journal_entry)
2018{
2019 struct dm_integrity_c *ic = dio->ic;
2020 sector_t logical_sector;
2021 unsigned int n_sectors;
2022
2023 logical_sector = dio->range.logical_sector;
2024 n_sectors = dio->range.n_sectors;
2025 do {
2026 struct bio_vec bv = bio_iovec(bio);
2027 char *mem;
2028
2029 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2030 bv.bv_len = n_sectors << SECTOR_SHIFT;
2031 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2032 bio_advance_iter(bio, iter: &bio->bi_iter, bytes: bv.bv_len);
2033retry_kmap:
2034 mem = kmap_local_page(page: bv.bv_page);
2035 if (likely(dio->op == REQ_OP_WRITE))
2036 flush_dcache_page(page: bv.bv_page);
2037
2038 do {
2039 struct journal_entry *je = access_journal_entry(ic, section: journal_section, n: journal_entry);
2040
2041 if (unlikely(dio->op == REQ_OP_READ)) {
2042 struct journal_sector *js;
2043 char *mem_ptr;
2044 unsigned int s;
2045
2046 if (unlikely(journal_entry_is_inprogress(je))) {
2047 flush_dcache_page(page: bv.bv_page);
2048 kunmap_local(mem);
2049
2050 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2051 goto retry_kmap;
2052 }
2053 smp_rmb();
2054 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2055 js = access_journal_data(ic, section: journal_section, n: journal_entry);
2056 mem_ptr = mem + bv.bv_offset;
2057 s = 0;
2058 do {
2059 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2060 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2061 js++;
2062 mem_ptr += 1 << SECTOR_SHIFT;
2063 } while (++s < ic->sectors_per_block);
2064#ifdef INTERNAL_VERIFY
2065 if (ic->internal_hash) {
2066 char checksums_onstack[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2067
2068 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2069 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2070 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2071 logical_sector);
2072 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2073 bio, logical_sector, 0);
2074 }
2075 }
2076#endif
2077 }
2078
2079 if (!ic->internal_hash) {
2080 struct bio_integrity_payload *bip = bio_integrity(bio);
2081 unsigned int tag_todo = ic->tag_size;
2082 char *tag_ptr = journal_entry_tag(ic, je);
2083
2084 if (bip) {
2085 do {
2086 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2087 unsigned int tag_now = min(biv.bv_len, tag_todo);
2088 char *tag_addr;
2089
2090 BUG_ON(PageHighMem(biv.bv_page));
2091 tag_addr = bvec_virt(bvec: &biv);
2092 if (likely(dio->op == REQ_OP_WRITE))
2093 memcpy(tag_ptr, tag_addr, tag_now);
2094 else
2095 memcpy(tag_addr, tag_ptr, tag_now);
2096 bvec_iter_advance(bv: bip->bip_vec, iter: &bip->bip_iter, bytes: tag_now);
2097 tag_ptr += tag_now;
2098 tag_todo -= tag_now;
2099 } while (unlikely(tag_todo));
2100 } else if (likely(dio->op == REQ_OP_WRITE))
2101 memset(tag_ptr, 0, tag_todo);
2102 }
2103
2104 if (likely(dio->op == REQ_OP_WRITE)) {
2105 struct journal_sector *js;
2106 unsigned int s;
2107
2108 js = access_journal_data(ic, section: journal_section, n: journal_entry);
2109 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2110
2111 s = 0;
2112 do {
2113 je->last_bytes[s] = js[s].commit_id;
2114 } while (++s < ic->sectors_per_block);
2115
2116 if (ic->internal_hash) {
2117 unsigned int digest_size = crypto_shash_digestsize(tfm: ic->internal_hash);
2118
2119 if (unlikely(digest_size > ic->tag_size)) {
2120 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2121
2122 integrity_sector_checksum(ic, sector: logical_sector, data: (char *)js, result: checksums_onstack);
2123 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2124 } else
2125 integrity_sector_checksum(ic, sector: logical_sector, data: (char *)js, journal_entry_tag(ic, je));
2126 }
2127
2128 journal_entry_set_sector(je, logical_sector);
2129 }
2130 logical_sector += ic->sectors_per_block;
2131
2132 journal_entry++;
2133 if (unlikely(journal_entry == ic->journal_section_entries)) {
2134 journal_entry = 0;
2135 journal_section++;
2136 wraparound_section(ic, sec_ptr: &journal_section);
2137 }
2138
2139 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2140 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2141
2142 if (unlikely(dio->op == REQ_OP_READ))
2143 flush_dcache_page(page: bv.bv_page);
2144 kunmap_local(mem);
2145 } while (n_sectors);
2146
2147 if (likely(dio->op == REQ_OP_WRITE)) {
2148 smp_mb();
2149 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2150 wake_up(&ic->copy_to_journal_wait);
2151 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2152 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
2153 else
2154 schedule_autocommit(ic);
2155 } else
2156 remove_range(ic, range: &dio->range);
2157
2158 if (unlikely(bio->bi_iter.bi_size)) {
2159 sector_t area, offset;
2160
2161 dio->range.logical_sector = logical_sector;
2162 get_area_and_offset(ic, data_sector: dio->range.logical_sector, area: &area, offset: &offset);
2163 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &dio->metadata_offset);
2164 return true;
2165 }
2166
2167 return false;
2168}
2169
2170static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2171{
2172 struct dm_integrity_c *ic = dio->ic;
2173 struct bio *bio = dm_bio_from_per_bio_data(data: dio, data_size: sizeof(struct dm_integrity_io));
2174 unsigned int journal_section, journal_entry;
2175 unsigned int journal_read_pos;
2176 struct completion read_comp;
2177 bool discard_retried = false;
2178 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2179
2180 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2181 need_sync_io = true;
2182
2183 if (need_sync_io && from_map) {
2184 INIT_WORK(&dio->work, integrity_bio_wait);
2185 queue_work(wq: ic->offload_wq, work: &dio->work);
2186 return;
2187 }
2188
2189lock_retry:
2190 spin_lock_irq(lock: &ic->endio_wait.lock);
2191retry:
2192 if (unlikely(dm_integrity_failed(ic))) {
2193 spin_unlock_irq(lock: &ic->endio_wait.lock);
2194 do_endio(ic, bio);
2195 return;
2196 }
2197 dio->range.n_sectors = bio_sectors(bio);
2198 journal_read_pos = NOT_FOUND;
2199 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2200 if (dio->op == REQ_OP_WRITE) {
2201 unsigned int next_entry, i, pos;
2202 unsigned int ws, we, range_sectors;
2203
2204 dio->range.n_sectors = min(dio->range.n_sectors,
2205 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2206 if (unlikely(!dio->range.n_sectors)) {
2207 if (from_map)
2208 goto offload_to_thread;
2209 sleep_on_endio_wait(ic);
2210 goto retry;
2211 }
2212 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2213 ic->free_sectors -= range_sectors;
2214 journal_section = ic->free_section;
2215 journal_entry = ic->free_section_entry;
2216
2217 next_entry = ic->free_section_entry + range_sectors;
2218 ic->free_section_entry = next_entry % ic->journal_section_entries;
2219 ic->free_section += next_entry / ic->journal_section_entries;
2220 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2221 wraparound_section(ic, sec_ptr: &ic->free_section);
2222
2223 pos = journal_section * ic->journal_section_entries + journal_entry;
2224 ws = journal_section;
2225 we = journal_entry;
2226 i = 0;
2227 do {
2228 struct journal_entry *je;
2229
2230 add_journal_node(ic, node: &ic->journal_tree[pos], sector: dio->range.logical_sector + i);
2231 pos++;
2232 if (unlikely(pos >= ic->journal_entries))
2233 pos = 0;
2234
2235 je = access_journal_entry(ic, section: ws, n: we);
2236 BUG_ON(!journal_entry_is_unused(je));
2237 journal_entry_set_inprogress(je);
2238 we++;
2239 if (unlikely(we == ic->journal_section_entries)) {
2240 we = 0;
2241 ws++;
2242 wraparound_section(ic, sec_ptr: &ws);
2243 }
2244 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2245
2246 spin_unlock_irq(lock: &ic->endio_wait.lock);
2247 goto journal_read_write;
2248 } else {
2249 sector_t next_sector;
2250
2251 journal_read_pos = find_journal_node(ic, sector: dio->range.logical_sector, next_sector: &next_sector);
2252 if (likely(journal_read_pos == NOT_FOUND)) {
2253 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2254 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2255 } else {
2256 unsigned int i;
2257 unsigned int jp = journal_read_pos + 1;
2258
2259 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2260 if (!test_journal_node(ic, pos: jp, sector: dio->range.logical_sector + i))
2261 break;
2262 }
2263 dio->range.n_sectors = i;
2264 }
2265 }
2266 }
2267 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2268 /*
2269 * We must not sleep in the request routine because it could
2270 * stall bios on current->bio_list.
2271 * So, we offload the bio to a workqueue if we have to sleep.
2272 */
2273 if (from_map) {
2274offload_to_thread:
2275 spin_unlock_irq(lock: &ic->endio_wait.lock);
2276 INIT_WORK(&dio->work, integrity_bio_wait);
2277 queue_work(wq: ic->wait_wq, work: &dio->work);
2278 return;
2279 }
2280 if (journal_read_pos != NOT_FOUND)
2281 dio->range.n_sectors = ic->sectors_per_block;
2282 wait_and_add_new_range(ic, new_range: &dio->range);
2283 /*
2284 * wait_and_add_new_range drops the spinlock, so the journal
2285 * may have been changed arbitrarily. We need to recheck.
2286 * To simplify the code, we restrict I/O size to just one block.
2287 */
2288 if (journal_read_pos != NOT_FOUND) {
2289 sector_t next_sector;
2290 unsigned int new_pos;
2291
2292 new_pos = find_journal_node(ic, sector: dio->range.logical_sector, next_sector: &next_sector);
2293 if (unlikely(new_pos != journal_read_pos)) {
2294 remove_range_unlocked(ic, range: &dio->range);
2295 goto retry;
2296 }
2297 }
2298 }
2299 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2300 sector_t next_sector;
2301 unsigned int new_pos;
2302
2303 new_pos = find_journal_node(ic, sector: dio->range.logical_sector, next_sector: &next_sector);
2304 if (unlikely(new_pos != NOT_FOUND) ||
2305 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2306 remove_range_unlocked(ic, range: &dio->range);
2307 spin_unlock_irq(lock: &ic->endio_wait.lock);
2308 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
2309 flush_workqueue(ic->commit_wq);
2310 queue_work(wq: ic->writer_wq, work: &ic->writer_work);
2311 flush_workqueue(ic->writer_wq);
2312 discard_retried = true;
2313 goto lock_retry;
2314 }
2315 }
2316 spin_unlock_irq(lock: &ic->endio_wait.lock);
2317
2318 if (unlikely(journal_read_pos != NOT_FOUND)) {
2319 journal_section = journal_read_pos / ic->journal_section_entries;
2320 journal_entry = journal_read_pos % ic->journal_section_entries;
2321 goto journal_read_write;
2322 }
2323
2324 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2325 if (!block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: dio->range.logical_sector,
2326 n_sectors: dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2327 struct bitmap_block_status *bbs;
2328
2329 bbs = sector_to_bitmap_block(ic, sector: dio->range.logical_sector);
2330 spin_lock(lock: &bbs->bio_queue_lock);
2331 bio_list_add(bl: &bbs->bio_queue, bio);
2332 spin_unlock(lock: &bbs->bio_queue_lock);
2333 queue_work(wq: ic->writer_wq, work: &bbs->work);
2334 return;
2335 }
2336 }
2337
2338 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2339
2340 if (need_sync_io) {
2341 init_completion(x: &read_comp);
2342 dio->completion = &read_comp;
2343 } else
2344 dio->completion = NULL;
2345
2346 dm_bio_record(bd: &dio->bio_details, bio);
2347 bio_set_dev(bio, bdev: ic->dev->bdev);
2348 bio->bi_integrity = NULL;
2349 bio->bi_opf &= ~REQ_INTEGRITY;
2350 bio->bi_end_io = integrity_end_io;
2351 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2352
2353 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2354 integrity_metadata(w: &dio->work);
2355 dm_integrity_flush_buffers(ic, flush_data: false);
2356
2357 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2358 dio->completion = NULL;
2359
2360 submit_bio_noacct(bio);
2361
2362 return;
2363 }
2364
2365 submit_bio_noacct(bio);
2366
2367 if (need_sync_io) {
2368 wait_for_completion_io(&read_comp);
2369 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2370 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2371 goto skip_check;
2372 if (ic->mode == 'B') {
2373 if (!block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: dio->range.logical_sector,
2374 n_sectors: dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2375 goto skip_check;
2376 }
2377
2378 if (likely(!bio->bi_status))
2379 integrity_metadata(w: &dio->work);
2380 else
2381skip_check:
2382 dec_in_flight(dio);
2383 } else {
2384 INIT_WORK(&dio->work, integrity_metadata);
2385 queue_work(wq: ic->metadata_wq, work: &dio->work);
2386 }
2387
2388 return;
2389
2390journal_read_write:
2391 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2392 goto lock_retry;
2393
2394 do_endio_flush(ic, dio);
2395}
2396
2397
2398static void integrity_bio_wait(struct work_struct *w)
2399{
2400 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2401
2402 dm_integrity_map_continue(dio, from_map: false);
2403}
2404
2405static void pad_uncommitted(struct dm_integrity_c *ic)
2406{
2407 if (ic->free_section_entry) {
2408 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2409 ic->free_section_entry = 0;
2410 ic->free_section++;
2411 wraparound_section(ic, sec_ptr: &ic->free_section);
2412 ic->n_uncommitted_sections++;
2413 }
2414 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2415 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2416 ic->journal_section_entries + ic->free_sectors)) {
2417 DMCRIT("journal_sections %u, journal_section_entries %u, "
2418 "n_uncommitted_sections %u, n_committed_sections %u, "
2419 "journal_section_entries %u, free_sectors %u",
2420 ic->journal_sections, ic->journal_section_entries,
2421 ic->n_uncommitted_sections, ic->n_committed_sections,
2422 ic->journal_section_entries, ic->free_sectors);
2423 }
2424}
2425
2426static void integrity_commit(struct work_struct *w)
2427{
2428 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2429 unsigned int commit_start, commit_sections;
2430 unsigned int i, j, n;
2431 struct bio *flushes;
2432
2433 del_timer(timer: &ic->autocommit_timer);
2434
2435 spin_lock_irq(lock: &ic->endio_wait.lock);
2436 flushes = bio_list_get(bl: &ic->flush_bio_list);
2437 if (unlikely(ic->mode != 'J')) {
2438 spin_unlock_irq(lock: &ic->endio_wait.lock);
2439 dm_integrity_flush_buffers(ic, flush_data: true);
2440 goto release_flush_bios;
2441 }
2442
2443 pad_uncommitted(ic);
2444 commit_start = ic->uncommitted_section;
2445 commit_sections = ic->n_uncommitted_sections;
2446 spin_unlock_irq(lock: &ic->endio_wait.lock);
2447
2448 if (!commit_sections)
2449 goto release_flush_bios;
2450
2451 ic->wrote_to_journal = true;
2452
2453 i = commit_start;
2454 for (n = 0; n < commit_sections; n++) {
2455 for (j = 0; j < ic->journal_section_entries; j++) {
2456 struct journal_entry *je;
2457
2458 je = access_journal_entry(ic, section: i, n: j);
2459 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2460 }
2461 for (j = 0; j < ic->journal_section_sectors; j++) {
2462 struct journal_sector *js;
2463
2464 js = access_journal(ic, section: i, offset: j);
2465 js->commit_id = dm_integrity_commit_id(ic, i, j, seq: ic->commit_seq);
2466 }
2467 i++;
2468 if (unlikely(i >= ic->journal_sections))
2469 ic->commit_seq = next_commit_seq(seq: ic->commit_seq);
2470 wraparound_section(ic, sec_ptr: &i);
2471 }
2472 smp_rmb();
2473
2474 write_journal(ic, commit_start, commit_sections);
2475
2476 spin_lock_irq(lock: &ic->endio_wait.lock);
2477 ic->uncommitted_section += commit_sections;
2478 wraparound_section(ic, sec_ptr: &ic->uncommitted_section);
2479 ic->n_uncommitted_sections -= commit_sections;
2480 ic->n_committed_sections += commit_sections;
2481 spin_unlock_irq(lock: &ic->endio_wait.lock);
2482
2483 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2484 queue_work(wq: ic->writer_wq, work: &ic->writer_work);
2485
2486release_flush_bios:
2487 while (flushes) {
2488 struct bio *next = flushes->bi_next;
2489
2490 flushes->bi_next = NULL;
2491 do_endio(ic, bio: flushes);
2492 flushes = next;
2493 }
2494}
2495
2496static void complete_copy_from_journal(unsigned long error, void *context)
2497{
2498 struct journal_io *io = context;
2499 struct journal_completion *comp = io->comp;
2500 struct dm_integrity_c *ic = comp->ic;
2501
2502 remove_range(ic, range: &io->range);
2503 mempool_free(element: io, pool: &ic->journal_io_mempool);
2504 if (unlikely(error != 0))
2505 dm_integrity_io_error(ic, msg: "copying from journal", err: -EIO);
2506 complete_journal_op(context: comp);
2507}
2508
2509static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2510 struct journal_entry *je)
2511{
2512 unsigned int s = 0;
2513
2514 do {
2515 js->commit_id = je->last_bytes[s];
2516 js++;
2517 } while (++s < ic->sectors_per_block);
2518}
2519
2520static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2521 unsigned int write_sections, bool from_replay)
2522{
2523 unsigned int i, j, n;
2524 struct journal_completion comp;
2525 struct blk_plug plug;
2526
2527 blk_start_plug(&plug);
2528
2529 comp.ic = ic;
2530 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2531 init_completion(x: &comp.comp);
2532
2533 i = write_start;
2534 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, sec_ptr: &i)) {
2535#ifndef INTERNAL_VERIFY
2536 if (unlikely(from_replay))
2537#endif
2538 rw_section_mac(ic, section: i, wr: false);
2539 for (j = 0; j < ic->journal_section_entries; j++) {
2540 struct journal_entry *je = access_journal_entry(ic, section: i, n: j);
2541 sector_t sec, area, offset;
2542 unsigned int k, l, next_loop;
2543 sector_t metadata_block;
2544 unsigned int metadata_offset;
2545 struct journal_io *io;
2546
2547 if (journal_entry_is_unused(je))
2548 continue;
2549 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2550 sec = journal_entry_get_sector(je);
2551 if (unlikely(from_replay)) {
2552 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2553 dm_integrity_io_error(ic, msg: "invalid sector in journal", err: -EIO);
2554 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2555 }
2556 if (unlikely(sec >= ic->provided_data_sectors)) {
2557 journal_entry_set_unused(je);
2558 continue;
2559 }
2560 }
2561 get_area_and_offset(ic, data_sector: sec, area: &area, offset: &offset);
2562 restore_last_bytes(ic, js: access_journal_data(ic, section: i, n: j), je);
2563 for (k = j + 1; k < ic->journal_section_entries; k++) {
2564 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: k);
2565 sector_t sec2, area2, offset2;
2566
2567 if (journal_entry_is_unused(je2))
2568 break;
2569 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2570 sec2 = journal_entry_get_sector(je2);
2571 if (unlikely(sec2 >= ic->provided_data_sectors))
2572 break;
2573 get_area_and_offset(ic, data_sector: sec2, area: &area2, offset: &offset2);
2574 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2575 break;
2576 restore_last_bytes(ic, js: access_journal_data(ic, section: i, n: k), je: je2);
2577 }
2578 next_loop = k - 1;
2579
2580 io = mempool_alloc(pool: &ic->journal_io_mempool, GFP_NOIO);
2581 io->comp = &comp;
2582 io->range.logical_sector = sec;
2583 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2584
2585 spin_lock_irq(lock: &ic->endio_wait.lock);
2586 add_new_range_and_wait(ic, new_range: &io->range);
2587
2588 if (likely(!from_replay)) {
2589 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2590
2591 /* don't write if there is newer committed sector */
2592 while (j < k && find_newer_committed_node(ic, node: &section_node[j])) {
2593 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: j);
2594
2595 journal_entry_set_unused(je2);
2596 remove_journal_node(ic, node: &section_node[j]);
2597 j++;
2598 sec += ic->sectors_per_block;
2599 offset += ic->sectors_per_block;
2600 }
2601 while (j < k && find_newer_committed_node(ic, node: &section_node[k - 1])) {
2602 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: k - 1);
2603
2604 journal_entry_set_unused(je2);
2605 remove_journal_node(ic, node: &section_node[k - 1]);
2606 k--;
2607 }
2608 if (j == k) {
2609 remove_range_unlocked(ic, range: &io->range);
2610 spin_unlock_irq(lock: &ic->endio_wait.lock);
2611 mempool_free(element: io, pool: &ic->journal_io_mempool);
2612 goto skip_io;
2613 }
2614 for (l = j; l < k; l++)
2615 remove_journal_node(ic, node: &section_node[l]);
2616 }
2617 spin_unlock_irq(lock: &ic->endio_wait.lock);
2618
2619 metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &metadata_offset);
2620 for (l = j; l < k; l++) {
2621 int r;
2622 struct journal_entry *je2 = access_journal_entry(ic, section: i, n: l);
2623
2624 if (
2625#ifndef INTERNAL_VERIFY
2626 unlikely(from_replay) &&
2627#endif
2628 ic->internal_hash) {
2629 char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2630
2631 integrity_sector_checksum(ic, sector: sec + ((l - j) << ic->sb->log2_sectors_per_block),
2632 data: (char *)access_journal_data(ic, section: i, n: l), result: test_tag);
2633 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2634 dm_integrity_io_error(ic, msg: "tag mismatch when replaying journal", err: -EILSEQ);
2635 dm_audit_log_target(DM_MSG_PREFIX, op: "integrity-replay-journal", ti: ic->ti, result: 0);
2636 }
2637 }
2638
2639 journal_entry_set_unused(je2);
2640 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), metadata_block: &metadata_block, metadata_offset: &metadata_offset,
2641 total_size: ic->tag_size, TAG_WRITE);
2642 if (unlikely(r))
2643 dm_integrity_io_error(ic, msg: "reading tags", err: r);
2644 }
2645
2646 atomic_inc(v: &comp.in_flight);
2647 copy_from_journal(ic, section: i, offset: j << ic->sb->log2_sectors_per_block,
2648 n_sectors: (k - j) << ic->sb->log2_sectors_per_block,
2649 target: get_data_sector(ic, area, offset),
2650 fn: complete_copy_from_journal, data: io);
2651skip_io:
2652 j = next_loop;
2653 }
2654 }
2655
2656 dm_bufio_write_dirty_buffers_async(c: ic->bufio);
2657
2658 blk_finish_plug(&plug);
2659
2660 complete_journal_op(context: &comp);
2661 wait_for_completion_io(&comp.comp);
2662
2663 dm_integrity_flush_buffers(ic, flush_data: true);
2664}
2665
2666static void integrity_writer(struct work_struct *w)
2667{
2668 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2669 unsigned int write_start, write_sections;
2670 unsigned int prev_free_sectors;
2671
2672 spin_lock_irq(lock: &ic->endio_wait.lock);
2673 write_start = ic->committed_section;
2674 write_sections = ic->n_committed_sections;
2675 spin_unlock_irq(lock: &ic->endio_wait.lock);
2676
2677 if (!write_sections)
2678 return;
2679
2680 do_journal_write(ic, write_start, write_sections, from_replay: false);
2681
2682 spin_lock_irq(lock: &ic->endio_wait.lock);
2683
2684 ic->committed_section += write_sections;
2685 wraparound_section(ic, sec_ptr: &ic->committed_section);
2686 ic->n_committed_sections -= write_sections;
2687
2688 prev_free_sectors = ic->free_sectors;
2689 ic->free_sectors += write_sections * ic->journal_section_entries;
2690 if (unlikely(!prev_free_sectors))
2691 wake_up_locked(&ic->endio_wait);
2692
2693 spin_unlock_irq(lock: &ic->endio_wait.lock);
2694}
2695
2696static void recalc_write_super(struct dm_integrity_c *ic)
2697{
2698 int r;
2699
2700 dm_integrity_flush_buffers(ic, flush_data: false);
2701 if (dm_integrity_failed(ic))
2702 return;
2703
2704 r = sync_rw_sb(ic, opf: REQ_OP_WRITE);
2705 if (unlikely(r))
2706 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
2707}
2708
2709static void integrity_recalc(struct work_struct *w)
2710{
2711 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2712 size_t recalc_tags_size;
2713 u8 *recalc_buffer = NULL;
2714 u8 *recalc_tags = NULL;
2715 struct dm_integrity_range range;
2716 struct dm_io_request io_req;
2717 struct dm_io_region io_loc;
2718 sector_t area, offset;
2719 sector_t metadata_block;
2720 unsigned int metadata_offset;
2721 sector_t logical_sector, n_sectors;
2722 __u8 *t;
2723 unsigned int i;
2724 int r;
2725 unsigned int super_counter = 0;
2726 unsigned recalc_sectors = RECALC_SECTORS;
2727
2728retry:
2729 recalc_buffer = __vmalloc(size: recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
2730 if (!recalc_buffer) {
2731oom:
2732 recalc_sectors >>= 1;
2733 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
2734 goto retry;
2735 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
2736 goto free_ret;
2737 }
2738 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2739 if (crypto_shash_digestsize(tfm: ic->internal_hash) > ic->tag_size)
2740 recalc_tags_size += crypto_shash_digestsize(tfm: ic->internal_hash) - ic->tag_size;
2741 recalc_tags = kvmalloc(size: recalc_tags_size, GFP_NOIO);
2742 if (!recalc_tags) {
2743 vfree(addr: recalc_buffer);
2744 recalc_buffer = NULL;
2745 goto oom;
2746 }
2747
2748 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2749
2750 spin_lock_irq(lock: &ic->endio_wait.lock);
2751
2752next_chunk:
2753
2754 if (unlikely(dm_post_suspending(ic->ti)))
2755 goto unlock_ret;
2756
2757 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2758 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2759 if (ic->mode == 'B') {
2760 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
2761 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2762 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: 0);
2763 }
2764 goto unlock_ret;
2765 }
2766
2767 get_area_and_offset(ic, data_sector: range.logical_sector, area: &area, offset: &offset);
2768 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
2769 if (!ic->meta_dev)
2770 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
2771
2772 add_new_range_and_wait(ic, new_range: &range);
2773 spin_unlock_irq(lock: &ic->endio_wait.lock);
2774 logical_sector = range.logical_sector;
2775 n_sectors = range.n_sectors;
2776
2777 if (ic->mode == 'B') {
2778 if (block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2779 goto advance_and_next;
2780
2781 while (block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: logical_sector,
2782 n_sectors: ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2783 logical_sector += ic->sectors_per_block;
2784 n_sectors -= ic->sectors_per_block;
2785 cond_resched();
2786 }
2787 while (block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: logical_sector + n_sectors - ic->sectors_per_block,
2788 n_sectors: ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2789 n_sectors -= ic->sectors_per_block;
2790 cond_resched();
2791 }
2792 get_area_and_offset(ic, data_sector: logical_sector, area: &area, offset: &offset);
2793 }
2794
2795 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2796
2797 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2798 recalc_write_super(ic);
2799 if (ic->mode == 'B')
2800 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: ic->bitmap_flush_interval);
2801
2802 super_counter = 0;
2803 }
2804
2805 if (unlikely(dm_integrity_failed(ic)))
2806 goto err;
2807
2808 io_req.bi_opf = REQ_OP_READ;
2809 io_req.mem.type = DM_IO_VMA;
2810 io_req.mem.ptr.addr = recalc_buffer;
2811 io_req.notify.fn = NULL;
2812 io_req.client = ic->io;
2813 io_loc.bdev = ic->dev->bdev;
2814 io_loc.sector = get_data_sector(ic, area, offset);
2815 io_loc.count = n_sectors;
2816
2817 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL, IOPRIO_DEFAULT);
2818 if (unlikely(r)) {
2819 dm_integrity_io_error(ic, msg: "reading data", err: r);
2820 goto err;
2821 }
2822
2823 t = recalc_tags;
2824 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2825 integrity_sector_checksum(ic, sector: logical_sector + i, data: recalc_buffer + (i << SECTOR_SHIFT), result: t);
2826 t += ic->tag_size;
2827 }
2828
2829 metadata_block = get_metadata_sector_and_offset(ic, area, offset, metadata_offset: &metadata_offset);
2830
2831 r = dm_integrity_rw_tag(ic, tag: recalc_tags, metadata_block: &metadata_block, metadata_offset: &metadata_offset, total_size: t - recalc_tags, TAG_WRITE);
2832 if (unlikely(r)) {
2833 dm_integrity_io_error(ic, msg: "writing tags", err: r);
2834 goto err;
2835 }
2836
2837 if (ic->mode == 'B') {
2838 sector_t start, end;
2839
2840 start = (range.logical_sector >>
2841 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2842 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2843 end = ((range.logical_sector + range.n_sectors) >>
2844 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2845 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2846 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: start, n_sectors: end - start, BITMAP_OP_CLEAR);
2847 }
2848
2849advance_and_next:
2850 cond_resched();
2851
2852 spin_lock_irq(lock: &ic->endio_wait.lock);
2853 remove_range_unlocked(ic, range: &range);
2854 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2855 goto next_chunk;
2856
2857err:
2858 remove_range(ic, range: &range);
2859 goto free_ret;
2860
2861unlock_ret:
2862 spin_unlock_irq(lock: &ic->endio_wait.lock);
2863
2864 recalc_write_super(ic);
2865
2866free_ret:
2867 vfree(addr: recalc_buffer);
2868 kvfree(addr: recalc_tags);
2869}
2870
2871static void bitmap_block_work(struct work_struct *w)
2872{
2873 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2874 struct dm_integrity_c *ic = bbs->ic;
2875 struct bio *bio;
2876 struct bio_list bio_queue;
2877 struct bio_list waiting;
2878
2879 bio_list_init(bl: &waiting);
2880
2881 spin_lock(lock: &bbs->bio_queue_lock);
2882 bio_queue = bbs->bio_queue;
2883 bio_list_init(bl: &bbs->bio_queue);
2884 spin_unlock(lock: &bbs->bio_queue_lock);
2885
2886 while ((bio = bio_list_pop(bl: &bio_queue))) {
2887 struct dm_integrity_io *dio;
2888
2889 dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
2890
2891 if (block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: dio->range.logical_sector,
2892 n_sectors: dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2893 remove_range(ic, range: &dio->range);
2894 INIT_WORK(&dio->work, integrity_bio_wait);
2895 queue_work(wq: ic->offload_wq, work: &dio->work);
2896 } else {
2897 block_bitmap_op(ic, bitmap: ic->journal, sector: dio->range.logical_sector,
2898 n_sectors: dio->range.n_sectors, BITMAP_OP_SET);
2899 bio_list_add(bl: &waiting, bio);
2900 }
2901 }
2902
2903 if (bio_list_empty(bl: &waiting))
2904 return;
2905
2906 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
2907 sector: bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2908 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2909
2910 while ((bio = bio_list_pop(bl: &waiting))) {
2911 struct dm_integrity_io *dio = dm_per_bio_data(bio, data_size: sizeof(struct dm_integrity_io));
2912
2913 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: dio->range.logical_sector,
2914 n_sectors: dio->range.n_sectors, BITMAP_OP_SET);
2915
2916 remove_range(ic, range: &dio->range);
2917 INIT_WORK(&dio->work, integrity_bio_wait);
2918 queue_work(wq: ic->offload_wq, work: &dio->work);
2919 }
2920
2921 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: ic->bitmap_flush_interval);
2922}
2923
2924static void bitmap_flush_work(struct work_struct *work)
2925{
2926 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2927 struct dm_integrity_range range;
2928 unsigned long limit;
2929 struct bio *bio;
2930
2931 dm_integrity_flush_buffers(ic, flush_data: false);
2932
2933 range.logical_sector = 0;
2934 range.n_sectors = ic->provided_data_sectors;
2935
2936 spin_lock_irq(lock: &ic->endio_wait.lock);
2937 add_new_range_and_wait(ic, new_range: &range);
2938 spin_unlock_irq(lock: &ic->endio_wait.lock);
2939
2940 dm_integrity_flush_buffers(ic, flush_data: true);
2941
2942 limit = ic->provided_data_sectors;
2943 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2944 limit = le64_to_cpu(ic->sb->recalc_sector)
2945 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2946 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2947 }
2948 /*DEBUG_print("zeroing journal\n");*/
2949 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: limit, BITMAP_OP_CLEAR);
2950 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: 0, n_sectors: limit, BITMAP_OP_CLEAR);
2951
2952 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
2953 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2954
2955 spin_lock_irq(lock: &ic->endio_wait.lock);
2956 remove_range_unlocked(ic, range: &range);
2957 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2958 bio_endio(bio);
2959 spin_unlock_irq(lock: &ic->endio_wait.lock);
2960 spin_lock_irq(lock: &ic->endio_wait.lock);
2961 }
2962 spin_unlock_irq(lock: &ic->endio_wait.lock);
2963}
2964
2965
2966static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
2967 unsigned int n_sections, unsigned char commit_seq)
2968{
2969 unsigned int i, j, n;
2970
2971 if (!n_sections)
2972 return;
2973
2974 for (n = 0; n < n_sections; n++) {
2975 i = start_section + n;
2976 wraparound_section(ic, sec_ptr: &i);
2977 for (j = 0; j < ic->journal_section_sectors; j++) {
2978 struct journal_sector *js = access_journal(ic, section: i, offset: j);
2979
2980 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2981 memset(&js->sectors, 0, sizeof(js->sectors));
2982 js->commit_id = dm_integrity_commit_id(ic, i, j, seq: commit_seq);
2983 }
2984 for (j = 0; j < ic->journal_section_entries; j++) {
2985 struct journal_entry *je = access_journal_entry(ic, section: i, n: j);
2986
2987 journal_entry_set_unused(je);
2988 }
2989 }
2990
2991 write_journal(ic, commit_start: start_section, commit_sections: n_sections);
2992}
2993
2994static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
2995{
2996 unsigned char k;
2997
2998 for (k = 0; k < N_COMMIT_IDS; k++) {
2999 if (dm_integrity_commit_id(ic, i, j, seq: k) == id)
3000 return k;
3001 }
3002 dm_integrity_io_error(ic, msg: "journal commit id", err: -EIO);
3003 return -EIO;
3004}
3005
3006static void replay_journal(struct dm_integrity_c *ic)
3007{
3008 unsigned int i, j;
3009 bool used_commit_ids[N_COMMIT_IDS];
3010 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3011 unsigned int write_start, write_sections;
3012 unsigned int continue_section;
3013 bool journal_empty;
3014 unsigned char unused, last_used, want_commit_seq;
3015
3016 if (ic->mode == 'R')
3017 return;
3018
3019 if (ic->journal_uptodate)
3020 return;
3021
3022 last_used = 0;
3023 write_start = 0;
3024
3025 if (!ic->just_formatted) {
3026 DEBUG_print("reading journal\n");
3027 rw_journal(ic, opf: REQ_OP_READ, section: 0, n_sections: ic->journal_sections, NULL);
3028 if (ic->journal_io)
3029 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3030 if (ic->journal_io) {
3031 struct journal_completion crypt_comp;
3032
3033 crypt_comp.ic = ic;
3034 init_completion(x: &crypt_comp.comp);
3035 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3036 encrypt_journal(ic, encrypt: false, section: 0, n_sections: ic->journal_sections, comp: &crypt_comp);
3037 wait_for_completion(&crypt_comp.comp);
3038 }
3039 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3040 }
3041
3042 if (dm_integrity_failed(ic))
3043 goto clear_journal;
3044
3045 journal_empty = true;
3046 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3047 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3048 for (i = 0; i < ic->journal_sections; i++) {
3049 for (j = 0; j < ic->journal_section_sectors; j++) {
3050 int k;
3051 struct journal_sector *js = access_journal(ic, section: i, offset: j);
3052
3053 k = find_commit_seq(ic, i, j, id: js->commit_id);
3054 if (k < 0)
3055 goto clear_journal;
3056 used_commit_ids[k] = true;
3057 max_commit_id_sections[k] = i;
3058 }
3059 if (journal_empty) {
3060 for (j = 0; j < ic->journal_section_entries; j++) {
3061 struct journal_entry *je = access_journal_entry(ic, section: i, n: j);
3062
3063 if (!journal_entry_is_unused(je)) {
3064 journal_empty = false;
3065 break;
3066 }
3067 }
3068 }
3069 }
3070
3071 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3072 unused = N_COMMIT_IDS - 1;
3073 while (unused && !used_commit_ids[unused - 1])
3074 unused--;
3075 } else {
3076 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3077 if (!used_commit_ids[unused])
3078 break;
3079 if (unused == N_COMMIT_IDS) {
3080 dm_integrity_io_error(ic, msg: "journal commit ids", err: -EIO);
3081 goto clear_journal;
3082 }
3083 }
3084 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3085 unused, used_commit_ids[0], used_commit_ids[1],
3086 used_commit_ids[2], used_commit_ids[3]);
3087
3088 last_used = prev_commit_seq(seq: unused);
3089 want_commit_seq = prev_commit_seq(seq: last_used);
3090
3091 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(seq: want_commit_seq)])
3092 journal_empty = true;
3093
3094 write_start = max_commit_id_sections[last_used] + 1;
3095 if (unlikely(write_start >= ic->journal_sections))
3096 want_commit_seq = next_commit_seq(seq: want_commit_seq);
3097 wraparound_section(ic, sec_ptr: &write_start);
3098
3099 i = write_start;
3100 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3101 for (j = 0; j < ic->journal_section_sectors; j++) {
3102 struct journal_sector *js = access_journal(ic, section: i, offset: j);
3103
3104 if (js->commit_id != dm_integrity_commit_id(ic, i, j, seq: want_commit_seq)) {
3105 /*
3106 * This could be caused by crash during writing.
3107 * We won't replay the inconsistent part of the
3108 * journal.
3109 */
3110 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3111 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3112 goto brk;
3113 }
3114 }
3115 i++;
3116 if (unlikely(i >= ic->journal_sections))
3117 want_commit_seq = next_commit_seq(seq: want_commit_seq);
3118 wraparound_section(ic, sec_ptr: &i);
3119 }
3120brk:
3121
3122 if (!journal_empty) {
3123 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3124 write_sections, write_start, want_commit_seq);
3125 do_journal_write(ic, write_start, write_sections, from_replay: true);
3126 }
3127
3128 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3129 continue_section = write_start;
3130 ic->commit_seq = want_commit_seq;
3131 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3132 } else {
3133 unsigned int s;
3134 unsigned char erase_seq;
3135
3136clear_journal:
3137 DEBUG_print("clearing journal\n");
3138
3139 erase_seq = prev_commit_seq(seq: prev_commit_seq(seq: last_used));
3140 s = write_start;
3141 init_journal(ic, start_section: s, n_sections: 1, commit_seq: erase_seq);
3142 s++;
3143 wraparound_section(ic, sec_ptr: &s);
3144 if (ic->journal_sections >= 2) {
3145 init_journal(ic, start_section: s, n_sections: ic->journal_sections - 2, commit_seq: erase_seq);
3146 s += ic->journal_sections - 2;
3147 wraparound_section(ic, sec_ptr: &s);
3148 init_journal(ic, start_section: s, n_sections: 1, commit_seq: erase_seq);
3149 }
3150
3151 continue_section = 0;
3152 ic->commit_seq = next_commit_seq(seq: erase_seq);
3153 }
3154
3155 ic->committed_section = continue_section;
3156 ic->n_committed_sections = 0;
3157
3158 ic->uncommitted_section = continue_section;
3159 ic->n_uncommitted_sections = 0;
3160
3161 ic->free_section = continue_section;
3162 ic->free_section_entry = 0;
3163 ic->free_sectors = ic->journal_entries;
3164
3165 ic->journal_tree_root = RB_ROOT;
3166 for (i = 0; i < ic->journal_entries; i++)
3167 init_journal_node(node: &ic->journal_tree[i]);
3168}
3169
3170static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3171{
3172 DEBUG_print("%s\n", __func__);
3173
3174 if (ic->mode == 'B') {
3175 ic->bitmap_flush_interval = msecs_to_jiffies(m: 10) + 1;
3176 ic->synchronous_mode = 1;
3177
3178 cancel_delayed_work_sync(dwork: &ic->bitmap_flush_work);
3179 queue_delayed_work(wq: ic->commit_wq, dwork: &ic->bitmap_flush_work, delay: 0);
3180 flush_workqueue(ic->commit_wq);
3181 }
3182}
3183
3184static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3185{
3186 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3187
3188 DEBUG_print("%s\n", __func__);
3189
3190 dm_integrity_enter_synchronous_mode(ic);
3191
3192 return NOTIFY_DONE;
3193}
3194
3195static void dm_integrity_postsuspend(struct dm_target *ti)
3196{
3197 struct dm_integrity_c *ic = ti->private;
3198 int r;
3199
3200 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3201
3202 del_timer_sync(timer: &ic->autocommit_timer);
3203
3204 if (ic->recalc_wq)
3205 drain_workqueue(wq: ic->recalc_wq);
3206
3207 if (ic->mode == 'B')
3208 cancel_delayed_work_sync(dwork: &ic->bitmap_flush_work);
3209
3210 queue_work(wq: ic->commit_wq, work: &ic->commit_work);
3211 drain_workqueue(wq: ic->commit_wq);
3212
3213 if (ic->mode == 'J') {
3214 queue_work(wq: ic->writer_wq, work: &ic->writer_work);
3215 drain_workqueue(wq: ic->writer_wq);
3216 dm_integrity_flush_buffers(ic, flush_data: true);
3217 if (ic->wrote_to_journal) {
3218 init_journal(ic, start_section: ic->free_section,
3219 n_sections: ic->journal_sections - ic->free_section, commit_seq: ic->commit_seq);
3220 if (ic->free_section) {
3221 init_journal(ic, start_section: 0, n_sections: ic->free_section,
3222 commit_seq: next_commit_seq(seq: ic->commit_seq));
3223 }
3224 }
3225 }
3226
3227 if (ic->mode == 'B') {
3228 dm_integrity_flush_buffers(ic, flush_data: true);
3229#if 1
3230 /* set to 0 to test bitmap replay code */
3231 init_journal(ic, start_section: 0, n_sections: ic->journal_sections, commit_seq: 0);
3232 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3233 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3234 if (unlikely(r))
3235 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3236#endif
3237 }
3238
3239 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3240
3241 ic->journal_uptodate = true;
3242}
3243
3244static void dm_integrity_resume(struct dm_target *ti)
3245{
3246 struct dm_integrity_c *ic = ti->private;
3247 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3248 int r;
3249
3250 DEBUG_print("resume\n");
3251
3252 ic->wrote_to_journal = false;
3253
3254 if (ic->provided_data_sectors != old_provided_data_sectors) {
3255 if (ic->provided_data_sectors > old_provided_data_sectors &&
3256 ic->mode == 'B' &&
3257 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3258 rw_journal_sectors(ic, opf: REQ_OP_READ, sector: 0,
3259 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3260 block_bitmap_op(ic, bitmap: ic->journal, sector: old_provided_data_sectors,
3261 n_sectors: ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3262 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
3263 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3264 }
3265
3266 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3267 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3268 if (unlikely(r))
3269 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3270 }
3271
3272 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3273 DEBUG_print("resume dirty_bitmap\n");
3274 rw_journal_sectors(ic, opf: REQ_OP_READ, sector: 0,
3275 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3276 if (ic->mode == 'B') {
3277 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3278 !ic->reset_recalculate_flag) {
3279 block_bitmap_copy(ic, dst: ic->recalc_bitmap, src: ic->journal);
3280 block_bitmap_copy(ic, dst: ic->may_write_bitmap, src: ic->journal);
3281 if (!block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors,
3282 BITMAP_OP_TEST_ALL_CLEAR)) {
3283 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3284 ic->sb->recalc_sector = cpu_to_le64(0);
3285 }
3286 } else {
3287 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3288 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3289 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3290 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_SET);
3291 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_SET);
3292 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_SET);
3293 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
3294 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3295 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3296 ic->sb->recalc_sector = cpu_to_le64(0);
3297 }
3298 } else {
3299 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3300 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3301 ic->reset_recalculate_flag) {
3302 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3303 ic->sb->recalc_sector = cpu_to_le64(0);
3304 }
3305 init_journal(ic, start_section: 0, n_sections: ic->journal_sections, commit_seq: 0);
3306 replay_journal(ic);
3307 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3308 }
3309 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3310 if (unlikely(r))
3311 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3312 } else {
3313 replay_journal(ic);
3314 if (ic->reset_recalculate_flag) {
3315 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3316 ic->sb->recalc_sector = cpu_to_le64(0);
3317 }
3318 if (ic->mode == 'B') {
3319 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3320 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3321 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
3322 if (unlikely(r))
3323 dm_integrity_io_error(ic, msg: "writing superblock", err: r);
3324
3325 block_bitmap_op(ic, bitmap: ic->journal, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
3326 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
3327 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, sector: 0, n_sectors: ic->provided_data_sectors, BITMAP_OP_CLEAR);
3328 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3329 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3330 block_bitmap_op(ic, bitmap: ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3331 n_sectors: ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3332 block_bitmap_op(ic, bitmap: ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3333 n_sectors: ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3334 block_bitmap_op(ic, bitmap: ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3335 n_sectors: ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3336 }
3337 rw_journal_sectors(ic, opf: REQ_OP_WRITE | REQ_FUA | REQ_SYNC, sector: 0,
3338 n_sectors: ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3339 }
3340 }
3341
3342 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3343 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3344 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3345
3346 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3347 if (recalc_pos < ic->provided_data_sectors) {
3348 queue_work(wq: ic->recalc_wq, work: &ic->recalc_work);
3349 } else if (recalc_pos > ic->provided_data_sectors) {
3350 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3351 recalc_write_super(ic);
3352 }
3353 }
3354
3355 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3356 ic->reboot_notifier.next = NULL;
3357 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3358 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3359
3360#if 0
3361 /* set to 1 to stress test synchronous mode */
3362 dm_integrity_enter_synchronous_mode(ic);
3363#endif
3364}
3365
3366static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3367 unsigned int status_flags, char *result, unsigned int maxlen)
3368{
3369 struct dm_integrity_c *ic = ti->private;
3370 unsigned int arg_count;
3371 size_t sz = 0;
3372
3373 switch (type) {
3374 case STATUSTYPE_INFO:
3375 DMEMIT("%llu %llu",
3376 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3377 ic->provided_data_sectors);
3378 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3379 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3380 else
3381 DMEMIT(" -");
3382 break;
3383
3384 case STATUSTYPE_TABLE: {
3385 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3386
3387 watermark_percentage += ic->journal_entries / 2;
3388 do_div(watermark_percentage, ic->journal_entries);
3389 arg_count = 3;
3390 arg_count += !!ic->meta_dev;
3391 arg_count += ic->sectors_per_block != 1;
3392 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3393 arg_count += ic->reset_recalculate_flag;
3394 arg_count += ic->discard;
3395 arg_count += ic->mode == 'J';
3396 arg_count += ic->mode == 'J';
3397 arg_count += ic->mode == 'B';
3398 arg_count += ic->mode == 'B';
3399 arg_count += !!ic->internal_hash_alg.alg_string;
3400 arg_count += !!ic->journal_crypt_alg.alg_string;
3401 arg_count += !!ic->journal_mac_alg.alg_string;
3402 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3403 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3404 arg_count += ic->legacy_recalculate;
3405 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3406 ic->tag_size, ic->mode, arg_count);
3407 if (ic->meta_dev)
3408 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3409 if (ic->sectors_per_block != 1)
3410 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3411 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3412 DMEMIT(" recalculate");
3413 if (ic->reset_recalculate_flag)
3414 DMEMIT(" reset_recalculate");
3415 if (ic->discard)
3416 DMEMIT(" allow_discards");
3417 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3418 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3419 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3420 if (ic->mode == 'J') {
3421 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3422 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3423 }
3424 if (ic->mode == 'B') {
3425 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3426 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3427 }
3428 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3429 DMEMIT(" fix_padding");
3430 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3431 DMEMIT(" fix_hmac");
3432 if (ic->legacy_recalculate)
3433 DMEMIT(" legacy_recalculate");
3434
3435#define EMIT_ALG(a, n) \
3436 do { \
3437 if (ic->a.alg_string) { \
3438 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3439 if (ic->a.key_string) \
3440 DMEMIT(":%s", ic->a.key_string);\
3441 } \
3442 } while (0)
3443 EMIT_ALG(internal_hash_alg, "internal_hash");
3444 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3445 EMIT_ALG(journal_mac_alg, "journal_mac");
3446 break;
3447 }
3448 case STATUSTYPE_IMA:
3449 DMEMIT_TARGET_NAME_VERSION(ti->type);
3450 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3451 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3452
3453 if (ic->meta_dev)
3454 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3455 if (ic->sectors_per_block != 1)
3456 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3457
3458 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3459 'y' : 'n');
3460 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3461 DMEMIT(",fix_padding=%c",
3462 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3463 DMEMIT(",fix_hmac=%c",
3464 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3465 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3466
3467 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3468 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3469 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3470 DMEMIT(";");
3471 break;
3472 }
3473}
3474
3475static int dm_integrity_iterate_devices(struct dm_target *ti,
3476 iterate_devices_callout_fn fn, void *data)
3477{
3478 struct dm_integrity_c *ic = ti->private;
3479
3480 if (!ic->meta_dev)
3481 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3482 else
3483 return fn(ti, ic->dev, 0, ti->len, data);
3484}
3485
3486static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3487{
3488 struct dm_integrity_c *ic = ti->private;
3489
3490 if (ic->sectors_per_block > 1) {
3491 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3492 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3493 blk_limits_io_min(limits, min: ic->sectors_per_block << SECTOR_SHIFT);
3494 limits->dma_alignment = limits->logical_block_size - 1;
3495 }
3496 limits->max_integrity_segments = USHRT_MAX;
3497}
3498
3499static void calculate_journal_section_size(struct dm_integrity_c *ic)
3500{
3501 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3502
3503 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3504 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3505 JOURNAL_ENTRY_ROUNDUP);
3506
3507 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3508 sector_space -= JOURNAL_MAC_PER_SECTOR;
3509 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3510 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3511 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3512 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3513}
3514
3515static int calculate_device_limits(struct dm_integrity_c *ic)
3516{
3517 __u64 initial_sectors;
3518
3519 calculate_journal_section_size(ic);
3520 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3521 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3522 return -EINVAL;
3523 ic->initial_sectors = initial_sectors;
3524
3525 if (!ic->meta_dev) {
3526 sector_t last_sector, last_area, last_offset;
3527
3528 /* we have to maintain excessive padding for compatibility with existing volumes */
3529 __u64 metadata_run_padding =
3530 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3531 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3532 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3533
3534 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3535 metadata_run_padding) >> SECTOR_SHIFT;
3536 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3537 ic->log2_metadata_run = __ffs(ic->metadata_run);
3538 else
3539 ic->log2_metadata_run = -1;
3540
3541 get_area_and_offset(ic, data_sector: ic->provided_data_sectors - 1, area: &last_area, offset: &last_offset);
3542 last_sector = get_data_sector(ic, area: last_area, offset: last_offset);
3543 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3544 return -EINVAL;
3545 } else {
3546 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3547
3548 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3549 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3550 meta_size <<= ic->log2_buffer_sectors;
3551 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3552 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3553 return -EINVAL;
3554 ic->metadata_run = 1;
3555 ic->log2_metadata_run = 0;
3556 }
3557
3558 return 0;
3559}
3560
3561static void get_provided_data_sectors(struct dm_integrity_c *ic)
3562{
3563 if (!ic->meta_dev) {
3564 int test_bit;
3565
3566 ic->provided_data_sectors = 0;
3567 for (test_bit = fls64(x: ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3568 __u64 prev_data_sectors = ic->provided_data_sectors;
3569
3570 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3571 if (calculate_device_limits(ic))
3572 ic->provided_data_sectors = prev_data_sectors;
3573 }
3574 } else {
3575 ic->provided_data_sectors = ic->data_device_sectors;
3576 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3577 }
3578}
3579
3580static int initialize_superblock(struct dm_integrity_c *ic,
3581 unsigned int journal_sectors, unsigned int interleave_sectors)
3582{
3583 unsigned int journal_sections;
3584 int test_bit;
3585
3586 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3587 memcpy(ic->sb->magic, SB_MAGIC, 8);
3588 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3589 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3590 if (ic->journal_mac_alg.alg_string)
3591 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3592
3593 calculate_journal_section_size(ic);
3594 journal_sections = journal_sectors / ic->journal_section_sectors;
3595 if (!journal_sections)
3596 journal_sections = 1;
3597
3598 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3599 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3600 get_random_bytes(buf: ic->sb->salt, SALT_SIZE);
3601 }
3602
3603 if (!ic->meta_dev) {
3604 if (ic->fix_padding)
3605 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3606 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3607 if (!interleave_sectors)
3608 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3609 ic->sb->log2_interleave_sectors = __fls(word: interleave_sectors);
3610 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3611 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3612
3613 get_provided_data_sectors(ic);
3614 if (!ic->provided_data_sectors)
3615 return -EINVAL;
3616 } else {
3617 ic->sb->log2_interleave_sectors = 0;
3618
3619 get_provided_data_sectors(ic);
3620 if (!ic->provided_data_sectors)
3621 return -EINVAL;
3622
3623try_smaller_buffer:
3624 ic->sb->journal_sections = cpu_to_le32(0);
3625 for (test_bit = fls(x: journal_sections) - 1; test_bit >= 0; test_bit--) {
3626 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3627 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3628
3629 if (test_journal_sections > journal_sections)
3630 continue;
3631 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3632 if (calculate_device_limits(ic))
3633 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3634
3635 }
3636 if (!le32_to_cpu(ic->sb->journal_sections)) {
3637 if (ic->log2_buffer_sectors > 3) {
3638 ic->log2_buffer_sectors--;
3639 goto try_smaller_buffer;
3640 }
3641 return -EINVAL;
3642 }
3643 }
3644
3645 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3646
3647 sb_set_version(ic);
3648
3649 return 0;
3650}
3651
3652static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3653{
3654 struct gendisk *disk = dm_disk(md: dm_table_get_md(t: ti->table));
3655 struct blk_integrity bi;
3656
3657 memset(&bi, 0, sizeof(bi));
3658 bi.profile = &dm_integrity_profile;
3659 bi.tuple_size = ic->tag_size;
3660 bi.tag_size = bi.tuple_size;
3661 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3662
3663 blk_integrity_register(disk, &bi);
3664}
3665
3666static void dm_integrity_free_page_list(struct page_list *pl)
3667{
3668 unsigned int i;
3669
3670 if (!pl)
3671 return;
3672 for (i = 0; pl[i].page; i++)
3673 __free_page(pl[i].page);
3674 kvfree(addr: pl);
3675}
3676
3677static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
3678{
3679 struct page_list *pl;
3680 unsigned int i;
3681
3682 pl = kvmalloc_array(n: n_pages + 1, size: sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3683 if (!pl)
3684 return NULL;
3685
3686 for (i = 0; i < n_pages; i++) {
3687 pl[i].page = alloc_page(GFP_KERNEL);
3688 if (!pl[i].page) {
3689 dm_integrity_free_page_list(pl);
3690 return NULL;
3691 }
3692 if (i)
3693 pl[i - 1].next = &pl[i];
3694 }
3695 pl[i].page = NULL;
3696 pl[i].next = NULL;
3697
3698 return pl;
3699}
3700
3701static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3702{
3703 unsigned int i;
3704
3705 for (i = 0; i < ic->journal_sections; i++)
3706 kvfree(addr: sl[i]);
3707 kvfree(addr: sl);
3708}
3709
3710static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3711 struct page_list *pl)
3712{
3713 struct scatterlist **sl;
3714 unsigned int i;
3715
3716 sl = kvmalloc_array(n: ic->journal_sections,
3717 size: sizeof(struct scatterlist *),
3718 GFP_KERNEL | __GFP_ZERO);
3719 if (!sl)
3720 return NULL;
3721
3722 for (i = 0; i < ic->journal_sections; i++) {
3723 struct scatterlist *s;
3724 unsigned int start_index, start_offset;
3725 unsigned int end_index, end_offset;
3726 unsigned int n_pages;
3727 unsigned int idx;
3728
3729 page_list_location(ic, section: i, offset: 0, pl_index: &start_index, pl_offset: &start_offset);
3730 page_list_location(ic, section: i, offset: ic->journal_section_sectors - 1,
3731 pl_index: &end_index, pl_offset: &end_offset);
3732
3733 n_pages = (end_index - start_index + 1);
3734
3735 s = kvmalloc_array(n: n_pages, size: sizeof(struct scatterlist),
3736 GFP_KERNEL);
3737 if (!s) {
3738 dm_integrity_free_journal_scatterlist(ic, sl);
3739 return NULL;
3740 }
3741
3742 sg_init_table(s, n_pages);
3743 for (idx = start_index; idx <= end_index; idx++) {
3744 char *va = lowmem_page_address(page: pl[idx].page);
3745 unsigned int start = 0, end = PAGE_SIZE;
3746
3747 if (idx == start_index)
3748 start = start_offset;
3749 if (idx == end_index)
3750 end = end_offset + (1 << SECTOR_SHIFT);
3751 sg_set_buf(sg: &s[idx - start_index], buf: va + start, buflen: end - start);
3752 }
3753
3754 sl[i] = s;
3755 }
3756
3757 return sl;
3758}
3759
3760static void free_alg(struct alg_spec *a)
3761{
3762 kfree_sensitive(objp: a->alg_string);
3763 kfree_sensitive(objp: a->key);
3764 memset(a, 0, sizeof(*a));
3765}
3766
3767static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3768{
3769 char *k;
3770
3771 free_alg(a);
3772
3773 a->alg_string = kstrdup(s: strchr(arg, ':') + 1, GFP_KERNEL);
3774 if (!a->alg_string)
3775 goto nomem;
3776
3777 k = strchr(a->alg_string, ':');
3778 if (k) {
3779 *k = 0;
3780 a->key_string = k + 1;
3781 if (strlen(a->key_string) & 1)
3782 goto inval;
3783
3784 a->key_size = strlen(a->key_string) / 2;
3785 a->key = kmalloc(size: a->key_size, GFP_KERNEL);
3786 if (!a->key)
3787 goto nomem;
3788 if (hex2bin(dst: a->key, src: a->key_string, count: a->key_size))
3789 goto inval;
3790 }
3791
3792 return 0;
3793inval:
3794 *error = error_inval;
3795 return -EINVAL;
3796nomem:
3797 *error = "Out of memory for an argument";
3798 return -ENOMEM;
3799}
3800
3801static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3802 char *error_alg, char *error_key)
3803{
3804 int r;
3805
3806 if (a->alg_string) {
3807 *hash = crypto_alloc_shash(alg_name: a->alg_string, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3808 if (IS_ERR(ptr: *hash)) {
3809 *error = error_alg;
3810 r = PTR_ERR(ptr: *hash);
3811 *hash = NULL;
3812 return r;
3813 }
3814
3815 if (a->key) {
3816 r = crypto_shash_setkey(tfm: *hash, key: a->key, keylen: a->key_size);
3817 if (r) {
3818 *error = error_key;
3819 return r;
3820 }
3821 } else if (crypto_shash_get_flags(tfm: *hash) & CRYPTO_TFM_NEED_KEY) {
3822 *error = error_key;
3823 return -ENOKEY;
3824 }
3825 }
3826
3827 return 0;
3828}
3829
3830static int create_journal(struct dm_integrity_c *ic, char **error)
3831{
3832 int r = 0;
3833 unsigned int i;
3834 __u64 journal_pages, journal_desc_size, journal_tree_size;
3835 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3836 struct skcipher_request *req = NULL;
3837
3838 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3839 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3840 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3841 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3842
3843 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3844 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3845 journal_desc_size = journal_pages * sizeof(struct page_list);
3846 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3847 *error = "Journal doesn't fit into memory";
3848 r = -ENOMEM;
3849 goto bad;
3850 }
3851 ic->journal_pages = journal_pages;
3852
3853 ic->journal = dm_integrity_alloc_page_list(n_pages: ic->journal_pages);
3854 if (!ic->journal) {
3855 *error = "Could not allocate memory for journal";
3856 r = -ENOMEM;
3857 goto bad;
3858 }
3859 if (ic->journal_crypt_alg.alg_string) {
3860 unsigned int ivsize, blocksize;
3861 struct journal_completion comp;
3862
3863 comp.ic = ic;
3864 ic->journal_crypt = crypto_alloc_skcipher(alg_name: ic->journal_crypt_alg.alg_string, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3865 if (IS_ERR(ptr: ic->journal_crypt)) {
3866 *error = "Invalid journal cipher";
3867 r = PTR_ERR(ptr: ic->journal_crypt);
3868 ic->journal_crypt = NULL;
3869 goto bad;
3870 }
3871 ivsize = crypto_skcipher_ivsize(tfm: ic->journal_crypt);
3872 blocksize = crypto_skcipher_blocksize(tfm: ic->journal_crypt);
3873
3874 if (ic->journal_crypt_alg.key) {
3875 r = crypto_skcipher_setkey(tfm: ic->journal_crypt, key: ic->journal_crypt_alg.key,
3876 keylen: ic->journal_crypt_alg.key_size);
3877 if (r) {
3878 *error = "Error setting encryption key";
3879 goto bad;
3880 }
3881 }
3882 DEBUG_print("cipher %s, block size %u iv size %u\n",
3883 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3884
3885 ic->journal_io = dm_integrity_alloc_page_list(n_pages: ic->journal_pages);
3886 if (!ic->journal_io) {
3887 *error = "Could not allocate memory for journal io";
3888 r = -ENOMEM;
3889 goto bad;
3890 }
3891
3892 if (blocksize == 1) {
3893 struct scatterlist *sg;
3894
3895 req = skcipher_request_alloc(tfm: ic->journal_crypt, GFP_KERNEL);
3896 if (!req) {
3897 *error = "Could not allocate crypt request";
3898 r = -ENOMEM;
3899 goto bad;
3900 }
3901
3902 crypt_iv = kzalloc(size: ivsize, GFP_KERNEL);
3903 if (!crypt_iv) {
3904 *error = "Could not allocate iv";
3905 r = -ENOMEM;
3906 goto bad;
3907 }
3908
3909 ic->journal_xor = dm_integrity_alloc_page_list(n_pages: ic->journal_pages);
3910 if (!ic->journal_xor) {
3911 *error = "Could not allocate memory for journal xor";
3912 r = -ENOMEM;
3913 goto bad;
3914 }
3915
3916 sg = kvmalloc_array(n: ic->journal_pages + 1,
3917 size: sizeof(struct scatterlist),
3918 GFP_KERNEL);
3919 if (!sg) {
3920 *error = "Unable to allocate sg list";
3921 r = -ENOMEM;
3922 goto bad;
3923 }
3924 sg_init_table(sg, ic->journal_pages + 1);
3925 for (i = 0; i < ic->journal_pages; i++) {
3926 char *va = lowmem_page_address(page: ic->journal_xor[i].page);
3927
3928 clear_page(page: va);
3929 sg_set_buf(sg: &sg[i], buf: va, PAGE_SIZE);
3930 }
3931 sg_set_buf(sg: &sg[i], buf: &ic->commit_ids, buflen: sizeof(ic->commit_ids));
3932
3933 skcipher_request_set_crypt(req, src: sg, dst: sg,
3934 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), iv: crypt_iv);
3935 init_completion(x: &comp.comp);
3936 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3937 if (do_crypt(encrypt: true, req, comp: &comp))
3938 wait_for_completion(&comp.comp);
3939 kvfree(addr: sg);
3940 r = dm_integrity_failed(ic);
3941 if (r) {
3942 *error = "Unable to encrypt journal";
3943 goto bad;
3944 }
3945 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3946
3947 crypto_free_skcipher(tfm: ic->journal_crypt);
3948 ic->journal_crypt = NULL;
3949 } else {
3950 unsigned int crypt_len = roundup(ivsize, blocksize);
3951
3952 req = skcipher_request_alloc(tfm: ic->journal_crypt, GFP_KERNEL);
3953 if (!req) {
3954 *error = "Could not allocate crypt request";
3955 r = -ENOMEM;
3956 goto bad;
3957 }
3958
3959 crypt_iv = kmalloc(size: ivsize, GFP_KERNEL);
3960 if (!crypt_iv) {
3961 *error = "Could not allocate iv";
3962 r = -ENOMEM;
3963 goto bad;
3964 }
3965
3966 crypt_data = kmalloc(size: crypt_len, GFP_KERNEL);
3967 if (!crypt_data) {
3968 *error = "Unable to allocate crypt data";
3969 r = -ENOMEM;
3970 goto bad;
3971 }
3972
3973 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, pl: ic->journal);
3974 if (!ic->journal_scatterlist) {
3975 *error = "Unable to allocate sg list";
3976 r = -ENOMEM;
3977 goto bad;
3978 }
3979 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, pl: ic->journal_io);
3980 if (!ic->journal_io_scatterlist) {
3981 *error = "Unable to allocate sg list";
3982 r = -ENOMEM;
3983 goto bad;
3984 }
3985 ic->sk_requests = kvmalloc_array(n: ic->journal_sections,
3986 size: sizeof(struct skcipher_request *),
3987 GFP_KERNEL | __GFP_ZERO);
3988 if (!ic->sk_requests) {
3989 *error = "Unable to allocate sk requests";
3990 r = -ENOMEM;
3991 goto bad;
3992 }
3993 for (i = 0; i < ic->journal_sections; i++) {
3994 struct scatterlist sg;
3995 struct skcipher_request *section_req;
3996 __le32 section_le = cpu_to_le32(i);
3997
3998 memset(crypt_iv, 0x00, ivsize);
3999 memset(crypt_data, 0x00, crypt_len);
4000 memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4001
4002 sg_init_one(&sg, crypt_data, crypt_len);
4003 skcipher_request_set_crypt(req, src: &sg, dst: &sg, cryptlen: crypt_len, iv: crypt_iv);
4004 init_completion(x: &comp.comp);
4005 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4006 if (do_crypt(encrypt: true, req, comp: &comp))
4007 wait_for_completion(&comp.comp);
4008
4009 r = dm_integrity_failed(ic);
4010 if (r) {
4011 *error = "Unable to generate iv";
4012 goto bad;
4013 }
4014
4015 section_req = skcipher_request_alloc(tfm: ic->journal_crypt, GFP_KERNEL);
4016 if (!section_req) {
4017 *error = "Unable to allocate crypt request";
4018 r = -ENOMEM;
4019 goto bad;
4020 }
4021 section_req->iv = kmalloc_array(n: ivsize, size: 2,
4022 GFP_KERNEL);
4023 if (!section_req->iv) {
4024 skcipher_request_free(req: section_req);
4025 *error = "Unable to allocate iv";
4026 r = -ENOMEM;
4027 goto bad;
4028 }
4029 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4030 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4031 ic->sk_requests[i] = section_req;
4032 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4033 }
4034 }
4035 }
4036
4037 for (i = 0; i < N_COMMIT_IDS; i++) {
4038 unsigned int j;
4039
4040retest_commit_id:
4041 for (j = 0; j < i; j++) {
4042 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4043 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4044 goto retest_commit_id;
4045 }
4046 }
4047 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4048 }
4049
4050 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4051 if (journal_tree_size > ULONG_MAX) {
4052 *error = "Journal doesn't fit into memory";
4053 r = -ENOMEM;
4054 goto bad;
4055 }
4056 ic->journal_tree = kvmalloc(size: journal_tree_size, GFP_KERNEL);
4057 if (!ic->journal_tree) {
4058 *error = "Could not allocate memory for journal tree";
4059 r = -ENOMEM;
4060 }
4061bad:
4062 kfree(objp: crypt_data);
4063 kfree(objp: crypt_iv);
4064 skcipher_request_free(req);
4065
4066 return r;
4067}
4068
4069/*
4070 * Construct a integrity mapping
4071 *
4072 * Arguments:
4073 * device
4074 * offset from the start of the device
4075 * tag size
4076 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4077 * number of optional arguments
4078 * optional arguments:
4079 * journal_sectors
4080 * interleave_sectors
4081 * buffer_sectors
4082 * journal_watermark
4083 * commit_time
4084 * meta_device
4085 * block_size
4086 * sectors_per_bit
4087 * bitmap_flush_interval
4088 * internal_hash
4089 * journal_crypt
4090 * journal_mac
4091 * recalculate
4092 */
4093static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4094{
4095 struct dm_integrity_c *ic;
4096 char dummy;
4097 int r;
4098 unsigned int extra_args;
4099 struct dm_arg_set as;
4100 static const struct dm_arg _args[] = {
4101 {0, 18, "Invalid number of feature args"},
4102 };
4103 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4104 bool should_write_sb;
4105 __u64 threshold;
4106 unsigned long long start;
4107 __s8 log2_sectors_per_bitmap_bit = -1;
4108 __s8 log2_blocks_per_bitmap_bit;
4109 __u64 bits_in_journal;
4110 __u64 n_bitmap_bits;
4111
4112#define DIRECT_ARGUMENTS 4
4113
4114 if (argc <= DIRECT_ARGUMENTS) {
4115 ti->error = "Invalid argument count";
4116 return -EINVAL;
4117 }
4118
4119 ic = kzalloc(size: sizeof(struct dm_integrity_c), GFP_KERNEL);
4120 if (!ic) {
4121 ti->error = "Cannot allocate integrity context";
4122 return -ENOMEM;
4123 }
4124 ti->private = ic;
4125 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4126 ic->ti = ti;
4127
4128 ic->in_progress = RB_ROOT;
4129 INIT_LIST_HEAD(list: &ic->wait_list);
4130 init_waitqueue_head(&ic->endio_wait);
4131 bio_list_init(bl: &ic->flush_bio_list);
4132 init_waitqueue_head(&ic->copy_to_journal_wait);
4133 init_completion(x: &ic->crypto_backoff);
4134 atomic64_set(v: &ic->number_of_mismatches, i: 0);
4135 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4136
4137 r = dm_get_device(ti, path: argv[0], mode: dm_table_get_mode(t: ti->table), result: &ic->dev);
4138 if (r) {
4139 ti->error = "Device lookup failed";
4140 goto bad;
4141 }
4142
4143 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4144 ti->error = "Invalid starting offset";
4145 r = -EINVAL;
4146 goto bad;
4147 }
4148 ic->start = start;
4149
4150 if (strcmp(argv[2], "-")) {
4151 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4152 ti->error = "Invalid tag size";
4153 r = -EINVAL;
4154 goto bad;
4155 }
4156 }
4157
4158 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4159 !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4160 ic->mode = argv[3][0];
4161 } else {
4162 ti->error = "Invalid mode (expecting J, B, D, R)";
4163 r = -EINVAL;
4164 goto bad;
4165 }
4166
4167 journal_sectors = 0;
4168 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4169 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4170 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4171 sync_msec = DEFAULT_SYNC_MSEC;
4172 ic->sectors_per_block = 1;
4173
4174 as.argc = argc - DIRECT_ARGUMENTS;
4175 as.argv = argv + DIRECT_ARGUMENTS;
4176 r = dm_read_arg_group(arg: _args, arg_set: &as, num_args: &extra_args, error: &ti->error);
4177 if (r)
4178 goto bad;
4179
4180 while (extra_args--) {
4181 const char *opt_string;
4182 unsigned int val;
4183 unsigned long long llval;
4184
4185 opt_string = dm_shift_arg(as: &as);
4186 if (!opt_string) {
4187 r = -EINVAL;
4188 ti->error = "Not enough feature arguments";
4189 goto bad;
4190 }
4191 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4192 journal_sectors = val ? val : 1;
4193 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4194 interleave_sectors = val;
4195 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4196 buffer_sectors = val;
4197 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4198 journal_watermark = val;
4199 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4200 sync_msec = val;
4201 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4202 if (ic->meta_dev) {
4203 dm_put_device(ti, d: ic->meta_dev);
4204 ic->meta_dev = NULL;
4205 }
4206 r = dm_get_device(ti, path: strchr(opt_string, ':') + 1,
4207 mode: dm_table_get_mode(t: ti->table), result: &ic->meta_dev);
4208 if (r) {
4209 ti->error = "Device lookup failed";
4210 goto bad;
4211 }
4212 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4213 if (val < 1 << SECTOR_SHIFT ||
4214 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4215 (val & (val - 1))) {
4216 r = -EINVAL;
4217 ti->error = "Invalid block_size argument";
4218 goto bad;
4219 }
4220 ic->sectors_per_block = val >> SECTOR_SHIFT;
4221 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4222 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(n: llval);
4223 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4224 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4225 r = -EINVAL;
4226 ti->error = "Invalid bitmap_flush_interval argument";
4227 goto bad;
4228 }
4229 ic->bitmap_flush_interval = msecs_to_jiffies(m: val);
4230 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4231 r = get_alg_and_key(arg: opt_string, a: &ic->internal_hash_alg, error: &ti->error,
4232 error_inval: "Invalid internal_hash argument");
4233 if (r)
4234 goto bad;
4235 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4236 r = get_alg_and_key(arg: opt_string, a: &ic->journal_crypt_alg, error: &ti->error,
4237 error_inval: "Invalid journal_crypt argument");
4238 if (r)
4239 goto bad;
4240 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4241 r = get_alg_and_key(arg: opt_string, a: &ic->journal_mac_alg, error: &ti->error,
4242 error_inval: "Invalid journal_mac argument");
4243 if (r)
4244 goto bad;
4245 } else if (!strcmp(opt_string, "recalculate")) {
4246 ic->recalculate_flag = true;
4247 } else if (!strcmp(opt_string, "reset_recalculate")) {
4248 ic->recalculate_flag = true;
4249 ic->reset_recalculate_flag = true;
4250 } else if (!strcmp(opt_string, "allow_discards")) {
4251 ic->discard = true;
4252 } else if (!strcmp(opt_string, "fix_padding")) {
4253 ic->fix_padding = true;
4254 } else if (!strcmp(opt_string, "fix_hmac")) {
4255 ic->fix_hmac = true;
4256 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4257 ic->legacy_recalculate = true;
4258 } else {
4259 r = -EINVAL;
4260 ti->error = "Invalid argument";
4261 goto bad;
4262 }
4263 }
4264
4265 ic->data_device_sectors = bdev_nr_sectors(bdev: ic->dev->bdev);
4266 if (!ic->meta_dev)
4267 ic->meta_device_sectors = ic->data_device_sectors;
4268 else
4269 ic->meta_device_sectors = bdev_nr_sectors(bdev: ic->meta_dev->bdev);
4270
4271 if (!journal_sectors) {
4272 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4273 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4274 }
4275
4276 if (!buffer_sectors)
4277 buffer_sectors = 1;
4278 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4279
4280 r = get_mac(hash: &ic->internal_hash, a: &ic->internal_hash_alg, error: &ti->error,
4281 error_alg: "Invalid internal hash", error_key: "Error setting internal hash key");
4282 if (r)
4283 goto bad;
4284
4285 r = get_mac(hash: &ic->journal_mac, a: &ic->journal_mac_alg, error: &ti->error,
4286 error_alg: "Invalid journal mac", error_key: "Error setting journal mac key");
4287 if (r)
4288 goto bad;
4289
4290 if (!ic->tag_size) {
4291 if (!ic->internal_hash) {
4292 ti->error = "Unknown tag size";
4293 r = -EINVAL;
4294 goto bad;
4295 }
4296 ic->tag_size = crypto_shash_digestsize(tfm: ic->internal_hash);
4297 }
4298 if (ic->tag_size > MAX_TAG_SIZE) {
4299 ti->error = "Too big tag size";
4300 r = -EINVAL;
4301 goto bad;
4302 }
4303 if (!(ic->tag_size & (ic->tag_size - 1)))
4304 ic->log2_tag_size = __ffs(ic->tag_size);
4305 else
4306 ic->log2_tag_size = -1;
4307
4308 if (ic->mode == 'B' && !ic->internal_hash) {
4309 r = -EINVAL;
4310 ti->error = "Bitmap mode can be only used with internal hash";
4311 goto bad;
4312 }
4313
4314 if (ic->discard && !ic->internal_hash) {
4315 r = -EINVAL;
4316 ti->error = "Discard can be only used with internal hash";
4317 goto bad;
4318 }
4319
4320 ic->autocommit_jiffies = msecs_to_jiffies(m: sync_msec);
4321 ic->autocommit_msec = sync_msec;
4322 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4323
4324 ic->io = dm_io_client_create();
4325 if (IS_ERR(ptr: ic->io)) {
4326 r = PTR_ERR(ptr: ic->io);
4327 ic->io = NULL;
4328 ti->error = "Cannot allocate dm io";
4329 goto bad;
4330 }
4331
4332 r = mempool_init_slab_pool(pool: &ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, kc: journal_io_cache);
4333 if (r) {
4334 ti->error = "Cannot allocate mempool";
4335 goto bad;
4336 }
4337
4338 r = mempool_init_page_pool(pool: &ic->recheck_pool, min_nr: 1, order: 0);
4339 if (r) {
4340 ti->error = "Cannot allocate mempool";
4341 goto bad;
4342 }
4343
4344 ic->metadata_wq = alloc_workqueue(fmt: "dm-integrity-metadata",
4345 flags: WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4346 if (!ic->metadata_wq) {
4347 ti->error = "Cannot allocate workqueue";
4348 r = -ENOMEM;
4349 goto bad;
4350 }
4351
4352 /*
4353 * If this workqueue weren't ordered, it would cause bio reordering
4354 * and reduced performance.
4355 */
4356 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4357 if (!ic->wait_wq) {
4358 ti->error = "Cannot allocate workqueue";
4359 r = -ENOMEM;
4360 goto bad;
4361 }
4362
4363 ic->offload_wq = alloc_workqueue(fmt: "dm-integrity-offload", flags: WQ_MEM_RECLAIM,
4364 METADATA_WORKQUEUE_MAX_ACTIVE);
4365 if (!ic->offload_wq) {
4366 ti->error = "Cannot allocate workqueue";
4367 r = -ENOMEM;
4368 goto bad;
4369 }
4370
4371 ic->commit_wq = alloc_workqueue(fmt: "dm-integrity-commit", flags: WQ_MEM_RECLAIM, max_active: 1);
4372 if (!ic->commit_wq) {
4373 ti->error = "Cannot allocate workqueue";
4374 r = -ENOMEM;
4375 goto bad;
4376 }
4377 INIT_WORK(&ic->commit_work, integrity_commit);
4378
4379 if (ic->mode == 'J' || ic->mode == 'B') {
4380 ic->writer_wq = alloc_workqueue(fmt: "dm-integrity-writer", flags: WQ_MEM_RECLAIM, max_active: 1);
4381 if (!ic->writer_wq) {
4382 ti->error = "Cannot allocate workqueue";
4383 r = -ENOMEM;
4384 goto bad;
4385 }
4386 INIT_WORK(&ic->writer_work, integrity_writer);
4387 }
4388
4389 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4390 if (!ic->sb) {
4391 r = -ENOMEM;
4392 ti->error = "Cannot allocate superblock area";
4393 goto bad;
4394 }
4395
4396 r = sync_rw_sb(ic, opf: REQ_OP_READ);
4397 if (r) {
4398 ti->error = "Error reading superblock";
4399 goto bad;
4400 }
4401 should_write_sb = false;
4402 if (memcmp(p: ic->sb->magic, SB_MAGIC, size: 8)) {
4403 if (ic->mode != 'R') {
4404 if (memchr_inv(p: ic->sb, c: 0, SB_SECTORS << SECTOR_SHIFT)) {
4405 r = -EINVAL;
4406 ti->error = "The device is not initialized";
4407 goto bad;
4408 }
4409 }
4410
4411 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4412 if (r) {
4413 ti->error = "Could not initialize superblock";
4414 goto bad;
4415 }
4416 if (ic->mode != 'R')
4417 should_write_sb = true;
4418 }
4419
4420 if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4421 r = -EINVAL;
4422 ti->error = "Unknown version";
4423 goto bad;
4424 }
4425 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4426 r = -EINVAL;
4427 ti->error = "Tag size doesn't match the information in superblock";
4428 goto bad;
4429 }
4430 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4431 r = -EINVAL;
4432 ti->error = "Block size doesn't match the information in superblock";
4433 goto bad;
4434 }
4435 if (!le32_to_cpu(ic->sb->journal_sections)) {
4436 r = -EINVAL;
4437 ti->error = "Corrupted superblock, journal_sections is 0";
4438 goto bad;
4439 }
4440 /* make sure that ti->max_io_len doesn't overflow */
4441 if (!ic->meta_dev) {
4442 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4443 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4444 r = -EINVAL;
4445 ti->error = "Invalid interleave_sectors in the superblock";
4446 goto bad;
4447 }
4448 } else {
4449 if (ic->sb->log2_interleave_sectors) {
4450 r = -EINVAL;
4451 ti->error = "Invalid interleave_sectors in the superblock";
4452 goto bad;
4453 }
4454 }
4455 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4456 r = -EINVAL;
4457 ti->error = "Journal mac mismatch";
4458 goto bad;
4459 }
4460
4461 get_provided_data_sectors(ic);
4462 if (!ic->provided_data_sectors) {
4463 r = -EINVAL;
4464 ti->error = "The device is too small";
4465 goto bad;
4466 }
4467
4468try_smaller_buffer:
4469 r = calculate_device_limits(ic);
4470 if (r) {
4471 if (ic->meta_dev) {
4472 if (ic->log2_buffer_sectors > 3) {
4473 ic->log2_buffer_sectors--;
4474 goto try_smaller_buffer;
4475 }
4476 }
4477 ti->error = "The device is too small";
4478 goto bad;
4479 }
4480
4481 if (log2_sectors_per_bitmap_bit < 0)
4482 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4483 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4484 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4485
4486 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4487 if (bits_in_journal > UINT_MAX)
4488 bits_in_journal = UINT_MAX;
4489 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4490 log2_sectors_per_bitmap_bit++;
4491
4492 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4493 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4494 if (should_write_sb)
4495 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4496
4497 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4498 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4499 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4500
4501 if (!ic->meta_dev)
4502 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4503
4504 if (ti->len > ic->provided_data_sectors) {
4505 r = -EINVAL;
4506 ti->error = "Not enough provided sectors for requested mapping size";
4507 goto bad;
4508 }
4509
4510
4511 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4512 threshold += 50;
4513 do_div(threshold, 100);
4514 ic->free_sectors_threshold = threshold;
4515
4516 DEBUG_print("initialized:\n");
4517 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4518 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
4519 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4520 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
4521 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
4522 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
4523 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
4524 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4525 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4526 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
4527 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
4528 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
4529 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4530 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4531 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
4532
4533 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4534 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4535 ic->sb->recalc_sector = cpu_to_le64(0);
4536 }
4537
4538 if (ic->internal_hash) {
4539 ic->recalc_wq = alloc_workqueue(fmt: "dm-integrity-recalc", flags: WQ_MEM_RECLAIM, max_active: 1);
4540 if (!ic->recalc_wq) {
4541 ti->error = "Cannot allocate workqueue";
4542 r = -ENOMEM;
4543 goto bad;
4544 }
4545 INIT_WORK(&ic->recalc_work, integrity_recalc);
4546 } else {
4547 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4548 ti->error = "Recalculate can only be specified with internal_hash";
4549 r = -EINVAL;
4550 goto bad;
4551 }
4552 }
4553
4554 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4555 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4556 dm_integrity_disable_recalculate(ic)) {
4557 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4558 r = -EOPNOTSUPP;
4559 goto bad;
4560 }
4561
4562 ic->bufio = dm_bufio_client_create(bdev: ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4563 block_size: 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), reserved_buffers: 1, aux_size: 0, NULL, NULL, flags: 0);
4564 if (IS_ERR(ptr: ic->bufio)) {
4565 r = PTR_ERR(ptr: ic->bufio);
4566 ti->error = "Cannot initialize dm-bufio";
4567 ic->bufio = NULL;
4568 goto bad;
4569 }
4570 dm_bufio_set_sector_offset(c: ic->bufio, start: ic->start + ic->initial_sectors);
4571
4572 if (ic->mode != 'R') {
4573 r = create_journal(ic, error: &ti->error);
4574 if (r)
4575 goto bad;
4576
4577 }
4578
4579 if (ic->mode == 'B') {
4580 unsigned int i;
4581 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4582
4583 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_pages: n_bitmap_pages);
4584 if (!ic->recalc_bitmap) {
4585 r = -ENOMEM;
4586 goto bad;
4587 }
4588 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_pages: n_bitmap_pages);
4589 if (!ic->may_write_bitmap) {
4590 r = -ENOMEM;
4591 goto bad;
4592 }
4593 ic->bbs = kvmalloc_array(n: ic->n_bitmap_blocks, size: sizeof(struct bitmap_block_status), GFP_KERNEL);
4594 if (!ic->bbs) {
4595 r = -ENOMEM;
4596 goto bad;
4597 }
4598 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4599 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4600 struct bitmap_block_status *bbs = &ic->bbs[i];
4601 unsigned int sector, pl_index, pl_offset;
4602
4603 INIT_WORK(&bbs->work, bitmap_block_work);
4604 bbs->ic = ic;
4605 bbs->idx = i;
4606 bio_list_init(bl: &bbs->bio_queue);
4607 spin_lock_init(&bbs->bio_queue_lock);
4608
4609 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4610 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4611 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4612
4613 bbs->bitmap = lowmem_page_address(page: ic->journal[pl_index].page) + pl_offset;
4614 }
4615 }
4616
4617 if (should_write_sb) {
4618 init_journal(ic, start_section: 0, n_sections: ic->journal_sections, commit_seq: 0);
4619 r = dm_integrity_failed(ic);
4620 if (unlikely(r)) {
4621 ti->error = "Error initializing journal";
4622 goto bad;
4623 }
4624 r = sync_rw_sb(ic, opf: REQ_OP_WRITE | REQ_FUA);
4625 if (r) {
4626 ti->error = "Error initializing superblock";
4627 goto bad;
4628 }
4629 ic->just_formatted = true;
4630 }
4631
4632 if (!ic->meta_dev) {
4633 r = dm_set_target_max_io_len(ti, len: 1U << ic->sb->log2_interleave_sectors);
4634 if (r)
4635 goto bad;
4636 }
4637 if (ic->mode == 'B') {
4638 unsigned int max_io_len;
4639
4640 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4641 if (!max_io_len)
4642 max_io_len = 1U << 31;
4643 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4644 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4645 r = dm_set_target_max_io_len(ti, len: max_io_len);
4646 if (r)
4647 goto bad;
4648 }
4649 }
4650
4651 if (!ic->internal_hash)
4652 dm_integrity_set(ti, ic);
4653
4654 ti->num_flush_bios = 1;
4655 ti->flush_supported = true;
4656 if (ic->discard)
4657 ti->num_discard_bios = 1;
4658
4659 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1);
4660 return 0;
4661
4662bad:
4663 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0);
4664 dm_integrity_dtr(ti);
4665 return r;
4666}
4667
4668static void dm_integrity_dtr(struct dm_target *ti)
4669{
4670 struct dm_integrity_c *ic = ti->private;
4671
4672 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4673 BUG_ON(!list_empty(&ic->wait_list));
4674
4675 if (ic->mode == 'B')
4676 cancel_delayed_work_sync(dwork: &ic->bitmap_flush_work);
4677 if (ic->metadata_wq)
4678 destroy_workqueue(wq: ic->metadata_wq);
4679 if (ic->wait_wq)
4680 destroy_workqueue(wq: ic->wait_wq);
4681 if (ic->offload_wq)
4682 destroy_workqueue(wq: ic->offload_wq);
4683 if (ic->commit_wq)
4684 destroy_workqueue(wq: ic->commit_wq);
4685 if (ic->writer_wq)
4686 destroy_workqueue(wq: ic->writer_wq);
4687 if (ic->recalc_wq)
4688 destroy_workqueue(wq: ic->recalc_wq);
4689 kvfree(addr: ic->bbs);
4690 if (ic->bufio)
4691 dm_bufio_client_destroy(c: ic->bufio);
4692 mempool_exit(pool: &ic->recheck_pool);
4693 mempool_exit(pool: &ic->journal_io_mempool);
4694 if (ic->io)
4695 dm_io_client_destroy(client: ic->io);
4696 if (ic->dev)
4697 dm_put_device(ti, d: ic->dev);
4698 if (ic->meta_dev)
4699 dm_put_device(ti, d: ic->meta_dev);
4700 dm_integrity_free_page_list(pl: ic->journal);
4701 dm_integrity_free_page_list(pl: ic->journal_io);
4702 dm_integrity_free_page_list(pl: ic->journal_xor);
4703 dm_integrity_free_page_list(pl: ic->recalc_bitmap);
4704 dm_integrity_free_page_list(pl: ic->may_write_bitmap);
4705 if (ic->journal_scatterlist)
4706 dm_integrity_free_journal_scatterlist(ic, sl: ic->journal_scatterlist);
4707 if (ic->journal_io_scatterlist)
4708 dm_integrity_free_journal_scatterlist(ic, sl: ic->journal_io_scatterlist);
4709 if (ic->sk_requests) {
4710 unsigned int i;
4711
4712 for (i = 0; i < ic->journal_sections; i++) {
4713 struct skcipher_request *req;
4714
4715 req = ic->sk_requests[i];
4716 if (req) {
4717 kfree_sensitive(objp: req->iv);
4718 skcipher_request_free(req);
4719 }
4720 }
4721 kvfree(addr: ic->sk_requests);
4722 }
4723 kvfree(addr: ic->journal_tree);
4724 if (ic->sb)
4725 free_pages_exact(virt: ic->sb, SB_SECTORS << SECTOR_SHIFT);
4726
4727 if (ic->internal_hash)
4728 crypto_free_shash(tfm: ic->internal_hash);
4729 free_alg(a: &ic->internal_hash_alg);
4730
4731 if (ic->journal_crypt)
4732 crypto_free_skcipher(tfm: ic->journal_crypt);
4733 free_alg(a: &ic->journal_crypt_alg);
4734
4735 if (ic->journal_mac)
4736 crypto_free_shash(tfm: ic->journal_mac);
4737 free_alg(a: &ic->journal_mac_alg);
4738
4739 kfree(objp: ic);
4740 dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1);
4741}
4742
4743static struct target_type integrity_target = {
4744 .name = "integrity",
4745 .version = {1, 11, 0},
4746 .module = THIS_MODULE,
4747 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4748 .ctr = dm_integrity_ctr,
4749 .dtr = dm_integrity_dtr,
4750 .map = dm_integrity_map,
4751 .postsuspend = dm_integrity_postsuspend,
4752 .resume = dm_integrity_resume,
4753 .status = dm_integrity_status,
4754 .iterate_devices = dm_integrity_iterate_devices,
4755 .io_hints = dm_integrity_io_hints,
4756};
4757
4758static int __init dm_integrity_init(void)
4759{
4760 int r;
4761
4762 journal_io_cache = kmem_cache_create(name: "integrity_journal_io",
4763 size: sizeof(struct journal_io), align: 0, flags: 0, NULL);
4764 if (!journal_io_cache) {
4765 DMERR("can't allocate journal io cache");
4766 return -ENOMEM;
4767 }
4768
4769 r = dm_register_target(t: &integrity_target);
4770 if (r < 0) {
4771 kmem_cache_destroy(s: journal_io_cache);
4772 return r;
4773 }
4774
4775 return 0;
4776}
4777
4778static void __exit dm_integrity_exit(void)
4779{
4780 dm_unregister_target(t: &integrity_target);
4781 kmem_cache_destroy(s: journal_io_cache);
4782}
4783
4784module_init(dm_integrity_init);
4785module_exit(dm_integrity_exit);
4786
4787MODULE_AUTHOR("Milan Broz");
4788MODULE_AUTHOR("Mikulas Patocka");
4789MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4790MODULE_LICENSE("GPL");
4791

source code of linux/drivers/md/dm-integrity.c