1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2011-2012 Red Hat UK.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-thin-metadata.h"
9#include "dm-bio-prison-v1.h"
10#include "dm.h"
11
12#include <linux/device-mapper.h>
13#include <linux/dm-io.h>
14#include <linux/dm-kcopyd.h>
15#include <linux/jiffies.h>
16#include <linux/log2.h>
17#include <linux/list.h>
18#include <linux/rculist.h>
19#include <linux/init.h>
20#include <linux/module.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/sort.h>
24#include <linux/rbtree.h>
25
26#define DM_MSG_PREFIX "thin"
27
28/*
29 * Tunable constants
30 */
31#define ENDIO_HOOK_POOL_SIZE 1024
32#define MAPPING_POOL_SIZE 1024
33#define COMMIT_PERIOD HZ
34#define NO_SPACE_TIMEOUT_SECS 60
35
36static unsigned int no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
37
38DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
39 "A percentage of time allocated for copy on write");
40
41/*
42 * The block size of the device holding pool data must be
43 * between 64KB and 1GB.
44 */
45#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
46#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
47
48/*
49 * Device id is restricted to 24 bits.
50 */
51#define MAX_DEV_ID ((1 << 24) - 1)
52
53/*
54 * How do we handle breaking sharing of data blocks?
55 * =================================================
56 *
57 * We use a standard copy-on-write btree to store the mappings for the
58 * devices (note I'm talking about copy-on-write of the metadata here, not
59 * the data). When you take an internal snapshot you clone the root node
60 * of the origin btree. After this there is no concept of an origin or a
61 * snapshot. They are just two device trees that happen to point to the
62 * same data blocks.
63 *
64 * When we get a write in we decide if it's to a shared data block using
65 * some timestamp magic. If it is, we have to break sharing.
66 *
67 * Let's say we write to a shared block in what was the origin. The
68 * steps are:
69 *
70 * i) plug io further to this physical block. (see bio_prison code).
71 *
72 * ii) quiesce any read io to that shared data block. Obviously
73 * including all devices that share this block. (see dm_deferred_set code)
74 *
75 * iii) copy the data block to a newly allocate block. This step can be
76 * missed out if the io covers the block. (schedule_copy).
77 *
78 * iv) insert the new mapping into the origin's btree
79 * (process_prepared_mapping). This act of inserting breaks some
80 * sharing of btree nodes between the two devices. Breaking sharing only
81 * effects the btree of that specific device. Btrees for the other
82 * devices that share the block never change. The btree for the origin
83 * device as it was after the last commit is untouched, ie. we're using
84 * persistent data structures in the functional programming sense.
85 *
86 * v) unplug io to this physical block, including the io that triggered
87 * the breaking of sharing.
88 *
89 * Steps (ii) and (iii) occur in parallel.
90 *
91 * The metadata _doesn't_ need to be committed before the io continues. We
92 * get away with this because the io is always written to a _new_ block.
93 * If there's a crash, then:
94 *
95 * - The origin mapping will point to the old origin block (the shared
96 * one). This will contain the data as it was before the io that triggered
97 * the breaking of sharing came in.
98 *
99 * - The snap mapping still points to the old block. As it would after
100 * the commit.
101 *
102 * The downside of this scheme is the timestamp magic isn't perfect, and
103 * will continue to think that data block in the snapshot device is shared
104 * even after the write to the origin has broken sharing. I suspect data
105 * blocks will typically be shared by many different devices, so we're
106 * breaking sharing n + 1 times, rather than n, where n is the number of
107 * devices that reference this data block. At the moment I think the
108 * benefits far, far outweigh the disadvantages.
109 */
110
111/*----------------------------------------------------------------*/
112
113/*
114 * Key building.
115 */
116enum lock_space {
117 VIRTUAL,
118 PHYSICAL
119};
120
121static bool build_key(struct dm_thin_device *td, enum lock_space ls,
122 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
123{
124 key->virtual = (ls == VIRTUAL);
125 key->dev = dm_thin_dev_id(td);
126 key->block_begin = b;
127 key->block_end = e;
128
129 return dm_cell_key_has_valid_range(key);
130}
131
132static void build_data_key(struct dm_thin_device *td, dm_block_t b,
133 struct dm_cell_key *key)
134{
135 (void) build_key(td, ls: PHYSICAL, b, e: b + 1llu, key);
136}
137
138static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
139 struct dm_cell_key *key)
140{
141 (void) build_key(td, ls: VIRTUAL, b, e: b + 1llu, key);
142}
143
144/*----------------------------------------------------------------*/
145
146#define THROTTLE_THRESHOLD (1 * HZ)
147
148struct throttle {
149 struct rw_semaphore lock;
150 unsigned long threshold;
151 bool throttle_applied;
152};
153
154static void throttle_init(struct throttle *t)
155{
156 init_rwsem(&t->lock);
157 t->throttle_applied = false;
158}
159
160static void throttle_work_start(struct throttle *t)
161{
162 t->threshold = jiffies + THROTTLE_THRESHOLD;
163}
164
165static void throttle_work_update(struct throttle *t)
166{
167 if (!t->throttle_applied && time_is_before_jiffies(t->threshold)) {
168 down_write(sem: &t->lock);
169 t->throttle_applied = true;
170 }
171}
172
173static void throttle_work_complete(struct throttle *t)
174{
175 if (t->throttle_applied) {
176 t->throttle_applied = false;
177 up_write(sem: &t->lock);
178 }
179}
180
181static void throttle_lock(struct throttle *t)
182{
183 down_read(sem: &t->lock);
184}
185
186static void throttle_unlock(struct throttle *t)
187{
188 up_read(sem: &t->lock);
189}
190
191/*----------------------------------------------------------------*/
192
193/*
194 * A pool device ties together a metadata device and a data device. It
195 * also provides the interface for creating and destroying internal
196 * devices.
197 */
198struct dm_thin_new_mapping;
199
200/*
201 * The pool runs in various modes. Ordered in degraded order for comparisons.
202 */
203enum pool_mode {
204 PM_WRITE, /* metadata may be changed */
205 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
206
207 /*
208 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
209 */
210 PM_OUT_OF_METADATA_SPACE,
211 PM_READ_ONLY, /* metadata may not be changed */
212
213 PM_FAIL, /* all I/O fails */
214};
215
216struct pool_features {
217 enum pool_mode mode;
218
219 bool zero_new_blocks:1;
220 bool discard_enabled:1;
221 bool discard_passdown:1;
222 bool error_if_no_space:1;
223};
224
225struct thin_c;
226typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
227typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
228typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
229
230#define CELL_SORT_ARRAY_SIZE 8192
231
232struct pool {
233 struct list_head list;
234 struct dm_target *ti; /* Only set if a pool target is bound */
235
236 struct mapped_device *pool_md;
237 struct block_device *data_dev;
238 struct block_device *md_dev;
239 struct dm_pool_metadata *pmd;
240
241 dm_block_t low_water_blocks;
242 uint32_t sectors_per_block;
243 int sectors_per_block_shift;
244
245 struct pool_features pf;
246 bool low_water_triggered:1; /* A dm event has been sent */
247 bool suspended:1;
248 bool out_of_data_space:1;
249
250 struct dm_bio_prison *prison;
251 struct dm_kcopyd_client *copier;
252
253 struct work_struct worker;
254 struct workqueue_struct *wq;
255 struct throttle throttle;
256 struct delayed_work waker;
257 struct delayed_work no_space_timeout;
258
259 unsigned long last_commit_jiffies;
260 unsigned int ref_count;
261
262 spinlock_t lock;
263 struct bio_list deferred_flush_bios;
264 struct bio_list deferred_flush_completions;
265 struct list_head prepared_mappings;
266 struct list_head prepared_discards;
267 struct list_head prepared_discards_pt2;
268 struct list_head active_thins;
269
270 struct dm_deferred_set *shared_read_ds;
271 struct dm_deferred_set *all_io_ds;
272
273 struct dm_thin_new_mapping *next_mapping;
274
275 process_bio_fn process_bio;
276 process_bio_fn process_discard;
277
278 process_cell_fn process_cell;
279 process_cell_fn process_discard_cell;
280
281 process_mapping_fn process_prepared_mapping;
282 process_mapping_fn process_prepared_discard;
283 process_mapping_fn process_prepared_discard_pt2;
284
285 struct dm_bio_prison_cell **cell_sort_array;
286
287 mempool_t mapping_pool;
288};
289
290static void metadata_operation_failed(struct pool *pool, const char *op, int r);
291
292static enum pool_mode get_pool_mode(struct pool *pool)
293{
294 return pool->pf.mode;
295}
296
297static void notify_of_pool_mode_change(struct pool *pool)
298{
299 static const char *descs[] = {
300 "write",
301 "out-of-data-space",
302 "read-only",
303 "read-only",
304 "fail"
305 };
306 const char *extra_desc = NULL;
307 enum pool_mode mode = get_pool_mode(pool);
308
309 if (mode == PM_OUT_OF_DATA_SPACE) {
310 if (!pool->pf.error_if_no_space)
311 extra_desc = " (queue IO)";
312 else
313 extra_desc = " (error IO)";
314 }
315
316 dm_table_event(t: pool->ti->table);
317 DMINFO("%s: switching pool to %s%s mode",
318 dm_device_name(pool->pool_md),
319 descs[(int)mode], extra_desc ? : "");
320}
321
322/*
323 * Target context for a pool.
324 */
325struct pool_c {
326 struct dm_target *ti;
327 struct pool *pool;
328 struct dm_dev *data_dev;
329 struct dm_dev *metadata_dev;
330
331 dm_block_t low_water_blocks;
332 struct pool_features requested_pf; /* Features requested during table load */
333 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
334};
335
336/*
337 * Target context for a thin.
338 */
339struct thin_c {
340 struct list_head list;
341 struct dm_dev *pool_dev;
342 struct dm_dev *origin_dev;
343 sector_t origin_size;
344 dm_thin_id dev_id;
345
346 struct pool *pool;
347 struct dm_thin_device *td;
348 struct mapped_device *thin_md;
349
350 bool requeue_mode:1;
351 spinlock_t lock;
352 struct list_head deferred_cells;
353 struct bio_list deferred_bio_list;
354 struct bio_list retry_on_resume_list;
355 struct rb_root sort_bio_list; /* sorted list of deferred bios */
356
357 /*
358 * Ensures the thin is not destroyed until the worker has finished
359 * iterating the active_thins list.
360 */
361 refcount_t refcount;
362 struct completion can_destroy;
363};
364
365/*----------------------------------------------------------------*/
366
367static bool block_size_is_power_of_two(struct pool *pool)
368{
369 return pool->sectors_per_block_shift >= 0;
370}
371
372static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373{
374 return block_size_is_power_of_two(pool) ?
375 (b << pool->sectors_per_block_shift) :
376 (b * pool->sectors_per_block);
377}
378
379/*----------------------------------------------------------------*/
380
381struct discard_op {
382 struct thin_c *tc;
383 struct blk_plug plug;
384 struct bio *parent_bio;
385 struct bio *bio;
386};
387
388static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389{
390 BUG_ON(!parent);
391
392 op->tc = tc;
393 blk_start_plug(&op->plug);
394 op->parent_bio = parent;
395 op->bio = NULL;
396}
397
398static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399{
400 struct thin_c *tc = op->tc;
401 sector_t s = block_to_sectors(pool: tc->pool, b: data_b);
402 sector_t len = block_to_sectors(pool: tc->pool, b: data_e - data_b);
403
404 return __blkdev_issue_discard(bdev: tc->pool_dev->bdev, sector: s, nr_sects: len, GFP_NOIO, biop: &op->bio);
405}
406
407static void end_discard(struct discard_op *op, int r)
408{
409 if (op->bio) {
410 /*
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
413 */
414 bio_chain(op->bio, op->parent_bio);
415 op->bio->bi_opf = REQ_OP_DISCARD;
416 submit_bio(bio: op->bio);
417 }
418
419 blk_finish_plug(&op->plug);
420
421 /*
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
424 */
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(errno: r);
427 bio_endio(op->parent_bio);
428}
429
430/*----------------------------------------------------------------*/
431
432/*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
436static void wake_worker(struct pool *pool)
437{
438 queue_work(wq: pool->wq, work: &pool->worker);
439}
440
441/*----------------------------------------------------------------*/
442
443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
445{
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
448
449 /*
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
452 */
453 cell_prealloc = dm_bio_prison_alloc_cell(prison: pool->prison, GFP_NOIO);
454
455 r = dm_bio_detain(prison: pool->prison, key, inmate: bio, cell_prealloc, cell_result);
456 if (r) {
457 /*
458 * We reused an old cell; we can get rid of
459 * the new one.
460 */
461 dm_bio_prison_free_cell(prison: pool->prison, cell: cell_prealloc);
462 }
463
464 return r;
465}
466
467static void cell_release(struct pool *pool,
468 struct dm_bio_prison_cell *cell,
469 struct bio_list *bios)
470{
471 dm_cell_release(prison: pool->prison, cell, bios);
472 dm_bio_prison_free_cell(prison: pool->prison, cell);
473}
474
475static void cell_visit_release(struct pool *pool,
476 void (*fn)(void *, struct dm_bio_prison_cell *),
477 void *context,
478 struct dm_bio_prison_cell *cell)
479{
480 dm_cell_visit_release(prison: pool->prison, visit_fn: fn, context, cell);
481 dm_bio_prison_free_cell(prison: pool->prison, cell);
482}
483
484static void cell_release_no_holder(struct pool *pool,
485 struct dm_bio_prison_cell *cell,
486 struct bio_list *bios)
487{
488 dm_cell_release_no_holder(prison: pool->prison, cell, inmates: bios);
489 dm_bio_prison_free_cell(prison: pool->prison, cell);
490}
491
492static void cell_error_with_code(struct pool *pool,
493 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494{
495 dm_cell_error(prison: pool->prison, cell, error: error_code);
496 dm_bio_prison_free_cell(prison: pool->prison, cell);
497}
498
499static blk_status_t get_pool_io_error_code(struct pool *pool)
500{
501 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502}
503
504static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505{
506 cell_error_with_code(pool, cell, error_code: get_pool_io_error_code(pool));
507}
508
509static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510{
511 cell_error_with_code(pool, cell, error_code: 0);
512}
513
514static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515{
516 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517}
518
519/*----------------------------------------------------------------*/
520
521/*
522 * A global list of pools that uses a struct mapped_device as a key.
523 */
524static struct dm_thin_pool_table {
525 struct mutex mutex;
526 struct list_head pools;
527} dm_thin_pool_table;
528
529static void pool_table_init(void)
530{
531 mutex_init(&dm_thin_pool_table.mutex);
532 INIT_LIST_HEAD(list: &dm_thin_pool_table.pools);
533}
534
535static void pool_table_exit(void)
536{
537 mutex_destroy(lock: &dm_thin_pool_table.mutex);
538}
539
540static void __pool_table_insert(struct pool *pool)
541{
542 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543 list_add(new: &pool->list, head: &dm_thin_pool_table.pools);
544}
545
546static void __pool_table_remove(struct pool *pool)
547{
548 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549 list_del(entry: &pool->list);
550}
551
552static struct pool *__pool_table_lookup(struct mapped_device *md)
553{
554 struct pool *pool = NULL, *tmp;
555
556 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557
558 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559 if (tmp->pool_md == md) {
560 pool = tmp;
561 break;
562 }
563 }
564
565 return pool;
566}
567
568static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569{
570 struct pool *pool = NULL, *tmp;
571
572 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573
574 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575 if (tmp->md_dev == md_dev) {
576 pool = tmp;
577 break;
578 }
579 }
580
581 return pool;
582}
583
584/*----------------------------------------------------------------*/
585
586struct dm_thin_endio_hook {
587 struct thin_c *tc;
588 struct dm_deferred_entry *shared_read_entry;
589 struct dm_deferred_entry *all_io_entry;
590 struct dm_thin_new_mapping *overwrite_mapping;
591 struct rb_node rb_node;
592 struct dm_bio_prison_cell *cell;
593};
594
595static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596{
597 bio_list_merge(bl: bios, bl2: master);
598 bio_list_init(bl: master);
599}
600
601static void error_bio_list(struct bio_list *bios, blk_status_t error)
602{
603 struct bio *bio;
604
605 while ((bio = bio_list_pop(bl: bios))) {
606 bio->bi_status = error;
607 bio_endio(bio);
608 }
609}
610
611static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612 blk_status_t error)
613{
614 struct bio_list bios;
615
616 bio_list_init(bl: &bios);
617
618 spin_lock_irq(lock: &tc->lock);
619 __merge_bio_list(bios: &bios, master);
620 spin_unlock_irq(lock: &tc->lock);
621
622 error_bio_list(bios: &bios, error);
623}
624
625static void requeue_deferred_cells(struct thin_c *tc)
626{
627 struct pool *pool = tc->pool;
628 struct list_head cells;
629 struct dm_bio_prison_cell *cell, *tmp;
630
631 INIT_LIST_HEAD(list: &cells);
632
633 spin_lock_irq(lock: &tc->lock);
634 list_splice_init(list: &tc->deferred_cells, head: &cells);
635 spin_unlock_irq(lock: &tc->lock);
636
637 list_for_each_entry_safe(cell, tmp, &cells, user_list)
638 cell_requeue(pool, cell);
639}
640
641static void requeue_io(struct thin_c *tc)
642{
643 struct bio_list bios;
644
645 bio_list_init(bl: &bios);
646
647 spin_lock_irq(lock: &tc->lock);
648 __merge_bio_list(bios: &bios, master: &tc->deferred_bio_list);
649 __merge_bio_list(bios: &bios, master: &tc->retry_on_resume_list);
650 spin_unlock_irq(lock: &tc->lock);
651
652 error_bio_list(bios: &bios, BLK_STS_DM_REQUEUE);
653 requeue_deferred_cells(tc);
654}
655
656static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657{
658 struct thin_c *tc;
659
660 rcu_read_lock();
661 list_for_each_entry_rcu(tc, &pool->active_thins, list)
662 error_thin_bio_list(tc, master: &tc->retry_on_resume_list, error);
663 rcu_read_unlock();
664}
665
666static void error_retry_list(struct pool *pool)
667{
668 error_retry_list_with_code(pool, error: get_pool_io_error_code(pool));
669}
670
671/*
672 * This section of code contains the logic for processing a thin device's IO.
673 * Much of the code depends on pool object resources (lists, workqueues, etc)
674 * but most is exclusively called from the thin target rather than the thin-pool
675 * target.
676 */
677
678static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679{
680 struct pool *pool = tc->pool;
681 sector_t block_nr = bio->bi_iter.bi_sector;
682
683 if (block_size_is_power_of_two(pool))
684 block_nr >>= pool->sectors_per_block_shift;
685 else
686 (void) sector_div(block_nr, pool->sectors_per_block);
687
688 return block_nr;
689}
690
691/*
692 * Returns the _complete_ blocks that this bio covers.
693 */
694static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695 dm_block_t *begin, dm_block_t *end)
696{
697 struct pool *pool = tc->pool;
698 sector_t b = bio->bi_iter.bi_sector;
699 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700
701 b += pool->sectors_per_block - 1ull; /* so we round up */
702
703 if (block_size_is_power_of_two(pool)) {
704 b >>= pool->sectors_per_block_shift;
705 e >>= pool->sectors_per_block_shift;
706 } else {
707 (void) sector_div(b, pool->sectors_per_block);
708 (void) sector_div(e, pool->sectors_per_block);
709 }
710
711 if (e < b) {
712 /* Can happen if the bio is within a single block. */
713 e = b;
714 }
715
716 *begin = b;
717 *end = e;
718}
719
720static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
721{
722 struct pool *pool = tc->pool;
723 sector_t bi_sector = bio->bi_iter.bi_sector;
724
725 bio_set_dev(bio, bdev: tc->pool_dev->bdev);
726 if (block_size_is_power_of_two(pool)) {
727 bio->bi_iter.bi_sector =
728 (block << pool->sectors_per_block_shift) |
729 (bi_sector & (pool->sectors_per_block - 1));
730 } else {
731 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
732 sector_div(bi_sector, pool->sectors_per_block);
733 }
734}
735
736static void remap_to_origin(struct thin_c *tc, struct bio *bio)
737{
738 bio_set_dev(bio, bdev: tc->origin_dev->bdev);
739}
740
741static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
742{
743 return op_is_flush(op: bio->bi_opf) &&
744 dm_thin_changed_this_transaction(td: tc->td);
745}
746
747static void inc_all_io_entry(struct pool *pool, struct bio *bio)
748{
749 struct dm_thin_endio_hook *h;
750
751 if (bio_op(bio) == REQ_OP_DISCARD)
752 return;
753
754 h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
755 h->all_io_entry = dm_deferred_entry_inc(ds: pool->all_io_ds);
756}
757
758static void issue(struct thin_c *tc, struct bio *bio)
759{
760 struct pool *pool = tc->pool;
761
762 if (!bio_triggers_commit(tc, bio)) {
763 dm_submit_bio_remap(clone: bio, NULL);
764 return;
765 }
766
767 /*
768 * Complete bio with an error if earlier I/O caused changes to
769 * the metadata that can't be committed e.g, due to I/O errors
770 * on the metadata device.
771 */
772 if (dm_thin_aborted_changes(td: tc->td)) {
773 bio_io_error(bio);
774 return;
775 }
776
777 /*
778 * Batch together any bios that trigger commits and then issue a
779 * single commit for them in process_deferred_bios().
780 */
781 spin_lock_irq(lock: &pool->lock);
782 bio_list_add(bl: &pool->deferred_flush_bios, bio);
783 spin_unlock_irq(lock: &pool->lock);
784}
785
786static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
787{
788 remap_to_origin(tc, bio);
789 issue(tc, bio);
790}
791
792static void remap_and_issue(struct thin_c *tc, struct bio *bio,
793 dm_block_t block)
794{
795 remap(tc, bio, block);
796 issue(tc, bio);
797}
798
799/*----------------------------------------------------------------*/
800
801/*
802 * Bio endio functions.
803 */
804struct dm_thin_new_mapping {
805 struct list_head list;
806
807 bool pass_discard:1;
808 bool maybe_shared:1;
809
810 /*
811 * Track quiescing, copying and zeroing preparation actions. When this
812 * counter hits zero the block is prepared and can be inserted into the
813 * btree.
814 */
815 atomic_t prepare_actions;
816
817 blk_status_t status;
818 struct thin_c *tc;
819 dm_block_t virt_begin, virt_end;
820 dm_block_t data_block;
821 struct dm_bio_prison_cell *cell;
822
823 /*
824 * If the bio covers the whole area of a block then we can avoid
825 * zeroing or copying. Instead this bio is hooked. The bio will
826 * still be in the cell, so care has to be taken to avoid issuing
827 * the bio twice.
828 */
829 struct bio *bio;
830 bio_end_io_t *saved_bi_end_io;
831};
832
833static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
834{
835 struct pool *pool = m->tc->pool;
836
837 if (atomic_dec_and_test(v: &m->prepare_actions)) {
838 list_add_tail(new: &m->list, head: &pool->prepared_mappings);
839 wake_worker(pool);
840 }
841}
842
843static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
844{
845 unsigned long flags;
846 struct pool *pool = m->tc->pool;
847
848 spin_lock_irqsave(&pool->lock, flags);
849 __complete_mapping_preparation(m);
850 spin_unlock_irqrestore(lock: &pool->lock, flags);
851}
852
853static void copy_complete(int read_err, unsigned long write_err, void *context)
854{
855 struct dm_thin_new_mapping *m = context;
856
857 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
858 complete_mapping_preparation(m);
859}
860
861static void overwrite_endio(struct bio *bio)
862{
863 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
864 struct dm_thin_new_mapping *m = h->overwrite_mapping;
865
866 bio->bi_end_io = m->saved_bi_end_io;
867
868 m->status = bio->bi_status;
869 complete_mapping_preparation(m);
870}
871
872/*----------------------------------------------------------------*/
873
874/*
875 * Workqueue.
876 */
877
878/*
879 * Prepared mapping jobs.
880 */
881
882/*
883 * This sends the bios in the cell, except the original holder, back
884 * to the deferred_bios list.
885 */
886static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
887{
888 struct pool *pool = tc->pool;
889 unsigned long flags;
890 struct bio_list bios;
891
892 bio_list_init(bl: &bios);
893 cell_release_no_holder(pool, cell, bios: &bios);
894
895 if (!bio_list_empty(bl: &bios)) {
896 spin_lock_irqsave(&tc->lock, flags);
897 bio_list_merge(bl: &tc->deferred_bio_list, bl2: &bios);
898 spin_unlock_irqrestore(lock: &tc->lock, flags);
899 wake_worker(pool);
900 }
901}
902
903static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
904
905struct remap_info {
906 struct thin_c *tc;
907 struct bio_list defer_bios;
908 struct bio_list issue_bios;
909};
910
911static void __inc_remap_and_issue_cell(void *context,
912 struct dm_bio_prison_cell *cell)
913{
914 struct remap_info *info = context;
915 struct bio *bio;
916
917 while ((bio = bio_list_pop(bl: &cell->bios))) {
918 if (op_is_flush(op: bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
919 bio_list_add(bl: &info->defer_bios, bio);
920 else {
921 inc_all_io_entry(pool: info->tc->pool, bio);
922
923 /*
924 * We can't issue the bios with the bio prison lock
925 * held, so we add them to a list to issue on
926 * return from this function.
927 */
928 bio_list_add(bl: &info->issue_bios, bio);
929 }
930 }
931}
932
933static void inc_remap_and_issue_cell(struct thin_c *tc,
934 struct dm_bio_prison_cell *cell,
935 dm_block_t block)
936{
937 struct bio *bio;
938 struct remap_info info;
939
940 info.tc = tc;
941 bio_list_init(bl: &info.defer_bios);
942 bio_list_init(bl: &info.issue_bios);
943
944 /*
945 * We have to be careful to inc any bios we're about to issue
946 * before the cell is released, and avoid a race with new bios
947 * being added to the cell.
948 */
949 cell_visit_release(pool: tc->pool, fn: __inc_remap_and_issue_cell,
950 context: &info, cell);
951
952 while ((bio = bio_list_pop(bl: &info.defer_bios)))
953 thin_defer_bio(tc, bio);
954
955 while ((bio = bio_list_pop(bl: &info.issue_bios)))
956 remap_and_issue(tc: info.tc, bio, block);
957}
958
959static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
960{
961 cell_error(pool: m->tc->pool, cell: m->cell);
962 list_del(entry: &m->list);
963 mempool_free(element: m, pool: &m->tc->pool->mapping_pool);
964}
965
966static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
967{
968 struct pool *pool = tc->pool;
969
970 /*
971 * If the bio has the REQ_FUA flag set we must commit the metadata
972 * before signaling its completion.
973 */
974 if (!bio_triggers_commit(tc, bio)) {
975 bio_endio(bio);
976 return;
977 }
978
979 /*
980 * Complete bio with an error if earlier I/O caused changes to the
981 * metadata that can't be committed, e.g, due to I/O errors on the
982 * metadata device.
983 */
984 if (dm_thin_aborted_changes(td: tc->td)) {
985 bio_io_error(bio);
986 return;
987 }
988
989 /*
990 * Batch together any bios that trigger commits and then issue a
991 * single commit for them in process_deferred_bios().
992 */
993 spin_lock_irq(lock: &pool->lock);
994 bio_list_add(bl: &pool->deferred_flush_completions, bio);
995 spin_unlock_irq(lock: &pool->lock);
996}
997
998static void process_prepared_mapping(struct dm_thin_new_mapping *m)
999{
1000 struct thin_c *tc = m->tc;
1001 struct pool *pool = tc->pool;
1002 struct bio *bio = m->bio;
1003 int r;
1004
1005 if (m->status) {
1006 cell_error(pool, cell: m->cell);
1007 goto out;
1008 }
1009
1010 /*
1011 * Commit the prepared block into the mapping btree.
1012 * Any I/O for this block arriving after this point will get
1013 * remapped to it directly.
1014 */
1015 r = dm_thin_insert_block(td: tc->td, block: m->virt_begin, data_block: m->data_block);
1016 if (r) {
1017 metadata_operation_failed(pool, op: "dm_thin_insert_block", r);
1018 cell_error(pool, cell: m->cell);
1019 goto out;
1020 }
1021
1022 /*
1023 * Release any bios held while the block was being provisioned.
1024 * If we are processing a write bio that completely covers the block,
1025 * we already processed it so can ignore it now when processing
1026 * the bios in the cell.
1027 */
1028 if (bio) {
1029 inc_remap_and_issue_cell(tc, cell: m->cell, block: m->data_block);
1030 complete_overwrite_bio(tc, bio);
1031 } else {
1032 inc_all_io_entry(pool: tc->pool, bio: m->cell->holder);
1033 remap_and_issue(tc, bio: m->cell->holder, block: m->data_block);
1034 inc_remap_and_issue_cell(tc, cell: m->cell, block: m->data_block);
1035 }
1036
1037out:
1038 list_del(entry: &m->list);
1039 mempool_free(element: m, pool: &pool->mapping_pool);
1040}
1041
1042/*----------------------------------------------------------------*/
1043
1044static void free_discard_mapping(struct dm_thin_new_mapping *m)
1045{
1046 struct thin_c *tc = m->tc;
1047
1048 if (m->cell)
1049 cell_defer_no_holder(tc, cell: m->cell);
1050 mempool_free(element: m, pool: &tc->pool->mapping_pool);
1051}
1052
1053static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1054{
1055 bio_io_error(bio: m->bio);
1056 free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1060{
1061 bio_endio(m->bio);
1062 free_discard_mapping(m);
1063}
1064
1065static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1066{
1067 int r;
1068 struct thin_c *tc = m->tc;
1069
1070 r = dm_thin_remove_range(td: tc->td, begin: m->cell->key.block_begin, end: m->cell->key.block_end);
1071 if (r) {
1072 metadata_operation_failed(pool: tc->pool, op: "dm_thin_remove_range", r);
1073 bio_io_error(bio: m->bio);
1074 } else
1075 bio_endio(m->bio);
1076
1077 cell_defer_no_holder(tc, cell: m->cell);
1078 mempool_free(element: m, pool: &tc->pool->mapping_pool);
1079}
1080
1081/*----------------------------------------------------------------*/
1082
1083static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1084 struct bio *discard_parent)
1085{
1086 /*
1087 * We've already unmapped this range of blocks, but before we
1088 * passdown we have to check that these blocks are now unused.
1089 */
1090 int r = 0;
1091 bool shared = true;
1092 struct thin_c *tc = m->tc;
1093 struct pool *pool = tc->pool;
1094 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1095 struct discard_op op;
1096
1097 begin_discard(op: &op, tc, parent: discard_parent);
1098 while (b != end) {
1099 /* find start of unmapped run */
1100 for (; b < end; b++) {
1101 r = dm_pool_block_is_shared(pmd: pool->pmd, b, result: &shared);
1102 if (r)
1103 goto out;
1104
1105 if (!shared)
1106 break;
1107 }
1108
1109 if (b == end)
1110 break;
1111
1112 /* find end of run */
1113 for (e = b + 1; e != end; e++) {
1114 r = dm_pool_block_is_shared(pmd: pool->pmd, b: e, result: &shared);
1115 if (r)
1116 goto out;
1117
1118 if (shared)
1119 break;
1120 }
1121
1122 r = issue_discard(op: &op, data_b: b, data_e: e);
1123 if (r)
1124 goto out;
1125
1126 b = e;
1127 }
1128out:
1129 end_discard(op: &op, r);
1130}
1131
1132static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1133{
1134 unsigned long flags;
1135 struct pool *pool = m->tc->pool;
1136
1137 spin_lock_irqsave(&pool->lock, flags);
1138 list_add_tail(new: &m->list, head: &pool->prepared_discards_pt2);
1139 spin_unlock_irqrestore(lock: &pool->lock, flags);
1140 wake_worker(pool);
1141}
1142
1143static void passdown_endio(struct bio *bio)
1144{
1145 /*
1146 * It doesn't matter if the passdown discard failed, we still want
1147 * to unmap (we ignore err).
1148 */
1149 queue_passdown_pt2(m: bio->bi_private);
1150 bio_put(bio);
1151}
1152
1153static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1154{
1155 int r;
1156 struct thin_c *tc = m->tc;
1157 struct pool *pool = tc->pool;
1158 struct bio *discard_parent;
1159 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1160
1161 /*
1162 * Only this thread allocates blocks, so we can be sure that the
1163 * newly unmapped blocks will not be allocated before the end of
1164 * the function.
1165 */
1166 r = dm_thin_remove_range(td: tc->td, begin: m->virt_begin, end: m->virt_end);
1167 if (r) {
1168 metadata_operation_failed(pool, op: "dm_thin_remove_range", r);
1169 bio_io_error(bio: m->bio);
1170 cell_defer_no_holder(tc, cell: m->cell);
1171 mempool_free(element: m, pool: &pool->mapping_pool);
1172 return;
1173 }
1174
1175 /*
1176 * Increment the unmapped blocks. This prevents a race between the
1177 * passdown io and reallocation of freed blocks.
1178 */
1179 r = dm_pool_inc_data_range(pmd: pool->pmd, b: m->data_block, e: data_end);
1180 if (r) {
1181 metadata_operation_failed(pool, op: "dm_pool_inc_data_range", r);
1182 bio_io_error(bio: m->bio);
1183 cell_defer_no_holder(tc, cell: m->cell);
1184 mempool_free(element: m, pool: &pool->mapping_pool);
1185 return;
1186 }
1187
1188 discard_parent = bio_alloc(NULL, nr_vecs: 1, opf: 0, GFP_NOIO);
1189 discard_parent->bi_end_io = passdown_endio;
1190 discard_parent->bi_private = m;
1191 if (m->maybe_shared)
1192 passdown_double_checking_shared_status(m, discard_parent);
1193 else {
1194 struct discard_op op;
1195
1196 begin_discard(op: &op, tc, parent: discard_parent);
1197 r = issue_discard(op: &op, data_b: m->data_block, data_e: data_end);
1198 end_discard(op: &op, r);
1199 }
1200}
1201
1202static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1203{
1204 int r;
1205 struct thin_c *tc = m->tc;
1206 struct pool *pool = tc->pool;
1207
1208 /*
1209 * The passdown has completed, so now we can decrement all those
1210 * unmapped blocks.
1211 */
1212 r = dm_pool_dec_data_range(pmd: pool->pmd, b: m->data_block,
1213 e: m->data_block + (m->virt_end - m->virt_begin));
1214 if (r) {
1215 metadata_operation_failed(pool, op: "dm_pool_dec_data_range", r);
1216 bio_io_error(bio: m->bio);
1217 } else
1218 bio_endio(m->bio);
1219
1220 cell_defer_no_holder(tc, cell: m->cell);
1221 mempool_free(element: m, pool: &pool->mapping_pool);
1222}
1223
1224static void process_prepared(struct pool *pool, struct list_head *head,
1225 process_mapping_fn *fn)
1226{
1227 struct list_head maps;
1228 struct dm_thin_new_mapping *m, *tmp;
1229
1230 INIT_LIST_HEAD(list: &maps);
1231 spin_lock_irq(lock: &pool->lock);
1232 list_splice_init(list: head, head: &maps);
1233 spin_unlock_irq(lock: &pool->lock);
1234
1235 list_for_each_entry_safe(m, tmp, &maps, list)
1236 (*fn)(m);
1237}
1238
1239/*
1240 * Deferred bio jobs.
1241 */
1242static int io_overlaps_block(struct pool *pool, struct bio *bio)
1243{
1244 return bio->bi_iter.bi_size ==
1245 (pool->sectors_per_block << SECTOR_SHIFT);
1246}
1247
1248static int io_overwrites_block(struct pool *pool, struct bio *bio)
1249{
1250 return (bio_data_dir(bio) == WRITE) &&
1251 io_overlaps_block(pool, bio);
1252}
1253
1254static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1255 bio_end_io_t *fn)
1256{
1257 *save = bio->bi_end_io;
1258 bio->bi_end_io = fn;
1259}
1260
1261static int ensure_next_mapping(struct pool *pool)
1262{
1263 if (pool->next_mapping)
1264 return 0;
1265
1266 pool->next_mapping = mempool_alloc(pool: &pool->mapping_pool, GFP_ATOMIC);
1267
1268 return pool->next_mapping ? 0 : -ENOMEM;
1269}
1270
1271static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1272{
1273 struct dm_thin_new_mapping *m = pool->next_mapping;
1274
1275 BUG_ON(!pool->next_mapping);
1276
1277 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1278 INIT_LIST_HEAD(list: &m->list);
1279 m->bio = NULL;
1280
1281 pool->next_mapping = NULL;
1282
1283 return m;
1284}
1285
1286static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1287 sector_t begin, sector_t end)
1288{
1289 struct dm_io_region to;
1290
1291 to.bdev = tc->pool_dev->bdev;
1292 to.sector = begin;
1293 to.count = end - begin;
1294
1295 dm_kcopyd_zero(kc: tc->pool->copier, num_dests: 1, dests: &to, flags: 0, fn: copy_complete, context: m);
1296}
1297
1298static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1299 dm_block_t data_begin,
1300 struct dm_thin_new_mapping *m)
1301{
1302 struct pool *pool = tc->pool;
1303 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
1304
1305 h->overwrite_mapping = m;
1306 m->bio = bio;
1307 save_and_set_endio(bio, save: &m->saved_bi_end_io, fn: overwrite_endio);
1308 inc_all_io_entry(pool, bio);
1309 remap_and_issue(tc, bio, block: data_begin);
1310}
1311
1312/*
1313 * A partial copy also needs to zero the uncopied region.
1314 */
1315static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1316 struct dm_dev *origin, dm_block_t data_origin,
1317 dm_block_t data_dest,
1318 struct dm_bio_prison_cell *cell, struct bio *bio,
1319 sector_t len)
1320{
1321 struct pool *pool = tc->pool;
1322 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1323
1324 m->tc = tc;
1325 m->virt_begin = virt_block;
1326 m->virt_end = virt_block + 1u;
1327 m->data_block = data_dest;
1328 m->cell = cell;
1329
1330 /*
1331 * quiesce action + copy action + an extra reference held for the
1332 * duration of this function (we may need to inc later for a
1333 * partial zero).
1334 */
1335 atomic_set(v: &m->prepare_actions, i: 3);
1336
1337 if (!dm_deferred_set_add_work(ds: pool->shared_read_ds, work: &m->list))
1338 complete_mapping_preparation(m); /* already quiesced */
1339
1340 /*
1341 * IO to pool_dev remaps to the pool target's data_dev.
1342 *
1343 * If the whole block of data is being overwritten, we can issue the
1344 * bio immediately. Otherwise we use kcopyd to clone the data first.
1345 */
1346 if (io_overwrites_block(pool, bio))
1347 remap_and_issue_overwrite(tc, bio, data_begin: data_dest, m);
1348 else {
1349 struct dm_io_region from, to;
1350
1351 from.bdev = origin->bdev;
1352 from.sector = data_origin * pool->sectors_per_block;
1353 from.count = len;
1354
1355 to.bdev = tc->pool_dev->bdev;
1356 to.sector = data_dest * pool->sectors_per_block;
1357 to.count = len;
1358
1359 dm_kcopyd_copy(kc: pool->copier, from: &from, num_dests: 1, dests: &to,
1360 flags: 0, fn: copy_complete, context: m);
1361
1362 /*
1363 * Do we need to zero a tail region?
1364 */
1365 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1366 atomic_inc(v: &m->prepare_actions);
1367 ll_zero(tc, m,
1368 begin: data_dest * pool->sectors_per_block + len,
1369 end: (data_dest + 1) * pool->sectors_per_block);
1370 }
1371 }
1372
1373 complete_mapping_preparation(m); /* drop our ref */
1374}
1375
1376static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1377 dm_block_t data_origin, dm_block_t data_dest,
1378 struct dm_bio_prison_cell *cell, struct bio *bio)
1379{
1380 schedule_copy(tc, virt_block, origin: tc->pool_dev,
1381 data_origin, data_dest, cell, bio,
1382 len: tc->pool->sectors_per_block);
1383}
1384
1385static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1386 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1387 struct bio *bio)
1388{
1389 struct pool *pool = tc->pool;
1390 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1391
1392 atomic_set(v: &m->prepare_actions, i: 1); /* no need to quiesce */
1393 m->tc = tc;
1394 m->virt_begin = virt_block;
1395 m->virt_end = virt_block + 1u;
1396 m->data_block = data_block;
1397 m->cell = cell;
1398
1399 /*
1400 * If the whole block of data is being overwritten or we are not
1401 * zeroing pre-existing data, we can issue the bio immediately.
1402 * Otherwise we use kcopyd to zero the data first.
1403 */
1404 if (pool->pf.zero_new_blocks) {
1405 if (io_overwrites_block(pool, bio))
1406 remap_and_issue_overwrite(tc, bio, data_begin: data_block, m);
1407 else {
1408 ll_zero(tc, m, begin: data_block * pool->sectors_per_block,
1409 end: (data_block + 1) * pool->sectors_per_block);
1410 }
1411 } else
1412 process_prepared_mapping(m);
1413}
1414
1415static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1416 dm_block_t data_dest,
1417 struct dm_bio_prison_cell *cell, struct bio *bio)
1418{
1419 struct pool *pool = tc->pool;
1420 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1421 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1422
1423 if (virt_block_end <= tc->origin_size) {
1424 schedule_copy(tc, virt_block, origin: tc->origin_dev,
1425 data_origin: virt_block, data_dest, cell, bio,
1426 len: pool->sectors_per_block);
1427
1428 } else if (virt_block_begin < tc->origin_size) {
1429 schedule_copy(tc, virt_block, origin: tc->origin_dev,
1430 data_origin: virt_block, data_dest, cell, bio,
1431 len: tc->origin_size - virt_block_begin);
1432
1433 } else
1434 schedule_zero(tc, virt_block, data_block: data_dest, cell, bio);
1435}
1436
1437static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1438
1439static void requeue_bios(struct pool *pool);
1440
1441static bool is_read_only_pool_mode(enum pool_mode mode)
1442{
1443 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1444}
1445
1446static bool is_read_only(struct pool *pool)
1447{
1448 return is_read_only_pool_mode(mode: get_pool_mode(pool));
1449}
1450
1451static void check_for_metadata_space(struct pool *pool)
1452{
1453 int r;
1454 const char *ooms_reason = NULL;
1455 dm_block_t nr_free;
1456
1457 r = dm_pool_get_free_metadata_block_count(pmd: pool->pmd, result: &nr_free);
1458 if (r)
1459 ooms_reason = "Could not get free metadata blocks";
1460 else if (!nr_free)
1461 ooms_reason = "No free metadata blocks";
1462
1463 if (ooms_reason && !is_read_only(pool)) {
1464 DMERR("%s", ooms_reason);
1465 set_pool_mode(pool, new_mode: PM_OUT_OF_METADATA_SPACE);
1466 }
1467}
1468
1469static void check_for_data_space(struct pool *pool)
1470{
1471 int r;
1472 dm_block_t nr_free;
1473
1474 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1475 return;
1476
1477 r = dm_pool_get_free_block_count(pmd: pool->pmd, result: &nr_free);
1478 if (r)
1479 return;
1480
1481 if (nr_free) {
1482 set_pool_mode(pool, new_mode: PM_WRITE);
1483 requeue_bios(pool);
1484 }
1485}
1486
1487/*
1488 * A non-zero return indicates read_only or fail_io mode.
1489 * Many callers don't care about the return value.
1490 */
1491static int commit(struct pool *pool)
1492{
1493 int r;
1494
1495 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1496 return -EINVAL;
1497
1498 r = dm_pool_commit_metadata(pmd: pool->pmd);
1499 if (r)
1500 metadata_operation_failed(pool, op: "dm_pool_commit_metadata", r);
1501 else {
1502 check_for_metadata_space(pool);
1503 check_for_data_space(pool);
1504 }
1505
1506 return r;
1507}
1508
1509static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1510{
1511 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1512 DMWARN("%s: reached low water mark for data device: sending event.",
1513 dm_device_name(pool->pool_md));
1514 spin_lock_irq(lock: &pool->lock);
1515 pool->low_water_triggered = true;
1516 spin_unlock_irq(lock: &pool->lock);
1517 dm_table_event(t: pool->ti->table);
1518 }
1519}
1520
1521static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1522{
1523 int r;
1524 dm_block_t free_blocks;
1525 struct pool *pool = tc->pool;
1526
1527 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1528 return -EINVAL;
1529
1530 r = dm_pool_get_free_block_count(pmd: pool->pmd, result: &free_blocks);
1531 if (r) {
1532 metadata_operation_failed(pool, op: "dm_pool_get_free_block_count", r);
1533 return r;
1534 }
1535
1536 check_low_water_mark(pool, free_blocks);
1537
1538 if (!free_blocks) {
1539 /*
1540 * Try to commit to see if that will free up some
1541 * more space.
1542 */
1543 r = commit(pool);
1544 if (r)
1545 return r;
1546
1547 r = dm_pool_get_free_block_count(pmd: pool->pmd, result: &free_blocks);
1548 if (r) {
1549 metadata_operation_failed(pool, op: "dm_pool_get_free_block_count", r);
1550 return r;
1551 }
1552
1553 if (!free_blocks) {
1554 set_pool_mode(pool, new_mode: PM_OUT_OF_DATA_SPACE);
1555 return -ENOSPC;
1556 }
1557 }
1558
1559 r = dm_pool_alloc_data_block(pmd: pool->pmd, result);
1560 if (r) {
1561 if (r == -ENOSPC)
1562 set_pool_mode(pool, new_mode: PM_OUT_OF_DATA_SPACE);
1563 else
1564 metadata_operation_failed(pool, op: "dm_pool_alloc_data_block", r);
1565 return r;
1566 }
1567
1568 r = dm_pool_get_free_metadata_block_count(pmd: pool->pmd, result: &free_blocks);
1569 if (r) {
1570 metadata_operation_failed(pool, op: "dm_pool_get_free_metadata_block_count", r);
1571 return r;
1572 }
1573
1574 if (!free_blocks) {
1575 /* Let's commit before we use up the metadata reserve. */
1576 r = commit(pool);
1577 if (r)
1578 return r;
1579 }
1580
1581 return 0;
1582}
1583
1584/*
1585 * If we have run out of space, queue bios until the device is
1586 * resumed, presumably after having been reloaded with more space.
1587 */
1588static void retry_on_resume(struct bio *bio)
1589{
1590 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
1591 struct thin_c *tc = h->tc;
1592
1593 spin_lock_irq(lock: &tc->lock);
1594 bio_list_add(bl: &tc->retry_on_resume_list, bio);
1595 spin_unlock_irq(lock: &tc->lock);
1596}
1597
1598static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1599{
1600 enum pool_mode m = get_pool_mode(pool);
1601
1602 switch (m) {
1603 case PM_WRITE:
1604 /* Shouldn't get here */
1605 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1606 return BLK_STS_IOERR;
1607
1608 case PM_OUT_OF_DATA_SPACE:
1609 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1610
1611 case PM_OUT_OF_METADATA_SPACE:
1612 case PM_READ_ONLY:
1613 case PM_FAIL:
1614 return BLK_STS_IOERR;
1615 default:
1616 /* Shouldn't get here */
1617 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1618 return BLK_STS_IOERR;
1619 }
1620}
1621
1622static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1623{
1624 blk_status_t error = should_error_unserviceable_bio(pool);
1625
1626 if (error) {
1627 bio->bi_status = error;
1628 bio_endio(bio);
1629 } else
1630 retry_on_resume(bio);
1631}
1632
1633static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1634{
1635 struct bio *bio;
1636 struct bio_list bios;
1637 blk_status_t error;
1638
1639 error = should_error_unserviceable_bio(pool);
1640 if (error) {
1641 cell_error_with_code(pool, cell, error_code: error);
1642 return;
1643 }
1644
1645 bio_list_init(bl: &bios);
1646 cell_release(pool, cell, bios: &bios);
1647
1648 while ((bio = bio_list_pop(bl: &bios)))
1649 retry_on_resume(bio);
1650}
1651
1652static void process_discard_cell_no_passdown(struct thin_c *tc,
1653 struct dm_bio_prison_cell *virt_cell)
1654{
1655 struct pool *pool = tc->pool;
1656 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1657
1658 /*
1659 * We don't need to lock the data blocks, since there's no
1660 * passdown. We only lock data blocks for allocation and breaking sharing.
1661 */
1662 m->tc = tc;
1663 m->virt_begin = virt_cell->key.block_begin;
1664 m->virt_end = virt_cell->key.block_end;
1665 m->cell = virt_cell;
1666 m->bio = virt_cell->holder;
1667
1668 if (!dm_deferred_set_add_work(ds: pool->all_io_ds, work: &m->list))
1669 pool->process_prepared_discard(m);
1670}
1671
1672static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1673 struct bio *bio)
1674{
1675 struct pool *pool = tc->pool;
1676
1677 int r;
1678 bool maybe_shared;
1679 struct dm_cell_key data_key;
1680 struct dm_bio_prison_cell *data_cell;
1681 struct dm_thin_new_mapping *m;
1682 dm_block_t virt_begin, virt_end, data_begin, data_end;
1683 dm_block_t len, next_boundary;
1684
1685 while (begin != end) {
1686 r = dm_thin_find_mapped_range(td: tc->td, begin, end, thin_begin: &virt_begin, thin_end: &virt_end,
1687 pool_begin: &data_begin, maybe_shared: &maybe_shared);
1688 if (r) {
1689 /*
1690 * Silently fail, letting any mappings we've
1691 * created complete.
1692 */
1693 break;
1694 }
1695
1696 data_end = data_begin + (virt_end - virt_begin);
1697
1698 /*
1699 * Make sure the data region obeys the bio prison restrictions.
1700 */
1701 while (data_begin < data_end) {
1702 r = ensure_next_mapping(pool);
1703 if (r)
1704 return; /* we did our best */
1705
1706 next_boundary = ((data_begin >> BIO_PRISON_MAX_RANGE_SHIFT) + 1)
1707 << BIO_PRISON_MAX_RANGE_SHIFT;
1708 len = min_t(sector_t, data_end - data_begin, next_boundary - data_begin);
1709
1710 /* This key is certainly within range given the above splitting */
1711 (void) build_key(td: tc->td, ls: PHYSICAL, b: data_begin, e: data_begin + len, key: &data_key);
1712 if (bio_detain(pool: tc->pool, key: &data_key, NULL, cell_result: &data_cell)) {
1713 /* contention, we'll give up with this range */
1714 data_begin += len;
1715 continue;
1716 }
1717
1718 /*
1719 * IO may still be going to the destination block. We must
1720 * quiesce before we can do the removal.
1721 */
1722 m = get_next_mapping(pool);
1723 m->tc = tc;
1724 m->maybe_shared = maybe_shared;
1725 m->virt_begin = virt_begin;
1726 m->virt_end = virt_begin + len;
1727 m->data_block = data_begin;
1728 m->cell = data_cell;
1729 m->bio = bio;
1730
1731 /*
1732 * The parent bio must not complete before sub discard bios are
1733 * chained to it (see end_discard's bio_chain)!
1734 *
1735 * This per-mapping bi_remaining increment is paired with
1736 * the implicit decrement that occurs via bio_endio() in
1737 * end_discard().
1738 */
1739 bio_inc_remaining(bio);
1740 if (!dm_deferred_set_add_work(ds: pool->all_io_ds, work: &m->list))
1741 pool->process_prepared_discard(m);
1742
1743 virt_begin += len;
1744 data_begin += len;
1745 }
1746
1747 begin = virt_end;
1748 }
1749}
1750
1751static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1752{
1753 struct bio *bio = virt_cell->holder;
1754 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
1755
1756 /*
1757 * The virt_cell will only get freed once the origin bio completes.
1758 * This means it will remain locked while all the individual
1759 * passdown bios are in flight.
1760 */
1761 h->cell = virt_cell;
1762 break_up_discard_bio(tc, begin: virt_cell->key.block_begin, end: virt_cell->key.block_end, bio);
1763
1764 /*
1765 * We complete the bio now, knowing that the bi_remaining field
1766 * will prevent completion until the sub range discards have
1767 * completed.
1768 */
1769 bio_endio(bio);
1770}
1771
1772static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1773{
1774 dm_block_t begin, end;
1775 struct dm_cell_key virt_key;
1776 struct dm_bio_prison_cell *virt_cell;
1777
1778 get_bio_block_range(tc, bio, begin: &begin, end: &end);
1779 if (begin == end) {
1780 /*
1781 * The discard covers less than a block.
1782 */
1783 bio_endio(bio);
1784 return;
1785 }
1786
1787 if (unlikely(!build_key(tc->td, VIRTUAL, begin, end, &virt_key))) {
1788 DMERR_LIMIT("Discard doesn't respect bio prison limits");
1789 bio_endio(bio);
1790 return;
1791 }
1792
1793 if (bio_detain(pool: tc->pool, key: &virt_key, bio, cell_result: &virt_cell)) {
1794 /*
1795 * Potential starvation issue: We're relying on the
1796 * fs/application being well behaved, and not trying to
1797 * send IO to a region at the same time as discarding it.
1798 * If they do this persistently then it's possible this
1799 * cell will never be granted.
1800 */
1801 return;
1802 }
1803
1804 tc->pool->process_discard_cell(tc, virt_cell);
1805}
1806
1807static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1808 struct dm_cell_key *key,
1809 struct dm_thin_lookup_result *lookup_result,
1810 struct dm_bio_prison_cell *cell)
1811{
1812 int r;
1813 dm_block_t data_block;
1814 struct pool *pool = tc->pool;
1815
1816 r = alloc_data_block(tc, result: &data_block);
1817 switch (r) {
1818 case 0:
1819 schedule_internal_copy(tc, virt_block: block, data_origin: lookup_result->block,
1820 data_dest: data_block, cell, bio);
1821 break;
1822
1823 case -ENOSPC:
1824 retry_bios_on_resume(pool, cell);
1825 break;
1826
1827 default:
1828 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1829 __func__, r);
1830 cell_error(pool, cell);
1831 break;
1832 }
1833}
1834
1835static void __remap_and_issue_shared_cell(void *context,
1836 struct dm_bio_prison_cell *cell)
1837{
1838 struct remap_info *info = context;
1839 struct bio *bio;
1840
1841 while ((bio = bio_list_pop(bl: &cell->bios))) {
1842 if (bio_data_dir(bio) == WRITE || op_is_flush(op: bio->bi_opf) ||
1843 bio_op(bio) == REQ_OP_DISCARD)
1844 bio_list_add(bl: &info->defer_bios, bio);
1845 else {
1846 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
1847
1848 h->shared_read_entry = dm_deferred_entry_inc(ds: info->tc->pool->shared_read_ds);
1849 inc_all_io_entry(pool: info->tc->pool, bio);
1850 bio_list_add(bl: &info->issue_bios, bio);
1851 }
1852 }
1853}
1854
1855static void remap_and_issue_shared_cell(struct thin_c *tc,
1856 struct dm_bio_prison_cell *cell,
1857 dm_block_t block)
1858{
1859 struct bio *bio;
1860 struct remap_info info;
1861
1862 info.tc = tc;
1863 bio_list_init(bl: &info.defer_bios);
1864 bio_list_init(bl: &info.issue_bios);
1865
1866 cell_visit_release(pool: tc->pool, fn: __remap_and_issue_shared_cell,
1867 context: &info, cell);
1868
1869 while ((bio = bio_list_pop(bl: &info.defer_bios)))
1870 thin_defer_bio(tc, bio);
1871
1872 while ((bio = bio_list_pop(bl: &info.issue_bios)))
1873 remap_and_issue(tc, bio, block);
1874}
1875
1876static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1877 dm_block_t block,
1878 struct dm_thin_lookup_result *lookup_result,
1879 struct dm_bio_prison_cell *virt_cell)
1880{
1881 struct dm_bio_prison_cell *data_cell;
1882 struct pool *pool = tc->pool;
1883 struct dm_cell_key key;
1884
1885 /*
1886 * If cell is already occupied, then sharing is already in the process
1887 * of being broken so we have nothing further to do here.
1888 */
1889 build_data_key(td: tc->td, b: lookup_result->block, key: &key);
1890 if (bio_detain(pool, key: &key, bio, cell_result: &data_cell)) {
1891 cell_defer_no_holder(tc, cell: virt_cell);
1892 return;
1893 }
1894
1895 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1896 break_sharing(tc, bio, block, key: &key, lookup_result, cell: data_cell);
1897 cell_defer_no_holder(tc, cell: virt_cell);
1898 } else {
1899 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
1900
1901 h->shared_read_entry = dm_deferred_entry_inc(ds: pool->shared_read_ds);
1902 inc_all_io_entry(pool, bio);
1903 remap_and_issue(tc, bio, block: lookup_result->block);
1904
1905 remap_and_issue_shared_cell(tc, cell: data_cell, block: lookup_result->block);
1906 remap_and_issue_shared_cell(tc, cell: virt_cell, block: lookup_result->block);
1907 }
1908}
1909
1910static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1911 struct dm_bio_prison_cell *cell)
1912{
1913 int r;
1914 dm_block_t data_block;
1915 struct pool *pool = tc->pool;
1916
1917 /*
1918 * Remap empty bios (flushes) immediately, without provisioning.
1919 */
1920 if (!bio->bi_iter.bi_size) {
1921 inc_all_io_entry(pool, bio);
1922 cell_defer_no_holder(tc, cell);
1923
1924 remap_and_issue(tc, bio, block: 0);
1925 return;
1926 }
1927
1928 /*
1929 * Fill read bios with zeroes and complete them immediately.
1930 */
1931 if (bio_data_dir(bio) == READ) {
1932 zero_fill_bio(bio);
1933 cell_defer_no_holder(tc, cell);
1934 bio_endio(bio);
1935 return;
1936 }
1937
1938 r = alloc_data_block(tc, result: &data_block);
1939 switch (r) {
1940 case 0:
1941 if (tc->origin_dev)
1942 schedule_external_copy(tc, virt_block: block, data_dest: data_block, cell, bio);
1943 else
1944 schedule_zero(tc, virt_block: block, data_block, cell, bio);
1945 break;
1946
1947 case -ENOSPC:
1948 retry_bios_on_resume(pool, cell);
1949 break;
1950
1951 default:
1952 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1953 __func__, r);
1954 cell_error(pool, cell);
1955 break;
1956 }
1957}
1958
1959static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1960{
1961 int r;
1962 struct pool *pool = tc->pool;
1963 struct bio *bio = cell->holder;
1964 dm_block_t block = get_bio_block(tc, bio);
1965 struct dm_thin_lookup_result lookup_result;
1966
1967 if (tc->requeue_mode) {
1968 cell_requeue(pool, cell);
1969 return;
1970 }
1971
1972 r = dm_thin_find_block(td: tc->td, block, can_issue_io: 1, result: &lookup_result);
1973 switch (r) {
1974 case 0:
1975 if (lookup_result.shared)
1976 process_shared_bio(tc, bio, block, lookup_result: &lookup_result, virt_cell: cell);
1977 else {
1978 inc_all_io_entry(pool, bio);
1979 remap_and_issue(tc, bio, block: lookup_result.block);
1980 inc_remap_and_issue_cell(tc, cell, block: lookup_result.block);
1981 }
1982 break;
1983
1984 case -ENODATA:
1985 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1986 inc_all_io_entry(pool, bio);
1987 cell_defer_no_holder(tc, cell);
1988
1989 if (bio_end_sector(bio) <= tc->origin_size)
1990 remap_to_origin_and_issue(tc, bio);
1991
1992 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1993 zero_fill_bio(bio);
1994 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1995 remap_to_origin_and_issue(tc, bio);
1996
1997 } else {
1998 zero_fill_bio(bio);
1999 bio_endio(bio);
2000 }
2001 } else
2002 provision_block(tc, bio, block, cell);
2003 break;
2004
2005 default:
2006 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2007 __func__, r);
2008 cell_defer_no_holder(tc, cell);
2009 bio_io_error(bio);
2010 break;
2011 }
2012}
2013
2014static void process_bio(struct thin_c *tc, struct bio *bio)
2015{
2016 struct pool *pool = tc->pool;
2017 dm_block_t block = get_bio_block(tc, bio);
2018 struct dm_bio_prison_cell *cell;
2019 struct dm_cell_key key;
2020
2021 /*
2022 * If cell is already occupied, then the block is already
2023 * being provisioned so we have nothing further to do here.
2024 */
2025 build_virtual_key(td: tc->td, b: block, key: &key);
2026 if (bio_detain(pool, key: &key, bio, cell_result: &cell))
2027 return;
2028
2029 process_cell(tc, cell);
2030}
2031
2032static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2033 struct dm_bio_prison_cell *cell)
2034{
2035 int r;
2036 int rw = bio_data_dir(bio);
2037 dm_block_t block = get_bio_block(tc, bio);
2038 struct dm_thin_lookup_result lookup_result;
2039
2040 r = dm_thin_find_block(td: tc->td, block, can_issue_io: 1, result: &lookup_result);
2041 switch (r) {
2042 case 0:
2043 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2044 handle_unserviceable_bio(pool: tc->pool, bio);
2045 if (cell)
2046 cell_defer_no_holder(tc, cell);
2047 } else {
2048 inc_all_io_entry(pool: tc->pool, bio);
2049 remap_and_issue(tc, bio, block: lookup_result.block);
2050 if (cell)
2051 inc_remap_and_issue_cell(tc, cell, block: lookup_result.block);
2052 }
2053 break;
2054
2055 case -ENODATA:
2056 if (cell)
2057 cell_defer_no_holder(tc, cell);
2058 if (rw != READ) {
2059 handle_unserviceable_bio(pool: tc->pool, bio);
2060 break;
2061 }
2062
2063 if (tc->origin_dev) {
2064 inc_all_io_entry(pool: tc->pool, bio);
2065 remap_to_origin_and_issue(tc, bio);
2066 break;
2067 }
2068
2069 zero_fill_bio(bio);
2070 bio_endio(bio);
2071 break;
2072
2073 default:
2074 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2075 __func__, r);
2076 if (cell)
2077 cell_defer_no_holder(tc, cell);
2078 bio_io_error(bio);
2079 break;
2080 }
2081}
2082
2083static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2084{
2085 __process_bio_read_only(tc, bio, NULL);
2086}
2087
2088static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089{
2090 __process_bio_read_only(tc, bio: cell->holder, cell);
2091}
2092
2093static void process_bio_success(struct thin_c *tc, struct bio *bio)
2094{
2095 bio_endio(bio);
2096}
2097
2098static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2099{
2100 bio_io_error(bio);
2101}
2102
2103static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2104{
2105 cell_success(pool: tc->pool, cell);
2106}
2107
2108static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2109{
2110 cell_error(pool: tc->pool, cell);
2111}
2112
2113/*
2114 * FIXME: should we also commit due to size of transaction, measured in
2115 * metadata blocks?
2116 */
2117static int need_commit_due_to_time(struct pool *pool)
2118{
2119 return !time_in_range(jiffies, pool->last_commit_jiffies,
2120 pool->last_commit_jiffies + COMMIT_PERIOD);
2121}
2122
2123#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2124#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2125
2126static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2127{
2128 struct rb_node **rbp, *parent;
2129 struct dm_thin_endio_hook *pbd;
2130 sector_t bi_sector = bio->bi_iter.bi_sector;
2131
2132 rbp = &tc->sort_bio_list.rb_node;
2133 parent = NULL;
2134 while (*rbp) {
2135 parent = *rbp;
2136 pbd = thin_pbd(parent);
2137
2138 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2139 rbp = &(*rbp)->rb_left;
2140 else
2141 rbp = &(*rbp)->rb_right;
2142 }
2143
2144 pbd = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
2145 rb_link_node(node: &pbd->rb_node, parent, rb_link: rbp);
2146 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2147}
2148
2149static void __extract_sorted_bios(struct thin_c *tc)
2150{
2151 struct rb_node *node;
2152 struct dm_thin_endio_hook *pbd;
2153 struct bio *bio;
2154
2155 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2156 pbd = thin_pbd(node);
2157 bio = thin_bio(pbd);
2158
2159 bio_list_add(bl: &tc->deferred_bio_list, bio);
2160 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2161 }
2162
2163 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2164}
2165
2166static void __sort_thin_deferred_bios(struct thin_c *tc)
2167{
2168 struct bio *bio;
2169 struct bio_list bios;
2170
2171 bio_list_init(bl: &bios);
2172 bio_list_merge(bl: &bios, bl2: &tc->deferred_bio_list);
2173 bio_list_init(bl: &tc->deferred_bio_list);
2174
2175 /* Sort deferred_bio_list using rb-tree */
2176 while ((bio = bio_list_pop(bl: &bios)))
2177 __thin_bio_rb_add(tc, bio);
2178
2179 /*
2180 * Transfer the sorted bios in sort_bio_list back to
2181 * deferred_bio_list to allow lockless submission of
2182 * all bios.
2183 */
2184 __extract_sorted_bios(tc);
2185}
2186
2187static void process_thin_deferred_bios(struct thin_c *tc)
2188{
2189 struct pool *pool = tc->pool;
2190 struct bio *bio;
2191 struct bio_list bios;
2192 struct blk_plug plug;
2193 unsigned int count = 0;
2194
2195 if (tc->requeue_mode) {
2196 error_thin_bio_list(tc, master: &tc->deferred_bio_list,
2197 BLK_STS_DM_REQUEUE);
2198 return;
2199 }
2200
2201 bio_list_init(bl: &bios);
2202
2203 spin_lock_irq(lock: &tc->lock);
2204
2205 if (bio_list_empty(bl: &tc->deferred_bio_list)) {
2206 spin_unlock_irq(lock: &tc->lock);
2207 return;
2208 }
2209
2210 __sort_thin_deferred_bios(tc);
2211
2212 bio_list_merge(bl: &bios, bl2: &tc->deferred_bio_list);
2213 bio_list_init(bl: &tc->deferred_bio_list);
2214
2215 spin_unlock_irq(lock: &tc->lock);
2216
2217 blk_start_plug(&plug);
2218 while ((bio = bio_list_pop(bl: &bios))) {
2219 /*
2220 * If we've got no free new_mapping structs, and processing
2221 * this bio might require one, we pause until there are some
2222 * prepared mappings to process.
2223 */
2224 if (ensure_next_mapping(pool)) {
2225 spin_lock_irq(lock: &tc->lock);
2226 bio_list_add(bl: &tc->deferred_bio_list, bio);
2227 bio_list_merge(bl: &tc->deferred_bio_list, bl2: &bios);
2228 spin_unlock_irq(lock: &tc->lock);
2229 break;
2230 }
2231
2232 if (bio_op(bio) == REQ_OP_DISCARD)
2233 pool->process_discard(tc, bio);
2234 else
2235 pool->process_bio(tc, bio);
2236
2237 if ((count++ & 127) == 0) {
2238 throttle_work_update(t: &pool->throttle);
2239 dm_pool_issue_prefetches(pmd: pool->pmd);
2240 }
2241 cond_resched();
2242 }
2243 blk_finish_plug(&plug);
2244}
2245
2246static int cmp_cells(const void *lhs, const void *rhs)
2247{
2248 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2249 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2250
2251 BUG_ON(!lhs_cell->holder);
2252 BUG_ON(!rhs_cell->holder);
2253
2254 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2255 return -1;
2256
2257 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2258 return 1;
2259
2260 return 0;
2261}
2262
2263static unsigned int sort_cells(struct pool *pool, struct list_head *cells)
2264{
2265 unsigned int count = 0;
2266 struct dm_bio_prison_cell *cell, *tmp;
2267
2268 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2269 if (count >= CELL_SORT_ARRAY_SIZE)
2270 break;
2271
2272 pool->cell_sort_array[count++] = cell;
2273 list_del(entry: &cell->user_list);
2274 }
2275
2276 sort(base: pool->cell_sort_array, num: count, size: sizeof(cell), cmp_func: cmp_cells, NULL);
2277
2278 return count;
2279}
2280
2281static void process_thin_deferred_cells(struct thin_c *tc)
2282{
2283 struct pool *pool = tc->pool;
2284 struct list_head cells;
2285 struct dm_bio_prison_cell *cell;
2286 unsigned int i, j, count;
2287
2288 INIT_LIST_HEAD(list: &cells);
2289
2290 spin_lock_irq(lock: &tc->lock);
2291 list_splice_init(list: &tc->deferred_cells, head: &cells);
2292 spin_unlock_irq(lock: &tc->lock);
2293
2294 if (list_empty(head: &cells))
2295 return;
2296
2297 do {
2298 count = sort_cells(pool: tc->pool, cells: &cells);
2299
2300 for (i = 0; i < count; i++) {
2301 cell = pool->cell_sort_array[i];
2302 BUG_ON(!cell->holder);
2303
2304 /*
2305 * If we've got no free new_mapping structs, and processing
2306 * this bio might require one, we pause until there are some
2307 * prepared mappings to process.
2308 */
2309 if (ensure_next_mapping(pool)) {
2310 for (j = i; j < count; j++)
2311 list_add(new: &pool->cell_sort_array[j]->user_list, head: &cells);
2312
2313 spin_lock_irq(lock: &tc->lock);
2314 list_splice(list: &cells, head: &tc->deferred_cells);
2315 spin_unlock_irq(lock: &tc->lock);
2316 return;
2317 }
2318
2319 if (bio_op(bio: cell->holder) == REQ_OP_DISCARD)
2320 pool->process_discard_cell(tc, cell);
2321 else
2322 pool->process_cell(tc, cell);
2323 }
2324 cond_resched();
2325 } while (!list_empty(head: &cells));
2326}
2327
2328static void thin_get(struct thin_c *tc);
2329static void thin_put(struct thin_c *tc);
2330
2331/*
2332 * We can't hold rcu_read_lock() around code that can block. So we
2333 * find a thin with the rcu lock held; bump a refcount; then drop
2334 * the lock.
2335 */
2336static struct thin_c *get_first_thin(struct pool *pool)
2337{
2338 struct thin_c *tc = NULL;
2339
2340 rcu_read_lock();
2341 if (!list_empty(head: &pool->active_thins)) {
2342 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2343 thin_get(tc);
2344 }
2345 rcu_read_unlock();
2346
2347 return tc;
2348}
2349
2350static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2351{
2352 struct thin_c *old_tc = tc;
2353
2354 rcu_read_lock();
2355 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2356 thin_get(tc);
2357 thin_put(tc: old_tc);
2358 rcu_read_unlock();
2359 return tc;
2360 }
2361 thin_put(tc: old_tc);
2362 rcu_read_unlock();
2363
2364 return NULL;
2365}
2366
2367static void process_deferred_bios(struct pool *pool)
2368{
2369 struct bio *bio;
2370 struct bio_list bios, bio_completions;
2371 struct thin_c *tc;
2372
2373 tc = get_first_thin(pool);
2374 while (tc) {
2375 process_thin_deferred_cells(tc);
2376 process_thin_deferred_bios(tc);
2377 tc = get_next_thin(pool, tc);
2378 }
2379
2380 /*
2381 * If there are any deferred flush bios, we must commit the metadata
2382 * before issuing them or signaling their completion.
2383 */
2384 bio_list_init(bl: &bios);
2385 bio_list_init(bl: &bio_completions);
2386
2387 spin_lock_irq(lock: &pool->lock);
2388 bio_list_merge(bl: &bios, bl2: &pool->deferred_flush_bios);
2389 bio_list_init(bl: &pool->deferred_flush_bios);
2390
2391 bio_list_merge(bl: &bio_completions, bl2: &pool->deferred_flush_completions);
2392 bio_list_init(bl: &pool->deferred_flush_completions);
2393 spin_unlock_irq(lock: &pool->lock);
2394
2395 if (bio_list_empty(bl: &bios) && bio_list_empty(bl: &bio_completions) &&
2396 !(dm_pool_changed_this_transaction(pmd: pool->pmd) && need_commit_due_to_time(pool)))
2397 return;
2398
2399 if (commit(pool)) {
2400 bio_list_merge(bl: &bios, bl2: &bio_completions);
2401
2402 while ((bio = bio_list_pop(bl: &bios)))
2403 bio_io_error(bio);
2404 return;
2405 }
2406 pool->last_commit_jiffies = jiffies;
2407
2408 while ((bio = bio_list_pop(bl: &bio_completions)))
2409 bio_endio(bio);
2410
2411 while ((bio = bio_list_pop(bl: &bios))) {
2412 /*
2413 * The data device was flushed as part of metadata commit,
2414 * so complete redundant flushes immediately.
2415 */
2416 if (bio->bi_opf & REQ_PREFLUSH)
2417 bio_endio(bio);
2418 else
2419 dm_submit_bio_remap(clone: bio, NULL);
2420 }
2421}
2422
2423static void do_worker(struct work_struct *ws)
2424{
2425 struct pool *pool = container_of(ws, struct pool, worker);
2426
2427 throttle_work_start(t: &pool->throttle);
2428 dm_pool_issue_prefetches(pmd: pool->pmd);
2429 throttle_work_update(t: &pool->throttle);
2430 process_prepared(pool, head: &pool->prepared_mappings, fn: &pool->process_prepared_mapping);
2431 throttle_work_update(t: &pool->throttle);
2432 process_prepared(pool, head: &pool->prepared_discards, fn: &pool->process_prepared_discard);
2433 throttle_work_update(t: &pool->throttle);
2434 process_prepared(pool, head: &pool->prepared_discards_pt2, fn: &pool->process_prepared_discard_pt2);
2435 throttle_work_update(t: &pool->throttle);
2436 process_deferred_bios(pool);
2437 throttle_work_complete(t: &pool->throttle);
2438}
2439
2440/*
2441 * We want to commit periodically so that not too much
2442 * unwritten data builds up.
2443 */
2444static void do_waker(struct work_struct *ws)
2445{
2446 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2447
2448 wake_worker(pool);
2449 queue_delayed_work(wq: pool->wq, dwork: &pool->waker, COMMIT_PERIOD);
2450}
2451
2452/*
2453 * We're holding onto IO to allow userland time to react. After the
2454 * timeout either the pool will have been resized (and thus back in
2455 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2456 */
2457static void do_no_space_timeout(struct work_struct *ws)
2458{
2459 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2460 no_space_timeout);
2461
2462 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2463 pool->pf.error_if_no_space = true;
2464 notify_of_pool_mode_change(pool);
2465 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2466 }
2467}
2468
2469/*----------------------------------------------------------------*/
2470
2471struct pool_work {
2472 struct work_struct worker;
2473 struct completion complete;
2474};
2475
2476static struct pool_work *to_pool_work(struct work_struct *ws)
2477{
2478 return container_of(ws, struct pool_work, worker);
2479}
2480
2481static void pool_work_complete(struct pool_work *pw)
2482{
2483 complete(&pw->complete);
2484}
2485
2486static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2487 void (*fn)(struct work_struct *))
2488{
2489 INIT_WORK_ONSTACK(&pw->worker, fn);
2490 init_completion(x: &pw->complete);
2491 queue_work(wq: pool->wq, work: &pw->worker);
2492 wait_for_completion(&pw->complete);
2493}
2494
2495/*----------------------------------------------------------------*/
2496
2497struct noflush_work {
2498 struct pool_work pw;
2499 struct thin_c *tc;
2500};
2501
2502static struct noflush_work *to_noflush(struct work_struct *ws)
2503{
2504 return container_of(to_pool_work(ws), struct noflush_work, pw);
2505}
2506
2507static void do_noflush_start(struct work_struct *ws)
2508{
2509 struct noflush_work *w = to_noflush(ws);
2510
2511 w->tc->requeue_mode = true;
2512 requeue_io(tc: w->tc);
2513 pool_work_complete(pw: &w->pw);
2514}
2515
2516static void do_noflush_stop(struct work_struct *ws)
2517{
2518 struct noflush_work *w = to_noflush(ws);
2519
2520 w->tc->requeue_mode = false;
2521 pool_work_complete(pw: &w->pw);
2522}
2523
2524static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2525{
2526 struct noflush_work w;
2527
2528 w.tc = tc;
2529 pool_work_wait(pw: &w.pw, pool: tc->pool, fn);
2530}
2531
2532/*----------------------------------------------------------------*/
2533
2534static void set_discard_callbacks(struct pool *pool)
2535{
2536 struct pool_c *pt = pool->ti->private;
2537
2538 if (pt->adjusted_pf.discard_passdown) {
2539 pool->process_discard_cell = process_discard_cell_passdown;
2540 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2541 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2542 } else {
2543 pool->process_discard_cell = process_discard_cell_no_passdown;
2544 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2545 }
2546}
2547
2548static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2549{
2550 struct pool_c *pt = pool->ti->private;
2551 bool needs_check = dm_pool_metadata_needs_check(pmd: pool->pmd);
2552 enum pool_mode old_mode = get_pool_mode(pool);
2553 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2554
2555 /*
2556 * Never allow the pool to transition to PM_WRITE mode if user
2557 * intervention is required to verify metadata and data consistency.
2558 */
2559 if (new_mode == PM_WRITE && needs_check) {
2560 DMERR("%s: unable to switch pool to write mode until repaired.",
2561 dm_device_name(pool->pool_md));
2562 if (old_mode != new_mode)
2563 new_mode = old_mode;
2564 else
2565 new_mode = PM_READ_ONLY;
2566 }
2567 /*
2568 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2569 * not going to recover without a thin_repair. So we never let the
2570 * pool move out of the old mode.
2571 */
2572 if (old_mode == PM_FAIL)
2573 new_mode = old_mode;
2574
2575 switch (new_mode) {
2576 case PM_FAIL:
2577 dm_pool_metadata_read_only(pmd: pool->pmd);
2578 pool->process_bio = process_bio_fail;
2579 pool->process_discard = process_bio_fail;
2580 pool->process_cell = process_cell_fail;
2581 pool->process_discard_cell = process_cell_fail;
2582 pool->process_prepared_mapping = process_prepared_mapping_fail;
2583 pool->process_prepared_discard = process_prepared_discard_fail;
2584
2585 error_retry_list(pool);
2586 break;
2587
2588 case PM_OUT_OF_METADATA_SPACE:
2589 case PM_READ_ONLY:
2590 dm_pool_metadata_read_only(pmd: pool->pmd);
2591 pool->process_bio = process_bio_read_only;
2592 pool->process_discard = process_bio_success;
2593 pool->process_cell = process_cell_read_only;
2594 pool->process_discard_cell = process_cell_success;
2595 pool->process_prepared_mapping = process_prepared_mapping_fail;
2596 pool->process_prepared_discard = process_prepared_discard_success;
2597
2598 error_retry_list(pool);
2599 break;
2600
2601 case PM_OUT_OF_DATA_SPACE:
2602 /*
2603 * Ideally we'd never hit this state; the low water mark
2604 * would trigger userland to extend the pool before we
2605 * completely run out of data space. However, many small
2606 * IOs to unprovisioned space can consume data space at an
2607 * alarming rate. Adjust your low water mark if you're
2608 * frequently seeing this mode.
2609 */
2610 pool->out_of_data_space = true;
2611 pool->process_bio = process_bio_read_only;
2612 pool->process_discard = process_discard_bio;
2613 pool->process_cell = process_cell_read_only;
2614 pool->process_prepared_mapping = process_prepared_mapping;
2615 set_discard_callbacks(pool);
2616
2617 if (!pool->pf.error_if_no_space && no_space_timeout)
2618 queue_delayed_work(wq: pool->wq, dwork: &pool->no_space_timeout, delay: no_space_timeout);
2619 break;
2620
2621 case PM_WRITE:
2622 if (old_mode == PM_OUT_OF_DATA_SPACE)
2623 cancel_delayed_work_sync(dwork: &pool->no_space_timeout);
2624 pool->out_of_data_space = false;
2625 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2626 dm_pool_metadata_read_write(pmd: pool->pmd);
2627 pool->process_bio = process_bio;
2628 pool->process_discard = process_discard_bio;
2629 pool->process_cell = process_cell;
2630 pool->process_prepared_mapping = process_prepared_mapping;
2631 set_discard_callbacks(pool);
2632 break;
2633 }
2634
2635 pool->pf.mode = new_mode;
2636 /*
2637 * The pool mode may have changed, sync it so bind_control_target()
2638 * doesn't cause an unexpected mode transition on resume.
2639 */
2640 pt->adjusted_pf.mode = new_mode;
2641
2642 if (old_mode != new_mode)
2643 notify_of_pool_mode_change(pool);
2644}
2645
2646static void abort_transaction(struct pool *pool)
2647{
2648 const char *dev_name = dm_device_name(md: pool->pool_md);
2649
2650 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2651 if (dm_pool_abort_metadata(pmd: pool->pmd)) {
2652 DMERR("%s: failed to abort metadata transaction", dev_name);
2653 set_pool_mode(pool, new_mode: PM_FAIL);
2654 }
2655
2656 if (dm_pool_metadata_set_needs_check(pmd: pool->pmd)) {
2657 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2658 set_pool_mode(pool, new_mode: PM_FAIL);
2659 }
2660}
2661
2662static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2663{
2664 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2665 dm_device_name(pool->pool_md), op, r);
2666
2667 abort_transaction(pool);
2668 set_pool_mode(pool, new_mode: PM_READ_ONLY);
2669}
2670
2671/*----------------------------------------------------------------*/
2672
2673/*
2674 * Mapping functions.
2675 */
2676
2677/*
2678 * Called only while mapping a thin bio to hand it over to the workqueue.
2679 */
2680static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2681{
2682 struct pool *pool = tc->pool;
2683
2684 spin_lock_irq(lock: &tc->lock);
2685 bio_list_add(bl: &tc->deferred_bio_list, bio);
2686 spin_unlock_irq(lock: &tc->lock);
2687
2688 wake_worker(pool);
2689}
2690
2691static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2692{
2693 struct pool *pool = tc->pool;
2694
2695 throttle_lock(t: &pool->throttle);
2696 thin_defer_bio(tc, bio);
2697 throttle_unlock(t: &pool->throttle);
2698}
2699
2700static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2701{
2702 struct pool *pool = tc->pool;
2703
2704 throttle_lock(t: &pool->throttle);
2705 spin_lock_irq(lock: &tc->lock);
2706 list_add_tail(new: &cell->user_list, head: &tc->deferred_cells);
2707 spin_unlock_irq(lock: &tc->lock);
2708 throttle_unlock(t: &pool->throttle);
2709
2710 wake_worker(pool);
2711}
2712
2713static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2714{
2715 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
2716
2717 h->tc = tc;
2718 h->shared_read_entry = NULL;
2719 h->all_io_entry = NULL;
2720 h->overwrite_mapping = NULL;
2721 h->cell = NULL;
2722}
2723
2724/*
2725 * Non-blocking function called from the thin target's map function.
2726 */
2727static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2728{
2729 int r;
2730 struct thin_c *tc = ti->private;
2731 dm_block_t block = get_bio_block(tc, bio);
2732 struct dm_thin_device *td = tc->td;
2733 struct dm_thin_lookup_result result;
2734 struct dm_bio_prison_cell *virt_cell, *data_cell;
2735 struct dm_cell_key key;
2736
2737 thin_hook_bio(tc, bio);
2738
2739 if (tc->requeue_mode) {
2740 bio->bi_status = BLK_STS_DM_REQUEUE;
2741 bio_endio(bio);
2742 return DM_MAPIO_SUBMITTED;
2743 }
2744
2745 if (get_pool_mode(pool: tc->pool) == PM_FAIL) {
2746 bio_io_error(bio);
2747 return DM_MAPIO_SUBMITTED;
2748 }
2749
2750 if (op_is_flush(op: bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2751 thin_defer_bio_with_throttle(tc, bio);
2752 return DM_MAPIO_SUBMITTED;
2753 }
2754
2755 /*
2756 * We must hold the virtual cell before doing the lookup, otherwise
2757 * there's a race with discard.
2758 */
2759 build_virtual_key(td: tc->td, b: block, key: &key);
2760 if (bio_detain(pool: tc->pool, key: &key, bio, cell_result: &virt_cell))
2761 return DM_MAPIO_SUBMITTED;
2762
2763 r = dm_thin_find_block(td, block, can_issue_io: 0, result: &result);
2764
2765 /*
2766 * Note that we defer readahead too.
2767 */
2768 switch (r) {
2769 case 0:
2770 if (unlikely(result.shared)) {
2771 /*
2772 * We have a race condition here between the
2773 * result.shared value returned by the lookup and
2774 * snapshot creation, which may cause new
2775 * sharing.
2776 *
2777 * To avoid this always quiesce the origin before
2778 * taking the snap. You want to do this anyway to
2779 * ensure a consistent application view
2780 * (i.e. lockfs).
2781 *
2782 * More distant ancestors are irrelevant. The
2783 * shared flag will be set in their case.
2784 */
2785 thin_defer_cell(tc, cell: virt_cell);
2786 return DM_MAPIO_SUBMITTED;
2787 }
2788
2789 build_data_key(td: tc->td, b: result.block, key: &key);
2790 if (bio_detain(pool: tc->pool, key: &key, bio, cell_result: &data_cell)) {
2791 cell_defer_no_holder(tc, cell: virt_cell);
2792 return DM_MAPIO_SUBMITTED;
2793 }
2794
2795 inc_all_io_entry(pool: tc->pool, bio);
2796 cell_defer_no_holder(tc, cell: data_cell);
2797 cell_defer_no_holder(tc, cell: virt_cell);
2798
2799 remap(tc, bio, block: result.block);
2800 return DM_MAPIO_REMAPPED;
2801
2802 case -ENODATA:
2803 case -EWOULDBLOCK:
2804 thin_defer_cell(tc, cell: virt_cell);
2805 return DM_MAPIO_SUBMITTED;
2806
2807 default:
2808 /*
2809 * Must always call bio_io_error on failure.
2810 * dm_thin_find_block can fail with -EINVAL if the
2811 * pool is switched to fail-io mode.
2812 */
2813 bio_io_error(bio);
2814 cell_defer_no_holder(tc, cell: virt_cell);
2815 return DM_MAPIO_SUBMITTED;
2816 }
2817}
2818
2819static void requeue_bios(struct pool *pool)
2820{
2821 struct thin_c *tc;
2822
2823 rcu_read_lock();
2824 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2825 spin_lock_irq(lock: &tc->lock);
2826 bio_list_merge(bl: &tc->deferred_bio_list, bl2: &tc->retry_on_resume_list);
2827 bio_list_init(bl: &tc->retry_on_resume_list);
2828 spin_unlock_irq(lock: &tc->lock);
2829 }
2830 rcu_read_unlock();
2831}
2832
2833/*
2834 *--------------------------------------------------------------
2835 * Binding of control targets to a pool object
2836 *--------------------------------------------------------------
2837 */
2838static bool is_factor(sector_t block_size, uint32_t n)
2839{
2840 return !sector_div(block_size, n);
2841}
2842
2843/*
2844 * If discard_passdown was enabled verify that the data device
2845 * supports discards. Disable discard_passdown if not.
2846 */
2847static void disable_discard_passdown_if_not_supported(struct pool_c *pt)
2848{
2849 struct pool *pool = pt->pool;
2850 struct block_device *data_bdev = pt->data_dev->bdev;
2851 struct queue_limits *data_limits = &bdev_get_queue(bdev: data_bdev)->limits;
2852 const char *reason = NULL;
2853
2854 if (!pt->adjusted_pf.discard_passdown)
2855 return;
2856
2857 if (!bdev_max_discard_sectors(bdev: pt->data_dev->bdev))
2858 reason = "discard unsupported";
2859
2860 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2861 reason = "max discard sectors smaller than a block";
2862
2863 if (reason) {
2864 DMWARN("Data device (%pg) %s: Disabling discard passdown.", data_bdev, reason);
2865 pt->adjusted_pf.discard_passdown = false;
2866 }
2867}
2868
2869static int bind_control_target(struct pool *pool, struct dm_target *ti)
2870{
2871 struct pool_c *pt = ti->private;
2872
2873 /*
2874 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2875 */
2876 enum pool_mode old_mode = get_pool_mode(pool);
2877 enum pool_mode new_mode = pt->adjusted_pf.mode;
2878
2879 /*
2880 * Don't change the pool's mode until set_pool_mode() below.
2881 * Otherwise the pool's process_* function pointers may
2882 * not match the desired pool mode.
2883 */
2884 pt->adjusted_pf.mode = old_mode;
2885
2886 pool->ti = ti;
2887 pool->pf = pt->adjusted_pf;
2888 pool->low_water_blocks = pt->low_water_blocks;
2889
2890 set_pool_mode(pool, new_mode);
2891
2892 return 0;
2893}
2894
2895static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2896{
2897 if (pool->ti == ti)
2898 pool->ti = NULL;
2899}
2900
2901/*
2902 *--------------------------------------------------------------
2903 * Pool creation
2904 *--------------------------------------------------------------
2905 */
2906/* Initialize pool features. */
2907static void pool_features_init(struct pool_features *pf)
2908{
2909 pf->mode = PM_WRITE;
2910 pf->zero_new_blocks = true;
2911 pf->discard_enabled = true;
2912 pf->discard_passdown = true;
2913 pf->error_if_no_space = false;
2914}
2915
2916static void __pool_destroy(struct pool *pool)
2917{
2918 __pool_table_remove(pool);
2919
2920 vfree(addr: pool->cell_sort_array);
2921 if (dm_pool_metadata_close(pmd: pool->pmd) < 0)
2922 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2923
2924 dm_bio_prison_destroy(prison: pool->prison);
2925 dm_kcopyd_client_destroy(kc: pool->copier);
2926
2927 cancel_delayed_work_sync(dwork: &pool->waker);
2928 cancel_delayed_work_sync(dwork: &pool->no_space_timeout);
2929 if (pool->wq)
2930 destroy_workqueue(wq: pool->wq);
2931
2932 if (pool->next_mapping)
2933 mempool_free(element: pool->next_mapping, pool: &pool->mapping_pool);
2934 mempool_exit(pool: &pool->mapping_pool);
2935 dm_deferred_set_destroy(ds: pool->shared_read_ds);
2936 dm_deferred_set_destroy(ds: pool->all_io_ds);
2937 kfree(objp: pool);
2938}
2939
2940static struct kmem_cache *_new_mapping_cache;
2941
2942static struct pool *pool_create(struct mapped_device *pool_md,
2943 struct block_device *metadata_dev,
2944 struct block_device *data_dev,
2945 unsigned long block_size,
2946 int read_only, char **error)
2947{
2948 int r;
2949 void *err_p;
2950 struct pool *pool;
2951 struct dm_pool_metadata *pmd;
2952 bool format_device = read_only ? false : true;
2953
2954 pmd = dm_pool_metadata_open(bdev: metadata_dev, data_block_size: block_size, format_device);
2955 if (IS_ERR(ptr: pmd)) {
2956 *error = "Error creating metadata object";
2957 return (struct pool *)pmd;
2958 }
2959
2960 pool = kzalloc(size: sizeof(*pool), GFP_KERNEL);
2961 if (!pool) {
2962 *error = "Error allocating memory for pool";
2963 err_p = ERR_PTR(error: -ENOMEM);
2964 goto bad_pool;
2965 }
2966
2967 pool->pmd = pmd;
2968 pool->sectors_per_block = block_size;
2969 if (block_size & (block_size - 1))
2970 pool->sectors_per_block_shift = -1;
2971 else
2972 pool->sectors_per_block_shift = __ffs(block_size);
2973 pool->low_water_blocks = 0;
2974 pool_features_init(pf: &pool->pf);
2975 pool->prison = dm_bio_prison_create();
2976 if (!pool->prison) {
2977 *error = "Error creating pool's bio prison";
2978 err_p = ERR_PTR(error: -ENOMEM);
2979 goto bad_prison;
2980 }
2981
2982 pool->copier = dm_kcopyd_client_create(throttle: &dm_kcopyd_throttle);
2983 if (IS_ERR(ptr: pool->copier)) {
2984 r = PTR_ERR(ptr: pool->copier);
2985 *error = "Error creating pool's kcopyd client";
2986 err_p = ERR_PTR(error: r);
2987 goto bad_kcopyd_client;
2988 }
2989
2990 /*
2991 * Create singlethreaded workqueue that will service all devices
2992 * that use this metadata.
2993 */
2994 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2995 if (!pool->wq) {
2996 *error = "Error creating pool's workqueue";
2997 err_p = ERR_PTR(error: -ENOMEM);
2998 goto bad_wq;
2999 }
3000
3001 throttle_init(t: &pool->throttle);
3002 INIT_WORK(&pool->worker, do_worker);
3003 INIT_DELAYED_WORK(&pool->waker, do_waker);
3004 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3005 spin_lock_init(&pool->lock);
3006 bio_list_init(bl: &pool->deferred_flush_bios);
3007 bio_list_init(bl: &pool->deferred_flush_completions);
3008 INIT_LIST_HEAD(list: &pool->prepared_mappings);
3009 INIT_LIST_HEAD(list: &pool->prepared_discards);
3010 INIT_LIST_HEAD(list: &pool->prepared_discards_pt2);
3011 INIT_LIST_HEAD(list: &pool->active_thins);
3012 pool->low_water_triggered = false;
3013 pool->suspended = true;
3014 pool->out_of_data_space = false;
3015
3016 pool->shared_read_ds = dm_deferred_set_create();
3017 if (!pool->shared_read_ds) {
3018 *error = "Error creating pool's shared read deferred set";
3019 err_p = ERR_PTR(error: -ENOMEM);
3020 goto bad_shared_read_ds;
3021 }
3022
3023 pool->all_io_ds = dm_deferred_set_create();
3024 if (!pool->all_io_ds) {
3025 *error = "Error creating pool's all io deferred set";
3026 err_p = ERR_PTR(error: -ENOMEM);
3027 goto bad_all_io_ds;
3028 }
3029
3030 pool->next_mapping = NULL;
3031 r = mempool_init_slab_pool(pool: &pool->mapping_pool, MAPPING_POOL_SIZE,
3032 kc: _new_mapping_cache);
3033 if (r) {
3034 *error = "Error creating pool's mapping mempool";
3035 err_p = ERR_PTR(error: r);
3036 goto bad_mapping_pool;
3037 }
3038
3039 pool->cell_sort_array =
3040 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3041 sizeof(*pool->cell_sort_array)));
3042 if (!pool->cell_sort_array) {
3043 *error = "Error allocating cell sort array";
3044 err_p = ERR_PTR(error: -ENOMEM);
3045 goto bad_sort_array;
3046 }
3047
3048 pool->ref_count = 1;
3049 pool->last_commit_jiffies = jiffies;
3050 pool->pool_md = pool_md;
3051 pool->md_dev = metadata_dev;
3052 pool->data_dev = data_dev;
3053 __pool_table_insert(pool);
3054
3055 return pool;
3056
3057bad_sort_array:
3058 mempool_exit(pool: &pool->mapping_pool);
3059bad_mapping_pool:
3060 dm_deferred_set_destroy(ds: pool->all_io_ds);
3061bad_all_io_ds:
3062 dm_deferred_set_destroy(ds: pool->shared_read_ds);
3063bad_shared_read_ds:
3064 destroy_workqueue(wq: pool->wq);
3065bad_wq:
3066 dm_kcopyd_client_destroy(kc: pool->copier);
3067bad_kcopyd_client:
3068 dm_bio_prison_destroy(prison: pool->prison);
3069bad_prison:
3070 kfree(objp: pool);
3071bad_pool:
3072 if (dm_pool_metadata_close(pmd))
3073 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3074
3075 return err_p;
3076}
3077
3078static void __pool_inc(struct pool *pool)
3079{
3080 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3081 pool->ref_count++;
3082}
3083
3084static void __pool_dec(struct pool *pool)
3085{
3086 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3087 BUG_ON(!pool->ref_count);
3088 if (!--pool->ref_count)
3089 __pool_destroy(pool);
3090}
3091
3092static struct pool *__pool_find(struct mapped_device *pool_md,
3093 struct block_device *metadata_dev,
3094 struct block_device *data_dev,
3095 unsigned long block_size, int read_only,
3096 char **error, int *created)
3097{
3098 struct pool *pool = __pool_table_lookup_metadata_dev(md_dev: metadata_dev);
3099
3100 if (pool) {
3101 if (pool->pool_md != pool_md) {
3102 *error = "metadata device already in use by a pool";
3103 return ERR_PTR(error: -EBUSY);
3104 }
3105 if (pool->data_dev != data_dev) {
3106 *error = "data device already in use by a pool";
3107 return ERR_PTR(error: -EBUSY);
3108 }
3109 __pool_inc(pool);
3110
3111 } else {
3112 pool = __pool_table_lookup(md: pool_md);
3113 if (pool) {
3114 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3115 *error = "different pool cannot replace a pool";
3116 return ERR_PTR(error: -EINVAL);
3117 }
3118 __pool_inc(pool);
3119
3120 } else {
3121 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3122 *created = 1;
3123 }
3124 }
3125
3126 return pool;
3127}
3128
3129/*
3130 *--------------------------------------------------------------
3131 * Pool target methods
3132 *--------------------------------------------------------------
3133 */
3134static void pool_dtr(struct dm_target *ti)
3135{
3136 struct pool_c *pt = ti->private;
3137
3138 mutex_lock(&dm_thin_pool_table.mutex);
3139
3140 unbind_control_target(pool: pt->pool, ti);
3141 __pool_dec(pool: pt->pool);
3142 dm_put_device(ti, d: pt->metadata_dev);
3143 dm_put_device(ti, d: pt->data_dev);
3144 kfree(objp: pt);
3145
3146 mutex_unlock(lock: &dm_thin_pool_table.mutex);
3147}
3148
3149static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3150 struct dm_target *ti)
3151{
3152 int r;
3153 unsigned int argc;
3154 const char *arg_name;
3155
3156 static const struct dm_arg _args[] = {
3157 {0, 4, "Invalid number of pool feature arguments"},
3158 };
3159
3160 /*
3161 * No feature arguments supplied.
3162 */
3163 if (!as->argc)
3164 return 0;
3165
3166 r = dm_read_arg_group(arg: _args, arg_set: as, num_args: &argc, error: &ti->error);
3167 if (r)
3168 return -EINVAL;
3169
3170 while (argc && !r) {
3171 arg_name = dm_shift_arg(as);
3172 argc--;
3173
3174 if (!strcasecmp(s1: arg_name, s2: "skip_block_zeroing"))
3175 pf->zero_new_blocks = false;
3176
3177 else if (!strcasecmp(s1: arg_name, s2: "ignore_discard"))
3178 pf->discard_enabled = false;
3179
3180 else if (!strcasecmp(s1: arg_name, s2: "no_discard_passdown"))
3181 pf->discard_passdown = false;
3182
3183 else if (!strcasecmp(s1: arg_name, s2: "read_only"))
3184 pf->mode = PM_READ_ONLY;
3185
3186 else if (!strcasecmp(s1: arg_name, s2: "error_if_no_space"))
3187 pf->error_if_no_space = true;
3188
3189 else {
3190 ti->error = "Unrecognised pool feature requested";
3191 r = -EINVAL;
3192 break;
3193 }
3194 }
3195
3196 return r;
3197}
3198
3199static void metadata_low_callback(void *context)
3200{
3201 struct pool *pool = context;
3202
3203 DMWARN("%s: reached low water mark for metadata device: sending event.",
3204 dm_device_name(pool->pool_md));
3205
3206 dm_table_event(t: pool->ti->table);
3207}
3208
3209/*
3210 * We need to flush the data device **before** committing the metadata.
3211 *
3212 * This ensures that the data blocks of any newly inserted mappings are
3213 * properly written to non-volatile storage and won't be lost in case of a
3214 * crash.
3215 *
3216 * Failure to do so can result in data corruption in the case of internal or
3217 * external snapshots and in the case of newly provisioned blocks, when block
3218 * zeroing is enabled.
3219 */
3220static int metadata_pre_commit_callback(void *context)
3221{
3222 struct pool *pool = context;
3223
3224 return blkdev_issue_flush(bdev: pool->data_dev);
3225}
3226
3227static sector_t get_dev_size(struct block_device *bdev)
3228{
3229 return bdev_nr_sectors(bdev);
3230}
3231
3232static void warn_if_metadata_device_too_big(struct block_device *bdev)
3233{
3234 sector_t metadata_dev_size = get_dev_size(bdev);
3235
3236 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3237 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
3238 bdev, THIN_METADATA_MAX_SECTORS);
3239}
3240
3241static sector_t get_metadata_dev_size(struct block_device *bdev)
3242{
3243 sector_t metadata_dev_size = get_dev_size(bdev);
3244
3245 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3246 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3247
3248 return metadata_dev_size;
3249}
3250
3251static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3252{
3253 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3254
3255 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3256
3257 return metadata_dev_size;
3258}
3259
3260/*
3261 * When a metadata threshold is crossed a dm event is triggered, and
3262 * userland should respond by growing the metadata device. We could let
3263 * userland set the threshold, like we do with the data threshold, but I'm
3264 * not sure they know enough to do this well.
3265 */
3266static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3267{
3268 /*
3269 * 4M is ample for all ops with the possible exception of thin
3270 * device deletion which is harmless if it fails (just retry the
3271 * delete after you've grown the device).
3272 */
3273 dm_block_t quarter = get_metadata_dev_size_in_blocks(bdev: pt->metadata_dev->bdev) / 4;
3274
3275 return min((dm_block_t)1024ULL /* 4M */, quarter);
3276}
3277
3278/*
3279 * thin-pool <metadata dev> <data dev>
3280 * <data block size (sectors)>
3281 * <low water mark (blocks)>
3282 * [<#feature args> [<arg>]*]
3283 *
3284 * Optional feature arguments are:
3285 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3286 * ignore_discard: disable discard
3287 * no_discard_passdown: don't pass discards down to the data device
3288 * read_only: Don't allow any changes to be made to the pool metadata.
3289 * error_if_no_space: error IOs, instead of queueing, if no space.
3290 */
3291static int pool_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3292{
3293 int r, pool_created = 0;
3294 struct pool_c *pt;
3295 struct pool *pool;
3296 struct pool_features pf;
3297 struct dm_arg_set as;
3298 struct dm_dev *data_dev;
3299 unsigned long block_size;
3300 dm_block_t low_water_blocks;
3301 struct dm_dev *metadata_dev;
3302 blk_mode_t metadata_mode;
3303
3304 /*
3305 * FIXME Remove validation from scope of lock.
3306 */
3307 mutex_lock(&dm_thin_pool_table.mutex);
3308
3309 if (argc < 4) {
3310 ti->error = "Invalid argument count";
3311 r = -EINVAL;
3312 goto out_unlock;
3313 }
3314
3315 as.argc = argc;
3316 as.argv = argv;
3317
3318 /* make sure metadata and data are different devices */
3319 if (!strcmp(argv[0], argv[1])) {
3320 ti->error = "Error setting metadata or data device";
3321 r = -EINVAL;
3322 goto out_unlock;
3323 }
3324
3325 /*
3326 * Set default pool features.
3327 */
3328 pool_features_init(pf: &pf);
3329
3330 dm_consume_args(as: &as, num_args: 4);
3331 r = parse_pool_features(as: &as, pf: &pf, ti);
3332 if (r)
3333 goto out_unlock;
3334
3335 metadata_mode = BLK_OPEN_READ |
3336 ((pf.mode == PM_READ_ONLY) ? 0 : BLK_OPEN_WRITE);
3337 r = dm_get_device(ti, path: argv[0], mode: metadata_mode, result: &metadata_dev);
3338 if (r) {
3339 ti->error = "Error opening metadata block device";
3340 goto out_unlock;
3341 }
3342 warn_if_metadata_device_too_big(bdev: metadata_dev->bdev);
3343
3344 r = dm_get_device(ti, path: argv[1], BLK_OPEN_READ | BLK_OPEN_WRITE, result: &data_dev);
3345 if (r) {
3346 ti->error = "Error getting data device";
3347 goto out_metadata;
3348 }
3349
3350 if (kstrtoul(s: argv[2], base: 10, res: &block_size) || !block_size ||
3351 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3352 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3353 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3354 ti->error = "Invalid block size";
3355 r = -EINVAL;
3356 goto out;
3357 }
3358
3359 if (kstrtoull(s: argv[3], base: 10, res: (unsigned long long *)&low_water_blocks)) {
3360 ti->error = "Invalid low water mark";
3361 r = -EINVAL;
3362 goto out;
3363 }
3364
3365 pt = kzalloc(size: sizeof(*pt), GFP_KERNEL);
3366 if (!pt) {
3367 r = -ENOMEM;
3368 goto out;
3369 }
3370
3371 pool = __pool_find(pool_md: dm_table_get_md(t: ti->table), metadata_dev: metadata_dev->bdev, data_dev: data_dev->bdev,
3372 block_size, read_only: pf.mode == PM_READ_ONLY, error: &ti->error, created: &pool_created);
3373 if (IS_ERR(ptr: pool)) {
3374 r = PTR_ERR(ptr: pool);
3375 goto out_free_pt;
3376 }
3377
3378 /*
3379 * 'pool_created' reflects whether this is the first table load.
3380 * Top level discard support is not allowed to be changed after
3381 * initial load. This would require a pool reload to trigger thin
3382 * device changes.
3383 */
3384 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3385 ti->error = "Discard support cannot be disabled once enabled";
3386 r = -EINVAL;
3387 goto out_flags_changed;
3388 }
3389
3390 pt->pool = pool;
3391 pt->ti = ti;
3392 pt->metadata_dev = metadata_dev;
3393 pt->data_dev = data_dev;
3394 pt->low_water_blocks = low_water_blocks;
3395 pt->adjusted_pf = pt->requested_pf = pf;
3396 ti->num_flush_bios = 1;
3397 ti->limit_swap_bios = true;
3398
3399 /*
3400 * Only need to enable discards if the pool should pass
3401 * them down to the data device. The thin device's discard
3402 * processing will cause mappings to be removed from the btree.
3403 */
3404 if (pf.discard_enabled && pf.discard_passdown) {
3405 ti->num_discard_bios = 1;
3406 /*
3407 * Setting 'discards_supported' circumvents the normal
3408 * stacking of discard limits (this keeps the pool and
3409 * thin devices' discard limits consistent).
3410 */
3411 ti->discards_supported = true;
3412 ti->max_discard_granularity = true;
3413 }
3414 ti->private = pt;
3415
3416 r = dm_pool_register_metadata_threshold(pmd: pt->pool->pmd,
3417 threshold: calc_metadata_threshold(pt),
3418 fn: metadata_low_callback,
3419 context: pool);
3420 if (r) {
3421 ti->error = "Error registering metadata threshold";
3422 goto out_flags_changed;
3423 }
3424
3425 dm_pool_register_pre_commit_callback(pmd: pool->pmd,
3426 fn: metadata_pre_commit_callback, context: pool);
3427
3428 mutex_unlock(lock: &dm_thin_pool_table.mutex);
3429
3430 return 0;
3431
3432out_flags_changed:
3433 __pool_dec(pool);
3434out_free_pt:
3435 kfree(objp: pt);
3436out:
3437 dm_put_device(ti, d: data_dev);
3438out_metadata:
3439 dm_put_device(ti, d: metadata_dev);
3440out_unlock:
3441 mutex_unlock(lock: &dm_thin_pool_table.mutex);
3442
3443 return r;
3444}
3445
3446static int pool_map(struct dm_target *ti, struct bio *bio)
3447{
3448 struct pool_c *pt = ti->private;
3449 struct pool *pool = pt->pool;
3450
3451 /*
3452 * As this is a singleton target, ti->begin is always zero.
3453 */
3454 spin_lock_irq(lock: &pool->lock);
3455 bio_set_dev(bio, bdev: pt->data_dev->bdev);
3456 spin_unlock_irq(lock: &pool->lock);
3457
3458 return DM_MAPIO_REMAPPED;
3459}
3460
3461static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3462{
3463 int r;
3464 struct pool_c *pt = ti->private;
3465 struct pool *pool = pt->pool;
3466 sector_t data_size = ti->len;
3467 dm_block_t sb_data_size;
3468
3469 *need_commit = false;
3470
3471 (void) sector_div(data_size, pool->sectors_per_block);
3472
3473 r = dm_pool_get_data_dev_size(pmd: pool->pmd, result: &sb_data_size);
3474 if (r) {
3475 DMERR("%s: failed to retrieve data device size",
3476 dm_device_name(pool->pool_md));
3477 return r;
3478 }
3479
3480 if (data_size < sb_data_size) {
3481 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482 dm_device_name(pool->pool_md),
3483 (unsigned long long)data_size, sb_data_size);
3484 return -EINVAL;
3485
3486 } else if (data_size > sb_data_size) {
3487 if (dm_pool_metadata_needs_check(pmd: pool->pmd)) {
3488 DMERR("%s: unable to grow the data device until repaired.",
3489 dm_device_name(pool->pool_md));
3490 return 0;
3491 }
3492
3493 if (sb_data_size)
3494 DMINFO("%s: growing the data device from %llu to %llu blocks",
3495 dm_device_name(pool->pool_md),
3496 sb_data_size, (unsigned long long)data_size);
3497 r = dm_pool_resize_data_dev(pmd: pool->pmd, new_size: data_size);
3498 if (r) {
3499 metadata_operation_failed(pool, op: "dm_pool_resize_data_dev", r);
3500 return r;
3501 }
3502
3503 *need_commit = true;
3504 }
3505
3506 return 0;
3507}
3508
3509static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3510{
3511 int r;
3512 struct pool_c *pt = ti->private;
3513 struct pool *pool = pt->pool;
3514 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3515
3516 *need_commit = false;
3517
3518 metadata_dev_size = get_metadata_dev_size_in_blocks(bdev: pool->md_dev);
3519
3520 r = dm_pool_get_metadata_dev_size(pmd: pool->pmd, result: &sb_metadata_dev_size);
3521 if (r) {
3522 DMERR("%s: failed to retrieve metadata device size",
3523 dm_device_name(pool->pool_md));
3524 return r;
3525 }
3526
3527 if (metadata_dev_size < sb_metadata_dev_size) {
3528 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529 dm_device_name(pool->pool_md),
3530 metadata_dev_size, sb_metadata_dev_size);
3531 return -EINVAL;
3532
3533 } else if (metadata_dev_size > sb_metadata_dev_size) {
3534 if (dm_pool_metadata_needs_check(pmd: pool->pmd)) {
3535 DMERR("%s: unable to grow the metadata device until repaired.",
3536 dm_device_name(pool->pool_md));
3537 return 0;
3538 }
3539
3540 warn_if_metadata_device_too_big(bdev: pool->md_dev);
3541 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542 dm_device_name(pool->pool_md),
3543 sb_metadata_dev_size, metadata_dev_size);
3544
3545 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3546 set_pool_mode(pool, new_mode: PM_WRITE);
3547
3548 r = dm_pool_resize_metadata_dev(pmd: pool->pmd, new_size: metadata_dev_size);
3549 if (r) {
3550 metadata_operation_failed(pool, op: "dm_pool_resize_metadata_dev", r);
3551 return r;
3552 }
3553
3554 *need_commit = true;
3555 }
3556
3557 return 0;
3558}
3559
3560/*
3561 * Retrieves the number of blocks of the data device from
3562 * the superblock and compares it to the actual device size,
3563 * thus resizing the data device in case it has grown.
3564 *
3565 * This both copes with opening preallocated data devices in the ctr
3566 * being followed by a resume
3567 * -and-
3568 * calling the resume method individually after userspace has
3569 * grown the data device in reaction to a table event.
3570 */
3571static int pool_preresume(struct dm_target *ti)
3572{
3573 int r;
3574 bool need_commit1, need_commit2;
3575 struct pool_c *pt = ti->private;
3576 struct pool *pool = pt->pool;
3577
3578 /*
3579 * Take control of the pool object.
3580 */
3581 r = bind_control_target(pool, ti);
3582 if (r)
3583 goto out;
3584
3585 r = maybe_resize_data_dev(ti, need_commit: &need_commit1);
3586 if (r)
3587 goto out;
3588
3589 r = maybe_resize_metadata_dev(ti, need_commit: &need_commit2);
3590 if (r)
3591 goto out;
3592
3593 if (need_commit1 || need_commit2)
3594 (void) commit(pool);
3595out:
3596 /*
3597 * When a thin-pool is PM_FAIL, it cannot be rebuilt if
3598 * bio is in deferred list. Therefore need to return 0
3599 * to allow pool_resume() to flush IO.
3600 */
3601 if (r && get_pool_mode(pool) == PM_FAIL)
3602 r = 0;
3603
3604 return r;
3605}
3606
3607static void pool_suspend_active_thins(struct pool *pool)
3608{
3609 struct thin_c *tc;
3610
3611 /* Suspend all active thin devices */
3612 tc = get_first_thin(pool);
3613 while (tc) {
3614 dm_internal_suspend_noflush(md: tc->thin_md);
3615 tc = get_next_thin(pool, tc);
3616 }
3617}
3618
3619static void pool_resume_active_thins(struct pool *pool)
3620{
3621 struct thin_c *tc;
3622
3623 /* Resume all active thin devices */
3624 tc = get_first_thin(pool);
3625 while (tc) {
3626 dm_internal_resume(md: tc->thin_md);
3627 tc = get_next_thin(pool, tc);
3628 }
3629}
3630
3631static void pool_resume(struct dm_target *ti)
3632{
3633 struct pool_c *pt = ti->private;
3634 struct pool *pool = pt->pool;
3635
3636 /*
3637 * Must requeue active_thins' bios and then resume
3638 * active_thins _before_ clearing 'suspend' flag.
3639 */
3640 requeue_bios(pool);
3641 pool_resume_active_thins(pool);
3642
3643 spin_lock_irq(lock: &pool->lock);
3644 pool->low_water_triggered = false;
3645 pool->suspended = false;
3646 spin_unlock_irq(lock: &pool->lock);
3647
3648 do_waker(ws: &pool->waker.work);
3649}
3650
3651static void pool_presuspend(struct dm_target *ti)
3652{
3653 struct pool_c *pt = ti->private;
3654 struct pool *pool = pt->pool;
3655
3656 spin_lock_irq(lock: &pool->lock);
3657 pool->suspended = true;
3658 spin_unlock_irq(lock: &pool->lock);
3659
3660 pool_suspend_active_thins(pool);
3661}
3662
3663static void pool_presuspend_undo(struct dm_target *ti)
3664{
3665 struct pool_c *pt = ti->private;
3666 struct pool *pool = pt->pool;
3667
3668 pool_resume_active_thins(pool);
3669
3670 spin_lock_irq(lock: &pool->lock);
3671 pool->suspended = false;
3672 spin_unlock_irq(lock: &pool->lock);
3673}
3674
3675static void pool_postsuspend(struct dm_target *ti)
3676{
3677 struct pool_c *pt = ti->private;
3678 struct pool *pool = pt->pool;
3679
3680 cancel_delayed_work_sync(dwork: &pool->waker);
3681 cancel_delayed_work_sync(dwork: &pool->no_space_timeout);
3682 flush_workqueue(pool->wq);
3683 (void) commit(pool);
3684}
3685
3686static int check_arg_count(unsigned int argc, unsigned int args_required)
3687{
3688 if (argc != args_required) {
3689 DMWARN("Message received with %u arguments instead of %u.",
3690 argc, args_required);
3691 return -EINVAL;
3692 }
3693
3694 return 0;
3695}
3696
3697static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3698{
3699 if (!kstrtoull(s: arg, base: 10, res: (unsigned long long *)dev_id) &&
3700 *dev_id <= MAX_DEV_ID)
3701 return 0;
3702
3703 if (warning)
3704 DMWARN("Message received with invalid device id: %s", arg);
3705
3706 return -EINVAL;
3707}
3708
3709static int process_create_thin_mesg(unsigned int argc, char **argv, struct pool *pool)
3710{
3711 dm_thin_id dev_id;
3712 int r;
3713
3714 r = check_arg_count(argc, args_required: 2);
3715 if (r)
3716 return r;
3717
3718 r = read_dev_id(arg: argv[1], dev_id: &dev_id, warning: 1);
3719 if (r)
3720 return r;
3721
3722 r = dm_pool_create_thin(pmd: pool->pmd, dev: dev_id);
3723 if (r) {
3724 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3725 argv[1]);
3726 return r;
3727 }
3728
3729 return 0;
3730}
3731
3732static int process_create_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3733{
3734 dm_thin_id dev_id;
3735 dm_thin_id origin_dev_id;
3736 int r;
3737
3738 r = check_arg_count(argc, args_required: 3);
3739 if (r)
3740 return r;
3741
3742 r = read_dev_id(arg: argv[1], dev_id: &dev_id, warning: 1);
3743 if (r)
3744 return r;
3745
3746 r = read_dev_id(arg: argv[2], dev_id: &origin_dev_id, warning: 1);
3747 if (r)
3748 return r;
3749
3750 r = dm_pool_create_snap(pmd: pool->pmd, dev: dev_id, origin: origin_dev_id);
3751 if (r) {
3752 DMWARN("Creation of new snapshot %s of device %s failed.",
3753 argv[1], argv[2]);
3754 return r;
3755 }
3756
3757 return 0;
3758}
3759
3760static int process_delete_mesg(unsigned int argc, char **argv, struct pool *pool)
3761{
3762 dm_thin_id dev_id;
3763 int r;
3764
3765 r = check_arg_count(argc, args_required: 2);
3766 if (r)
3767 return r;
3768
3769 r = read_dev_id(arg: argv[1], dev_id: &dev_id, warning: 1);
3770 if (r)
3771 return r;
3772
3773 r = dm_pool_delete_thin_device(pmd: pool->pmd, dev: dev_id);
3774 if (r)
3775 DMWARN("Deletion of thin device %s failed.", argv[1]);
3776
3777 return r;
3778}
3779
3780static int process_set_transaction_id_mesg(unsigned int argc, char **argv, struct pool *pool)
3781{
3782 dm_thin_id old_id, new_id;
3783 int r;
3784
3785 r = check_arg_count(argc, args_required: 3);
3786 if (r)
3787 return r;
3788
3789 if (kstrtoull(s: argv[1], base: 10, res: (unsigned long long *)&old_id)) {
3790 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3791 return -EINVAL;
3792 }
3793
3794 if (kstrtoull(s: argv[2], base: 10, res: (unsigned long long *)&new_id)) {
3795 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3796 return -EINVAL;
3797 }
3798
3799 r = dm_pool_set_metadata_transaction_id(pmd: pool->pmd, current_id: old_id, new_id);
3800 if (r) {
3801 DMWARN("Failed to change transaction id from %s to %s.",
3802 argv[1], argv[2]);
3803 return r;
3804 }
3805
3806 return 0;
3807}
3808
3809static int process_reserve_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3810{
3811 int r;
3812
3813 r = check_arg_count(argc, args_required: 1);
3814 if (r)
3815 return r;
3816
3817 (void) commit(pool);
3818
3819 r = dm_pool_reserve_metadata_snap(pmd: pool->pmd);
3820 if (r)
3821 DMWARN("reserve_metadata_snap message failed.");
3822
3823 return r;
3824}
3825
3826static int process_release_metadata_snap_mesg(unsigned int argc, char **argv, struct pool *pool)
3827{
3828 int r;
3829
3830 r = check_arg_count(argc, args_required: 1);
3831 if (r)
3832 return r;
3833
3834 r = dm_pool_release_metadata_snap(pmd: pool->pmd);
3835 if (r)
3836 DMWARN("release_metadata_snap message failed.");
3837
3838 return r;
3839}
3840
3841/*
3842 * Messages supported:
3843 * create_thin <dev_id>
3844 * create_snap <dev_id> <origin_id>
3845 * delete <dev_id>
3846 * set_transaction_id <current_trans_id> <new_trans_id>
3847 * reserve_metadata_snap
3848 * release_metadata_snap
3849 */
3850static int pool_message(struct dm_target *ti, unsigned int argc, char **argv,
3851 char *result, unsigned int maxlen)
3852{
3853 int r = -EINVAL;
3854 struct pool_c *pt = ti->private;
3855 struct pool *pool = pt->pool;
3856
3857 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3858 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3859 dm_device_name(pool->pool_md));
3860 return -EOPNOTSUPP;
3861 }
3862
3863 if (!strcasecmp(s1: argv[0], s2: "create_thin"))
3864 r = process_create_thin_mesg(argc, argv, pool);
3865
3866 else if (!strcasecmp(s1: argv[0], s2: "create_snap"))
3867 r = process_create_snap_mesg(argc, argv, pool);
3868
3869 else if (!strcasecmp(s1: argv[0], s2: "delete"))
3870 r = process_delete_mesg(argc, argv, pool);
3871
3872 else if (!strcasecmp(s1: argv[0], s2: "set_transaction_id"))
3873 r = process_set_transaction_id_mesg(argc, argv, pool);
3874
3875 else if (!strcasecmp(s1: argv[0], s2: "reserve_metadata_snap"))
3876 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3877
3878 else if (!strcasecmp(s1: argv[0], s2: "release_metadata_snap"))
3879 r = process_release_metadata_snap_mesg(argc, argv, pool);
3880
3881 else
3882 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3883
3884 if (!r)
3885 (void) commit(pool);
3886
3887 return r;
3888}
3889
3890static void emit_flags(struct pool_features *pf, char *result,
3891 unsigned int sz, unsigned int maxlen)
3892{
3893 unsigned int count = !pf->zero_new_blocks + !pf->discard_enabled +
3894 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3895 pf->error_if_no_space;
3896 DMEMIT("%u ", count);
3897
3898 if (!pf->zero_new_blocks)
3899 DMEMIT("skip_block_zeroing ");
3900
3901 if (!pf->discard_enabled)
3902 DMEMIT("ignore_discard ");
3903
3904 if (!pf->discard_passdown)
3905 DMEMIT("no_discard_passdown ");
3906
3907 if (pf->mode == PM_READ_ONLY)
3908 DMEMIT("read_only ");
3909
3910 if (pf->error_if_no_space)
3911 DMEMIT("error_if_no_space ");
3912}
3913
3914/*
3915 * Status line is:
3916 * <transaction id> <used metadata sectors>/<total metadata sectors>
3917 * <used data sectors>/<total data sectors> <held metadata root>
3918 * <pool mode> <discard config> <no space config> <needs_check>
3919 */
3920static void pool_status(struct dm_target *ti, status_type_t type,
3921 unsigned int status_flags, char *result, unsigned int maxlen)
3922{
3923 int r;
3924 unsigned int sz = 0;
3925 uint64_t transaction_id;
3926 dm_block_t nr_free_blocks_data;
3927 dm_block_t nr_free_blocks_metadata;
3928 dm_block_t nr_blocks_data;
3929 dm_block_t nr_blocks_metadata;
3930 dm_block_t held_root;
3931 enum pool_mode mode;
3932 char buf[BDEVNAME_SIZE];
3933 char buf2[BDEVNAME_SIZE];
3934 struct pool_c *pt = ti->private;
3935 struct pool *pool = pt->pool;
3936
3937 switch (type) {
3938 case STATUSTYPE_INFO:
3939 if (get_pool_mode(pool) == PM_FAIL) {
3940 DMEMIT("Fail");
3941 break;
3942 }
3943
3944 /* Commit to ensure statistics aren't out-of-date */
3945 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3946 (void) commit(pool);
3947
3948 r = dm_pool_get_metadata_transaction_id(pmd: pool->pmd, result: &transaction_id);
3949 if (r) {
3950 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3951 dm_device_name(pool->pool_md), r);
3952 goto err;
3953 }
3954
3955 r = dm_pool_get_free_metadata_block_count(pmd: pool->pmd, result: &nr_free_blocks_metadata);
3956 if (r) {
3957 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3958 dm_device_name(pool->pool_md), r);
3959 goto err;
3960 }
3961
3962 r = dm_pool_get_metadata_dev_size(pmd: pool->pmd, result: &nr_blocks_metadata);
3963 if (r) {
3964 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3965 dm_device_name(pool->pool_md), r);
3966 goto err;
3967 }
3968
3969 r = dm_pool_get_free_block_count(pmd: pool->pmd, result: &nr_free_blocks_data);
3970 if (r) {
3971 DMERR("%s: dm_pool_get_free_block_count returned %d",
3972 dm_device_name(pool->pool_md), r);
3973 goto err;
3974 }
3975
3976 r = dm_pool_get_data_dev_size(pmd: pool->pmd, result: &nr_blocks_data);
3977 if (r) {
3978 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3979 dm_device_name(pool->pool_md), r);
3980 goto err;
3981 }
3982
3983 r = dm_pool_get_metadata_snap(pmd: pool->pmd, result: &held_root);
3984 if (r) {
3985 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3986 dm_device_name(pool->pool_md), r);
3987 goto err;
3988 }
3989
3990 DMEMIT("%llu %llu/%llu %llu/%llu ",
3991 (unsigned long long)transaction_id,
3992 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3993 (unsigned long long)nr_blocks_metadata,
3994 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3995 (unsigned long long)nr_blocks_data);
3996
3997 if (held_root)
3998 DMEMIT("%llu ", held_root);
3999 else
4000 DMEMIT("- ");
4001
4002 mode = get_pool_mode(pool);
4003 if (mode == PM_OUT_OF_DATA_SPACE)
4004 DMEMIT("out_of_data_space ");
4005 else if (is_read_only_pool_mode(mode))
4006 DMEMIT("ro ");
4007 else
4008 DMEMIT("rw ");
4009
4010 if (!pool->pf.discard_enabled)
4011 DMEMIT("ignore_discard ");
4012 else if (pool->pf.discard_passdown)
4013 DMEMIT("discard_passdown ");
4014 else
4015 DMEMIT("no_discard_passdown ");
4016
4017 if (pool->pf.error_if_no_space)
4018 DMEMIT("error_if_no_space ");
4019 else
4020 DMEMIT("queue_if_no_space ");
4021
4022 if (dm_pool_metadata_needs_check(pmd: pool->pmd))
4023 DMEMIT("needs_check ");
4024 else
4025 DMEMIT("- ");
4026
4027 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4028
4029 break;
4030
4031 case STATUSTYPE_TABLE:
4032 DMEMIT("%s %s %lu %llu ",
4033 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4034 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4035 (unsigned long)pool->sectors_per_block,
4036 (unsigned long long)pt->low_water_blocks);
4037 emit_flags(pf: &pt->requested_pf, result, sz, maxlen);
4038 break;
4039
4040 case STATUSTYPE_IMA:
4041 *result = '\0';
4042 break;
4043 }
4044 return;
4045
4046err:
4047 DMEMIT("Error");
4048}
4049
4050static int pool_iterate_devices(struct dm_target *ti,
4051 iterate_devices_callout_fn fn, void *data)
4052{
4053 struct pool_c *pt = ti->private;
4054
4055 return fn(ti, pt->data_dev, 0, ti->len, data);
4056}
4057
4058static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4059{
4060 struct pool_c *pt = ti->private;
4061 struct pool *pool = pt->pool;
4062 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4063
4064 /*
4065 * If max_sectors is smaller than pool->sectors_per_block adjust it
4066 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4067 * This is especially beneficial when the pool's data device is a RAID
4068 * device that has a full stripe width that matches pool->sectors_per_block
4069 * -- because even though partial RAID stripe-sized IOs will be issued to a
4070 * single RAID stripe; when aggregated they will end on a full RAID stripe
4071 * boundary.. which avoids additional partial RAID stripe writes cascading
4072 */
4073 if (limits->max_sectors < pool->sectors_per_block) {
4074 while (!is_factor(block_size: pool->sectors_per_block, n: limits->max_sectors)) {
4075 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4076 limits->max_sectors--;
4077 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4078 }
4079 }
4080
4081 /*
4082 * If the system-determined stacked limits are compatible with the
4083 * pool's blocksize (io_opt is a factor) do not override them.
4084 */
4085 if (io_opt_sectors < pool->sectors_per_block ||
4086 !is_factor(block_size: io_opt_sectors, n: pool->sectors_per_block)) {
4087 if (is_factor(block_size: pool->sectors_per_block, n: limits->max_sectors))
4088 blk_limits_io_min(limits, min: limits->max_sectors << SECTOR_SHIFT);
4089 else
4090 blk_limits_io_min(limits, min: pool->sectors_per_block << SECTOR_SHIFT);
4091 blk_limits_io_opt(limits, opt: pool->sectors_per_block << SECTOR_SHIFT);
4092 }
4093
4094 /*
4095 * pt->adjusted_pf is a staging area for the actual features to use.
4096 * They get transferred to the live pool in bind_control_target()
4097 * called from pool_preresume().
4098 */
4099
4100 if (pt->adjusted_pf.discard_enabled) {
4101 disable_discard_passdown_if_not_supported(pt);
4102 if (!pt->adjusted_pf.discard_passdown)
4103 limits->max_discard_sectors = 0;
4104 /*
4105 * The pool uses the same discard limits as the underlying data
4106 * device. DM core has already set this up.
4107 */
4108 } else {
4109 /*
4110 * Must explicitly disallow stacking discard limits otherwise the
4111 * block layer will stack them if pool's data device has support.
4112 */
4113 limits->discard_granularity = 0;
4114 }
4115}
4116
4117static struct target_type pool_target = {
4118 .name = "thin-pool",
4119 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4120 DM_TARGET_IMMUTABLE,
4121 .version = {1, 23, 0},
4122 .module = THIS_MODULE,
4123 .ctr = pool_ctr,
4124 .dtr = pool_dtr,
4125 .map = pool_map,
4126 .presuspend = pool_presuspend,
4127 .presuspend_undo = pool_presuspend_undo,
4128 .postsuspend = pool_postsuspend,
4129 .preresume = pool_preresume,
4130 .resume = pool_resume,
4131 .message = pool_message,
4132 .status = pool_status,
4133 .iterate_devices = pool_iterate_devices,
4134 .io_hints = pool_io_hints,
4135};
4136
4137/*
4138 *--------------------------------------------------------------
4139 * Thin target methods
4140 *--------------------------------------------------------------
4141 */
4142static void thin_get(struct thin_c *tc)
4143{
4144 refcount_inc(r: &tc->refcount);
4145}
4146
4147static void thin_put(struct thin_c *tc)
4148{
4149 if (refcount_dec_and_test(r: &tc->refcount))
4150 complete(&tc->can_destroy);
4151}
4152
4153static void thin_dtr(struct dm_target *ti)
4154{
4155 struct thin_c *tc = ti->private;
4156
4157 spin_lock_irq(lock: &tc->pool->lock);
4158 list_del_rcu(entry: &tc->list);
4159 spin_unlock_irq(lock: &tc->pool->lock);
4160 synchronize_rcu();
4161
4162 thin_put(tc);
4163 wait_for_completion(&tc->can_destroy);
4164
4165 mutex_lock(&dm_thin_pool_table.mutex);
4166
4167 __pool_dec(pool: tc->pool);
4168 dm_pool_close_thin_device(td: tc->td);
4169 dm_put_device(ti, d: tc->pool_dev);
4170 if (tc->origin_dev)
4171 dm_put_device(ti, d: tc->origin_dev);
4172 kfree(objp: tc);
4173
4174 mutex_unlock(lock: &dm_thin_pool_table.mutex);
4175}
4176
4177/*
4178 * Thin target parameters:
4179 *
4180 * <pool_dev> <dev_id> [origin_dev]
4181 *
4182 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4183 * dev_id: the internal device identifier
4184 * origin_dev: a device external to the pool that should act as the origin
4185 *
4186 * If the pool device has discards disabled, they get disabled for the thin
4187 * device as well.
4188 */
4189static int thin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4190{
4191 int r;
4192 struct thin_c *tc;
4193 struct dm_dev *pool_dev, *origin_dev;
4194 struct mapped_device *pool_md;
4195
4196 mutex_lock(&dm_thin_pool_table.mutex);
4197
4198 if (argc != 2 && argc != 3) {
4199 ti->error = "Invalid argument count";
4200 r = -EINVAL;
4201 goto out_unlock;
4202 }
4203
4204 tc = ti->private = kzalloc(size: sizeof(*tc), GFP_KERNEL);
4205 if (!tc) {
4206 ti->error = "Out of memory";
4207 r = -ENOMEM;
4208 goto out_unlock;
4209 }
4210 tc->thin_md = dm_table_get_md(t: ti->table);
4211 spin_lock_init(&tc->lock);
4212 INIT_LIST_HEAD(list: &tc->deferred_cells);
4213 bio_list_init(bl: &tc->deferred_bio_list);
4214 bio_list_init(bl: &tc->retry_on_resume_list);
4215 tc->sort_bio_list = RB_ROOT;
4216
4217 if (argc == 3) {
4218 if (!strcmp(argv[0], argv[2])) {
4219 ti->error = "Error setting origin device";
4220 r = -EINVAL;
4221 goto bad_origin_dev;
4222 }
4223
4224 r = dm_get_device(ti, path: argv[2], BLK_OPEN_READ, result: &origin_dev);
4225 if (r) {
4226 ti->error = "Error opening origin device";
4227 goto bad_origin_dev;
4228 }
4229 tc->origin_dev = origin_dev;
4230 }
4231
4232 r = dm_get_device(ti, path: argv[0], mode: dm_table_get_mode(t: ti->table), result: &pool_dev);
4233 if (r) {
4234 ti->error = "Error opening pool device";
4235 goto bad_pool_dev;
4236 }
4237 tc->pool_dev = pool_dev;
4238
4239 if (read_dev_id(arg: argv[1], dev_id: (unsigned long long *)&tc->dev_id, warning: 0)) {
4240 ti->error = "Invalid device id";
4241 r = -EINVAL;
4242 goto bad_common;
4243 }
4244
4245 pool_md = dm_get_md(dev: tc->pool_dev->bdev->bd_dev);
4246 if (!pool_md) {
4247 ti->error = "Couldn't get pool mapped device";
4248 r = -EINVAL;
4249 goto bad_common;
4250 }
4251
4252 tc->pool = __pool_table_lookup(md: pool_md);
4253 if (!tc->pool) {
4254 ti->error = "Couldn't find pool object";
4255 r = -EINVAL;
4256 goto bad_pool_lookup;
4257 }
4258 __pool_inc(pool: tc->pool);
4259
4260 if (get_pool_mode(pool: tc->pool) == PM_FAIL) {
4261 ti->error = "Couldn't open thin device, Pool is in fail mode";
4262 r = -EINVAL;
4263 goto bad_pool;
4264 }
4265
4266 r = dm_pool_open_thin_device(pmd: tc->pool->pmd, dev: tc->dev_id, td: &tc->td);
4267 if (r) {
4268 ti->error = "Couldn't open thin internal device";
4269 goto bad_pool;
4270 }
4271
4272 r = dm_set_target_max_io_len(ti, len: tc->pool->sectors_per_block);
4273 if (r)
4274 goto bad;
4275
4276 ti->num_flush_bios = 1;
4277 ti->limit_swap_bios = true;
4278 ti->flush_supported = true;
4279 ti->accounts_remapped_io = true;
4280 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4281
4282 /* In case the pool supports discards, pass them on. */
4283 if (tc->pool->pf.discard_enabled) {
4284 ti->discards_supported = true;
4285 ti->num_discard_bios = 1;
4286 ti->max_discard_granularity = true;
4287 }
4288
4289 mutex_unlock(lock: &dm_thin_pool_table.mutex);
4290
4291 spin_lock_irq(lock: &tc->pool->lock);
4292 if (tc->pool->suspended) {
4293 spin_unlock_irq(lock: &tc->pool->lock);
4294 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4295 ti->error = "Unable to activate thin device while pool is suspended";
4296 r = -EINVAL;
4297 goto bad;
4298 }
4299 refcount_set(r: &tc->refcount, n: 1);
4300 init_completion(x: &tc->can_destroy);
4301 list_add_tail_rcu(new: &tc->list, head: &tc->pool->active_thins);
4302 spin_unlock_irq(lock: &tc->pool->lock);
4303 /*
4304 * This synchronize_rcu() call is needed here otherwise we risk a
4305 * wake_worker() call finding no bios to process (because the newly
4306 * added tc isn't yet visible). So this reduces latency since we
4307 * aren't then dependent on the periodic commit to wake_worker().
4308 */
4309 synchronize_rcu();
4310
4311 dm_put(md: pool_md);
4312
4313 return 0;
4314
4315bad:
4316 dm_pool_close_thin_device(td: tc->td);
4317bad_pool:
4318 __pool_dec(pool: tc->pool);
4319bad_pool_lookup:
4320 dm_put(md: pool_md);
4321bad_common:
4322 dm_put_device(ti, d: tc->pool_dev);
4323bad_pool_dev:
4324 if (tc->origin_dev)
4325 dm_put_device(ti, d: tc->origin_dev);
4326bad_origin_dev:
4327 kfree(objp: tc);
4328out_unlock:
4329 mutex_unlock(lock: &dm_thin_pool_table.mutex);
4330
4331 return r;
4332}
4333
4334static int thin_map(struct dm_target *ti, struct bio *bio)
4335{
4336 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4337
4338 return thin_bio_map(ti, bio);
4339}
4340
4341static int thin_endio(struct dm_target *ti, struct bio *bio,
4342 blk_status_t *err)
4343{
4344 unsigned long flags;
4345 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, data_size: sizeof(struct dm_thin_endio_hook));
4346 struct list_head work;
4347 struct dm_thin_new_mapping *m, *tmp;
4348 struct pool *pool = h->tc->pool;
4349
4350 if (h->shared_read_entry) {
4351 INIT_LIST_HEAD(list: &work);
4352 dm_deferred_entry_dec(entry: h->shared_read_entry, head: &work);
4353
4354 spin_lock_irqsave(&pool->lock, flags);
4355 list_for_each_entry_safe(m, tmp, &work, list) {
4356 list_del(entry: &m->list);
4357 __complete_mapping_preparation(m);
4358 }
4359 spin_unlock_irqrestore(lock: &pool->lock, flags);
4360 }
4361
4362 if (h->all_io_entry) {
4363 INIT_LIST_HEAD(list: &work);
4364 dm_deferred_entry_dec(entry: h->all_io_entry, head: &work);
4365 if (!list_empty(head: &work)) {
4366 spin_lock_irqsave(&pool->lock, flags);
4367 list_for_each_entry_safe(m, tmp, &work, list)
4368 list_add_tail(new: &m->list, head: &pool->prepared_discards);
4369 spin_unlock_irqrestore(lock: &pool->lock, flags);
4370 wake_worker(pool);
4371 }
4372 }
4373
4374 if (h->cell)
4375 cell_defer_no_holder(tc: h->tc, cell: h->cell);
4376
4377 return DM_ENDIO_DONE;
4378}
4379
4380static void thin_presuspend(struct dm_target *ti)
4381{
4382 struct thin_c *tc = ti->private;
4383
4384 if (dm_noflush_suspending(ti))
4385 noflush_work(tc, fn: do_noflush_start);
4386}
4387
4388static void thin_postsuspend(struct dm_target *ti)
4389{
4390 struct thin_c *tc = ti->private;
4391
4392 /*
4393 * The dm_noflush_suspending flag has been cleared by now, so
4394 * unfortunately we must always run this.
4395 */
4396 noflush_work(tc, fn: do_noflush_stop);
4397}
4398
4399static int thin_preresume(struct dm_target *ti)
4400{
4401 struct thin_c *tc = ti->private;
4402
4403 if (tc->origin_dev)
4404 tc->origin_size = get_dev_size(bdev: tc->origin_dev->bdev);
4405
4406 return 0;
4407}
4408
4409/*
4410 * <nr mapped sectors> <highest mapped sector>
4411 */
4412static void thin_status(struct dm_target *ti, status_type_t type,
4413 unsigned int status_flags, char *result, unsigned int maxlen)
4414{
4415 int r;
4416 ssize_t sz = 0;
4417 dm_block_t mapped, highest;
4418 char buf[BDEVNAME_SIZE];
4419 struct thin_c *tc = ti->private;
4420
4421 if (get_pool_mode(pool: tc->pool) == PM_FAIL) {
4422 DMEMIT("Fail");
4423 return;
4424 }
4425
4426 if (!tc->td)
4427 DMEMIT("-");
4428 else {
4429 switch (type) {
4430 case STATUSTYPE_INFO:
4431 r = dm_thin_get_mapped_count(td: tc->td, result: &mapped);
4432 if (r) {
4433 DMERR("dm_thin_get_mapped_count returned %d", r);
4434 goto err;
4435 }
4436
4437 r = dm_thin_get_highest_mapped_block(td: tc->td, highest_mapped: &highest);
4438 if (r < 0) {
4439 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4440 goto err;
4441 }
4442
4443 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4444 if (r)
4445 DMEMIT("%llu", ((highest + 1) *
4446 tc->pool->sectors_per_block) - 1);
4447 else
4448 DMEMIT("-");
4449 break;
4450
4451 case STATUSTYPE_TABLE:
4452 DMEMIT("%s %lu",
4453 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4454 (unsigned long) tc->dev_id);
4455 if (tc->origin_dev)
4456 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4457 break;
4458
4459 case STATUSTYPE_IMA:
4460 *result = '\0';
4461 break;
4462 }
4463 }
4464
4465 return;
4466
4467err:
4468 DMEMIT("Error");
4469}
4470
4471static int thin_iterate_devices(struct dm_target *ti,
4472 iterate_devices_callout_fn fn, void *data)
4473{
4474 sector_t blocks;
4475 struct thin_c *tc = ti->private;
4476 struct pool *pool = tc->pool;
4477
4478 /*
4479 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4480 * we follow a more convoluted path through to the pool's target.
4481 */
4482 if (!pool->ti)
4483 return 0; /* nothing is bound */
4484
4485 blocks = pool->ti->len;
4486 (void) sector_div(blocks, pool->sectors_per_block);
4487 if (blocks)
4488 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4489
4490 return 0;
4491}
4492
4493static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4494{
4495 struct thin_c *tc = ti->private;
4496 struct pool *pool = tc->pool;
4497
4498 if (pool->pf.discard_enabled) {
4499 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4500 limits->max_discard_sectors = pool->sectors_per_block * BIO_PRISON_MAX_RANGE;
4501 }
4502}
4503
4504static struct target_type thin_target = {
4505 .name = "thin",
4506 .version = {1, 23, 0},
4507 .module = THIS_MODULE,
4508 .ctr = thin_ctr,
4509 .dtr = thin_dtr,
4510 .map = thin_map,
4511 .end_io = thin_endio,
4512 .preresume = thin_preresume,
4513 .presuspend = thin_presuspend,
4514 .postsuspend = thin_postsuspend,
4515 .status = thin_status,
4516 .iterate_devices = thin_iterate_devices,
4517 .io_hints = thin_io_hints,
4518};
4519
4520/*----------------------------------------------------------------*/
4521
4522static int __init dm_thin_init(void)
4523{
4524 int r = -ENOMEM;
4525
4526 pool_table_init();
4527
4528 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4529 if (!_new_mapping_cache)
4530 return r;
4531
4532 r = dm_register_target(t: &thin_target);
4533 if (r)
4534 goto bad_new_mapping_cache;
4535
4536 r = dm_register_target(t: &pool_target);
4537 if (r)
4538 goto bad_thin_target;
4539
4540 return 0;
4541
4542bad_thin_target:
4543 dm_unregister_target(t: &thin_target);
4544bad_new_mapping_cache:
4545 kmem_cache_destroy(s: _new_mapping_cache);
4546
4547 return r;
4548}
4549
4550static void dm_thin_exit(void)
4551{
4552 dm_unregister_target(t: &thin_target);
4553 dm_unregister_target(t: &pool_target);
4554
4555 kmem_cache_destroy(s: _new_mapping_cache);
4556
4557 pool_table_exit();
4558}
4559
4560module_init(dm_thin_init);
4561module_exit(dm_thin_exit);
4562
4563module_param_named(no_space_timeout, no_space_timeout_secs, uint, 0644);
4564MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4565
4566MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4567MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
4568MODULE_LICENSE("GPL");
4569

source code of linux/drivers/md/dm-thin.c