1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16#include "dm-verity.h"
17#include "dm-verity-fec.h"
18#include "dm-verity-verify-sig.h"
19#include "dm-audit.h"
20#include <linux/module.h>
21#include <linux/reboot.h>
22#include <linux/scatterlist.h>
23#include <linux/string.h>
24#include <linux/jump_label.h>
25
26#define DM_MSG_PREFIX "verity"
27
28#define DM_VERITY_ENV_LENGTH 42
29#define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
30
31#define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
32
33#define DM_VERITY_MAX_CORRUPTED_ERRS 100
34
35#define DM_VERITY_OPT_LOGGING "ignore_corruption"
36#define DM_VERITY_OPT_RESTART "restart_on_corruption"
37#define DM_VERITY_OPT_PANIC "panic_on_corruption"
38#define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
39#define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
40#define DM_VERITY_OPT_TASKLET_VERIFY "try_verify_in_tasklet"
41
42#define DM_VERITY_OPTS_MAX (4 + DM_VERITY_OPTS_FEC + \
43 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
44
45static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
46
47module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
48
49static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
50
51struct dm_verity_prefetch_work {
52 struct work_struct work;
53 struct dm_verity *v;
54 unsigned short ioprio;
55 sector_t block;
56 unsigned int n_blocks;
57};
58
59/*
60 * Auxiliary structure appended to each dm-bufio buffer. If the value
61 * hash_verified is nonzero, hash of the block has been verified.
62 *
63 * The variable hash_verified is set to 0 when allocating the buffer, then
64 * it can be changed to 1 and it is never reset to 0 again.
65 *
66 * There is no lock around this value, a race condition can at worst cause
67 * that multiple processes verify the hash of the same buffer simultaneously
68 * and write 1 to hash_verified simultaneously.
69 * This condition is harmless, so we don't need locking.
70 */
71struct buffer_aux {
72 int hash_verified;
73};
74
75/*
76 * Initialize struct buffer_aux for a freshly created buffer.
77 */
78static void dm_bufio_alloc_callback(struct dm_buffer *buf)
79{
80 struct buffer_aux *aux = dm_bufio_get_aux_data(b: buf);
81
82 aux->hash_verified = 0;
83}
84
85/*
86 * Translate input sector number to the sector number on the target device.
87 */
88static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
89{
90 return v->data_start + dm_target_offset(v->ti, bi_sector);
91}
92
93/*
94 * Return hash position of a specified block at a specified tree level
95 * (0 is the lowest level).
96 * The lowest "hash_per_block_bits"-bits of the result denote hash position
97 * inside a hash block. The remaining bits denote location of the hash block.
98 */
99static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
100 int level)
101{
102 return block >> (level * v->hash_per_block_bits);
103}
104
105static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
106 const u8 *data, size_t len,
107 struct crypto_wait *wait)
108{
109 struct scatterlist sg;
110
111 if (likely(!is_vmalloc_addr(data))) {
112 sg_init_one(&sg, data, len);
113 ahash_request_set_crypt(req, src: &sg, NULL, nbytes: len);
114 return crypto_wait_req(err: crypto_ahash_update(req), wait);
115 }
116
117 do {
118 int r;
119 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
120
121 flush_kernel_vmap_range(vaddr: (void *)data, size: this_step);
122 sg_init_table(&sg, 1);
123 sg_set_page(sg: &sg, page: vmalloc_to_page(addr: data), len: this_step, offset_in_page(data));
124 ahash_request_set_crypt(req, src: &sg, NULL, nbytes: this_step);
125 r = crypto_wait_req(err: crypto_ahash_update(req), wait);
126 if (unlikely(r))
127 return r;
128 data += this_step;
129 len -= this_step;
130 } while (len);
131
132 return 0;
133}
134
135/*
136 * Wrapper for crypto_ahash_init, which handles verity salting.
137 */
138static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
139 struct crypto_wait *wait, bool may_sleep)
140{
141 int r;
142
143 ahash_request_set_tfm(req, tfm: v->tfm);
144 ahash_request_set_callback(req,
145 flags: may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
146 compl: crypto_req_done, data: (void *)wait);
147 crypto_init_wait(wait);
148
149 r = crypto_wait_req(err: crypto_ahash_init(req), wait);
150
151 if (unlikely(r < 0)) {
152 if (r != -ENOMEM)
153 DMERR("crypto_ahash_init failed: %d", r);
154 return r;
155 }
156
157 if (likely(v->salt_size && (v->version >= 1)))
158 r = verity_hash_update(v, req, data: v->salt, len: v->salt_size, wait);
159
160 return r;
161}
162
163static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
164 u8 *digest, struct crypto_wait *wait)
165{
166 int r;
167
168 if (unlikely(v->salt_size && (!v->version))) {
169 r = verity_hash_update(v, req, data: v->salt, len: v->salt_size, wait);
170
171 if (r < 0) {
172 DMERR("%s failed updating salt: %d", __func__, r);
173 goto out;
174 }
175 }
176
177 ahash_request_set_crypt(req, NULL, result: digest, nbytes: 0);
178 r = crypto_wait_req(err: crypto_ahash_final(req), wait);
179out:
180 return r;
181}
182
183int verity_hash(struct dm_verity *v, struct ahash_request *req,
184 const u8 *data, size_t len, u8 *digest, bool may_sleep)
185{
186 int r;
187 struct crypto_wait wait;
188
189 r = verity_hash_init(v, req, wait: &wait, may_sleep);
190 if (unlikely(r < 0))
191 goto out;
192
193 r = verity_hash_update(v, req, data, len, wait: &wait);
194 if (unlikely(r < 0))
195 goto out;
196
197 r = verity_hash_final(v, req, digest, wait: &wait);
198
199out:
200 return r;
201}
202
203static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
204 sector_t *hash_block, unsigned int *offset)
205{
206 sector_t position = verity_position_at_level(v, block, level);
207 unsigned int idx;
208
209 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
210
211 if (!offset)
212 return;
213
214 idx = position & ((1 << v->hash_per_block_bits) - 1);
215 if (!v->version)
216 *offset = idx * v->digest_size;
217 else
218 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
219}
220
221/*
222 * Handle verification errors.
223 */
224static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
225 unsigned long long block)
226{
227 char verity_env[DM_VERITY_ENV_LENGTH];
228 char *envp[] = { verity_env, NULL };
229 const char *type_str = "";
230 struct mapped_device *md = dm_table_get_md(t: v->ti->table);
231
232 /* Corruption should be visible in device status in all modes */
233 v->hash_failed = true;
234
235 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
236 goto out;
237
238 v->corrupted_errs++;
239
240 switch (type) {
241 case DM_VERITY_BLOCK_TYPE_DATA:
242 type_str = "data";
243 break;
244 case DM_VERITY_BLOCK_TYPE_METADATA:
245 type_str = "metadata";
246 break;
247 default:
248 BUG();
249 }
250
251 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
252 type_str, block);
253
254 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
255 DMERR("%s: reached maximum errors", v->data_dev->name);
256 dm_audit_log_target(DM_MSG_PREFIX, op: "max-corrupted-errors", ti: v->ti, result: 0);
257 }
258
259 snprintf(buf: verity_env, DM_VERITY_ENV_LENGTH, fmt: "%s=%d,%llu",
260 DM_VERITY_ENV_VAR_NAME, type, block);
261
262 kobject_uevent_env(kobj: &disk_to_dev(dm_disk(md))->kobj, action: KOBJ_CHANGE, envp);
263
264out:
265 if (v->mode == DM_VERITY_MODE_LOGGING)
266 return 0;
267
268 if (v->mode == DM_VERITY_MODE_RESTART)
269 kernel_restart(cmd: "dm-verity device corrupted");
270
271 if (v->mode == DM_VERITY_MODE_PANIC)
272 panic(fmt: "dm-verity device corrupted");
273
274 return 1;
275}
276
277/*
278 * Verify hash of a metadata block pertaining to the specified data block
279 * ("block" argument) at a specified level ("level" argument).
280 *
281 * On successful return, verity_io_want_digest(v, io) contains the hash value
282 * for a lower tree level or for the data block (if we're at the lowest level).
283 *
284 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
285 * If "skip_unverified" is false, unverified buffer is hashed and verified
286 * against current value of verity_io_want_digest(v, io).
287 */
288static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
289 sector_t block, int level, bool skip_unverified,
290 u8 *want_digest)
291{
292 struct dm_buffer *buf;
293 struct buffer_aux *aux;
294 u8 *data;
295 int r;
296 sector_t hash_block;
297 unsigned int offset;
298 struct bio *bio = dm_bio_from_per_bio_data(data: io, data_size: v->ti->per_io_data_size);
299
300 verity_hash_at_level(v, block, level, hash_block: &hash_block, offset: &offset);
301
302 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
303 data = dm_bufio_get(c: v->bufio, block: hash_block, bp: &buf);
304 if (data == NULL) {
305 /*
306 * In tasklet and the hash was not in the bufio cache.
307 * Return early and resume execution from a work-queue
308 * to read the hash from disk.
309 */
310 return -EAGAIN;
311 }
312 } else {
313 data = dm_bufio_read_with_ioprio(c: v->bufio, block: hash_block,
314 bp: &buf, bio_prio(bio));
315 }
316
317 if (IS_ERR(ptr: data))
318 return PTR_ERR(ptr: data);
319
320 aux = dm_bufio_get_aux_data(b: buf);
321
322 if (!aux->hash_verified) {
323 if (skip_unverified) {
324 r = 1;
325 goto release_ret_r;
326 }
327
328 r = verity_hash(v, req: verity_io_hash_req(v, io),
329 data, len: 1 << v->hash_dev_block_bits,
330 digest: verity_io_real_digest(v, io), may_sleep: !io->in_bh);
331 if (unlikely(r < 0))
332 goto release_ret_r;
333
334 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
335 v->digest_size) == 0))
336 aux->hash_verified = 1;
337 else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
338 /*
339 * Error handling code (FEC included) cannot be run in a
340 * tasklet since it may sleep, so fallback to work-queue.
341 */
342 r = -EAGAIN;
343 goto release_ret_r;
344 } else if (verity_fec_decode(v, io, type: DM_VERITY_BLOCK_TYPE_METADATA,
345 block: hash_block, dest: data, NULL) == 0)
346 aux->hash_verified = 1;
347 else if (verity_handle_err(v,
348 type: DM_VERITY_BLOCK_TYPE_METADATA,
349 block: hash_block)) {
350 struct bio *bio =
351 dm_bio_from_per_bio_data(data: io,
352 data_size: v->ti->per_io_data_size);
353 dm_audit_log_bio(DM_MSG_PREFIX, op: "verify-metadata", bio,
354 sector: block, result: 0);
355 r = -EIO;
356 goto release_ret_r;
357 }
358 }
359
360 data += offset;
361 memcpy(want_digest, data, v->digest_size);
362 r = 0;
363
364release_ret_r:
365 dm_bufio_release(b: buf);
366 return r;
367}
368
369/*
370 * Find a hash for a given block, write it to digest and verify the integrity
371 * of the hash tree if necessary.
372 */
373int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
374 sector_t block, u8 *digest, bool *is_zero)
375{
376 int r = 0, i;
377
378 if (likely(v->levels)) {
379 /*
380 * First, we try to get the requested hash for
381 * the current block. If the hash block itself is
382 * verified, zero is returned. If it isn't, this
383 * function returns 1 and we fall back to whole
384 * chain verification.
385 */
386 r = verity_verify_level(v, io, block, level: 0, skip_unverified: true, want_digest: digest);
387 if (likely(r <= 0))
388 goto out;
389 }
390
391 memcpy(digest, v->root_digest, v->digest_size);
392
393 for (i = v->levels - 1; i >= 0; i--) {
394 r = verity_verify_level(v, io, block, level: i, skip_unverified: false, want_digest: digest);
395 if (unlikely(r))
396 goto out;
397 }
398out:
399 if (!r && v->zero_digest)
400 *is_zero = !memcmp(p: v->zero_digest, q: digest, size: v->digest_size);
401 else
402 *is_zero = false;
403
404 return r;
405}
406
407/*
408 * Calculates the digest for the given bio
409 */
410static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
411 struct bvec_iter *iter, struct crypto_wait *wait)
412{
413 unsigned int todo = 1 << v->data_dev_block_bits;
414 struct bio *bio = dm_bio_from_per_bio_data(data: io, data_size: v->ti->per_io_data_size);
415 struct scatterlist sg;
416 struct ahash_request *req = verity_io_hash_req(v, io);
417
418 do {
419 int r;
420 unsigned int len;
421 struct bio_vec bv = bio_iter_iovec(bio, *iter);
422
423 sg_init_table(&sg, 1);
424
425 len = bv.bv_len;
426
427 if (likely(len >= todo))
428 len = todo;
429 /*
430 * Operating on a single page at a time looks suboptimal
431 * until you consider the typical block size is 4,096B.
432 * Going through this loops twice should be very rare.
433 */
434 sg_set_page(sg: &sg, page: bv.bv_page, len, offset: bv.bv_offset);
435 ahash_request_set_crypt(req, src: &sg, NULL, nbytes: len);
436 r = crypto_wait_req(err: crypto_ahash_update(req), wait);
437
438 if (unlikely(r < 0)) {
439 DMERR("%s crypto op failed: %d", __func__, r);
440 return r;
441 }
442
443 bio_advance_iter(bio, iter, bytes: len);
444 todo -= len;
445 } while (todo);
446
447 return 0;
448}
449
450/*
451 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
452 * starting from iter.
453 */
454int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
455 struct bvec_iter *iter,
456 int (*process)(struct dm_verity *v,
457 struct dm_verity_io *io, u8 *data,
458 size_t len))
459{
460 unsigned int todo = 1 << v->data_dev_block_bits;
461 struct bio *bio = dm_bio_from_per_bio_data(data: io, data_size: v->ti->per_io_data_size);
462
463 do {
464 int r;
465 u8 *page;
466 unsigned int len;
467 struct bio_vec bv = bio_iter_iovec(bio, *iter);
468
469 page = bvec_kmap_local(bvec: &bv);
470 len = bv.bv_len;
471
472 if (likely(len >= todo))
473 len = todo;
474
475 r = process(v, io, page, len);
476 kunmap_local(page);
477
478 if (r < 0)
479 return r;
480
481 bio_advance_iter(bio, iter, bytes: len);
482 todo -= len;
483 } while (todo);
484
485 return 0;
486}
487
488static int verity_recheck_copy(struct dm_verity *v, struct dm_verity_io *io,
489 u8 *data, size_t len)
490{
491 memcpy(data, io->recheck_buffer, len);
492 io->recheck_buffer += len;
493
494 return 0;
495}
496
497static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
498 struct bvec_iter start, sector_t cur_block)
499{
500 struct page *page;
501 void *buffer;
502 int r;
503 struct dm_io_request io_req;
504 struct dm_io_region io_loc;
505
506 page = mempool_alloc(pool: &v->recheck_pool, GFP_NOIO);
507 buffer = page_to_virt(page);
508
509 io_req.bi_opf = REQ_OP_READ;
510 io_req.mem.type = DM_IO_KMEM;
511 io_req.mem.ptr.addr = buffer;
512 io_req.notify.fn = NULL;
513 io_req.client = v->io;
514 io_loc.bdev = v->data_dev->bdev;
515 io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
516 io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
517 r = dm_io(io_req: &io_req, num_regions: 1, region: &io_loc, NULL, IOPRIO_DEFAULT);
518 if (unlikely(r))
519 goto free_ret;
520
521 r = verity_hash(v, req: verity_io_hash_req(v, io), data: buffer,
522 len: 1 << v->data_dev_block_bits,
523 digest: verity_io_real_digest(v, io), may_sleep: true);
524 if (unlikely(r))
525 goto free_ret;
526
527 if (memcmp(p: verity_io_real_digest(v, io),
528 q: verity_io_want_digest(v, io), size: v->digest_size)) {
529 r = -EIO;
530 goto free_ret;
531 }
532
533 io->recheck_buffer = buffer;
534 r = verity_for_bv_block(v, io, iter: &start, process: verity_recheck_copy);
535 if (unlikely(r))
536 goto free_ret;
537
538 r = 0;
539free_ret:
540 mempool_free(element: page, pool: &v->recheck_pool);
541
542 return r;
543}
544
545static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
546 u8 *data, size_t len)
547{
548 memset(data, 0, len);
549 return 0;
550}
551
552/*
553 * Moves the bio iter one data block forward.
554 */
555static inline void verity_bv_skip_block(struct dm_verity *v,
556 struct dm_verity_io *io,
557 struct bvec_iter *iter)
558{
559 struct bio *bio = dm_bio_from_per_bio_data(data: io, data_size: v->ti->per_io_data_size);
560
561 bio_advance_iter(bio, iter, bytes: 1 << v->data_dev_block_bits);
562}
563
564/*
565 * Verify one "dm_verity_io" structure.
566 */
567static int verity_verify_io(struct dm_verity_io *io)
568{
569 bool is_zero;
570 struct dm_verity *v = io->v;
571 struct bvec_iter start;
572 struct bvec_iter iter_copy;
573 struct bvec_iter *iter;
574 struct crypto_wait wait;
575 struct bio *bio = dm_bio_from_per_bio_data(data: io, data_size: v->ti->per_io_data_size);
576 unsigned int b;
577
578 if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
579 /*
580 * Copy the iterator in case we need to restart
581 * verification in a work-queue.
582 */
583 iter_copy = io->iter;
584 iter = &iter_copy;
585 } else
586 iter = &io->iter;
587
588 for (b = 0; b < io->n_blocks; b++) {
589 int r;
590 sector_t cur_block = io->block + b;
591 struct ahash_request *req = verity_io_hash_req(v, io);
592
593 if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
594 likely(test_bit(cur_block, v->validated_blocks))) {
595 verity_bv_skip_block(v, io, iter);
596 continue;
597 }
598
599 r = verity_hash_for_block(v, io, block: cur_block,
600 digest: verity_io_want_digest(v, io),
601 is_zero: &is_zero);
602 if (unlikely(r < 0))
603 return r;
604
605 if (is_zero) {
606 /*
607 * If we expect a zero block, don't validate, just
608 * return zeros.
609 */
610 r = verity_for_bv_block(v, io, iter,
611 process: verity_bv_zero);
612 if (unlikely(r < 0))
613 return r;
614
615 continue;
616 }
617
618 r = verity_hash_init(v, req, wait: &wait, may_sleep: !io->in_bh);
619 if (unlikely(r < 0))
620 return r;
621
622 start = *iter;
623 r = verity_for_io_block(v, io, iter, wait: &wait);
624 if (unlikely(r < 0))
625 return r;
626
627 r = verity_hash_final(v, req, digest: verity_io_real_digest(v, io),
628 wait: &wait);
629 if (unlikely(r < 0))
630 return r;
631
632 if (likely(memcmp(verity_io_real_digest(v, io),
633 verity_io_want_digest(v, io), v->digest_size) == 0)) {
634 if (v->validated_blocks)
635 set_bit(nr: cur_block, addr: v->validated_blocks);
636 continue;
637 } else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
638 /*
639 * Error handling code (FEC included) cannot be run in a
640 * tasklet since it may sleep, so fallback to work-queue.
641 */
642 return -EAGAIN;
643 } else if (verity_recheck(v, io, start, cur_block) == 0) {
644 if (v->validated_blocks)
645 set_bit(nr: cur_block, addr: v->validated_blocks);
646 continue;
647#if defined(CONFIG_DM_VERITY_FEC)
648 } else if (verity_fec_decode(v, io, type: DM_VERITY_BLOCK_TYPE_DATA,
649 block: cur_block, NULL, iter: &start) == 0) {
650 continue;
651#endif
652 } else {
653 if (bio->bi_status) {
654 /*
655 * Error correction failed; Just return error
656 */
657 return -EIO;
658 }
659 if (verity_handle_err(v, type: DM_VERITY_BLOCK_TYPE_DATA,
660 block: cur_block)) {
661 dm_audit_log_bio(DM_MSG_PREFIX, op: "verify-data",
662 bio, sector: cur_block, result: 0);
663 return -EIO;
664 }
665 }
666 }
667
668 return 0;
669}
670
671/*
672 * Skip verity work in response to I/O error when system is shutting down.
673 */
674static inline bool verity_is_system_shutting_down(void)
675{
676 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
677 || system_state == SYSTEM_RESTART;
678}
679
680/*
681 * End one "io" structure with a given error.
682 */
683static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
684{
685 struct dm_verity *v = io->v;
686 struct bio *bio = dm_bio_from_per_bio_data(data: io, data_size: v->ti->per_io_data_size);
687
688 bio->bi_end_io = io->orig_bi_end_io;
689 bio->bi_status = status;
690
691 if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
692 verity_fec_finish_io(io);
693
694 bio_endio(bio);
695}
696
697static void verity_work(struct work_struct *w)
698{
699 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
700
701 io->in_bh = false;
702
703 verity_finish_io(io, status: errno_to_blk_status(errno: verity_verify_io(io)));
704}
705
706static void verity_bh_work(struct work_struct *w)
707{
708 struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
709 int err;
710
711 io->in_bh = true;
712 err = verity_verify_io(io);
713 if (err == -EAGAIN || err == -ENOMEM) {
714 /* fallback to retrying with work-queue */
715 INIT_WORK(&io->work, verity_work);
716 queue_work(wq: io->v->verify_wq, work: &io->work);
717 return;
718 }
719
720 verity_finish_io(io, status: errno_to_blk_status(errno: err));
721}
722
723static void verity_end_io(struct bio *bio)
724{
725 struct dm_verity_io *io = bio->bi_private;
726
727 if (bio->bi_status &&
728 (!verity_fec_is_enabled(v: io->v) ||
729 verity_is_system_shutting_down() ||
730 (bio->bi_opf & REQ_RAHEAD))) {
731 verity_finish_io(io, status: bio->bi_status);
732 return;
733 }
734
735 if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq) {
736 INIT_WORK(&io->bh_work, verity_bh_work);
737 queue_work(wq: system_bh_wq, work: &io->bh_work);
738 } else {
739 INIT_WORK(&io->work, verity_work);
740 queue_work(wq: io->v->verify_wq, work: &io->work);
741 }
742}
743
744/*
745 * Prefetch buffers for the specified io.
746 * The root buffer is not prefetched, it is assumed that it will be cached
747 * all the time.
748 */
749static void verity_prefetch_io(struct work_struct *work)
750{
751 struct dm_verity_prefetch_work *pw =
752 container_of(work, struct dm_verity_prefetch_work, work);
753 struct dm_verity *v = pw->v;
754 int i;
755
756 for (i = v->levels - 2; i >= 0; i--) {
757 sector_t hash_block_start;
758 sector_t hash_block_end;
759
760 verity_hash_at_level(v, block: pw->block, level: i, hash_block: &hash_block_start, NULL);
761 verity_hash_at_level(v, block: pw->block + pw->n_blocks - 1, level: i, hash_block: &hash_block_end, NULL);
762
763 if (!i) {
764 unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
765
766 cluster >>= v->data_dev_block_bits;
767 if (unlikely(!cluster))
768 goto no_prefetch_cluster;
769
770 if (unlikely(cluster & (cluster - 1)))
771 cluster = 1 << __fls(word: cluster);
772
773 hash_block_start &= ~(sector_t)(cluster - 1);
774 hash_block_end |= cluster - 1;
775 if (unlikely(hash_block_end >= v->hash_blocks))
776 hash_block_end = v->hash_blocks - 1;
777 }
778no_prefetch_cluster:
779 dm_bufio_prefetch_with_ioprio(c: v->bufio, block: hash_block_start,
780 n_blocks: hash_block_end - hash_block_start + 1,
781 ioprio: pw->ioprio);
782 }
783
784 kfree(objp: pw);
785}
786
787static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
788 unsigned short ioprio)
789{
790 sector_t block = io->block;
791 unsigned int n_blocks = io->n_blocks;
792 struct dm_verity_prefetch_work *pw;
793
794 if (v->validated_blocks) {
795 while (n_blocks && test_bit(block, v->validated_blocks)) {
796 block++;
797 n_blocks--;
798 }
799 while (n_blocks && test_bit(block + n_blocks - 1,
800 v->validated_blocks))
801 n_blocks--;
802 if (!n_blocks)
803 return;
804 }
805
806 pw = kmalloc(size: sizeof(struct dm_verity_prefetch_work),
807 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
808
809 if (!pw)
810 return;
811
812 INIT_WORK(&pw->work, verity_prefetch_io);
813 pw->v = v;
814 pw->block = block;
815 pw->n_blocks = n_blocks;
816 pw->ioprio = ioprio;
817 queue_work(wq: v->verify_wq, work: &pw->work);
818}
819
820/*
821 * Bio map function. It allocates dm_verity_io structure and bio vector and
822 * fills them. Then it issues prefetches and the I/O.
823 */
824static int verity_map(struct dm_target *ti, struct bio *bio)
825{
826 struct dm_verity *v = ti->private;
827 struct dm_verity_io *io;
828
829 bio_set_dev(bio, bdev: v->data_dev->bdev);
830 bio->bi_iter.bi_sector = verity_map_sector(v, bi_sector: bio->bi_iter.bi_sector);
831
832 if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
833 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
834 DMERR_LIMIT("unaligned io");
835 return DM_MAPIO_KILL;
836 }
837
838 if (bio_end_sector(bio) >>
839 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
840 DMERR_LIMIT("io out of range");
841 return DM_MAPIO_KILL;
842 }
843
844 if (bio_data_dir(bio) == WRITE)
845 return DM_MAPIO_KILL;
846
847 io = dm_per_bio_data(bio, data_size: ti->per_io_data_size);
848 io->v = v;
849 io->orig_bi_end_io = bio->bi_end_io;
850 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
851 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
852
853 bio->bi_end_io = verity_end_io;
854 bio->bi_private = io;
855 io->iter = bio->bi_iter;
856
857 verity_fec_init_io(io);
858
859 verity_submit_prefetch(v, io, bio_prio(bio));
860
861 submit_bio_noacct(bio);
862
863 return DM_MAPIO_SUBMITTED;
864}
865
866/*
867 * Status: V (valid) or C (corruption found)
868 */
869static void verity_status(struct dm_target *ti, status_type_t type,
870 unsigned int status_flags, char *result, unsigned int maxlen)
871{
872 struct dm_verity *v = ti->private;
873 unsigned int args = 0;
874 unsigned int sz = 0;
875 unsigned int x;
876
877 switch (type) {
878 case STATUSTYPE_INFO:
879 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
880 break;
881 case STATUSTYPE_TABLE:
882 DMEMIT("%u %s %s %u %u %llu %llu %s ",
883 v->version,
884 v->data_dev->name,
885 v->hash_dev->name,
886 1 << v->data_dev_block_bits,
887 1 << v->hash_dev_block_bits,
888 (unsigned long long)v->data_blocks,
889 (unsigned long long)v->hash_start,
890 v->alg_name
891 );
892 for (x = 0; x < v->digest_size; x++)
893 DMEMIT("%02x", v->root_digest[x]);
894 DMEMIT(" ");
895 if (!v->salt_size)
896 DMEMIT("-");
897 else
898 for (x = 0; x < v->salt_size; x++)
899 DMEMIT("%02x", v->salt[x]);
900 if (v->mode != DM_VERITY_MODE_EIO)
901 args++;
902 if (verity_fec_is_enabled(v))
903 args += DM_VERITY_OPTS_FEC;
904 if (v->zero_digest)
905 args++;
906 if (v->validated_blocks)
907 args++;
908 if (v->use_bh_wq)
909 args++;
910 if (v->signature_key_desc)
911 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
912 if (!args)
913 return;
914 DMEMIT(" %u", args);
915 if (v->mode != DM_VERITY_MODE_EIO) {
916 DMEMIT(" ");
917 switch (v->mode) {
918 case DM_VERITY_MODE_LOGGING:
919 DMEMIT(DM_VERITY_OPT_LOGGING);
920 break;
921 case DM_VERITY_MODE_RESTART:
922 DMEMIT(DM_VERITY_OPT_RESTART);
923 break;
924 case DM_VERITY_MODE_PANIC:
925 DMEMIT(DM_VERITY_OPT_PANIC);
926 break;
927 default:
928 BUG();
929 }
930 }
931 if (v->zero_digest)
932 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
933 if (v->validated_blocks)
934 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
935 if (v->use_bh_wq)
936 DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
937 sz = verity_fec_status_table(v, sz, result, maxlen);
938 if (v->signature_key_desc)
939 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
940 " %s", v->signature_key_desc);
941 break;
942
943 case STATUSTYPE_IMA:
944 DMEMIT_TARGET_NAME_VERSION(ti->type);
945 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
946 DMEMIT(",verity_version=%u", v->version);
947 DMEMIT(",data_device_name=%s", v->data_dev->name);
948 DMEMIT(",hash_device_name=%s", v->hash_dev->name);
949 DMEMIT(",verity_algorithm=%s", v->alg_name);
950
951 DMEMIT(",root_digest=");
952 for (x = 0; x < v->digest_size; x++)
953 DMEMIT("%02x", v->root_digest[x]);
954
955 DMEMIT(",salt=");
956 if (!v->salt_size)
957 DMEMIT("-");
958 else
959 for (x = 0; x < v->salt_size; x++)
960 DMEMIT("%02x", v->salt[x]);
961
962 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
963 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
964 if (v->signature_key_desc)
965 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
966
967 if (v->mode != DM_VERITY_MODE_EIO) {
968 DMEMIT(",verity_mode=");
969 switch (v->mode) {
970 case DM_VERITY_MODE_LOGGING:
971 DMEMIT(DM_VERITY_OPT_LOGGING);
972 break;
973 case DM_VERITY_MODE_RESTART:
974 DMEMIT(DM_VERITY_OPT_RESTART);
975 break;
976 case DM_VERITY_MODE_PANIC:
977 DMEMIT(DM_VERITY_OPT_PANIC);
978 break;
979 default:
980 DMEMIT("invalid");
981 }
982 }
983 DMEMIT(";");
984 break;
985 }
986}
987
988static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
989{
990 struct dm_verity *v = ti->private;
991
992 *bdev = v->data_dev->bdev;
993
994 if (v->data_start || ti->len != bdev_nr_sectors(bdev: v->data_dev->bdev))
995 return 1;
996 return 0;
997}
998
999static int verity_iterate_devices(struct dm_target *ti,
1000 iterate_devices_callout_fn fn, void *data)
1001{
1002 struct dm_verity *v = ti->private;
1003
1004 return fn(ti, v->data_dev, v->data_start, ti->len, data);
1005}
1006
1007static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
1008{
1009 struct dm_verity *v = ti->private;
1010
1011 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
1012 limits->logical_block_size = 1 << v->data_dev_block_bits;
1013
1014 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
1015 limits->physical_block_size = 1 << v->data_dev_block_bits;
1016
1017 blk_limits_io_min(limits, min: limits->logical_block_size);
1018}
1019
1020static void verity_dtr(struct dm_target *ti)
1021{
1022 struct dm_verity *v = ti->private;
1023
1024 if (v->verify_wq)
1025 destroy_workqueue(wq: v->verify_wq);
1026
1027 mempool_exit(pool: &v->recheck_pool);
1028 if (v->io)
1029 dm_io_client_destroy(client: v->io);
1030
1031 if (v->bufio)
1032 dm_bufio_client_destroy(c: v->bufio);
1033
1034 kvfree(addr: v->validated_blocks);
1035 kfree(objp: v->salt);
1036 kfree(objp: v->root_digest);
1037 kfree(objp: v->zero_digest);
1038
1039 if (v->tfm)
1040 crypto_free_ahash(tfm: v->tfm);
1041
1042 kfree(objp: v->alg_name);
1043
1044 if (v->hash_dev)
1045 dm_put_device(ti, d: v->hash_dev);
1046
1047 if (v->data_dev)
1048 dm_put_device(ti, d: v->data_dev);
1049
1050 verity_fec_dtr(v);
1051
1052 kfree(objp: v->signature_key_desc);
1053
1054 if (v->use_bh_wq)
1055 static_branch_dec(&use_bh_wq_enabled);
1056
1057 kfree(objp: v);
1058
1059 dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1);
1060}
1061
1062static int verity_alloc_most_once(struct dm_verity *v)
1063{
1064 struct dm_target *ti = v->ti;
1065
1066 /* the bitset can only handle INT_MAX blocks */
1067 if (v->data_blocks > INT_MAX) {
1068 ti->error = "device too large to use check_at_most_once";
1069 return -E2BIG;
1070 }
1071
1072 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1073 size: sizeof(unsigned long),
1074 GFP_KERNEL);
1075 if (!v->validated_blocks) {
1076 ti->error = "failed to allocate bitset for check_at_most_once";
1077 return -ENOMEM;
1078 }
1079
1080 return 0;
1081}
1082
1083static int verity_alloc_zero_digest(struct dm_verity *v)
1084{
1085 int r = -ENOMEM;
1086 struct ahash_request *req;
1087 u8 *zero_data;
1088
1089 v->zero_digest = kmalloc(size: v->digest_size, GFP_KERNEL);
1090
1091 if (!v->zero_digest)
1092 return r;
1093
1094 req = kmalloc(size: v->ahash_reqsize, GFP_KERNEL);
1095
1096 if (!req)
1097 return r; /* verity_dtr will free zero_digest */
1098
1099 zero_data = kzalloc(size: 1 << v->data_dev_block_bits, GFP_KERNEL);
1100
1101 if (!zero_data)
1102 goto out;
1103
1104 r = verity_hash(v, req, data: zero_data, len: 1 << v->data_dev_block_bits,
1105 digest: v->zero_digest, may_sleep: true);
1106
1107out:
1108 kfree(objp: req);
1109 kfree(objp: zero_data);
1110
1111 return r;
1112}
1113
1114static inline bool verity_is_verity_mode(const char *arg_name)
1115{
1116 return (!strcasecmp(s1: arg_name, DM_VERITY_OPT_LOGGING) ||
1117 !strcasecmp(s1: arg_name, DM_VERITY_OPT_RESTART) ||
1118 !strcasecmp(s1: arg_name, DM_VERITY_OPT_PANIC));
1119}
1120
1121static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1122{
1123 if (v->mode)
1124 return -EINVAL;
1125
1126 if (!strcasecmp(s1: arg_name, DM_VERITY_OPT_LOGGING))
1127 v->mode = DM_VERITY_MODE_LOGGING;
1128 else if (!strcasecmp(s1: arg_name, DM_VERITY_OPT_RESTART))
1129 v->mode = DM_VERITY_MODE_RESTART;
1130 else if (!strcasecmp(s1: arg_name, DM_VERITY_OPT_PANIC))
1131 v->mode = DM_VERITY_MODE_PANIC;
1132
1133 return 0;
1134}
1135
1136static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1137 struct dm_verity_sig_opts *verify_args,
1138 bool only_modifier_opts)
1139{
1140 int r = 0;
1141 unsigned int argc;
1142 struct dm_target *ti = v->ti;
1143 const char *arg_name;
1144
1145 static const struct dm_arg _args[] = {
1146 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1147 };
1148
1149 r = dm_read_arg_group(arg: _args, arg_set: as, num_args: &argc, error: &ti->error);
1150 if (r)
1151 return -EINVAL;
1152
1153 if (!argc)
1154 return 0;
1155
1156 do {
1157 arg_name = dm_shift_arg(as);
1158 argc--;
1159
1160 if (verity_is_verity_mode(arg_name)) {
1161 if (only_modifier_opts)
1162 continue;
1163 r = verity_parse_verity_mode(v, arg_name);
1164 if (r) {
1165 ti->error = "Conflicting error handling parameters";
1166 return r;
1167 }
1168 continue;
1169
1170 } else if (!strcasecmp(s1: arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1171 if (only_modifier_opts)
1172 continue;
1173 r = verity_alloc_zero_digest(v);
1174 if (r) {
1175 ti->error = "Cannot allocate zero digest";
1176 return r;
1177 }
1178 continue;
1179
1180 } else if (!strcasecmp(s1: arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1181 if (only_modifier_opts)
1182 continue;
1183 r = verity_alloc_most_once(v);
1184 if (r)
1185 return r;
1186 continue;
1187
1188 } else if (!strcasecmp(s1: arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1189 v->use_bh_wq = true;
1190 static_branch_inc(&use_bh_wq_enabled);
1191 continue;
1192
1193 } else if (verity_is_fec_opt_arg(arg_name)) {
1194 if (only_modifier_opts)
1195 continue;
1196 r = verity_fec_parse_opt_args(as, v, argc: &argc, arg_name);
1197 if (r)
1198 return r;
1199 continue;
1200
1201 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
1202 if (only_modifier_opts)
1203 continue;
1204 r = verity_verify_sig_parse_opt_args(as, v,
1205 sig_opts: verify_args,
1206 argc: &argc, arg_name);
1207 if (r)
1208 return r;
1209 continue;
1210
1211 } else if (only_modifier_opts) {
1212 /*
1213 * Ignore unrecognized opt, could easily be an extra
1214 * argument to an option whose parsing was skipped.
1215 * Normal parsing (@only_modifier_opts=false) will
1216 * properly parse all options (and their extra args).
1217 */
1218 continue;
1219 }
1220
1221 DMERR("Unrecognized verity feature request: %s", arg_name);
1222 ti->error = "Unrecognized verity feature request";
1223 return -EINVAL;
1224 } while (argc && !r);
1225
1226 return r;
1227}
1228
1229/*
1230 * Target parameters:
1231 * <version> The current format is version 1.
1232 * Vsn 0 is compatible with original Chromium OS releases.
1233 * <data device>
1234 * <hash device>
1235 * <data block size>
1236 * <hash block size>
1237 * <the number of data blocks>
1238 * <hash start block>
1239 * <algorithm>
1240 * <digest>
1241 * <salt> Hex string or "-" if no salt.
1242 */
1243static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1244{
1245 struct dm_verity *v;
1246 struct dm_verity_sig_opts verify_args = {0};
1247 struct dm_arg_set as;
1248 unsigned int num;
1249 unsigned long long num_ll;
1250 int r;
1251 int i;
1252 sector_t hash_position;
1253 char dummy;
1254 char *root_hash_digest_to_validate;
1255
1256 v = kzalloc(size: sizeof(struct dm_verity), GFP_KERNEL);
1257 if (!v) {
1258 ti->error = "Cannot allocate verity structure";
1259 return -ENOMEM;
1260 }
1261 ti->private = v;
1262 v->ti = ti;
1263
1264 r = verity_fec_ctr_alloc(v);
1265 if (r)
1266 goto bad;
1267
1268 if ((dm_table_get_mode(t: ti->table) & ~BLK_OPEN_READ)) {
1269 ti->error = "Device must be readonly";
1270 r = -EINVAL;
1271 goto bad;
1272 }
1273
1274 if (argc < 10) {
1275 ti->error = "Not enough arguments";
1276 r = -EINVAL;
1277 goto bad;
1278 }
1279
1280 /* Parse optional parameters that modify primary args */
1281 if (argc > 10) {
1282 as.argc = argc - 10;
1283 as.argv = argv + 10;
1284 r = verity_parse_opt_args(as: &as, v, verify_args: &verify_args, only_modifier_opts: true);
1285 if (r < 0)
1286 goto bad;
1287 }
1288
1289 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1290 num > 1) {
1291 ti->error = "Invalid version";
1292 r = -EINVAL;
1293 goto bad;
1294 }
1295 v->version = num;
1296
1297 r = dm_get_device(ti, path: argv[1], BLK_OPEN_READ, result: &v->data_dev);
1298 if (r) {
1299 ti->error = "Data device lookup failed";
1300 goto bad;
1301 }
1302
1303 r = dm_get_device(ti, path: argv[2], BLK_OPEN_READ, result: &v->hash_dev);
1304 if (r) {
1305 ti->error = "Hash device lookup failed";
1306 goto bad;
1307 }
1308
1309 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1310 !num || (num & (num - 1)) ||
1311 num < bdev_logical_block_size(bdev: v->data_dev->bdev) ||
1312 num > PAGE_SIZE) {
1313 ti->error = "Invalid data device block size";
1314 r = -EINVAL;
1315 goto bad;
1316 }
1317 v->data_dev_block_bits = __ffs(num);
1318
1319 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1320 !num || (num & (num - 1)) ||
1321 num < bdev_logical_block_size(bdev: v->hash_dev->bdev) ||
1322 num > INT_MAX) {
1323 ti->error = "Invalid hash device block size";
1324 r = -EINVAL;
1325 goto bad;
1326 }
1327 v->hash_dev_block_bits = __ffs(num);
1328
1329 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1330 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1331 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1332 ti->error = "Invalid data blocks";
1333 r = -EINVAL;
1334 goto bad;
1335 }
1336 v->data_blocks = num_ll;
1337
1338 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1339 ti->error = "Data device is too small";
1340 r = -EINVAL;
1341 goto bad;
1342 }
1343
1344 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1345 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1346 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1347 ti->error = "Invalid hash start";
1348 r = -EINVAL;
1349 goto bad;
1350 }
1351 v->hash_start = num_ll;
1352
1353 v->alg_name = kstrdup(s: argv[7], GFP_KERNEL);
1354 if (!v->alg_name) {
1355 ti->error = "Cannot allocate algorithm name";
1356 r = -ENOMEM;
1357 goto bad;
1358 }
1359
1360 v->tfm = crypto_alloc_ahash(alg_name: v->alg_name, type: 0,
1361 mask: v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1362 if (IS_ERR(ptr: v->tfm)) {
1363 ti->error = "Cannot initialize hash function";
1364 r = PTR_ERR(ptr: v->tfm);
1365 v->tfm = NULL;
1366 goto bad;
1367 }
1368
1369 /*
1370 * dm-verity performance can vary greatly depending on which hash
1371 * algorithm implementation is used. Help people debug performance
1372 * problems by logging the ->cra_driver_name.
1373 */
1374 DMINFO("%s using implementation \"%s\"", v->alg_name,
1375 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1376
1377 v->digest_size = crypto_ahash_digestsize(tfm: v->tfm);
1378 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1379 ti->error = "Digest size too big";
1380 r = -EINVAL;
1381 goto bad;
1382 }
1383 v->ahash_reqsize = sizeof(struct ahash_request) +
1384 crypto_ahash_reqsize(tfm: v->tfm);
1385
1386 v->root_digest = kmalloc(size: v->digest_size, GFP_KERNEL);
1387 if (!v->root_digest) {
1388 ti->error = "Cannot allocate root digest";
1389 r = -ENOMEM;
1390 goto bad;
1391 }
1392 if (strlen(argv[8]) != v->digest_size * 2 ||
1393 hex2bin(dst: v->root_digest, src: argv[8], count: v->digest_size)) {
1394 ti->error = "Invalid root digest";
1395 r = -EINVAL;
1396 goto bad;
1397 }
1398 root_hash_digest_to_validate = argv[8];
1399
1400 if (strcmp(argv[9], "-")) {
1401 v->salt_size = strlen(argv[9]) / 2;
1402 v->salt = kmalloc(size: v->salt_size, GFP_KERNEL);
1403 if (!v->salt) {
1404 ti->error = "Cannot allocate salt";
1405 r = -ENOMEM;
1406 goto bad;
1407 }
1408 if (strlen(argv[9]) != v->salt_size * 2 ||
1409 hex2bin(dst: v->salt, src: argv[9], count: v->salt_size)) {
1410 ti->error = "Invalid salt";
1411 r = -EINVAL;
1412 goto bad;
1413 }
1414 }
1415
1416 argv += 10;
1417 argc -= 10;
1418
1419 /* Optional parameters */
1420 if (argc) {
1421 as.argc = argc;
1422 as.argv = argv;
1423 r = verity_parse_opt_args(as: &as, v, verify_args: &verify_args, only_modifier_opts: false);
1424 if (r < 0)
1425 goto bad;
1426 }
1427
1428 /* Root hash signature is a optional parameter*/
1429 r = verity_verify_root_hash(data: root_hash_digest_to_validate,
1430 strlen(root_hash_digest_to_validate),
1431 sig_data: verify_args.sig,
1432 sig_len: verify_args.sig_size);
1433 if (r < 0) {
1434 ti->error = "Root hash verification failed";
1435 goto bad;
1436 }
1437 v->hash_per_block_bits =
1438 __fls(word: (1 << v->hash_dev_block_bits) / v->digest_size);
1439
1440 v->levels = 0;
1441 if (v->data_blocks)
1442 while (v->hash_per_block_bits * v->levels < 64 &&
1443 (unsigned long long)(v->data_blocks - 1) >>
1444 (v->hash_per_block_bits * v->levels))
1445 v->levels++;
1446
1447 if (v->levels > DM_VERITY_MAX_LEVELS) {
1448 ti->error = "Too many tree levels";
1449 r = -E2BIG;
1450 goto bad;
1451 }
1452
1453 hash_position = v->hash_start;
1454 for (i = v->levels - 1; i >= 0; i--) {
1455 sector_t s;
1456
1457 v->hash_level_block[i] = hash_position;
1458 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1459 >> ((i + 1) * v->hash_per_block_bits);
1460 if (hash_position + s < hash_position) {
1461 ti->error = "Hash device offset overflow";
1462 r = -E2BIG;
1463 goto bad;
1464 }
1465 hash_position += s;
1466 }
1467 v->hash_blocks = hash_position;
1468
1469 r = mempool_init_page_pool(pool: &v->recheck_pool, min_nr: 1, order: 0);
1470 if (unlikely(r)) {
1471 ti->error = "Cannot allocate mempool";
1472 goto bad;
1473 }
1474
1475 v->io = dm_io_client_create();
1476 if (IS_ERR(ptr: v->io)) {
1477 r = PTR_ERR(ptr: v->io);
1478 v->io = NULL;
1479 ti->error = "Cannot allocate dm io";
1480 goto bad;
1481 }
1482
1483 v->bufio = dm_bufio_client_create(bdev: v->hash_dev->bdev,
1484 block_size: 1 << v->hash_dev_block_bits, reserved_buffers: 1, aux_size: sizeof(struct buffer_aux),
1485 alloc_callback: dm_bufio_alloc_callback, NULL,
1486 flags: v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1487 if (IS_ERR(ptr: v->bufio)) {
1488 ti->error = "Cannot initialize dm-bufio";
1489 r = PTR_ERR(ptr: v->bufio);
1490 v->bufio = NULL;
1491 goto bad;
1492 }
1493
1494 if (dm_bufio_get_device_size(c: v->bufio) < v->hash_blocks) {
1495 ti->error = "Hash device is too small";
1496 r = -E2BIG;
1497 goto bad;
1498 }
1499
1500 /*
1501 * Using WQ_HIGHPRI improves throughput and completion latency by
1502 * reducing wait times when reading from a dm-verity device.
1503 *
1504 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1505 * allows verify_wq to preempt softirq since verification in BH workqueue
1506 * will fall-back to using it for error handling (or if the bufio cache
1507 * doesn't have required hashes).
1508 */
1509 v->verify_wq = alloc_workqueue(fmt: "kverityd", flags: WQ_MEM_RECLAIM | WQ_HIGHPRI, max_active: 0);
1510 if (!v->verify_wq) {
1511 ti->error = "Cannot allocate workqueue";
1512 r = -ENOMEM;
1513 goto bad;
1514 }
1515
1516 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1517 v->ahash_reqsize + v->digest_size * 2;
1518
1519 r = verity_fec_ctr(v);
1520 if (r)
1521 goto bad;
1522
1523 ti->per_io_data_size = roundup(ti->per_io_data_size,
1524 __alignof__(struct dm_verity_io));
1525
1526 verity_verify_sig_opts_cleanup(sig_opts: &verify_args);
1527
1528 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1);
1529
1530 return 0;
1531
1532bad:
1533
1534 verity_verify_sig_opts_cleanup(sig_opts: &verify_args);
1535 dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0);
1536 verity_dtr(ti);
1537
1538 return r;
1539}
1540
1541/*
1542 * Check whether a DM target is a verity target.
1543 */
1544bool dm_is_verity_target(struct dm_target *ti)
1545{
1546 return ti->type->module == THIS_MODULE;
1547}
1548
1549/*
1550 * Get the verity mode (error behavior) of a verity target.
1551 *
1552 * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1553 * target.
1554 */
1555int dm_verity_get_mode(struct dm_target *ti)
1556{
1557 struct dm_verity *v = ti->private;
1558
1559 if (!dm_is_verity_target(ti))
1560 return -EINVAL;
1561
1562 return v->mode;
1563}
1564
1565/*
1566 * Get the root digest of a verity target.
1567 *
1568 * Returns a copy of the root digest, the caller is responsible for
1569 * freeing the memory of the digest.
1570 */
1571int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1572{
1573 struct dm_verity *v = ti->private;
1574
1575 if (!dm_is_verity_target(ti))
1576 return -EINVAL;
1577
1578 *root_digest = kmemdup(p: v->root_digest, size: v->digest_size, GFP_KERNEL);
1579 if (*root_digest == NULL)
1580 return -ENOMEM;
1581
1582 *digest_size = v->digest_size;
1583
1584 return 0;
1585}
1586
1587static struct target_type verity_target = {
1588 .name = "verity",
1589 .features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1590 .version = {1, 10, 0},
1591 .module = THIS_MODULE,
1592 .ctr = verity_ctr,
1593 .dtr = verity_dtr,
1594 .map = verity_map,
1595 .status = verity_status,
1596 .prepare_ioctl = verity_prepare_ioctl,
1597 .iterate_devices = verity_iterate_devices,
1598 .io_hints = verity_io_hints,
1599};
1600module_dm(verity);
1601
1602MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1603MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1604MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1605MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1606MODULE_LICENSE("GPL");
1607

source code of linux/drivers/md/dm-verity-target.c