1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/kthread.h>
41#include <linux/raid/pq.h>
42#include <linux/async_tx.h>
43#include <linux/module.h>
44#include <linux/async.h>
45#include <linux/seq_file.h>
46#include <linux/cpu.h>
47#include <linux/slab.h>
48#include <linux/ratelimit.h>
49#include <linux/nodemask.h>
50
51#include <trace/events/block.h>
52#include <linux/list_sort.h>
53
54#include "md.h"
55#include "raid5.h"
56#include "raid0.h"
57#include "md-bitmap.h"
58#include "raid5-log.h"
59
60#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
61
62#define cpu_to_group(cpu) cpu_to_node(cpu)
63#define ANY_GROUP NUMA_NO_NODE
64
65#define RAID5_MAX_REQ_STRIPES 256
66
67static bool devices_handle_discard_safely = false;
68module_param(devices_handle_discard_safely, bool, 0644);
69MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71static struct workqueue_struct *raid5_wq;
72
73static void raid5_quiesce(struct mddev *mddev, int quiesce);
74
75static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
76{
77 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
78 return &conf->stripe_hashtbl[hash];
79}
80
81static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
82{
83 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
84}
85
86static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
87 __acquires(&conf->device_lock)
88{
89 spin_lock_irq(lock: conf->hash_locks + hash);
90 spin_lock(lock: &conf->device_lock);
91}
92
93static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
94 __releases(&conf->device_lock)
95{
96 spin_unlock(lock: &conf->device_lock);
97 spin_unlock_irq(lock: conf->hash_locks + hash);
98}
99
100static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
101 __acquires(&conf->device_lock)
102{
103 int i;
104 spin_lock_irq(lock: conf->hash_locks);
105 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
106 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
107 spin_lock(lock: &conf->device_lock);
108}
109
110static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
111 __releases(&conf->device_lock)
112{
113 int i;
114 spin_unlock(lock: &conf->device_lock);
115 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
116 spin_unlock(lock: conf->hash_locks + i);
117 spin_unlock_irq(lock: conf->hash_locks);
118}
119
120/* Find first data disk in a raid6 stripe */
121static inline int raid6_d0(struct stripe_head *sh)
122{
123 if (sh->ddf_layout)
124 /* ddf always start from first device */
125 return 0;
126 /* md starts just after Q block */
127 if (sh->qd_idx == sh->disks - 1)
128 return 0;
129 else
130 return sh->qd_idx + 1;
131}
132static inline int raid6_next_disk(int disk, int raid_disks)
133{
134 disk++;
135 return (disk < raid_disks) ? disk : 0;
136}
137
138/* When walking through the disks in a raid5, starting at raid6_d0,
139 * We need to map each disk to a 'slot', where the data disks are slot
140 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
141 * is raid_disks-1. This help does that mapping.
142 */
143static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
144 int *count, int syndrome_disks)
145{
146 int slot = *count;
147
148 if (sh->ddf_layout)
149 (*count)++;
150 if (idx == sh->pd_idx)
151 return syndrome_disks;
152 if (idx == sh->qd_idx)
153 return syndrome_disks + 1;
154 if (!sh->ddf_layout)
155 (*count)++;
156 return slot;
157}
158
159static void print_raid5_conf (struct r5conf *conf);
160
161static int stripe_operations_active(struct stripe_head *sh)
162{
163 return sh->check_state || sh->reconstruct_state ||
164 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
165 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
166}
167
168static bool stripe_is_lowprio(struct stripe_head *sh)
169{
170 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
171 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
172 !test_bit(STRIPE_R5C_CACHING, &sh->state);
173}
174
175static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
176 __must_hold(&sh->raid_conf->device_lock)
177{
178 struct r5conf *conf = sh->raid_conf;
179 struct r5worker_group *group;
180 int thread_cnt;
181 int i, cpu = sh->cpu;
182
183 if (!cpu_online(cpu)) {
184 cpu = cpumask_any(cpu_online_mask);
185 sh->cpu = cpu;
186 }
187
188 if (list_empty(head: &sh->lru)) {
189 struct r5worker_group *group;
190 group = conf->worker_groups + cpu_to_group(cpu);
191 if (stripe_is_lowprio(sh))
192 list_add_tail(new: &sh->lru, head: &group->loprio_list);
193 else
194 list_add_tail(new: &sh->lru, head: &group->handle_list);
195 group->stripes_cnt++;
196 sh->group = group;
197 }
198
199 if (conf->worker_cnt_per_group == 0) {
200 md_wakeup_thread(thread: conf->mddev->thread);
201 return;
202 }
203
204 group = conf->worker_groups + cpu_to_group(sh->cpu);
205
206 group->workers[0].working = true;
207 /* at least one worker should run to avoid race */
208 queue_work_on(cpu: sh->cpu, wq: raid5_wq, work: &group->workers[0].work);
209
210 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
211 /* wakeup more workers */
212 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
213 if (group->workers[i].working == false) {
214 group->workers[i].working = true;
215 queue_work_on(cpu: sh->cpu, wq: raid5_wq,
216 work: &group->workers[i].work);
217 thread_cnt--;
218 }
219 }
220}
221
222static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
223 struct list_head *temp_inactive_list)
224 __must_hold(&conf->device_lock)
225{
226 int i;
227 int injournal = 0; /* number of date pages with R5_InJournal */
228
229 BUG_ON(!list_empty(&sh->lru));
230 BUG_ON(atomic_read(&conf->active_stripes)==0);
231
232 if (r5c_is_writeback(log: conf->log))
233 for (i = sh->disks; i--; )
234 if (test_bit(R5_InJournal, &sh->dev[i].flags))
235 injournal++;
236 /*
237 * In the following cases, the stripe cannot be released to cached
238 * lists. Therefore, we make the stripe write out and set
239 * STRIPE_HANDLE:
240 * 1. when quiesce in r5c write back;
241 * 2. when resync is requested fot the stripe.
242 */
243 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
244 (conf->quiesce && r5c_is_writeback(log: conf->log) &&
245 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
246 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
247 r5c_make_stripe_write_out(sh);
248 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
249 }
250
251 if (test_bit(STRIPE_HANDLE, &sh->state)) {
252 if (test_bit(STRIPE_DELAYED, &sh->state) &&
253 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
254 list_add_tail(new: &sh->lru, head: &conf->delayed_list);
255 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
256 sh->bm_seq - conf->seq_write > 0)
257 list_add_tail(new: &sh->lru, head: &conf->bitmap_list);
258 else {
259 clear_bit(nr: STRIPE_DELAYED, addr: &sh->state);
260 clear_bit(nr: STRIPE_BIT_DELAY, addr: &sh->state);
261 if (conf->worker_cnt_per_group == 0) {
262 if (stripe_is_lowprio(sh))
263 list_add_tail(new: &sh->lru,
264 head: &conf->loprio_list);
265 else
266 list_add_tail(new: &sh->lru,
267 head: &conf->handle_list);
268 } else {
269 raid5_wakeup_stripe_thread(sh);
270 return;
271 }
272 }
273 md_wakeup_thread(thread: conf->mddev->thread);
274 } else {
275 BUG_ON(stripe_operations_active(sh));
276 if (test_and_clear_bit(nr: STRIPE_PREREAD_ACTIVE, addr: &sh->state))
277 if (atomic_dec_return(v: &conf->preread_active_stripes)
278 < IO_THRESHOLD)
279 md_wakeup_thread(thread: conf->mddev->thread);
280 atomic_dec(v: &conf->active_stripes);
281 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
282 if (!r5c_is_writeback(log: conf->log))
283 list_add_tail(new: &sh->lru, head: temp_inactive_list);
284 else {
285 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
286 if (injournal == 0)
287 list_add_tail(new: &sh->lru, head: temp_inactive_list);
288 else if (injournal == conf->raid_disks - conf->max_degraded) {
289 /* full stripe */
290 if (!test_and_set_bit(nr: STRIPE_R5C_FULL_STRIPE, addr: &sh->state))
291 atomic_inc(v: &conf->r5c_cached_full_stripes);
292 if (test_and_clear_bit(nr: STRIPE_R5C_PARTIAL_STRIPE, addr: &sh->state))
293 atomic_dec(v: &conf->r5c_cached_partial_stripes);
294 list_add_tail(new: &sh->lru, head: &conf->r5c_full_stripe_list);
295 r5c_check_cached_full_stripe(conf);
296 } else
297 /*
298 * STRIPE_R5C_PARTIAL_STRIPE is set in
299 * r5c_try_caching_write(). No need to
300 * set it again.
301 */
302 list_add_tail(new: &sh->lru, head: &conf->r5c_partial_stripe_list);
303 }
304 }
305 }
306}
307
308static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
309 struct list_head *temp_inactive_list)
310 __must_hold(&conf->device_lock)
311{
312 if (atomic_dec_and_test(v: &sh->count))
313 do_release_stripe(conf, sh, temp_inactive_list);
314}
315
316/*
317 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
318 *
319 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
320 * given time. Adding stripes only takes device lock, while deleting stripes
321 * only takes hash lock.
322 */
323static void release_inactive_stripe_list(struct r5conf *conf,
324 struct list_head *temp_inactive_list,
325 int hash)
326{
327 int size;
328 bool do_wakeup = false;
329 unsigned long flags;
330
331 if (hash == NR_STRIPE_HASH_LOCKS) {
332 size = NR_STRIPE_HASH_LOCKS;
333 hash = NR_STRIPE_HASH_LOCKS - 1;
334 } else
335 size = 1;
336 while (size) {
337 struct list_head *list = &temp_inactive_list[size - 1];
338
339 /*
340 * We don't hold any lock here yet, raid5_get_active_stripe() might
341 * remove stripes from the list
342 */
343 if (!list_empty_careful(head: list)) {
344 spin_lock_irqsave(conf->hash_locks + hash, flags);
345 if (list_empty(head: conf->inactive_list + hash) &&
346 !list_empty(head: list))
347 atomic_dec(v: &conf->empty_inactive_list_nr);
348 list_splice_tail_init(list, head: conf->inactive_list + hash);
349 do_wakeup = true;
350 spin_unlock_irqrestore(lock: conf->hash_locks + hash, flags);
351 }
352 size--;
353 hash--;
354 }
355
356 if (do_wakeup) {
357 wake_up(&conf->wait_for_stripe);
358 if (atomic_read(v: &conf->active_stripes) == 0)
359 wake_up(&conf->wait_for_quiescent);
360 if (conf->retry_read_aligned)
361 md_wakeup_thread(thread: conf->mddev->thread);
362 }
363}
364
365static int release_stripe_list(struct r5conf *conf,
366 struct list_head *temp_inactive_list)
367 __must_hold(&conf->device_lock)
368{
369 struct stripe_head *sh, *t;
370 int count = 0;
371 struct llist_node *head;
372
373 head = llist_del_all(head: &conf->released_stripes);
374 head = llist_reverse_order(head);
375 llist_for_each_entry_safe(sh, t, head, release_list) {
376 int hash;
377
378 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
379 smp_mb();
380 clear_bit(nr: STRIPE_ON_RELEASE_LIST, addr: &sh->state);
381 /*
382 * Don't worry the bit is set here, because if the bit is set
383 * again, the count is always > 1. This is true for
384 * STRIPE_ON_UNPLUG_LIST bit too.
385 */
386 hash = sh->hash_lock_index;
387 __release_stripe(conf, sh, temp_inactive_list: &temp_inactive_list[hash]);
388 count++;
389 }
390
391 return count;
392}
393
394void raid5_release_stripe(struct stripe_head *sh)
395{
396 struct r5conf *conf = sh->raid_conf;
397 unsigned long flags;
398 struct list_head list;
399 int hash;
400 bool wakeup;
401
402 /* Avoid release_list until the last reference.
403 */
404 if (atomic_add_unless(v: &sh->count, a: -1, u: 1))
405 return;
406
407 if (unlikely(!conf->mddev->thread) ||
408 test_and_set_bit(nr: STRIPE_ON_RELEASE_LIST, addr: &sh->state))
409 goto slow_path;
410 wakeup = llist_add(new: &sh->release_list, head: &conf->released_stripes);
411 if (wakeup)
412 md_wakeup_thread(thread: conf->mddev->thread);
413 return;
414slow_path:
415 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
416 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
417 INIT_LIST_HEAD(list: &list);
418 hash = sh->hash_lock_index;
419 do_release_stripe(conf, sh, temp_inactive_list: &list);
420 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
421 release_inactive_stripe_list(conf, temp_inactive_list: &list, hash);
422 }
423}
424
425static inline void remove_hash(struct stripe_head *sh)
426{
427 pr_debug("remove_hash(), stripe %llu\n",
428 (unsigned long long)sh->sector);
429
430 hlist_del_init(n: &sh->hash);
431}
432
433static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
434{
435 struct hlist_head *hp = stripe_hash(conf, sect: sh->sector);
436
437 pr_debug("insert_hash(), stripe %llu\n",
438 (unsigned long long)sh->sector);
439
440 hlist_add_head(n: &sh->hash, h: hp);
441}
442
443/* find an idle stripe, make sure it is unhashed, and return it. */
444static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
445{
446 struct stripe_head *sh = NULL;
447 struct list_head *first;
448
449 if (list_empty(head: conf->inactive_list + hash))
450 goto out;
451 first = (conf->inactive_list + hash)->next;
452 sh = list_entry(first, struct stripe_head, lru);
453 list_del_init(entry: first);
454 remove_hash(sh);
455 atomic_inc(v: &conf->active_stripes);
456 BUG_ON(hash != sh->hash_lock_index);
457 if (list_empty(head: conf->inactive_list + hash))
458 atomic_inc(v: &conf->empty_inactive_list_nr);
459out:
460 return sh;
461}
462
463#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
464static void free_stripe_pages(struct stripe_head *sh)
465{
466 int i;
467 struct page *p;
468
469 /* Have not allocate page pool */
470 if (!sh->pages)
471 return;
472
473 for (i = 0; i < sh->nr_pages; i++) {
474 p = sh->pages[i];
475 if (p)
476 put_page(p);
477 sh->pages[i] = NULL;
478 }
479}
480
481static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
482{
483 int i;
484 struct page *p;
485
486 for (i = 0; i < sh->nr_pages; i++) {
487 /* The page have allocated. */
488 if (sh->pages[i])
489 continue;
490
491 p = alloc_page(gfp);
492 if (!p) {
493 free_stripe_pages(sh);
494 return -ENOMEM;
495 }
496 sh->pages[i] = p;
497 }
498 return 0;
499}
500
501static int
502init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
503{
504 int nr_pages, cnt;
505
506 if (sh->pages)
507 return 0;
508
509 /* Each of the sh->dev[i] need one conf->stripe_size */
510 cnt = PAGE_SIZE / conf->stripe_size;
511 nr_pages = (disks + cnt - 1) / cnt;
512
513 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
514 if (!sh->pages)
515 return -ENOMEM;
516 sh->nr_pages = nr_pages;
517 sh->stripes_per_page = cnt;
518 return 0;
519}
520#endif
521
522static void shrink_buffers(struct stripe_head *sh)
523{
524 int i;
525 int num = sh->raid_conf->pool_size;
526
527#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
528 for (i = 0; i < num ; i++) {
529 struct page *p;
530
531 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
532 p = sh->dev[i].page;
533 if (!p)
534 continue;
535 sh->dev[i].page = NULL;
536 put_page(page: p);
537 }
538#else
539 for (i = 0; i < num; i++)
540 sh->dev[i].page = NULL;
541 free_stripe_pages(sh); /* Free pages */
542#endif
543}
544
545static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
546{
547 int i;
548 int num = sh->raid_conf->pool_size;
549
550#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
551 for (i = 0; i < num; i++) {
552 struct page *page;
553
554 if (!(page = alloc_page(gfp))) {
555 return 1;
556 }
557 sh->dev[i].page = page;
558 sh->dev[i].orig_page = page;
559 sh->dev[i].offset = 0;
560 }
561#else
562 if (alloc_stripe_pages(sh, gfp))
563 return -ENOMEM;
564
565 for (i = 0; i < num; i++) {
566 sh->dev[i].page = raid5_get_dev_page(sh, i);
567 sh->dev[i].orig_page = sh->dev[i].page;
568 sh->dev[i].offset = raid5_get_page_offset(sh, i);
569 }
570#endif
571 return 0;
572}
573
574static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
575 struct stripe_head *sh);
576
577static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
578{
579 struct r5conf *conf = sh->raid_conf;
580 int i, seq;
581
582 BUG_ON(atomic_read(&sh->count) != 0);
583 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
584 BUG_ON(stripe_operations_active(sh));
585 BUG_ON(sh->batch_head);
586
587 pr_debug("init_stripe called, stripe %llu\n",
588 (unsigned long long)sector);
589retry:
590 seq = read_seqcount_begin(&conf->gen_lock);
591 sh->generation = conf->generation - previous;
592 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
593 sh->sector = sector;
594 stripe_set_idx(stripe: sector, conf, previous, sh);
595 sh->state = 0;
596
597 for (i = sh->disks; i--; ) {
598 struct r5dev *dev = &sh->dev[i];
599
600 if (dev->toread || dev->read || dev->towrite || dev->written ||
601 test_bit(R5_LOCKED, &dev->flags)) {
602 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
603 (unsigned long long)sh->sector, i, dev->toread,
604 dev->read, dev->towrite, dev->written,
605 test_bit(R5_LOCKED, &dev->flags));
606 WARN_ON(1);
607 }
608 dev->flags = 0;
609 dev->sector = raid5_compute_blocknr(sh, i, previous);
610 }
611 if (read_seqcount_retry(&conf->gen_lock, seq))
612 goto retry;
613 sh->overwrite_disks = 0;
614 insert_hash(conf, sh);
615 sh->cpu = smp_processor_id();
616 set_bit(nr: STRIPE_BATCH_READY, addr: &sh->state);
617}
618
619static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
620 short generation)
621{
622 struct stripe_head *sh;
623
624 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
625 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
626 if (sh->sector == sector && sh->generation == generation)
627 return sh;
628 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
629 return NULL;
630}
631
632static struct stripe_head *find_get_stripe(struct r5conf *conf,
633 sector_t sector, short generation, int hash)
634{
635 int inc_empty_inactive_list_flag;
636 struct stripe_head *sh;
637
638 sh = __find_stripe(conf, sector, generation);
639 if (!sh)
640 return NULL;
641
642 if (atomic_inc_not_zero(v: &sh->count))
643 return sh;
644
645 /*
646 * Slow path. The reference count is zero which means the stripe must
647 * be on a list (sh->lru). Must remove the stripe from the list that
648 * references it with the device_lock held.
649 */
650
651 spin_lock(lock: &conf->device_lock);
652 if (!atomic_read(v: &sh->count)) {
653 if (!test_bit(STRIPE_HANDLE, &sh->state))
654 atomic_inc(v: &conf->active_stripes);
655 BUG_ON(list_empty(&sh->lru) &&
656 !test_bit(STRIPE_EXPANDING, &sh->state));
657 inc_empty_inactive_list_flag = 0;
658 if (!list_empty(head: conf->inactive_list + hash))
659 inc_empty_inactive_list_flag = 1;
660 list_del_init(entry: &sh->lru);
661 if (list_empty(head: conf->inactive_list + hash) &&
662 inc_empty_inactive_list_flag)
663 atomic_inc(v: &conf->empty_inactive_list_nr);
664 if (sh->group) {
665 sh->group->stripes_cnt--;
666 sh->group = NULL;
667 }
668 }
669 atomic_inc(v: &sh->count);
670 spin_unlock(lock: &conf->device_lock);
671
672 return sh;
673}
674
675/*
676 * Need to check if array has failed when deciding whether to:
677 * - start an array
678 * - remove non-faulty devices
679 * - add a spare
680 * - allow a reshape
681 * This determination is simple when no reshape is happening.
682 * However if there is a reshape, we need to carefully check
683 * both the before and after sections.
684 * This is because some failed devices may only affect one
685 * of the two sections, and some non-in_sync devices may
686 * be insync in the section most affected by failed devices.
687 *
688 * Most calls to this function hold &conf->device_lock. Calls
689 * in raid5_run() do not require the lock as no other threads
690 * have been started yet.
691 */
692int raid5_calc_degraded(struct r5conf *conf)
693{
694 int degraded, degraded2;
695 int i;
696
697 degraded = 0;
698 for (i = 0; i < conf->previous_raid_disks; i++) {
699 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
700
701 if (rdev && test_bit(Faulty, &rdev->flags))
702 rdev = READ_ONCE(conf->disks[i].replacement);
703 if (!rdev || test_bit(Faulty, &rdev->flags))
704 degraded++;
705 else if (test_bit(In_sync, &rdev->flags))
706 ;
707 else
708 /* not in-sync or faulty.
709 * If the reshape increases the number of devices,
710 * this is being recovered by the reshape, so
711 * this 'previous' section is not in_sync.
712 * If the number of devices is being reduced however,
713 * the device can only be part of the array if
714 * we are reverting a reshape, so this section will
715 * be in-sync.
716 */
717 if (conf->raid_disks >= conf->previous_raid_disks)
718 degraded++;
719 }
720 if (conf->raid_disks == conf->previous_raid_disks)
721 return degraded;
722 degraded2 = 0;
723 for (i = 0; i < conf->raid_disks; i++) {
724 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
725
726 if (rdev && test_bit(Faulty, &rdev->flags))
727 rdev = READ_ONCE(conf->disks[i].replacement);
728 if (!rdev || test_bit(Faulty, &rdev->flags))
729 degraded2++;
730 else if (test_bit(In_sync, &rdev->flags))
731 ;
732 else
733 /* not in-sync or faulty.
734 * If reshape increases the number of devices, this
735 * section has already been recovered, else it
736 * almost certainly hasn't.
737 */
738 if (conf->raid_disks <= conf->previous_raid_disks)
739 degraded2++;
740 }
741 if (degraded2 > degraded)
742 return degraded2;
743 return degraded;
744}
745
746static bool has_failed(struct r5conf *conf)
747{
748 int degraded = conf->mddev->degraded;
749
750 if (test_bit(MD_BROKEN, &conf->mddev->flags))
751 return true;
752
753 if (conf->mddev->reshape_position != MaxSector)
754 degraded = raid5_calc_degraded(conf);
755
756 return degraded > conf->max_degraded;
757}
758
759enum stripe_result {
760 STRIPE_SUCCESS = 0,
761 STRIPE_RETRY,
762 STRIPE_SCHEDULE_AND_RETRY,
763 STRIPE_FAIL,
764 STRIPE_WAIT_RESHAPE,
765};
766
767struct stripe_request_ctx {
768 /* a reference to the last stripe_head for batching */
769 struct stripe_head *batch_last;
770
771 /* first sector in the request */
772 sector_t first_sector;
773
774 /* last sector in the request */
775 sector_t last_sector;
776
777 /*
778 * bitmap to track stripe sectors that have been added to stripes
779 * add one to account for unaligned requests
780 */
781 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
782
783 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
784 bool do_flush;
785};
786
787/*
788 * Block until another thread clears R5_INACTIVE_BLOCKED or
789 * there are fewer than 3/4 the maximum number of active stripes
790 * and there is an inactive stripe available.
791 */
792static bool is_inactive_blocked(struct r5conf *conf, int hash)
793{
794 if (list_empty(head: conf->inactive_list + hash))
795 return false;
796
797 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
798 return true;
799
800 return (atomic_read(v: &conf->active_stripes) <
801 (conf->max_nr_stripes * 3 / 4));
802}
803
804struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
805 struct stripe_request_ctx *ctx, sector_t sector,
806 unsigned int flags)
807{
808 struct stripe_head *sh;
809 int hash = stripe_hash_locks_hash(conf, sect: sector);
810 int previous = !!(flags & R5_GAS_PREVIOUS);
811
812 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
813
814 spin_lock_irq(lock: conf->hash_locks + hash);
815
816 for (;;) {
817 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
818 /*
819 * Must release the reference to batch_last before
820 * waiting, on quiesce, otherwise the batch_last will
821 * hold a reference to a stripe and raid5_quiesce()
822 * will deadlock waiting for active_stripes to go to
823 * zero.
824 */
825 if (ctx && ctx->batch_last) {
826 raid5_release_stripe(sh: ctx->batch_last);
827 ctx->batch_last = NULL;
828 }
829
830 wait_event_lock_irq(conf->wait_for_quiescent,
831 !conf->quiesce,
832 *(conf->hash_locks + hash));
833 }
834
835 sh = find_get_stripe(conf, sector, generation: conf->generation - previous,
836 hash);
837 if (sh)
838 break;
839
840 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
841 sh = get_free_stripe(conf, hash);
842 if (sh) {
843 r5c_check_stripe_cache_usage(conf);
844 init_stripe(sh, sector, previous);
845 atomic_inc(v: &sh->count);
846 break;
847 }
848
849 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
850 set_bit(nr: R5_ALLOC_MORE, addr: &conf->cache_state);
851 }
852
853 if (flags & R5_GAS_NOBLOCK)
854 break;
855
856 set_bit(nr: R5_INACTIVE_BLOCKED, addr: &conf->cache_state);
857 r5l_wake_reclaim(log: conf->log, space: 0);
858
859 /* release batch_last before wait to avoid risk of deadlock */
860 if (ctx && ctx->batch_last) {
861 raid5_release_stripe(sh: ctx->batch_last);
862 ctx->batch_last = NULL;
863 }
864
865 wait_event_lock_irq(conf->wait_for_stripe,
866 is_inactive_blocked(conf, hash),
867 *(conf->hash_locks + hash));
868 clear_bit(nr: R5_INACTIVE_BLOCKED, addr: &conf->cache_state);
869 }
870
871 spin_unlock_irq(lock: conf->hash_locks + hash);
872 return sh;
873}
874
875static bool is_full_stripe_write(struct stripe_head *sh)
876{
877 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
878 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
879}
880
881static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
882 __acquires(&sh1->stripe_lock)
883 __acquires(&sh2->stripe_lock)
884{
885 if (sh1 > sh2) {
886 spin_lock_irq(lock: &sh2->stripe_lock);
887 spin_lock_nested(&sh1->stripe_lock, 1);
888 } else {
889 spin_lock_irq(lock: &sh1->stripe_lock);
890 spin_lock_nested(&sh2->stripe_lock, 1);
891 }
892}
893
894static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
895 __releases(&sh1->stripe_lock)
896 __releases(&sh2->stripe_lock)
897{
898 spin_unlock(lock: &sh1->stripe_lock);
899 spin_unlock_irq(lock: &sh2->stripe_lock);
900}
901
902/* Only freshly new full stripe normal write stripe can be added to a batch list */
903static bool stripe_can_batch(struct stripe_head *sh)
904{
905 struct r5conf *conf = sh->raid_conf;
906
907 if (raid5_has_log(conf) || raid5_has_ppl(conf))
908 return false;
909 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
910 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
911 is_full_stripe_write(sh);
912}
913
914/* we only do back search */
915static void stripe_add_to_batch_list(struct r5conf *conf,
916 struct stripe_head *sh, struct stripe_head *last_sh)
917{
918 struct stripe_head *head;
919 sector_t head_sector, tmp_sec;
920 int hash;
921 int dd_idx;
922
923 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
924 tmp_sec = sh->sector;
925 if (!sector_div(tmp_sec, conf->chunk_sectors))
926 return;
927 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
928
929 if (last_sh && head_sector == last_sh->sector) {
930 head = last_sh;
931 atomic_inc(v: &head->count);
932 } else {
933 hash = stripe_hash_locks_hash(conf, sect: head_sector);
934 spin_lock_irq(lock: conf->hash_locks + hash);
935 head = find_get_stripe(conf, sector: head_sector, generation: conf->generation,
936 hash);
937 spin_unlock_irq(lock: conf->hash_locks + hash);
938 if (!head)
939 return;
940 if (!stripe_can_batch(sh: head))
941 goto out;
942 }
943
944 lock_two_stripes(sh1: head, sh2: sh);
945 /* clear_batch_ready clear the flag */
946 if (!stripe_can_batch(sh: head) || !stripe_can_batch(sh))
947 goto unlock_out;
948
949 if (sh->batch_head)
950 goto unlock_out;
951
952 dd_idx = 0;
953 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
954 dd_idx++;
955 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
956 bio_op(bio: head->dev[dd_idx].towrite) != bio_op(bio: sh->dev[dd_idx].towrite))
957 goto unlock_out;
958
959 if (head->batch_head) {
960 spin_lock(lock: &head->batch_head->batch_lock);
961 /* This batch list is already running */
962 if (!stripe_can_batch(sh: head)) {
963 spin_unlock(lock: &head->batch_head->batch_lock);
964 goto unlock_out;
965 }
966 /*
967 * We must assign batch_head of this stripe within the
968 * batch_lock, otherwise clear_batch_ready of batch head
969 * stripe could clear BATCH_READY bit of this stripe and
970 * this stripe->batch_head doesn't get assigned, which
971 * could confuse clear_batch_ready for this stripe
972 */
973 sh->batch_head = head->batch_head;
974
975 /*
976 * at this point, head's BATCH_READY could be cleared, but we
977 * can still add the stripe to batch list
978 */
979 list_add(new: &sh->batch_list, head: &head->batch_list);
980 spin_unlock(lock: &head->batch_head->batch_lock);
981 } else {
982 head->batch_head = head;
983 sh->batch_head = head->batch_head;
984 spin_lock(lock: &head->batch_lock);
985 list_add_tail(new: &sh->batch_list, head: &head->batch_list);
986 spin_unlock(lock: &head->batch_lock);
987 }
988
989 if (test_and_clear_bit(nr: STRIPE_PREREAD_ACTIVE, addr: &sh->state))
990 if (atomic_dec_return(v: &conf->preread_active_stripes)
991 < IO_THRESHOLD)
992 md_wakeup_thread(thread: conf->mddev->thread);
993
994 if (test_and_clear_bit(nr: STRIPE_BIT_DELAY, addr: &sh->state)) {
995 int seq = sh->bm_seq;
996 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
997 sh->batch_head->bm_seq > seq)
998 seq = sh->batch_head->bm_seq;
999 set_bit(nr: STRIPE_BIT_DELAY, addr: &sh->batch_head->state);
1000 sh->batch_head->bm_seq = seq;
1001 }
1002
1003 atomic_inc(v: &sh->count);
1004unlock_out:
1005 unlock_two_stripes(sh1: head, sh2: sh);
1006out:
1007 raid5_release_stripe(sh: head);
1008}
1009
1010/* Determine if 'data_offset' or 'new_data_offset' should be used
1011 * in this stripe_head.
1012 */
1013static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1014{
1015 sector_t progress = conf->reshape_progress;
1016 /* Need a memory barrier to make sure we see the value
1017 * of conf->generation, or ->data_offset that was set before
1018 * reshape_progress was updated.
1019 */
1020 smp_rmb();
1021 if (progress == MaxSector)
1022 return 0;
1023 if (sh->generation == conf->generation - 1)
1024 return 0;
1025 /* We are in a reshape, and this is a new-generation stripe,
1026 * so use new_data_offset.
1027 */
1028 return 1;
1029}
1030
1031static void dispatch_bio_list(struct bio_list *tmp)
1032{
1033 struct bio *bio;
1034
1035 while ((bio = bio_list_pop(bl: tmp)))
1036 submit_bio_noacct(bio);
1037}
1038
1039static int cmp_stripe(void *priv, const struct list_head *a,
1040 const struct list_head *b)
1041{
1042 const struct r5pending_data *da = list_entry(a,
1043 struct r5pending_data, sibling);
1044 const struct r5pending_data *db = list_entry(b,
1045 struct r5pending_data, sibling);
1046 if (da->sector > db->sector)
1047 return 1;
1048 if (da->sector < db->sector)
1049 return -1;
1050 return 0;
1051}
1052
1053static void dispatch_defer_bios(struct r5conf *conf, int target,
1054 struct bio_list *list)
1055{
1056 struct r5pending_data *data;
1057 struct list_head *first, *next = NULL;
1058 int cnt = 0;
1059
1060 if (conf->pending_data_cnt == 0)
1061 return;
1062
1063 list_sort(NULL, head: &conf->pending_list, cmp: cmp_stripe);
1064
1065 first = conf->pending_list.next;
1066
1067 /* temporarily move the head */
1068 if (conf->next_pending_data)
1069 list_move_tail(list: &conf->pending_list,
1070 head: &conf->next_pending_data->sibling);
1071
1072 while (!list_empty(head: &conf->pending_list)) {
1073 data = list_first_entry(&conf->pending_list,
1074 struct r5pending_data, sibling);
1075 if (&data->sibling == first)
1076 first = data->sibling.next;
1077 next = data->sibling.next;
1078
1079 bio_list_merge(bl: list, bl2: &data->bios);
1080 list_move(list: &data->sibling, head: &conf->free_list);
1081 cnt++;
1082 if (cnt >= target)
1083 break;
1084 }
1085 conf->pending_data_cnt -= cnt;
1086 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1087
1088 if (next != &conf->pending_list)
1089 conf->next_pending_data = list_entry(next,
1090 struct r5pending_data, sibling);
1091 else
1092 conf->next_pending_data = NULL;
1093 /* list isn't empty */
1094 if (first != &conf->pending_list)
1095 list_move_tail(list: &conf->pending_list, head: first);
1096}
1097
1098static void flush_deferred_bios(struct r5conf *conf)
1099{
1100 struct bio_list tmp = BIO_EMPTY_LIST;
1101
1102 if (conf->pending_data_cnt == 0)
1103 return;
1104
1105 spin_lock(lock: &conf->pending_bios_lock);
1106 dispatch_defer_bios(conf, target: conf->pending_data_cnt, list: &tmp);
1107 BUG_ON(conf->pending_data_cnt != 0);
1108 spin_unlock(lock: &conf->pending_bios_lock);
1109
1110 dispatch_bio_list(tmp: &tmp);
1111}
1112
1113static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1114 struct bio_list *bios)
1115{
1116 struct bio_list tmp = BIO_EMPTY_LIST;
1117 struct r5pending_data *ent;
1118
1119 spin_lock(lock: &conf->pending_bios_lock);
1120 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1121 sibling);
1122 list_move_tail(list: &ent->sibling, head: &conf->pending_list);
1123 ent->sector = sector;
1124 bio_list_init(bl: &ent->bios);
1125 bio_list_merge(bl: &ent->bios, bl2: bios);
1126 conf->pending_data_cnt++;
1127 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1128 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, list: &tmp);
1129
1130 spin_unlock(lock: &conf->pending_bios_lock);
1131
1132 dispatch_bio_list(tmp: &tmp);
1133}
1134
1135static void
1136raid5_end_read_request(struct bio *bi);
1137static void
1138raid5_end_write_request(struct bio *bi);
1139
1140static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1141{
1142 struct r5conf *conf = sh->raid_conf;
1143 int i, disks = sh->disks;
1144 struct stripe_head *head_sh = sh;
1145 struct bio_list pending_bios = BIO_EMPTY_LIST;
1146 struct r5dev *dev;
1147 bool should_defer;
1148
1149 might_sleep();
1150
1151 if (log_stripe(sh, s) == 0)
1152 return;
1153
1154 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1155
1156 for (i = disks; i--; ) {
1157 enum req_op op;
1158 blk_opf_t op_flags = 0;
1159 int replace_only = 0;
1160 struct bio *bi, *rbi;
1161 struct md_rdev *rdev, *rrdev = NULL;
1162
1163 sh = head_sh;
1164 if (test_and_clear_bit(nr: R5_Wantwrite, addr: &sh->dev[i].flags)) {
1165 op = REQ_OP_WRITE;
1166 if (test_and_clear_bit(nr: R5_WantFUA, addr: &sh->dev[i].flags))
1167 op_flags = REQ_FUA;
1168 if (test_bit(R5_Discard, &sh->dev[i].flags))
1169 op = REQ_OP_DISCARD;
1170 } else if (test_and_clear_bit(nr: R5_Wantread, addr: &sh->dev[i].flags))
1171 op = REQ_OP_READ;
1172 else if (test_and_clear_bit(nr: R5_WantReplace,
1173 addr: &sh->dev[i].flags)) {
1174 op = REQ_OP_WRITE;
1175 replace_only = 1;
1176 } else
1177 continue;
1178 if (test_and_clear_bit(nr: R5_SyncIO, addr: &sh->dev[i].flags))
1179 op_flags |= REQ_SYNC;
1180
1181again:
1182 dev = &sh->dev[i];
1183 bi = &dev->req;
1184 rbi = &dev->rreq; /* For writing to replacement */
1185
1186 rdev = conf->disks[i].rdev;
1187 rrdev = conf->disks[i].replacement;
1188 if (op_is_write(op)) {
1189 if (replace_only)
1190 rdev = NULL;
1191 if (rdev == rrdev)
1192 /* We raced and saw duplicates */
1193 rrdev = NULL;
1194 } else {
1195 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1196 rdev = rrdev;
1197 rrdev = NULL;
1198 }
1199
1200 if (rdev && test_bit(Faulty, &rdev->flags))
1201 rdev = NULL;
1202 if (rdev)
1203 atomic_inc(v: &rdev->nr_pending);
1204 if (rrdev && test_bit(Faulty, &rrdev->flags))
1205 rrdev = NULL;
1206 if (rrdev)
1207 atomic_inc(v: &rrdev->nr_pending);
1208
1209 /* We have already checked bad blocks for reads. Now
1210 * need to check for writes. We never accept write errors
1211 * on the replacement, so we don't to check rrdev.
1212 */
1213 while (op_is_write(op) && rdev &&
1214 test_bit(WriteErrorSeen, &rdev->flags)) {
1215 int bad = rdev_has_badblock(rdev, s: sh->sector,
1216 RAID5_STRIPE_SECTORS(conf));
1217 if (!bad)
1218 break;
1219
1220 if (bad < 0) {
1221 set_bit(nr: BlockedBadBlocks, addr: &rdev->flags);
1222 if (!conf->mddev->external &&
1223 conf->mddev->sb_flags) {
1224 /* It is very unlikely, but we might
1225 * still need to write out the
1226 * bad block log - better give it
1227 * a chance*/
1228 md_check_recovery(mddev: conf->mddev);
1229 }
1230 /*
1231 * Because md_wait_for_blocked_rdev
1232 * will dec nr_pending, we must
1233 * increment it first.
1234 */
1235 atomic_inc(v: &rdev->nr_pending);
1236 md_wait_for_blocked_rdev(rdev, mddev: conf->mddev);
1237 } else {
1238 /* Acknowledged bad block - skip the write */
1239 rdev_dec_pending(rdev, mddev: conf->mddev);
1240 rdev = NULL;
1241 }
1242 }
1243
1244 if (rdev) {
1245 if (s->syncing || s->expanding || s->expanded
1246 || s->replacing)
1247 md_sync_acct(bdev: rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1248
1249 set_bit(nr: STRIPE_IO_STARTED, addr: &sh->state);
1250
1251 bio_init(bio: bi, bdev: rdev->bdev, table: &dev->vec, max_vecs: 1, opf: op | op_flags);
1252 bi->bi_end_io = op_is_write(op)
1253 ? raid5_end_write_request
1254 : raid5_end_read_request;
1255 bi->bi_private = sh;
1256
1257 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1258 __func__, (unsigned long long)sh->sector,
1259 bi->bi_opf, i);
1260 atomic_inc(v: &sh->count);
1261 if (sh != head_sh)
1262 atomic_inc(v: &head_sh->count);
1263 if (use_new_offset(conf, sh))
1264 bi->bi_iter.bi_sector = (sh->sector
1265 + rdev->new_data_offset);
1266 else
1267 bi->bi_iter.bi_sector = (sh->sector
1268 + rdev->data_offset);
1269 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1270 bi->bi_opf |= REQ_NOMERGE;
1271
1272 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1273 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1274
1275 if (!op_is_write(op) &&
1276 test_bit(R5_InJournal, &sh->dev[i].flags))
1277 /*
1278 * issuing read for a page in journal, this
1279 * must be preparing for prexor in rmw; read
1280 * the data into orig_page
1281 */
1282 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1283 else
1284 sh->dev[i].vec.bv_page = sh->dev[i].page;
1285 bi->bi_vcnt = 1;
1286 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1287 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1288 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1289 /*
1290 * If this is discard request, set bi_vcnt 0. We don't
1291 * want to confuse SCSI because SCSI will replace payload
1292 */
1293 if (op == REQ_OP_DISCARD)
1294 bi->bi_vcnt = 0;
1295 if (rrdev)
1296 set_bit(nr: R5_DOUBLE_LOCKED, addr: &sh->dev[i].flags);
1297
1298 mddev_trace_remap(mddev: conf->mddev, bio: bi, sector: sh->dev[i].sector);
1299 if (should_defer && op_is_write(op))
1300 bio_list_add(bl: &pending_bios, bio: bi);
1301 else
1302 submit_bio_noacct(bio: bi);
1303 }
1304 if (rrdev) {
1305 if (s->syncing || s->expanding || s->expanded
1306 || s->replacing)
1307 md_sync_acct(bdev: rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1308
1309 set_bit(nr: STRIPE_IO_STARTED, addr: &sh->state);
1310
1311 bio_init(bio: rbi, bdev: rrdev->bdev, table: &dev->rvec, max_vecs: 1, opf: op | op_flags);
1312 BUG_ON(!op_is_write(op));
1313 rbi->bi_end_io = raid5_end_write_request;
1314 rbi->bi_private = sh;
1315
1316 pr_debug("%s: for %llu schedule op %d on "
1317 "replacement disc %d\n",
1318 __func__, (unsigned long long)sh->sector,
1319 rbi->bi_opf, i);
1320 atomic_inc(v: &sh->count);
1321 if (sh != head_sh)
1322 atomic_inc(v: &head_sh->count);
1323 if (use_new_offset(conf, sh))
1324 rbi->bi_iter.bi_sector = (sh->sector
1325 + rrdev->new_data_offset);
1326 else
1327 rbi->bi_iter.bi_sector = (sh->sector
1328 + rrdev->data_offset);
1329 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1330 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1331 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1332 rbi->bi_vcnt = 1;
1333 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1334 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1335 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1336 /*
1337 * If this is discard request, set bi_vcnt 0. We don't
1338 * want to confuse SCSI because SCSI will replace payload
1339 */
1340 if (op == REQ_OP_DISCARD)
1341 rbi->bi_vcnt = 0;
1342 mddev_trace_remap(mddev: conf->mddev, bio: rbi, sector: sh->dev[i].sector);
1343 if (should_defer && op_is_write(op))
1344 bio_list_add(bl: &pending_bios, bio: rbi);
1345 else
1346 submit_bio_noacct(bio: rbi);
1347 }
1348 if (!rdev && !rrdev) {
1349 if (op_is_write(op))
1350 set_bit(nr: STRIPE_DEGRADED, addr: &sh->state);
1351 pr_debug("skip op %d on disc %d for sector %llu\n",
1352 bi->bi_opf, i, (unsigned long long)sh->sector);
1353 clear_bit(nr: R5_LOCKED, addr: &sh->dev[i].flags);
1354 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
1355 }
1356
1357 if (!head_sh->batch_head)
1358 continue;
1359 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1360 batch_list);
1361 if (sh != head_sh)
1362 goto again;
1363 }
1364
1365 if (should_defer && !bio_list_empty(bl: &pending_bios))
1366 defer_issue_bios(conf, sector: head_sh->sector, bios: &pending_bios);
1367}
1368
1369static struct dma_async_tx_descriptor *
1370async_copy_data(int frombio, struct bio *bio, struct page **page,
1371 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1372 struct stripe_head *sh, int no_skipcopy)
1373{
1374 struct bio_vec bvl;
1375 struct bvec_iter iter;
1376 struct page *bio_page;
1377 int page_offset;
1378 struct async_submit_ctl submit;
1379 enum async_tx_flags flags = 0;
1380 struct r5conf *conf = sh->raid_conf;
1381
1382 if (bio->bi_iter.bi_sector >= sector)
1383 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1384 else
1385 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1386
1387 if (frombio)
1388 flags |= ASYNC_TX_FENCE;
1389 init_async_submit(args: &submit, flags, tx, NULL, NULL, NULL);
1390
1391 bio_for_each_segment(bvl, bio, iter) {
1392 int len = bvl.bv_len;
1393 int clen;
1394 int b_offset = 0;
1395
1396 if (page_offset < 0) {
1397 b_offset = -page_offset;
1398 page_offset += b_offset;
1399 len -= b_offset;
1400 }
1401
1402 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1403 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1404 else
1405 clen = len;
1406
1407 if (clen > 0) {
1408 b_offset += bvl.bv_offset;
1409 bio_page = bvl.bv_page;
1410 if (frombio) {
1411 if (conf->skip_copy &&
1412 b_offset == 0 && page_offset == 0 &&
1413 clen == RAID5_STRIPE_SIZE(conf) &&
1414 !no_skipcopy)
1415 *page = bio_page;
1416 else
1417 tx = async_memcpy(dest: *page, src: bio_page, dest_offset: page_offset + poff,
1418 src_offset: b_offset, len: clen, submit: &submit);
1419 } else
1420 tx = async_memcpy(dest: bio_page, src: *page, dest_offset: b_offset,
1421 src_offset: page_offset + poff, len: clen, submit: &submit);
1422 }
1423 /* chain the operations */
1424 submit.depend_tx = tx;
1425
1426 if (clen < len) /* hit end of page */
1427 break;
1428 page_offset += len;
1429 }
1430
1431 return tx;
1432}
1433
1434static void ops_complete_biofill(void *stripe_head_ref)
1435{
1436 struct stripe_head *sh = stripe_head_ref;
1437 int i;
1438 struct r5conf *conf = sh->raid_conf;
1439
1440 pr_debug("%s: stripe %llu\n", __func__,
1441 (unsigned long long)sh->sector);
1442
1443 /* clear completed biofills */
1444 for (i = sh->disks; i--; ) {
1445 struct r5dev *dev = &sh->dev[i];
1446
1447 /* acknowledge completion of a biofill operation */
1448 /* and check if we need to reply to a read request,
1449 * new R5_Wantfill requests are held off until
1450 * !STRIPE_BIOFILL_RUN
1451 */
1452 if (test_and_clear_bit(nr: R5_Wantfill, addr: &dev->flags)) {
1453 struct bio *rbi, *rbi2;
1454
1455 BUG_ON(!dev->read);
1456 rbi = dev->read;
1457 dev->read = NULL;
1458 while (rbi && rbi->bi_iter.bi_sector <
1459 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1460 rbi2 = r5_next_bio(conf, bio: rbi, sector: dev->sector);
1461 bio_endio(rbi);
1462 rbi = rbi2;
1463 }
1464 }
1465 }
1466 clear_bit(nr: STRIPE_BIOFILL_RUN, addr: &sh->state);
1467
1468 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
1469 raid5_release_stripe(sh);
1470}
1471
1472static void ops_run_biofill(struct stripe_head *sh)
1473{
1474 struct dma_async_tx_descriptor *tx = NULL;
1475 struct async_submit_ctl submit;
1476 int i;
1477 struct r5conf *conf = sh->raid_conf;
1478
1479 BUG_ON(sh->batch_head);
1480 pr_debug("%s: stripe %llu\n", __func__,
1481 (unsigned long long)sh->sector);
1482
1483 for (i = sh->disks; i--; ) {
1484 struct r5dev *dev = &sh->dev[i];
1485 if (test_bit(R5_Wantfill, &dev->flags)) {
1486 struct bio *rbi;
1487 spin_lock_irq(lock: &sh->stripe_lock);
1488 dev->read = rbi = dev->toread;
1489 dev->toread = NULL;
1490 spin_unlock_irq(lock: &sh->stripe_lock);
1491 while (rbi && rbi->bi_iter.bi_sector <
1492 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1493 tx = async_copy_data(frombio: 0, bio: rbi, page: &dev->page,
1494 poff: dev->offset,
1495 sector: dev->sector, tx, sh, no_skipcopy: 0);
1496 rbi = r5_next_bio(conf, bio: rbi, sector: dev->sector);
1497 }
1498 }
1499 }
1500
1501 atomic_inc(v: &sh->count);
1502 init_async_submit(args: &submit, flags: ASYNC_TX_ACK, tx, cb_fn: ops_complete_biofill, cb_param: sh, NULL);
1503 async_trigger_callback(submit: &submit);
1504}
1505
1506static void mark_target_uptodate(struct stripe_head *sh, int target)
1507{
1508 struct r5dev *tgt;
1509
1510 if (target < 0)
1511 return;
1512
1513 tgt = &sh->dev[target];
1514 set_bit(nr: R5_UPTODATE, addr: &tgt->flags);
1515 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1516 clear_bit(nr: R5_Wantcompute, addr: &tgt->flags);
1517}
1518
1519static void ops_complete_compute(void *stripe_head_ref)
1520{
1521 struct stripe_head *sh = stripe_head_ref;
1522
1523 pr_debug("%s: stripe %llu\n", __func__,
1524 (unsigned long long)sh->sector);
1525
1526 /* mark the computed target(s) as uptodate */
1527 mark_target_uptodate(sh, target: sh->ops.target);
1528 mark_target_uptodate(sh, target: sh->ops.target2);
1529
1530 clear_bit(nr: STRIPE_COMPUTE_RUN, addr: &sh->state);
1531 if (sh->check_state == check_state_compute_run)
1532 sh->check_state = check_state_compute_result;
1533 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
1534 raid5_release_stripe(sh);
1535}
1536
1537/* return a pointer to the address conversion region of the scribble buffer */
1538static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1539{
1540 return percpu->scribble + i * percpu->scribble_obj_size;
1541}
1542
1543/* return a pointer to the address conversion region of the scribble buffer */
1544static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1545 struct raid5_percpu *percpu, int i)
1546{
1547 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1548}
1549
1550/*
1551 * Return a pointer to record offset address.
1552 */
1553static unsigned int *
1554to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1555{
1556 return (unsigned int *) (to_addr_conv(sh, percpu, i: 0) + sh->disks + 2);
1557}
1558
1559static struct dma_async_tx_descriptor *
1560ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1561{
1562 int disks = sh->disks;
1563 struct page **xor_srcs = to_addr_page(percpu, i: 0);
1564 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1565 int target = sh->ops.target;
1566 struct r5dev *tgt = &sh->dev[target];
1567 struct page *xor_dest = tgt->page;
1568 unsigned int off_dest = tgt->offset;
1569 int count = 0;
1570 struct dma_async_tx_descriptor *tx;
1571 struct async_submit_ctl submit;
1572 int i;
1573
1574 BUG_ON(sh->batch_head);
1575
1576 pr_debug("%s: stripe %llu block: %d\n",
1577 __func__, (unsigned long long)sh->sector, target);
1578 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1579
1580 for (i = disks; i--; ) {
1581 if (i != target) {
1582 off_srcs[count] = sh->dev[i].offset;
1583 xor_srcs[count++] = sh->dev[i].page;
1584 }
1585 }
1586
1587 atomic_inc(v: &sh->count);
1588
1589 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1590 cb_fn: ops_complete_compute, cb_param: sh, scribble: to_addr_conv(sh, percpu, i: 0));
1591 if (unlikely(count == 1))
1592 tx = async_memcpy(dest: xor_dest, src: xor_srcs[0], dest_offset: off_dest, src_offset: off_srcs[0],
1593 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
1594 else
1595 tx = async_xor_offs(dest: xor_dest, offset: off_dest, src_list: xor_srcs, src_offset: off_srcs, src_cnt: count,
1596 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
1597
1598 return tx;
1599}
1600
1601/* set_syndrome_sources - populate source buffers for gen_syndrome
1602 * @srcs - (struct page *) array of size sh->disks
1603 * @offs - (unsigned int) array of offset for each page
1604 * @sh - stripe_head to parse
1605 *
1606 * Populates srcs in proper layout order for the stripe and returns the
1607 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1608 * destination buffer is recorded in srcs[count] and the Q destination
1609 * is recorded in srcs[count+1]].
1610 */
1611static int set_syndrome_sources(struct page **srcs,
1612 unsigned int *offs,
1613 struct stripe_head *sh,
1614 int srctype)
1615{
1616 int disks = sh->disks;
1617 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1618 int d0_idx = raid6_d0(sh);
1619 int count;
1620 int i;
1621
1622 for (i = 0; i < disks; i++)
1623 srcs[i] = NULL;
1624
1625 count = 0;
1626 i = d0_idx;
1627 do {
1628 int slot = raid6_idx_to_slot(idx: i, sh, count: &count, syndrome_disks);
1629 struct r5dev *dev = &sh->dev[i];
1630
1631 if (i == sh->qd_idx || i == sh->pd_idx ||
1632 (srctype == SYNDROME_SRC_ALL) ||
1633 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1634 (test_bit(R5_Wantdrain, &dev->flags) ||
1635 test_bit(R5_InJournal, &dev->flags))) ||
1636 (srctype == SYNDROME_SRC_WRITTEN &&
1637 (dev->written ||
1638 test_bit(R5_InJournal, &dev->flags)))) {
1639 if (test_bit(R5_InJournal, &dev->flags))
1640 srcs[slot] = sh->dev[i].orig_page;
1641 else
1642 srcs[slot] = sh->dev[i].page;
1643 /*
1644 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1645 * not shared page. In that case, dev[i].offset
1646 * is 0.
1647 */
1648 offs[slot] = sh->dev[i].offset;
1649 }
1650 i = raid6_next_disk(disk: i, raid_disks: disks);
1651 } while (i != d0_idx);
1652
1653 return syndrome_disks;
1654}
1655
1656static struct dma_async_tx_descriptor *
1657ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1658{
1659 int disks = sh->disks;
1660 struct page **blocks = to_addr_page(percpu, i: 0);
1661 unsigned int *offs = to_addr_offs(sh, percpu);
1662 int target;
1663 int qd_idx = sh->qd_idx;
1664 struct dma_async_tx_descriptor *tx;
1665 struct async_submit_ctl submit;
1666 struct r5dev *tgt;
1667 struct page *dest;
1668 unsigned int dest_off;
1669 int i;
1670 int count;
1671
1672 BUG_ON(sh->batch_head);
1673 if (sh->ops.target < 0)
1674 target = sh->ops.target2;
1675 else if (sh->ops.target2 < 0)
1676 target = sh->ops.target;
1677 else
1678 /* we should only have one valid target */
1679 BUG();
1680 BUG_ON(target < 0);
1681 pr_debug("%s: stripe %llu block: %d\n",
1682 __func__, (unsigned long long)sh->sector, target);
1683
1684 tgt = &sh->dev[target];
1685 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1686 dest = tgt->page;
1687 dest_off = tgt->offset;
1688
1689 atomic_inc(v: &sh->count);
1690
1691 if (target == qd_idx) {
1692 count = set_syndrome_sources(srcs: blocks, offs, sh, srctype: SYNDROME_SRC_ALL);
1693 blocks[count] = NULL; /* regenerating p is not necessary */
1694 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1695 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE, NULL,
1696 cb_fn: ops_complete_compute, cb_param: sh,
1697 scribble: to_addr_conv(sh, percpu, i: 0));
1698 tx = async_gen_syndrome(blocks, offsets: offs, src_cnt: count+2,
1699 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
1700 } else {
1701 /* Compute any data- or p-drive using XOR */
1702 count = 0;
1703 for (i = disks; i-- ; ) {
1704 if (i == target || i == qd_idx)
1705 continue;
1706 offs[count] = sh->dev[i].offset;
1707 blocks[count++] = sh->dev[i].page;
1708 }
1709
1710 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1711 NULL, cb_fn: ops_complete_compute, cb_param: sh,
1712 scribble: to_addr_conv(sh, percpu, i: 0));
1713 tx = async_xor_offs(dest, offset: dest_off, src_list: blocks, src_offset: offs, src_cnt: count,
1714 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
1715 }
1716
1717 return tx;
1718}
1719
1720static struct dma_async_tx_descriptor *
1721ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1722{
1723 int i, count, disks = sh->disks;
1724 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1725 int d0_idx = raid6_d0(sh);
1726 int faila = -1, failb = -1;
1727 int target = sh->ops.target;
1728 int target2 = sh->ops.target2;
1729 struct r5dev *tgt = &sh->dev[target];
1730 struct r5dev *tgt2 = &sh->dev[target2];
1731 struct dma_async_tx_descriptor *tx;
1732 struct page **blocks = to_addr_page(percpu, i: 0);
1733 unsigned int *offs = to_addr_offs(sh, percpu);
1734 struct async_submit_ctl submit;
1735
1736 BUG_ON(sh->batch_head);
1737 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1738 __func__, (unsigned long long)sh->sector, target, target2);
1739 BUG_ON(target < 0 || target2 < 0);
1740 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1741 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1742
1743 /* we need to open-code set_syndrome_sources to handle the
1744 * slot number conversion for 'faila' and 'failb'
1745 */
1746 for (i = 0; i < disks ; i++) {
1747 offs[i] = 0;
1748 blocks[i] = NULL;
1749 }
1750 count = 0;
1751 i = d0_idx;
1752 do {
1753 int slot = raid6_idx_to_slot(idx: i, sh, count: &count, syndrome_disks);
1754
1755 offs[slot] = sh->dev[i].offset;
1756 blocks[slot] = sh->dev[i].page;
1757
1758 if (i == target)
1759 faila = slot;
1760 if (i == target2)
1761 failb = slot;
1762 i = raid6_next_disk(disk: i, raid_disks: disks);
1763 } while (i != d0_idx);
1764
1765 BUG_ON(faila == failb);
1766 if (failb < faila)
1767 swap(faila, failb);
1768 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1769 __func__, (unsigned long long)sh->sector, faila, failb);
1770
1771 atomic_inc(v: &sh->count);
1772
1773 if (failb == syndrome_disks+1) {
1774 /* Q disk is one of the missing disks */
1775 if (faila == syndrome_disks) {
1776 /* Missing P+Q, just recompute */
1777 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE, NULL,
1778 cb_fn: ops_complete_compute, cb_param: sh,
1779 scribble: to_addr_conv(sh, percpu, i: 0));
1780 return async_gen_syndrome(blocks, offsets: offs, src_cnt: syndrome_disks+2,
1781 RAID5_STRIPE_SIZE(sh->raid_conf),
1782 submit: &submit);
1783 } else {
1784 struct page *dest;
1785 unsigned int dest_off;
1786 int data_target;
1787 int qd_idx = sh->qd_idx;
1788
1789 /* Missing D+Q: recompute D from P, then recompute Q */
1790 if (target == qd_idx)
1791 data_target = target2;
1792 else
1793 data_target = target;
1794
1795 count = 0;
1796 for (i = disks; i-- ; ) {
1797 if (i == data_target || i == qd_idx)
1798 continue;
1799 offs[count] = sh->dev[i].offset;
1800 blocks[count++] = sh->dev[i].page;
1801 }
1802 dest = sh->dev[data_target].page;
1803 dest_off = sh->dev[data_target].offset;
1804 init_async_submit(args: &submit,
1805 flags: ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1806 NULL, NULL, NULL,
1807 scribble: to_addr_conv(sh, percpu, i: 0));
1808 tx = async_xor_offs(dest, offset: dest_off, src_list: blocks, src_offset: offs, src_cnt: count,
1809 RAID5_STRIPE_SIZE(sh->raid_conf),
1810 submit: &submit);
1811
1812 count = set_syndrome_sources(srcs: blocks, offs, sh, srctype: SYNDROME_SRC_ALL);
1813 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE, tx,
1814 cb_fn: ops_complete_compute, cb_param: sh,
1815 scribble: to_addr_conv(sh, percpu, i: 0));
1816 return async_gen_syndrome(blocks, offsets: offs, src_cnt: count+2,
1817 RAID5_STRIPE_SIZE(sh->raid_conf),
1818 submit: &submit);
1819 }
1820 } else {
1821 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE, NULL,
1822 cb_fn: ops_complete_compute, cb_param: sh,
1823 scribble: to_addr_conv(sh, percpu, i: 0));
1824 if (failb == syndrome_disks) {
1825 /* We're missing D+P. */
1826 return async_raid6_datap_recov(src_num: syndrome_disks+2,
1827 RAID5_STRIPE_SIZE(sh->raid_conf),
1828 faila,
1829 ptrs: blocks, offs, submit: &submit);
1830 } else {
1831 /* We're missing D+D. */
1832 return async_raid6_2data_recov(src_num: syndrome_disks+2,
1833 RAID5_STRIPE_SIZE(sh->raid_conf),
1834 faila, failb,
1835 ptrs: blocks, offs, submit: &submit);
1836 }
1837 }
1838}
1839
1840static void ops_complete_prexor(void *stripe_head_ref)
1841{
1842 struct stripe_head *sh = stripe_head_ref;
1843
1844 pr_debug("%s: stripe %llu\n", __func__,
1845 (unsigned long long)sh->sector);
1846
1847 if (r5c_is_writeback(log: sh->raid_conf->log))
1848 /*
1849 * raid5-cache write back uses orig_page during prexor.
1850 * After prexor, it is time to free orig_page
1851 */
1852 r5c_release_extra_page(sh);
1853}
1854
1855static struct dma_async_tx_descriptor *
1856ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1857 struct dma_async_tx_descriptor *tx)
1858{
1859 int disks = sh->disks;
1860 struct page **xor_srcs = to_addr_page(percpu, i: 0);
1861 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1862 int count = 0, pd_idx = sh->pd_idx, i;
1863 struct async_submit_ctl submit;
1864
1865 /* existing parity data subtracted */
1866 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1867 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1868
1869 BUG_ON(sh->batch_head);
1870 pr_debug("%s: stripe %llu\n", __func__,
1871 (unsigned long long)sh->sector);
1872
1873 for (i = disks; i--; ) {
1874 struct r5dev *dev = &sh->dev[i];
1875 /* Only process blocks that are known to be uptodate */
1876 if (test_bit(R5_InJournal, &dev->flags)) {
1877 /*
1878 * For this case, PAGE_SIZE must be equal to 4KB and
1879 * page offset is zero.
1880 */
1881 off_srcs[count] = dev->offset;
1882 xor_srcs[count++] = dev->orig_page;
1883 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1884 off_srcs[count] = dev->offset;
1885 xor_srcs[count++] = dev->page;
1886 }
1887 }
1888
1889 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1890 cb_fn: ops_complete_prexor, cb_param: sh, scribble: to_addr_conv(sh, percpu, i: 0));
1891 tx = async_xor_offs(dest: xor_dest, offset: off_dest, src_list: xor_srcs, src_offset: off_srcs, src_cnt: count,
1892 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
1893
1894 return tx;
1895}
1896
1897static struct dma_async_tx_descriptor *
1898ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1899 struct dma_async_tx_descriptor *tx)
1900{
1901 struct page **blocks = to_addr_page(percpu, i: 0);
1902 unsigned int *offs = to_addr_offs(sh, percpu);
1903 int count;
1904 struct async_submit_ctl submit;
1905
1906 pr_debug("%s: stripe %llu\n", __func__,
1907 (unsigned long long)sh->sector);
1908
1909 count = set_syndrome_sources(srcs: blocks, offs, sh, srctype: SYNDROME_SRC_WANT_DRAIN);
1910
1911 init_async_submit(args: &submit, flags: ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1912 cb_fn: ops_complete_prexor, cb_param: sh, scribble: to_addr_conv(sh, percpu, i: 0));
1913 tx = async_gen_syndrome(blocks, offsets: offs, src_cnt: count+2,
1914 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
1915
1916 return tx;
1917}
1918
1919static struct dma_async_tx_descriptor *
1920ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1921{
1922 struct r5conf *conf = sh->raid_conf;
1923 int disks = sh->disks;
1924 int i;
1925 struct stripe_head *head_sh = sh;
1926
1927 pr_debug("%s: stripe %llu\n", __func__,
1928 (unsigned long long)sh->sector);
1929
1930 for (i = disks; i--; ) {
1931 struct r5dev *dev;
1932 struct bio *chosen;
1933
1934 sh = head_sh;
1935 if (test_and_clear_bit(nr: R5_Wantdrain, addr: &head_sh->dev[i].flags)) {
1936 struct bio *wbi;
1937
1938again:
1939 dev = &sh->dev[i];
1940 /*
1941 * clear R5_InJournal, so when rewriting a page in
1942 * journal, it is not skipped by r5l_log_stripe()
1943 */
1944 clear_bit(nr: R5_InJournal, addr: &dev->flags);
1945 spin_lock_irq(lock: &sh->stripe_lock);
1946 chosen = dev->towrite;
1947 dev->towrite = NULL;
1948 sh->overwrite_disks = 0;
1949 BUG_ON(dev->written);
1950 wbi = dev->written = chosen;
1951 spin_unlock_irq(lock: &sh->stripe_lock);
1952 WARN_ON(dev->page != dev->orig_page);
1953
1954 while (wbi && wbi->bi_iter.bi_sector <
1955 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1956 if (wbi->bi_opf & REQ_FUA)
1957 set_bit(nr: R5_WantFUA, addr: &dev->flags);
1958 if (wbi->bi_opf & REQ_SYNC)
1959 set_bit(nr: R5_SyncIO, addr: &dev->flags);
1960 if (bio_op(bio: wbi) == REQ_OP_DISCARD)
1961 set_bit(nr: R5_Discard, addr: &dev->flags);
1962 else {
1963 tx = async_copy_data(frombio: 1, bio: wbi, page: &dev->page,
1964 poff: dev->offset,
1965 sector: dev->sector, tx, sh,
1966 no_skipcopy: r5c_is_writeback(log: conf->log));
1967 if (dev->page != dev->orig_page &&
1968 !r5c_is_writeback(log: conf->log)) {
1969 set_bit(nr: R5_SkipCopy, addr: &dev->flags);
1970 clear_bit(nr: R5_UPTODATE, addr: &dev->flags);
1971 clear_bit(nr: R5_OVERWRITE, addr: &dev->flags);
1972 }
1973 }
1974 wbi = r5_next_bio(conf, bio: wbi, sector: dev->sector);
1975 }
1976
1977 if (head_sh->batch_head) {
1978 sh = list_first_entry(&sh->batch_list,
1979 struct stripe_head,
1980 batch_list);
1981 if (sh == head_sh)
1982 continue;
1983 goto again;
1984 }
1985 }
1986 }
1987
1988 return tx;
1989}
1990
1991static void ops_complete_reconstruct(void *stripe_head_ref)
1992{
1993 struct stripe_head *sh = stripe_head_ref;
1994 int disks = sh->disks;
1995 int pd_idx = sh->pd_idx;
1996 int qd_idx = sh->qd_idx;
1997 int i;
1998 bool fua = false, sync = false, discard = false;
1999
2000 pr_debug("%s: stripe %llu\n", __func__,
2001 (unsigned long long)sh->sector);
2002
2003 for (i = disks; i--; ) {
2004 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2005 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2006 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2007 }
2008
2009 for (i = disks; i--; ) {
2010 struct r5dev *dev = &sh->dev[i];
2011
2012 if (dev->written || i == pd_idx || i == qd_idx) {
2013 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2014 set_bit(nr: R5_UPTODATE, addr: &dev->flags);
2015 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2016 set_bit(nr: R5_Expanded, addr: &dev->flags);
2017 }
2018 if (fua)
2019 set_bit(nr: R5_WantFUA, addr: &dev->flags);
2020 if (sync)
2021 set_bit(nr: R5_SyncIO, addr: &dev->flags);
2022 }
2023 }
2024
2025 if (sh->reconstruct_state == reconstruct_state_drain_run)
2026 sh->reconstruct_state = reconstruct_state_drain_result;
2027 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2028 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2029 else {
2030 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2031 sh->reconstruct_state = reconstruct_state_result;
2032 }
2033
2034 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
2035 raid5_release_stripe(sh);
2036}
2037
2038static void
2039ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2040 struct dma_async_tx_descriptor *tx)
2041{
2042 int disks = sh->disks;
2043 struct page **xor_srcs;
2044 unsigned int *off_srcs;
2045 struct async_submit_ctl submit;
2046 int count, pd_idx = sh->pd_idx, i;
2047 struct page *xor_dest;
2048 unsigned int off_dest;
2049 int prexor = 0;
2050 unsigned long flags;
2051 int j = 0;
2052 struct stripe_head *head_sh = sh;
2053 int last_stripe;
2054
2055 pr_debug("%s: stripe %llu\n", __func__,
2056 (unsigned long long)sh->sector);
2057
2058 for (i = 0; i < sh->disks; i++) {
2059 if (pd_idx == i)
2060 continue;
2061 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2062 break;
2063 }
2064 if (i >= sh->disks) {
2065 atomic_inc(v: &sh->count);
2066 set_bit(nr: R5_Discard, addr: &sh->dev[pd_idx].flags);
2067 ops_complete_reconstruct(stripe_head_ref: sh);
2068 return;
2069 }
2070again:
2071 count = 0;
2072 xor_srcs = to_addr_page(percpu, i: j);
2073 off_srcs = to_addr_offs(sh, percpu);
2074 /* check if prexor is active which means only process blocks
2075 * that are part of a read-modify-write (written)
2076 */
2077 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2078 prexor = 1;
2079 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2080 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2081 for (i = disks; i--; ) {
2082 struct r5dev *dev = &sh->dev[i];
2083 if (head_sh->dev[i].written ||
2084 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2085 off_srcs[count] = dev->offset;
2086 xor_srcs[count++] = dev->page;
2087 }
2088 }
2089 } else {
2090 xor_dest = sh->dev[pd_idx].page;
2091 off_dest = sh->dev[pd_idx].offset;
2092 for (i = disks; i--; ) {
2093 struct r5dev *dev = &sh->dev[i];
2094 if (i != pd_idx) {
2095 off_srcs[count] = dev->offset;
2096 xor_srcs[count++] = dev->page;
2097 }
2098 }
2099 }
2100
2101 /* 1/ if we prexor'd then the dest is reused as a source
2102 * 2/ if we did not prexor then we are redoing the parity
2103 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2104 * for the synchronous xor case
2105 */
2106 last_stripe = !head_sh->batch_head ||
2107 list_first_entry(&sh->batch_list,
2108 struct stripe_head, batch_list) == head_sh;
2109 if (last_stripe) {
2110 flags = ASYNC_TX_ACK |
2111 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2112
2113 atomic_inc(v: &head_sh->count);
2114 init_async_submit(args: &submit, flags, tx, cb_fn: ops_complete_reconstruct, cb_param: head_sh,
2115 scribble: to_addr_conv(sh, percpu, i: j));
2116 } else {
2117 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2118 init_async_submit(args: &submit, flags, tx, NULL, NULL,
2119 scribble: to_addr_conv(sh, percpu, i: j));
2120 }
2121
2122 if (unlikely(count == 1))
2123 tx = async_memcpy(dest: xor_dest, src: xor_srcs[0], dest_offset: off_dest, src_offset: off_srcs[0],
2124 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
2125 else
2126 tx = async_xor_offs(dest: xor_dest, offset: off_dest, src_list: xor_srcs, src_offset: off_srcs, src_cnt: count,
2127 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
2128 if (!last_stripe) {
2129 j++;
2130 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2131 batch_list);
2132 goto again;
2133 }
2134}
2135
2136static void
2137ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2138 struct dma_async_tx_descriptor *tx)
2139{
2140 struct async_submit_ctl submit;
2141 struct page **blocks;
2142 unsigned int *offs;
2143 int count, i, j = 0;
2144 struct stripe_head *head_sh = sh;
2145 int last_stripe;
2146 int synflags;
2147 unsigned long txflags;
2148
2149 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2150
2151 for (i = 0; i < sh->disks; i++) {
2152 if (sh->pd_idx == i || sh->qd_idx == i)
2153 continue;
2154 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2155 break;
2156 }
2157 if (i >= sh->disks) {
2158 atomic_inc(v: &sh->count);
2159 set_bit(nr: R5_Discard, addr: &sh->dev[sh->pd_idx].flags);
2160 set_bit(nr: R5_Discard, addr: &sh->dev[sh->qd_idx].flags);
2161 ops_complete_reconstruct(stripe_head_ref: sh);
2162 return;
2163 }
2164
2165again:
2166 blocks = to_addr_page(percpu, i: j);
2167 offs = to_addr_offs(sh, percpu);
2168
2169 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2170 synflags = SYNDROME_SRC_WRITTEN;
2171 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2172 } else {
2173 synflags = SYNDROME_SRC_ALL;
2174 txflags = ASYNC_TX_ACK;
2175 }
2176
2177 count = set_syndrome_sources(srcs: blocks, offs, sh, srctype: synflags);
2178 last_stripe = !head_sh->batch_head ||
2179 list_first_entry(&sh->batch_list,
2180 struct stripe_head, batch_list) == head_sh;
2181
2182 if (last_stripe) {
2183 atomic_inc(v: &head_sh->count);
2184 init_async_submit(args: &submit, flags: txflags, tx, cb_fn: ops_complete_reconstruct,
2185 cb_param: head_sh, scribble: to_addr_conv(sh, percpu, i: j));
2186 } else
2187 init_async_submit(args: &submit, flags: 0, tx, NULL, NULL,
2188 scribble: to_addr_conv(sh, percpu, i: j));
2189 tx = async_gen_syndrome(blocks, offsets: offs, src_cnt: count+2,
2190 RAID5_STRIPE_SIZE(sh->raid_conf), submit: &submit);
2191 if (!last_stripe) {
2192 j++;
2193 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2194 batch_list);
2195 goto again;
2196 }
2197}
2198
2199static void ops_complete_check(void *stripe_head_ref)
2200{
2201 struct stripe_head *sh = stripe_head_ref;
2202
2203 pr_debug("%s: stripe %llu\n", __func__,
2204 (unsigned long long)sh->sector);
2205
2206 sh->check_state = check_state_check_result;
2207 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
2208 raid5_release_stripe(sh);
2209}
2210
2211static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2212{
2213 int disks = sh->disks;
2214 int pd_idx = sh->pd_idx;
2215 int qd_idx = sh->qd_idx;
2216 struct page *xor_dest;
2217 unsigned int off_dest;
2218 struct page **xor_srcs = to_addr_page(percpu, i: 0);
2219 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2220 struct dma_async_tx_descriptor *tx;
2221 struct async_submit_ctl submit;
2222 int count;
2223 int i;
2224
2225 pr_debug("%s: stripe %llu\n", __func__,
2226 (unsigned long long)sh->sector);
2227
2228 BUG_ON(sh->batch_head);
2229 count = 0;
2230 xor_dest = sh->dev[pd_idx].page;
2231 off_dest = sh->dev[pd_idx].offset;
2232 off_srcs[count] = off_dest;
2233 xor_srcs[count++] = xor_dest;
2234 for (i = disks; i--; ) {
2235 if (i == pd_idx || i == qd_idx)
2236 continue;
2237 off_srcs[count] = sh->dev[i].offset;
2238 xor_srcs[count++] = sh->dev[i].page;
2239 }
2240
2241 init_async_submit(args: &submit, flags: 0, NULL, NULL, NULL,
2242 scribble: to_addr_conv(sh, percpu, i: 0));
2243 tx = async_xor_val_offs(dest: xor_dest, offset: off_dest, src_list: xor_srcs, src_offset: off_srcs, src_cnt: count,
2244 RAID5_STRIPE_SIZE(sh->raid_conf),
2245 result: &sh->ops.zero_sum_result, submit: &submit);
2246
2247 atomic_inc(v: &sh->count);
2248 init_async_submit(args: &submit, flags: ASYNC_TX_ACK, tx, cb_fn: ops_complete_check, cb_param: sh, NULL);
2249 tx = async_trigger_callback(submit: &submit);
2250}
2251
2252static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2253{
2254 struct page **srcs = to_addr_page(percpu, i: 0);
2255 unsigned int *offs = to_addr_offs(sh, percpu);
2256 struct async_submit_ctl submit;
2257 int count;
2258
2259 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2260 (unsigned long long)sh->sector, checkp);
2261
2262 BUG_ON(sh->batch_head);
2263 count = set_syndrome_sources(srcs, offs, sh, srctype: SYNDROME_SRC_ALL);
2264 if (!checkp)
2265 srcs[count] = NULL;
2266
2267 atomic_inc(v: &sh->count);
2268 init_async_submit(args: &submit, flags: ASYNC_TX_ACK, NULL, cb_fn: ops_complete_check,
2269 cb_param: sh, scribble: to_addr_conv(sh, percpu, i: 0));
2270 async_syndrome_val(blocks: srcs, offsets: offs, src_cnt: count+2,
2271 RAID5_STRIPE_SIZE(sh->raid_conf),
2272 pqres: &sh->ops.zero_sum_result, spare: percpu->spare_page, s_off: 0, submit: &submit);
2273}
2274
2275static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2276{
2277 int overlap_clear = 0, i, disks = sh->disks;
2278 struct dma_async_tx_descriptor *tx = NULL;
2279 struct r5conf *conf = sh->raid_conf;
2280 int level = conf->level;
2281 struct raid5_percpu *percpu;
2282
2283 local_lock(&conf->percpu->lock);
2284 percpu = this_cpu_ptr(conf->percpu);
2285 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2286 ops_run_biofill(sh);
2287 overlap_clear++;
2288 }
2289
2290 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2291 if (level < 6)
2292 tx = ops_run_compute5(sh, percpu);
2293 else {
2294 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2295 tx = ops_run_compute6_1(sh, percpu);
2296 else
2297 tx = ops_run_compute6_2(sh, percpu);
2298 }
2299 /* terminate the chain if reconstruct is not set to be run */
2300 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2301 async_tx_ack(tx);
2302 }
2303
2304 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2305 if (level < 6)
2306 tx = ops_run_prexor5(sh, percpu, tx);
2307 else
2308 tx = ops_run_prexor6(sh, percpu, tx);
2309 }
2310
2311 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2312 tx = ops_run_partial_parity(sh, percpu, tx);
2313
2314 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2315 tx = ops_run_biodrain(sh, tx);
2316 overlap_clear++;
2317 }
2318
2319 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2320 if (level < 6)
2321 ops_run_reconstruct5(sh, percpu, tx);
2322 else
2323 ops_run_reconstruct6(sh, percpu, tx);
2324 }
2325
2326 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2327 if (sh->check_state == check_state_run)
2328 ops_run_check_p(sh, percpu);
2329 else if (sh->check_state == check_state_run_q)
2330 ops_run_check_pq(sh, percpu, checkp: 0);
2331 else if (sh->check_state == check_state_run_pq)
2332 ops_run_check_pq(sh, percpu, checkp: 1);
2333 else
2334 BUG();
2335 }
2336
2337 if (overlap_clear && !sh->batch_head) {
2338 for (i = disks; i--; ) {
2339 struct r5dev *dev = &sh->dev[i];
2340 if (test_and_clear_bit(nr: R5_Overlap, addr: &dev->flags))
2341 wake_up(&sh->raid_conf->wait_for_overlap);
2342 }
2343 }
2344 local_unlock(&conf->percpu->lock);
2345}
2346
2347static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2348{
2349#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2350 kfree(sh->pages);
2351#endif
2352 if (sh->ppl_page)
2353 __free_page(sh->ppl_page);
2354 kmem_cache_free(s: sc, objp: sh);
2355}
2356
2357static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2358 int disks, struct r5conf *conf)
2359{
2360 struct stripe_head *sh;
2361
2362 sh = kmem_cache_zalloc(k: sc, flags: gfp);
2363 if (sh) {
2364 spin_lock_init(&sh->stripe_lock);
2365 spin_lock_init(&sh->batch_lock);
2366 INIT_LIST_HEAD(list: &sh->batch_list);
2367 INIT_LIST_HEAD(list: &sh->lru);
2368 INIT_LIST_HEAD(list: &sh->r5c);
2369 INIT_LIST_HEAD(list: &sh->log_list);
2370 atomic_set(v: &sh->count, i: 1);
2371 sh->raid_conf = conf;
2372 sh->log_start = MaxSector;
2373
2374 if (raid5_has_ppl(conf)) {
2375 sh->ppl_page = alloc_page(gfp);
2376 if (!sh->ppl_page) {
2377 free_stripe(sc, sh);
2378 return NULL;
2379 }
2380 }
2381#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2382 if (init_stripe_shared_pages(sh, conf, disks)) {
2383 free_stripe(sc, sh);
2384 return NULL;
2385 }
2386#endif
2387 }
2388 return sh;
2389}
2390static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2391{
2392 struct stripe_head *sh;
2393
2394 sh = alloc_stripe(sc: conf->slab_cache, gfp, disks: conf->pool_size, conf);
2395 if (!sh)
2396 return 0;
2397
2398 if (grow_buffers(sh, gfp)) {
2399 shrink_buffers(sh);
2400 free_stripe(sc: conf->slab_cache, sh);
2401 return 0;
2402 }
2403 sh->hash_lock_index =
2404 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2405 /* we just created an active stripe so... */
2406 atomic_inc(v: &conf->active_stripes);
2407
2408 raid5_release_stripe(sh);
2409 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2410 return 1;
2411}
2412
2413static int grow_stripes(struct r5conf *conf, int num)
2414{
2415 struct kmem_cache *sc;
2416 size_t namelen = sizeof(conf->cache_name[0]);
2417 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2418
2419 if (mddev_is_dm(mddev: conf->mddev))
2420 snprintf(buf: conf->cache_name[0], size: namelen,
2421 fmt: "raid%d-%p", conf->level, conf->mddev);
2422 else
2423 snprintf(buf: conf->cache_name[0], size: namelen,
2424 fmt: "raid%d-%s", conf->level, mdname(mddev: conf->mddev));
2425 snprintf(buf: conf->cache_name[1], size: namelen, fmt: "%.27s-alt", conf->cache_name[0]);
2426
2427 conf->active_name = 0;
2428 sc = kmem_cache_create(name: conf->cache_name[conf->active_name],
2429 struct_size_t(struct stripe_head, dev, devs),
2430 align: 0, flags: 0, NULL);
2431 if (!sc)
2432 return 1;
2433 conf->slab_cache = sc;
2434 conf->pool_size = devs;
2435 while (num--)
2436 if (!grow_one_stripe(conf, GFP_KERNEL))
2437 return 1;
2438
2439 return 0;
2440}
2441
2442/**
2443 * scribble_alloc - allocate percpu scribble buffer for required size
2444 * of the scribble region
2445 * @percpu: from for_each_present_cpu() of the caller
2446 * @num: total number of disks in the array
2447 * @cnt: scribble objs count for required size of the scribble region
2448 *
2449 * The scribble buffer size must be enough to contain:
2450 * 1/ a struct page pointer for each device in the array +2
2451 * 2/ room to convert each entry in (1) to its corresponding dma
2452 * (dma_map_page()) or page (page_address()) address.
2453 *
2454 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2455 * calculate over all devices (not just the data blocks), using zeros in place
2456 * of the P and Q blocks.
2457 */
2458static int scribble_alloc(struct raid5_percpu *percpu,
2459 int num, int cnt)
2460{
2461 size_t obj_size =
2462 sizeof(struct page *) * (num + 2) +
2463 sizeof(addr_conv_t) * (num + 2) +
2464 sizeof(unsigned int) * (num + 2);
2465 void *scribble;
2466
2467 /*
2468 * If here is in raid array suspend context, it is in memalloc noio
2469 * context as well, there is no potential recursive memory reclaim
2470 * I/Os with the GFP_KERNEL flag.
2471 */
2472 scribble = kvmalloc_array(n: cnt, size: obj_size, GFP_KERNEL);
2473 if (!scribble)
2474 return -ENOMEM;
2475
2476 kvfree(addr: percpu->scribble);
2477
2478 percpu->scribble = scribble;
2479 percpu->scribble_obj_size = obj_size;
2480 return 0;
2481}
2482
2483static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2484{
2485 unsigned long cpu;
2486 int err = 0;
2487
2488 /* Never shrink. */
2489 if (conf->scribble_disks >= new_disks &&
2490 conf->scribble_sectors >= new_sectors)
2491 return 0;
2492
2493 raid5_quiesce(mddev: conf->mddev, quiesce: true);
2494 cpus_read_lock();
2495
2496 for_each_present_cpu(cpu) {
2497 struct raid5_percpu *percpu;
2498
2499 percpu = per_cpu_ptr(conf->percpu, cpu);
2500 err = scribble_alloc(percpu, num: new_disks,
2501 cnt: new_sectors / RAID5_STRIPE_SECTORS(conf));
2502 if (err)
2503 break;
2504 }
2505
2506 cpus_read_unlock();
2507 raid5_quiesce(mddev: conf->mddev, quiesce: false);
2508
2509 if (!err) {
2510 conf->scribble_disks = new_disks;
2511 conf->scribble_sectors = new_sectors;
2512 }
2513 return err;
2514}
2515
2516static int resize_stripes(struct r5conf *conf, int newsize)
2517{
2518 /* Make all the stripes able to hold 'newsize' devices.
2519 * New slots in each stripe get 'page' set to a new page.
2520 *
2521 * This happens in stages:
2522 * 1/ create a new kmem_cache and allocate the required number of
2523 * stripe_heads.
2524 * 2/ gather all the old stripe_heads and transfer the pages across
2525 * to the new stripe_heads. This will have the side effect of
2526 * freezing the array as once all stripe_heads have been collected,
2527 * no IO will be possible. Old stripe heads are freed once their
2528 * pages have been transferred over, and the old kmem_cache is
2529 * freed when all stripes are done.
2530 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2531 * we simple return a failure status - no need to clean anything up.
2532 * 4/ allocate new pages for the new slots in the new stripe_heads.
2533 * If this fails, we don't bother trying the shrink the
2534 * stripe_heads down again, we just leave them as they are.
2535 * As each stripe_head is processed the new one is released into
2536 * active service.
2537 *
2538 * Once step2 is started, we cannot afford to wait for a write,
2539 * so we use GFP_NOIO allocations.
2540 */
2541 struct stripe_head *osh, *nsh;
2542 LIST_HEAD(newstripes);
2543 struct disk_info *ndisks;
2544 int err = 0;
2545 struct kmem_cache *sc;
2546 int i;
2547 int hash, cnt;
2548
2549 md_allow_write(mddev: conf->mddev);
2550
2551 /* Step 1 */
2552 sc = kmem_cache_create(name: conf->cache_name[1-conf->active_name],
2553 struct_size_t(struct stripe_head, dev, newsize),
2554 align: 0, flags: 0, NULL);
2555 if (!sc)
2556 return -ENOMEM;
2557
2558 /* Need to ensure auto-resizing doesn't interfere */
2559 mutex_lock(&conf->cache_size_mutex);
2560
2561 for (i = conf->max_nr_stripes; i; i--) {
2562 nsh = alloc_stripe(sc, GFP_KERNEL, disks: newsize, conf);
2563 if (!nsh)
2564 break;
2565
2566 list_add(new: &nsh->lru, head: &newstripes);
2567 }
2568 if (i) {
2569 /* didn't get enough, give up */
2570 while (!list_empty(head: &newstripes)) {
2571 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2572 list_del(entry: &nsh->lru);
2573 free_stripe(sc, sh: nsh);
2574 }
2575 kmem_cache_destroy(s: sc);
2576 mutex_unlock(lock: &conf->cache_size_mutex);
2577 return -ENOMEM;
2578 }
2579 /* Step 2 - Must use GFP_NOIO now.
2580 * OK, we have enough stripes, start collecting inactive
2581 * stripes and copying them over
2582 */
2583 hash = 0;
2584 cnt = 0;
2585 list_for_each_entry(nsh, &newstripes, lru) {
2586 lock_device_hash_lock(conf, hash);
2587 wait_event_cmd(conf->wait_for_stripe,
2588 !list_empty(conf->inactive_list + hash),
2589 unlock_device_hash_lock(conf, hash),
2590 lock_device_hash_lock(conf, hash));
2591 osh = get_free_stripe(conf, hash);
2592 unlock_device_hash_lock(conf, hash);
2593
2594#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2595 for (i = 0; i < osh->nr_pages; i++) {
2596 nsh->pages[i] = osh->pages[i];
2597 osh->pages[i] = NULL;
2598 }
2599#endif
2600 for(i=0; i<conf->pool_size; i++) {
2601 nsh->dev[i].page = osh->dev[i].page;
2602 nsh->dev[i].orig_page = osh->dev[i].page;
2603 nsh->dev[i].offset = osh->dev[i].offset;
2604 }
2605 nsh->hash_lock_index = hash;
2606 free_stripe(sc: conf->slab_cache, sh: osh);
2607 cnt++;
2608 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2609 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2610 hash++;
2611 cnt = 0;
2612 }
2613 }
2614 kmem_cache_destroy(s: conf->slab_cache);
2615
2616 /* Step 3.
2617 * At this point, we are holding all the stripes so the array
2618 * is completely stalled, so now is a good time to resize
2619 * conf->disks and the scribble region
2620 */
2621 ndisks = kcalloc(n: newsize, size: sizeof(struct disk_info), GFP_NOIO);
2622 if (ndisks) {
2623 for (i = 0; i < conf->pool_size; i++)
2624 ndisks[i] = conf->disks[i];
2625
2626 for (i = conf->pool_size; i < newsize; i++) {
2627 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2628 if (!ndisks[i].extra_page)
2629 err = -ENOMEM;
2630 }
2631
2632 if (err) {
2633 for (i = conf->pool_size; i < newsize; i++)
2634 if (ndisks[i].extra_page)
2635 put_page(page: ndisks[i].extra_page);
2636 kfree(objp: ndisks);
2637 } else {
2638 kfree(objp: conf->disks);
2639 conf->disks = ndisks;
2640 }
2641 } else
2642 err = -ENOMEM;
2643
2644 conf->slab_cache = sc;
2645 conf->active_name = 1-conf->active_name;
2646
2647 /* Step 4, return new stripes to service */
2648 while(!list_empty(head: &newstripes)) {
2649 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2650 list_del_init(entry: &nsh->lru);
2651
2652#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2653 for (i = 0; i < nsh->nr_pages; i++) {
2654 if (nsh->pages[i])
2655 continue;
2656 nsh->pages[i] = alloc_page(GFP_NOIO);
2657 if (!nsh->pages[i])
2658 err = -ENOMEM;
2659 }
2660
2661 for (i = conf->raid_disks; i < newsize; i++) {
2662 if (nsh->dev[i].page)
2663 continue;
2664 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2665 nsh->dev[i].orig_page = nsh->dev[i].page;
2666 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2667 }
2668#else
2669 for (i=conf->raid_disks; i < newsize; i++)
2670 if (nsh->dev[i].page == NULL) {
2671 struct page *p = alloc_page(GFP_NOIO);
2672 nsh->dev[i].page = p;
2673 nsh->dev[i].orig_page = p;
2674 nsh->dev[i].offset = 0;
2675 if (!p)
2676 err = -ENOMEM;
2677 }
2678#endif
2679 raid5_release_stripe(sh: nsh);
2680 }
2681 /* critical section pass, GFP_NOIO no longer needed */
2682
2683 if (!err)
2684 conf->pool_size = newsize;
2685 mutex_unlock(lock: &conf->cache_size_mutex);
2686
2687 return err;
2688}
2689
2690static int drop_one_stripe(struct r5conf *conf)
2691{
2692 struct stripe_head *sh;
2693 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2694
2695 spin_lock_irq(lock: conf->hash_locks + hash);
2696 sh = get_free_stripe(conf, hash);
2697 spin_unlock_irq(lock: conf->hash_locks + hash);
2698 if (!sh)
2699 return 0;
2700 BUG_ON(atomic_read(&sh->count));
2701 shrink_buffers(sh);
2702 free_stripe(sc: conf->slab_cache, sh);
2703 atomic_dec(v: &conf->active_stripes);
2704 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2705 return 1;
2706}
2707
2708static void shrink_stripes(struct r5conf *conf)
2709{
2710 while (conf->max_nr_stripes &&
2711 drop_one_stripe(conf))
2712 ;
2713
2714 kmem_cache_destroy(s: conf->slab_cache);
2715 conf->slab_cache = NULL;
2716}
2717
2718static void raid5_end_read_request(struct bio * bi)
2719{
2720 struct stripe_head *sh = bi->bi_private;
2721 struct r5conf *conf = sh->raid_conf;
2722 int disks = sh->disks, i;
2723 struct md_rdev *rdev = NULL;
2724 sector_t s;
2725
2726 for (i=0 ; i<disks; i++)
2727 if (bi == &sh->dev[i].req)
2728 break;
2729
2730 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2731 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2732 bi->bi_status);
2733 if (i == disks) {
2734 BUG();
2735 return;
2736 }
2737 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2738 /* If replacement finished while this request was outstanding,
2739 * 'replacement' might be NULL already.
2740 * In that case it moved down to 'rdev'.
2741 * rdev is not removed until all requests are finished.
2742 */
2743 rdev = conf->disks[i].replacement;
2744 if (!rdev)
2745 rdev = conf->disks[i].rdev;
2746
2747 if (use_new_offset(conf, sh))
2748 s = sh->sector + rdev->new_data_offset;
2749 else
2750 s = sh->sector + rdev->data_offset;
2751 if (!bi->bi_status) {
2752 set_bit(nr: R5_UPTODATE, addr: &sh->dev[i].flags);
2753 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2754 /* Note that this cannot happen on a
2755 * replacement device. We just fail those on
2756 * any error
2757 */
2758 pr_info_ratelimited(
2759 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2760 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2761 (unsigned long long)s,
2762 rdev->bdev);
2763 atomic_add(RAID5_STRIPE_SECTORS(conf), v: &rdev->corrected_errors);
2764 clear_bit(nr: R5_ReadError, addr: &sh->dev[i].flags);
2765 clear_bit(nr: R5_ReWrite, addr: &sh->dev[i].flags);
2766 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2767 clear_bit(nr: R5_ReadNoMerge, addr: &sh->dev[i].flags);
2768
2769 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2770 /*
2771 * end read for a page in journal, this
2772 * must be preparing for prexor in rmw
2773 */
2774 set_bit(nr: R5_OrigPageUPTDODATE, addr: &sh->dev[i].flags);
2775
2776 if (atomic_read(v: &rdev->read_errors))
2777 atomic_set(v: &rdev->read_errors, i: 0);
2778 } else {
2779 int retry = 0;
2780 int set_bad = 0;
2781
2782 clear_bit(nr: R5_UPTODATE, addr: &sh->dev[i].flags);
2783 if (!(bi->bi_status == BLK_STS_PROTECTION))
2784 atomic_inc(v: &rdev->read_errors);
2785 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2786 pr_warn_ratelimited(
2787 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2788 mdname(conf->mddev),
2789 (unsigned long long)s,
2790 rdev->bdev);
2791 else if (conf->mddev->degraded >= conf->max_degraded) {
2792 set_bad = 1;
2793 pr_warn_ratelimited(
2794 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2795 mdname(conf->mddev),
2796 (unsigned long long)s,
2797 rdev->bdev);
2798 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2799 /* Oh, no!!! */
2800 set_bad = 1;
2801 pr_warn_ratelimited(
2802 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2803 mdname(conf->mddev),
2804 (unsigned long long)s,
2805 rdev->bdev);
2806 } else if (atomic_read(v: &rdev->read_errors)
2807 > conf->max_nr_stripes) {
2808 if (!test_bit(Faulty, &rdev->flags)) {
2809 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2810 mdname(conf->mddev),
2811 atomic_read(&rdev->read_errors),
2812 conf->max_nr_stripes);
2813 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2814 mdname(conf->mddev), rdev->bdev);
2815 }
2816 } else
2817 retry = 1;
2818 if (set_bad && test_bit(In_sync, &rdev->flags)
2819 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2820 retry = 1;
2821 if (retry)
2822 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2823 set_bit(nr: R5_ReadError, addr: &sh->dev[i].flags);
2824 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2825 set_bit(nr: R5_ReadError, addr: &sh->dev[i].flags);
2826 clear_bit(nr: R5_ReadNoMerge, addr: &sh->dev[i].flags);
2827 } else
2828 set_bit(nr: R5_ReadNoMerge, addr: &sh->dev[i].flags);
2829 else {
2830 clear_bit(nr: R5_ReadError, addr: &sh->dev[i].flags);
2831 clear_bit(nr: R5_ReWrite, addr: &sh->dev[i].flags);
2832 if (!(set_bad
2833 && test_bit(In_sync, &rdev->flags)
2834 && rdev_set_badblocks(
2835 rdev, s: sh->sector, RAID5_STRIPE_SECTORS(conf), is_new: 0)))
2836 md_error(mddev: conf->mddev, rdev);
2837 }
2838 }
2839 rdev_dec_pending(rdev, mddev: conf->mddev);
2840 bio_uninit(bi);
2841 clear_bit(nr: R5_LOCKED, addr: &sh->dev[i].flags);
2842 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
2843 raid5_release_stripe(sh);
2844}
2845
2846static void raid5_end_write_request(struct bio *bi)
2847{
2848 struct stripe_head *sh = bi->bi_private;
2849 struct r5conf *conf = sh->raid_conf;
2850 int disks = sh->disks, i;
2851 struct md_rdev *rdev;
2852 int replacement = 0;
2853
2854 for (i = 0 ; i < disks; i++) {
2855 if (bi == &sh->dev[i].req) {
2856 rdev = conf->disks[i].rdev;
2857 break;
2858 }
2859 if (bi == &sh->dev[i].rreq) {
2860 rdev = conf->disks[i].replacement;
2861 if (rdev)
2862 replacement = 1;
2863 else
2864 /* rdev was removed and 'replacement'
2865 * replaced it. rdev is not removed
2866 * until all requests are finished.
2867 */
2868 rdev = conf->disks[i].rdev;
2869 break;
2870 }
2871 }
2872 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2873 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2874 bi->bi_status);
2875 if (i == disks) {
2876 BUG();
2877 return;
2878 }
2879
2880 if (replacement) {
2881 if (bi->bi_status)
2882 md_error(mddev: conf->mddev, rdev);
2883 else if (rdev_has_badblock(rdev, s: sh->sector,
2884 RAID5_STRIPE_SECTORS(conf)))
2885 set_bit(nr: R5_MadeGoodRepl, addr: &sh->dev[i].flags);
2886 } else {
2887 if (bi->bi_status) {
2888 set_bit(nr: STRIPE_DEGRADED, addr: &sh->state);
2889 set_bit(nr: WriteErrorSeen, addr: &rdev->flags);
2890 set_bit(nr: R5_WriteError, addr: &sh->dev[i].flags);
2891 if (!test_and_set_bit(nr: WantReplacement, addr: &rdev->flags))
2892 set_bit(nr: MD_RECOVERY_NEEDED,
2893 addr: &rdev->mddev->recovery);
2894 } else if (rdev_has_badblock(rdev, s: sh->sector,
2895 RAID5_STRIPE_SECTORS(conf))) {
2896 set_bit(nr: R5_MadeGood, addr: &sh->dev[i].flags);
2897 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2898 /* That was a successful write so make
2899 * sure it looks like we already did
2900 * a re-write.
2901 */
2902 set_bit(nr: R5_ReWrite, addr: &sh->dev[i].flags);
2903 }
2904 }
2905 rdev_dec_pending(rdev, mddev: conf->mddev);
2906
2907 if (sh->batch_head && bi->bi_status && !replacement)
2908 set_bit(nr: STRIPE_BATCH_ERR, addr: &sh->batch_head->state);
2909
2910 bio_uninit(bi);
2911 if (!test_and_clear_bit(nr: R5_DOUBLE_LOCKED, addr: &sh->dev[i].flags))
2912 clear_bit(nr: R5_LOCKED, addr: &sh->dev[i].flags);
2913 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
2914
2915 if (sh->batch_head && sh != sh->batch_head)
2916 raid5_release_stripe(sh: sh->batch_head);
2917 raid5_release_stripe(sh);
2918}
2919
2920static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2921{
2922 struct r5conf *conf = mddev->private;
2923 unsigned long flags;
2924 pr_debug("raid456: error called\n");
2925
2926 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2927 mdname(mddev), rdev->bdev);
2928
2929 spin_lock_irqsave(&conf->device_lock, flags);
2930 set_bit(nr: Faulty, addr: &rdev->flags);
2931 clear_bit(nr: In_sync, addr: &rdev->flags);
2932 mddev->degraded = raid5_calc_degraded(conf);
2933
2934 if (has_failed(conf)) {
2935 set_bit(nr: MD_BROKEN, addr: &conf->mddev->flags);
2936 conf->recovery_disabled = mddev->recovery_disabled;
2937
2938 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2939 mdname(mddev), mddev->degraded, conf->raid_disks);
2940 } else {
2941 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2942 mdname(mddev), conf->raid_disks - mddev->degraded);
2943 }
2944
2945 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
2946 set_bit(nr: MD_RECOVERY_INTR, addr: &mddev->recovery);
2947
2948 set_bit(nr: Blocked, addr: &rdev->flags);
2949 set_mask_bits(&mddev->sb_flags, 0,
2950 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2951 r5c_update_on_rdev_error(mddev, rdev);
2952}
2953
2954/*
2955 * Input: a 'big' sector number,
2956 * Output: index of the data and parity disk, and the sector # in them.
2957 */
2958sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2959 int previous, int *dd_idx,
2960 struct stripe_head *sh)
2961{
2962 sector_t stripe, stripe2;
2963 sector_t chunk_number;
2964 unsigned int chunk_offset;
2965 int pd_idx, qd_idx;
2966 int ddf_layout = 0;
2967 sector_t new_sector;
2968 int algorithm = previous ? conf->prev_algo
2969 : conf->algorithm;
2970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2971 : conf->chunk_sectors;
2972 int raid_disks = previous ? conf->previous_raid_disks
2973 : conf->raid_disks;
2974 int data_disks = raid_disks - conf->max_degraded;
2975
2976 /* First compute the information on this sector */
2977
2978 /*
2979 * Compute the chunk number and the sector offset inside the chunk
2980 */
2981 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2982 chunk_number = r_sector;
2983
2984 /*
2985 * Compute the stripe number
2986 */
2987 stripe = chunk_number;
2988 *dd_idx = sector_div(stripe, data_disks);
2989 stripe2 = stripe;
2990 /*
2991 * Select the parity disk based on the user selected algorithm.
2992 */
2993 pd_idx = qd_idx = -1;
2994 switch(conf->level) {
2995 case 4:
2996 pd_idx = data_disks;
2997 break;
2998 case 5:
2999 switch (algorithm) {
3000 case ALGORITHM_LEFT_ASYMMETRIC:
3001 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3002 if (*dd_idx >= pd_idx)
3003 (*dd_idx)++;
3004 break;
3005 case ALGORITHM_RIGHT_ASYMMETRIC:
3006 pd_idx = sector_div(stripe2, raid_disks);
3007 if (*dd_idx >= pd_idx)
3008 (*dd_idx)++;
3009 break;
3010 case ALGORITHM_LEFT_SYMMETRIC:
3011 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3012 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3013 break;
3014 case ALGORITHM_RIGHT_SYMMETRIC:
3015 pd_idx = sector_div(stripe2, raid_disks);
3016 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3017 break;
3018 case ALGORITHM_PARITY_0:
3019 pd_idx = 0;
3020 (*dd_idx)++;
3021 break;
3022 case ALGORITHM_PARITY_N:
3023 pd_idx = data_disks;
3024 break;
3025 default:
3026 BUG();
3027 }
3028 break;
3029 case 6:
3030
3031 switch (algorithm) {
3032 case ALGORITHM_LEFT_ASYMMETRIC:
3033 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3034 qd_idx = pd_idx + 1;
3035 if (pd_idx == raid_disks-1) {
3036 (*dd_idx)++; /* Q D D D P */
3037 qd_idx = 0;
3038 } else if (*dd_idx >= pd_idx)
3039 (*dd_idx) += 2; /* D D P Q D */
3040 break;
3041 case ALGORITHM_RIGHT_ASYMMETRIC:
3042 pd_idx = sector_div(stripe2, raid_disks);
3043 qd_idx = pd_idx + 1;
3044 if (pd_idx == raid_disks-1) {
3045 (*dd_idx)++; /* Q D D D P */
3046 qd_idx = 0;
3047 } else if (*dd_idx >= pd_idx)
3048 (*dd_idx) += 2; /* D D P Q D */
3049 break;
3050 case ALGORITHM_LEFT_SYMMETRIC:
3051 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3052 qd_idx = (pd_idx + 1) % raid_disks;
3053 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054 break;
3055 case ALGORITHM_RIGHT_SYMMETRIC:
3056 pd_idx = sector_div(stripe2, raid_disks);
3057 qd_idx = (pd_idx + 1) % raid_disks;
3058 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3059 break;
3060
3061 case ALGORITHM_PARITY_0:
3062 pd_idx = 0;
3063 qd_idx = 1;
3064 (*dd_idx) += 2;
3065 break;
3066 case ALGORITHM_PARITY_N:
3067 pd_idx = data_disks;
3068 qd_idx = data_disks + 1;
3069 break;
3070
3071 case ALGORITHM_ROTATING_ZERO_RESTART:
3072 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3073 * of blocks for computing Q is different.
3074 */
3075 pd_idx = sector_div(stripe2, raid_disks);
3076 qd_idx = pd_idx + 1;
3077 if (pd_idx == raid_disks-1) {
3078 (*dd_idx)++; /* Q D D D P */
3079 qd_idx = 0;
3080 } else if (*dd_idx >= pd_idx)
3081 (*dd_idx) += 2; /* D D P Q D */
3082 ddf_layout = 1;
3083 break;
3084
3085 case ALGORITHM_ROTATING_N_RESTART:
3086 /* Same a left_asymmetric, by first stripe is
3087 * D D D P Q rather than
3088 * Q D D D P
3089 */
3090 stripe2 += 1;
3091 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3092 qd_idx = pd_idx + 1;
3093 if (pd_idx == raid_disks-1) {
3094 (*dd_idx)++; /* Q D D D P */
3095 qd_idx = 0;
3096 } else if (*dd_idx >= pd_idx)
3097 (*dd_idx) += 2; /* D D P Q D */
3098 ddf_layout = 1;
3099 break;
3100
3101 case ALGORITHM_ROTATING_N_CONTINUE:
3102 /* Same as left_symmetric but Q is before P */
3103 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3104 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3105 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3106 ddf_layout = 1;
3107 break;
3108
3109 case ALGORITHM_LEFT_ASYMMETRIC_6:
3110 /* RAID5 left_asymmetric, with Q on last device */
3111 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3112 if (*dd_idx >= pd_idx)
3113 (*dd_idx)++;
3114 qd_idx = raid_disks - 1;
3115 break;
3116
3117 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3118 pd_idx = sector_div(stripe2, raid_disks-1);
3119 if (*dd_idx >= pd_idx)
3120 (*dd_idx)++;
3121 qd_idx = raid_disks - 1;
3122 break;
3123
3124 case ALGORITHM_LEFT_SYMMETRIC_6:
3125 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3126 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3127 qd_idx = raid_disks - 1;
3128 break;
3129
3130 case ALGORITHM_RIGHT_SYMMETRIC_6:
3131 pd_idx = sector_div(stripe2, raid_disks-1);
3132 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3133 qd_idx = raid_disks - 1;
3134 break;
3135
3136 case ALGORITHM_PARITY_0_6:
3137 pd_idx = 0;
3138 (*dd_idx)++;
3139 qd_idx = raid_disks - 1;
3140 break;
3141
3142 default:
3143 BUG();
3144 }
3145 break;
3146 }
3147
3148 if (sh) {
3149 sh->pd_idx = pd_idx;
3150 sh->qd_idx = qd_idx;
3151 sh->ddf_layout = ddf_layout;
3152 }
3153 /*
3154 * Finally, compute the new sector number
3155 */
3156 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3157 return new_sector;
3158}
3159
3160sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3161{
3162 struct r5conf *conf = sh->raid_conf;
3163 int raid_disks = sh->disks;
3164 int data_disks = raid_disks - conf->max_degraded;
3165 sector_t new_sector = sh->sector, check;
3166 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3167 : conf->chunk_sectors;
3168 int algorithm = previous ? conf->prev_algo
3169 : conf->algorithm;
3170 sector_t stripe;
3171 int chunk_offset;
3172 sector_t chunk_number;
3173 int dummy1, dd_idx = i;
3174 sector_t r_sector;
3175 struct stripe_head sh2;
3176
3177 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3178 stripe = new_sector;
3179
3180 if (i == sh->pd_idx)
3181 return 0;
3182 switch(conf->level) {
3183 case 4: break;
3184 case 5:
3185 switch (algorithm) {
3186 case ALGORITHM_LEFT_ASYMMETRIC:
3187 case ALGORITHM_RIGHT_ASYMMETRIC:
3188 if (i > sh->pd_idx)
3189 i--;
3190 break;
3191 case ALGORITHM_LEFT_SYMMETRIC:
3192 case ALGORITHM_RIGHT_SYMMETRIC:
3193 if (i < sh->pd_idx)
3194 i += raid_disks;
3195 i -= (sh->pd_idx + 1);
3196 break;
3197 case ALGORITHM_PARITY_0:
3198 i -= 1;
3199 break;
3200 case ALGORITHM_PARITY_N:
3201 break;
3202 default:
3203 BUG();
3204 }
3205 break;
3206 case 6:
3207 if (i == sh->qd_idx)
3208 return 0; /* It is the Q disk */
3209 switch (algorithm) {
3210 case ALGORITHM_LEFT_ASYMMETRIC:
3211 case ALGORITHM_RIGHT_ASYMMETRIC:
3212 case ALGORITHM_ROTATING_ZERO_RESTART:
3213 case ALGORITHM_ROTATING_N_RESTART:
3214 if (sh->pd_idx == raid_disks-1)
3215 i--; /* Q D D D P */
3216 else if (i > sh->pd_idx)
3217 i -= 2; /* D D P Q D */
3218 break;
3219 case ALGORITHM_LEFT_SYMMETRIC:
3220 case ALGORITHM_RIGHT_SYMMETRIC:
3221 if (sh->pd_idx == raid_disks-1)
3222 i--; /* Q D D D P */
3223 else {
3224 /* D D P Q D */
3225 if (i < sh->pd_idx)
3226 i += raid_disks;
3227 i -= (sh->pd_idx + 2);
3228 }
3229 break;
3230 case ALGORITHM_PARITY_0:
3231 i -= 2;
3232 break;
3233 case ALGORITHM_PARITY_N:
3234 break;
3235 case ALGORITHM_ROTATING_N_CONTINUE:
3236 /* Like left_symmetric, but P is before Q */
3237 if (sh->pd_idx == 0)
3238 i--; /* P D D D Q */
3239 else {
3240 /* D D Q P D */
3241 if (i < sh->pd_idx)
3242 i += raid_disks;
3243 i -= (sh->pd_idx + 1);
3244 }
3245 break;
3246 case ALGORITHM_LEFT_ASYMMETRIC_6:
3247 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3248 if (i > sh->pd_idx)
3249 i--;
3250 break;
3251 case ALGORITHM_LEFT_SYMMETRIC_6:
3252 case ALGORITHM_RIGHT_SYMMETRIC_6:
3253 if (i < sh->pd_idx)
3254 i += data_disks + 1;
3255 i -= (sh->pd_idx + 1);
3256 break;
3257 case ALGORITHM_PARITY_0_6:
3258 i -= 1;
3259 break;
3260 default:
3261 BUG();
3262 }
3263 break;
3264 }
3265
3266 chunk_number = stripe * data_disks + i;
3267 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3268
3269 check = raid5_compute_sector(conf, r_sector,
3270 previous, dd_idx: &dummy1, sh: &sh2);
3271 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3272 || sh2.qd_idx != sh->qd_idx) {
3273 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3274 mdname(conf->mddev));
3275 return 0;
3276 }
3277 return r_sector;
3278}
3279
3280/*
3281 * There are cases where we want handle_stripe_dirtying() and
3282 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3283 *
3284 * This function checks whether we want to delay the towrite. Specifically,
3285 * we delay the towrite when:
3286 *
3287 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3288 * stripe has data in journal (for other devices).
3289 *
3290 * In this case, when reading data for the non-overwrite dev, it is
3291 * necessary to handle complex rmw of write back cache (prexor with
3292 * orig_page, and xor with page). To keep read path simple, we would
3293 * like to flush data in journal to RAID disks first, so complex rmw
3294 * is handled in the write patch (handle_stripe_dirtying).
3295 *
3296 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3297 *
3298 * It is important to be able to flush all stripes in raid5-cache.
3299 * Therefore, we need reserve some space on the journal device for
3300 * these flushes. If flush operation includes pending writes to the
3301 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3302 * for the flush out. If we exclude these pending writes from flush
3303 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3304 * Therefore, excluding pending writes in these cases enables more
3305 * efficient use of the journal device.
3306 *
3307 * Note: To make sure the stripe makes progress, we only delay
3308 * towrite for stripes with data already in journal (injournal > 0).
3309 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3310 * no_space_stripes list.
3311 *
3312 * 3. during journal failure
3313 * In journal failure, we try to flush all cached data to raid disks
3314 * based on data in stripe cache. The array is read-only to upper
3315 * layers, so we would skip all pending writes.
3316 *
3317 */
3318static inline bool delay_towrite(struct r5conf *conf,
3319 struct r5dev *dev,
3320 struct stripe_head_state *s)
3321{
3322 /* case 1 above */
3323 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3324 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3325 return true;
3326 /* case 2 above */
3327 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3328 s->injournal > 0)
3329 return true;
3330 /* case 3 above */
3331 if (s->log_failed && s->injournal)
3332 return true;
3333 return false;
3334}
3335
3336static void
3337schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3338 int rcw, int expand)
3339{
3340 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3341 struct r5conf *conf = sh->raid_conf;
3342 int level = conf->level;
3343
3344 if (rcw) {
3345 /*
3346 * In some cases, handle_stripe_dirtying initially decided to
3347 * run rmw and allocates extra page for prexor. However, rcw is
3348 * cheaper later on. We need to free the extra page now,
3349 * because we won't be able to do that in ops_complete_prexor().
3350 */
3351 r5c_release_extra_page(sh);
3352
3353 for (i = disks; i--; ) {
3354 struct r5dev *dev = &sh->dev[i];
3355
3356 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3357 set_bit(nr: R5_LOCKED, addr: &dev->flags);
3358 set_bit(nr: R5_Wantdrain, addr: &dev->flags);
3359 if (!expand)
3360 clear_bit(nr: R5_UPTODATE, addr: &dev->flags);
3361 s->locked++;
3362 } else if (test_bit(R5_InJournal, &dev->flags)) {
3363 set_bit(nr: R5_LOCKED, addr: &dev->flags);
3364 s->locked++;
3365 }
3366 }
3367 /* if we are not expanding this is a proper write request, and
3368 * there will be bios with new data to be drained into the
3369 * stripe cache
3370 */
3371 if (!expand) {
3372 if (!s->locked)
3373 /* False alarm, nothing to do */
3374 return;
3375 sh->reconstruct_state = reconstruct_state_drain_run;
3376 set_bit(nr: STRIPE_OP_BIODRAIN, addr: &s->ops_request);
3377 } else
3378 sh->reconstruct_state = reconstruct_state_run;
3379
3380 set_bit(nr: STRIPE_OP_RECONSTRUCT, addr: &s->ops_request);
3381
3382 if (s->locked + conf->max_degraded == disks)
3383 if (!test_and_set_bit(nr: STRIPE_FULL_WRITE, addr: &sh->state))
3384 atomic_inc(v: &conf->pending_full_writes);
3385 } else {
3386 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3387 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3388 BUG_ON(level == 6 &&
3389 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3390 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3391
3392 for (i = disks; i--; ) {
3393 struct r5dev *dev = &sh->dev[i];
3394 if (i == pd_idx || i == qd_idx)
3395 continue;
3396
3397 if (dev->towrite &&
3398 (test_bit(R5_UPTODATE, &dev->flags) ||
3399 test_bit(R5_Wantcompute, &dev->flags))) {
3400 set_bit(nr: R5_Wantdrain, addr: &dev->flags);
3401 set_bit(nr: R5_LOCKED, addr: &dev->flags);
3402 clear_bit(nr: R5_UPTODATE, addr: &dev->flags);
3403 s->locked++;
3404 } else if (test_bit(R5_InJournal, &dev->flags)) {
3405 set_bit(nr: R5_LOCKED, addr: &dev->flags);
3406 s->locked++;
3407 }
3408 }
3409 if (!s->locked)
3410 /* False alarm - nothing to do */
3411 return;
3412 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3413 set_bit(nr: STRIPE_OP_PREXOR, addr: &s->ops_request);
3414 set_bit(nr: STRIPE_OP_BIODRAIN, addr: &s->ops_request);
3415 set_bit(nr: STRIPE_OP_RECONSTRUCT, addr: &s->ops_request);
3416 }
3417
3418 /* keep the parity disk(s) locked while asynchronous operations
3419 * are in flight
3420 */
3421 set_bit(nr: R5_LOCKED, addr: &sh->dev[pd_idx].flags);
3422 clear_bit(nr: R5_UPTODATE, addr: &sh->dev[pd_idx].flags);
3423 s->locked++;
3424
3425 if (level == 6) {
3426 int qd_idx = sh->qd_idx;
3427 struct r5dev *dev = &sh->dev[qd_idx];
3428
3429 set_bit(nr: R5_LOCKED, addr: &dev->flags);
3430 clear_bit(nr: R5_UPTODATE, addr: &dev->flags);
3431 s->locked++;
3432 }
3433
3434 if (raid5_has_ppl(conf: sh->raid_conf) && sh->ppl_page &&
3435 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3436 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3437 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3438 set_bit(nr: STRIPE_OP_PARTIAL_PARITY, addr: &s->ops_request);
3439
3440 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3441 __func__, (unsigned long long)sh->sector,
3442 s->locked, s->ops_request);
3443}
3444
3445static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3446 int dd_idx, int forwrite)
3447{
3448 struct r5conf *conf = sh->raid_conf;
3449 struct bio **bip;
3450
3451 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3452 bi->bi_iter.bi_sector, sh->sector);
3453
3454 /* Don't allow new IO added to stripes in batch list */
3455 if (sh->batch_head)
3456 return true;
3457
3458 if (forwrite)
3459 bip = &sh->dev[dd_idx].towrite;
3460 else
3461 bip = &sh->dev[dd_idx].toread;
3462
3463 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3464 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3465 return true;
3466 bip = &(*bip)->bi_next;
3467 }
3468
3469 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3470 return true;
3471
3472 if (forwrite && raid5_has_ppl(conf)) {
3473 /*
3474 * With PPL only writes to consecutive data chunks within a
3475 * stripe are allowed because for a single stripe_head we can
3476 * only have one PPL entry at a time, which describes one data
3477 * range. Not really an overlap, but wait_for_overlap can be
3478 * used to handle this.
3479 */
3480 sector_t sector;
3481 sector_t first = 0;
3482 sector_t last = 0;
3483 int count = 0;
3484 int i;
3485
3486 for (i = 0; i < sh->disks; i++) {
3487 if (i != sh->pd_idx &&
3488 (i == dd_idx || sh->dev[i].towrite)) {
3489 sector = sh->dev[i].sector;
3490 if (count == 0 || sector < first)
3491 first = sector;
3492 if (sector > last)
3493 last = sector;
3494 count++;
3495 }
3496 }
3497
3498 if (first + conf->chunk_sectors * (count - 1) != last)
3499 return true;
3500 }
3501
3502 return false;
3503}
3504
3505static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3506 int dd_idx, int forwrite, int previous)
3507{
3508 struct r5conf *conf = sh->raid_conf;
3509 struct bio **bip;
3510 int firstwrite = 0;
3511
3512 if (forwrite) {
3513 bip = &sh->dev[dd_idx].towrite;
3514 if (!*bip)
3515 firstwrite = 1;
3516 } else {
3517 bip = &sh->dev[dd_idx].toread;
3518 }
3519
3520 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3521 bip = &(*bip)->bi_next;
3522
3523 if (!forwrite || previous)
3524 clear_bit(nr: STRIPE_BATCH_READY, addr: &sh->state);
3525
3526 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3527 if (*bip)
3528 bi->bi_next = *bip;
3529 *bip = bi;
3530 bio_inc_remaining(bio: bi);
3531 md_write_inc(mddev: conf->mddev, bi);
3532
3533 if (forwrite) {
3534 /* check if page is covered */
3535 sector_t sector = sh->dev[dd_idx].sector;
3536 for (bi=sh->dev[dd_idx].towrite;
3537 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3538 bi && bi->bi_iter.bi_sector <= sector;
3539 bi = r5_next_bio(conf, bio: bi, sector: sh->dev[dd_idx].sector)) {
3540 if (bio_end_sector(bi) >= sector)
3541 sector = bio_end_sector(bi);
3542 }
3543 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3544 if (!test_and_set_bit(nr: R5_OVERWRITE, addr: &sh->dev[dd_idx].flags))
3545 sh->overwrite_disks++;
3546 }
3547
3548 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3549 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3550 sh->dev[dd_idx].sector);
3551
3552 if (conf->mddev->bitmap && firstwrite) {
3553 /* Cannot hold spinlock over bitmap_startwrite,
3554 * but must ensure this isn't added to a batch until
3555 * we have added to the bitmap and set bm_seq.
3556 * So set STRIPE_BITMAP_PENDING to prevent
3557 * batching.
3558 * If multiple __add_stripe_bio() calls race here they
3559 * much all set STRIPE_BITMAP_PENDING. So only the first one
3560 * to complete "bitmap_startwrite" gets to set
3561 * STRIPE_BIT_DELAY. This is important as once a stripe
3562 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3563 * any more.
3564 */
3565 set_bit(nr: STRIPE_BITMAP_PENDING, addr: &sh->state);
3566 spin_unlock_irq(lock: &sh->stripe_lock);
3567 md_bitmap_startwrite(bitmap: conf->mddev->bitmap, offset: sh->sector,
3568 RAID5_STRIPE_SECTORS(conf), behind: 0);
3569 spin_lock_irq(lock: &sh->stripe_lock);
3570 clear_bit(nr: STRIPE_BITMAP_PENDING, addr: &sh->state);
3571 if (!sh->batch_head) {
3572 sh->bm_seq = conf->seq_flush+1;
3573 set_bit(nr: STRIPE_BIT_DELAY, addr: &sh->state);
3574 }
3575 }
3576}
3577
3578/*
3579 * Each stripe/dev can have one or more bios attached.
3580 * toread/towrite point to the first in a chain.
3581 * The bi_next chain must be in order.
3582 */
3583static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3584 int dd_idx, int forwrite, int previous)
3585{
3586 spin_lock_irq(lock: &sh->stripe_lock);
3587
3588 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3589 set_bit(nr: R5_Overlap, addr: &sh->dev[dd_idx].flags);
3590 spin_unlock_irq(lock: &sh->stripe_lock);
3591 return false;
3592 }
3593
3594 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3595 spin_unlock_irq(lock: &sh->stripe_lock);
3596 return true;
3597}
3598
3599static void end_reshape(struct r5conf *conf);
3600
3601static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3602 struct stripe_head *sh)
3603{
3604 int sectors_per_chunk =
3605 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3606 int dd_idx;
3607 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3608 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3609
3610 raid5_compute_sector(conf,
3611 r_sector: stripe * (disks - conf->max_degraded)
3612 *sectors_per_chunk + chunk_offset,
3613 previous,
3614 dd_idx: &dd_idx, sh);
3615}
3616
3617static void
3618handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3619 struct stripe_head_state *s, int disks)
3620{
3621 int i;
3622 BUG_ON(sh->batch_head);
3623 for (i = disks; i--; ) {
3624 struct bio *bi;
3625 int bitmap_end = 0;
3626
3627 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3628 struct md_rdev *rdev = conf->disks[i].rdev;
3629
3630 if (rdev && test_bit(In_sync, &rdev->flags) &&
3631 !test_bit(Faulty, &rdev->flags))
3632 atomic_inc(v: &rdev->nr_pending);
3633 else
3634 rdev = NULL;
3635 if (rdev) {
3636 if (!rdev_set_badblocks(
3637 rdev,
3638 s: sh->sector,
3639 RAID5_STRIPE_SECTORS(conf), is_new: 0))
3640 md_error(mddev: conf->mddev, rdev);
3641 rdev_dec_pending(rdev, mddev: conf->mddev);
3642 }
3643 }
3644 spin_lock_irq(lock: &sh->stripe_lock);
3645 /* fail all writes first */
3646 bi = sh->dev[i].towrite;
3647 sh->dev[i].towrite = NULL;
3648 sh->overwrite_disks = 0;
3649 spin_unlock_irq(lock: &sh->stripe_lock);
3650 if (bi)
3651 bitmap_end = 1;
3652
3653 log_stripe_write_finished(sh);
3654
3655 if (test_and_clear_bit(nr: R5_Overlap, addr: &sh->dev[i].flags))
3656 wake_up(&conf->wait_for_overlap);
3657
3658 while (bi && bi->bi_iter.bi_sector <
3659 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3660 struct bio *nextbi = r5_next_bio(conf, bio: bi, sector: sh->dev[i].sector);
3661
3662 md_write_end(mddev: conf->mddev);
3663 bio_io_error(bio: bi);
3664 bi = nextbi;
3665 }
3666 if (bitmap_end)
3667 md_bitmap_endwrite(bitmap: conf->mddev->bitmap, offset: sh->sector,
3668 RAID5_STRIPE_SECTORS(conf), success: 0, behind: 0);
3669 bitmap_end = 0;
3670 /* and fail all 'written' */
3671 bi = sh->dev[i].written;
3672 sh->dev[i].written = NULL;
3673 if (test_and_clear_bit(nr: R5_SkipCopy, addr: &sh->dev[i].flags)) {
3674 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3675 sh->dev[i].page = sh->dev[i].orig_page;
3676 }
3677
3678 if (bi) bitmap_end = 1;
3679 while (bi && bi->bi_iter.bi_sector <
3680 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3681 struct bio *bi2 = r5_next_bio(conf, bio: bi, sector: sh->dev[i].sector);
3682
3683 md_write_end(mddev: conf->mddev);
3684 bio_io_error(bio: bi);
3685 bi = bi2;
3686 }
3687
3688 /* fail any reads if this device is non-operational and
3689 * the data has not reached the cache yet.
3690 */
3691 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3692 s->failed > conf->max_degraded &&
3693 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3694 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3695 spin_lock_irq(lock: &sh->stripe_lock);
3696 bi = sh->dev[i].toread;
3697 sh->dev[i].toread = NULL;
3698 spin_unlock_irq(lock: &sh->stripe_lock);
3699 if (test_and_clear_bit(nr: R5_Overlap, addr: &sh->dev[i].flags))
3700 wake_up(&conf->wait_for_overlap);
3701 if (bi)
3702 s->to_read--;
3703 while (bi && bi->bi_iter.bi_sector <
3704 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3705 struct bio *nextbi =
3706 r5_next_bio(conf, bio: bi, sector: sh->dev[i].sector);
3707
3708 bio_io_error(bio: bi);
3709 bi = nextbi;
3710 }
3711 }
3712 if (bitmap_end)
3713 md_bitmap_endwrite(bitmap: conf->mddev->bitmap, offset: sh->sector,
3714 RAID5_STRIPE_SECTORS(conf), success: 0, behind: 0);
3715 /* If we were in the middle of a write the parity block might
3716 * still be locked - so just clear all R5_LOCKED flags
3717 */
3718 clear_bit(nr: R5_LOCKED, addr: &sh->dev[i].flags);
3719 }
3720 s->to_write = 0;
3721 s->written = 0;
3722
3723 if (test_and_clear_bit(nr: STRIPE_FULL_WRITE, addr: &sh->state))
3724 if (atomic_dec_and_test(v: &conf->pending_full_writes))
3725 md_wakeup_thread(thread: conf->mddev->thread);
3726}
3727
3728static void
3729handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3730 struct stripe_head_state *s)
3731{
3732 int abort = 0;
3733 int i;
3734
3735 BUG_ON(sh->batch_head);
3736 clear_bit(nr: STRIPE_SYNCING, addr: &sh->state);
3737 if (test_and_clear_bit(nr: R5_Overlap, addr: &sh->dev[sh->pd_idx].flags))
3738 wake_up(&conf->wait_for_overlap);
3739 s->syncing = 0;
3740 s->replacing = 0;
3741 /* There is nothing more to do for sync/check/repair.
3742 * Don't even need to abort as that is handled elsewhere
3743 * if needed, and not always wanted e.g. if there is a known
3744 * bad block here.
3745 * For recover/replace we need to record a bad block on all
3746 * non-sync devices, or abort the recovery
3747 */
3748 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3749 /* During recovery devices cannot be removed, so
3750 * locking and refcounting of rdevs is not needed
3751 */
3752 for (i = 0; i < conf->raid_disks; i++) {
3753 struct md_rdev *rdev = conf->disks[i].rdev;
3754
3755 if (rdev
3756 && !test_bit(Faulty, &rdev->flags)
3757 && !test_bit(In_sync, &rdev->flags)
3758 && !rdev_set_badblocks(rdev, s: sh->sector,
3759 RAID5_STRIPE_SECTORS(conf), is_new: 0))
3760 abort = 1;
3761 rdev = conf->disks[i].replacement;
3762
3763 if (rdev
3764 && !test_bit(Faulty, &rdev->flags)
3765 && !test_bit(In_sync, &rdev->flags)
3766 && !rdev_set_badblocks(rdev, s: sh->sector,
3767 RAID5_STRIPE_SECTORS(conf), is_new: 0))
3768 abort = 1;
3769 }
3770 if (abort)
3771 conf->recovery_disabled =
3772 conf->mddev->recovery_disabled;
3773 }
3774 md_done_sync(mddev: conf->mddev, RAID5_STRIPE_SECTORS(conf), ok: !abort);
3775}
3776
3777static int want_replace(struct stripe_head *sh, int disk_idx)
3778{
3779 struct md_rdev *rdev;
3780 int rv = 0;
3781
3782 rdev = sh->raid_conf->disks[disk_idx].replacement;
3783 if (rdev
3784 && !test_bit(Faulty, &rdev->flags)
3785 && !test_bit(In_sync, &rdev->flags)
3786 && (rdev->recovery_offset <= sh->sector
3787 || rdev->mddev->recovery_cp <= sh->sector))
3788 rv = 1;
3789 return rv;
3790}
3791
3792static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3793 int disk_idx, int disks)
3794{
3795 struct r5dev *dev = &sh->dev[disk_idx];
3796 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3797 &sh->dev[s->failed_num[1]] };
3798 int i;
3799 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3800
3801
3802 if (test_bit(R5_LOCKED, &dev->flags) ||
3803 test_bit(R5_UPTODATE, &dev->flags))
3804 /* No point reading this as we already have it or have
3805 * decided to get it.
3806 */
3807 return 0;
3808
3809 if (dev->toread ||
3810 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3811 /* We need this block to directly satisfy a request */
3812 return 1;
3813
3814 if (s->syncing || s->expanding ||
3815 (s->replacing && want_replace(sh, disk_idx)))
3816 /* When syncing, or expanding we read everything.
3817 * When replacing, we need the replaced block.
3818 */
3819 return 1;
3820
3821 if ((s->failed >= 1 && fdev[0]->toread) ||
3822 (s->failed >= 2 && fdev[1]->toread))
3823 /* If we want to read from a failed device, then
3824 * we need to actually read every other device.
3825 */
3826 return 1;
3827
3828 /* Sometimes neither read-modify-write nor reconstruct-write
3829 * cycles can work. In those cases we read every block we
3830 * can. Then the parity-update is certain to have enough to
3831 * work with.
3832 * This can only be a problem when we need to write something,
3833 * and some device has failed. If either of those tests
3834 * fail we need look no further.
3835 */
3836 if (!s->failed || !s->to_write)
3837 return 0;
3838
3839 if (test_bit(R5_Insync, &dev->flags) &&
3840 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3841 /* Pre-reads at not permitted until after short delay
3842 * to gather multiple requests. However if this
3843 * device is no Insync, the block could only be computed
3844 * and there is no need to delay that.
3845 */
3846 return 0;
3847
3848 for (i = 0; i < s->failed && i < 2; i++) {
3849 if (fdev[i]->towrite &&
3850 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3851 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3852 /* If we have a partial write to a failed
3853 * device, then we will need to reconstruct
3854 * the content of that device, so all other
3855 * devices must be read.
3856 */
3857 return 1;
3858
3859 if (s->failed >= 2 &&
3860 (fdev[i]->towrite ||
3861 s->failed_num[i] == sh->pd_idx ||
3862 s->failed_num[i] == sh->qd_idx) &&
3863 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3864 /* In max degraded raid6, If the failed disk is P, Q,
3865 * or we want to read the failed disk, we need to do
3866 * reconstruct-write.
3867 */
3868 force_rcw = true;
3869 }
3870
3871 /* If we are forced to do a reconstruct-write, because parity
3872 * cannot be trusted and we are currently recovering it, there
3873 * is extra need to be careful.
3874 * If one of the devices that we would need to read, because
3875 * it is not being overwritten (and maybe not written at all)
3876 * is missing/faulty, then we need to read everything we can.
3877 */
3878 if (!force_rcw &&
3879 sh->sector < sh->raid_conf->mddev->recovery_cp)
3880 /* reconstruct-write isn't being forced */
3881 return 0;
3882 for (i = 0; i < s->failed && i < 2; i++) {
3883 if (s->failed_num[i] != sh->pd_idx &&
3884 s->failed_num[i] != sh->qd_idx &&
3885 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3886 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3887 return 1;
3888 }
3889
3890 return 0;
3891}
3892
3893/* fetch_block - checks the given member device to see if its data needs
3894 * to be read or computed to satisfy a request.
3895 *
3896 * Returns 1 when no more member devices need to be checked, otherwise returns
3897 * 0 to tell the loop in handle_stripe_fill to continue
3898 */
3899static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3900 int disk_idx, int disks)
3901{
3902 struct r5dev *dev = &sh->dev[disk_idx];
3903
3904 /* is the data in this block needed, and can we get it? */
3905 if (need_this_block(sh, s, disk_idx, disks)) {
3906 /* we would like to get this block, possibly by computing it,
3907 * otherwise read it if the backing disk is insync
3908 */
3909 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3910 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3911 BUG_ON(sh->batch_head);
3912
3913 /*
3914 * In the raid6 case if the only non-uptodate disk is P
3915 * then we already trusted P to compute the other failed
3916 * drives. It is safe to compute rather than re-read P.
3917 * In other cases we only compute blocks from failed
3918 * devices, otherwise check/repair might fail to detect
3919 * a real inconsistency.
3920 */
3921
3922 if ((s->uptodate == disks - 1) &&
3923 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3924 (s->failed && (disk_idx == s->failed_num[0] ||
3925 disk_idx == s->failed_num[1])))) {
3926 /* have disk failed, and we're requested to fetch it;
3927 * do compute it
3928 */
3929 pr_debug("Computing stripe %llu block %d\n",
3930 (unsigned long long)sh->sector, disk_idx);
3931 set_bit(nr: STRIPE_COMPUTE_RUN, addr: &sh->state);
3932 set_bit(nr: STRIPE_OP_COMPUTE_BLK, addr: &s->ops_request);
3933 set_bit(nr: R5_Wantcompute, addr: &dev->flags);
3934 sh->ops.target = disk_idx;
3935 sh->ops.target2 = -1; /* no 2nd target */
3936 s->req_compute = 1;
3937 /* Careful: from this point on 'uptodate' is in the eye
3938 * of raid_run_ops which services 'compute' operations
3939 * before writes. R5_Wantcompute flags a block that will
3940 * be R5_UPTODATE by the time it is needed for a
3941 * subsequent operation.
3942 */
3943 s->uptodate++;
3944 return 1;
3945 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3946 /* Computing 2-failure is *very* expensive; only
3947 * do it if failed >= 2
3948 */
3949 int other;
3950 for (other = disks; other--; ) {
3951 if (other == disk_idx)
3952 continue;
3953 if (!test_bit(R5_UPTODATE,
3954 &sh->dev[other].flags))
3955 break;
3956 }
3957 BUG_ON(other < 0);
3958 pr_debug("Computing stripe %llu blocks %d,%d\n",
3959 (unsigned long long)sh->sector,
3960 disk_idx, other);
3961 set_bit(nr: STRIPE_COMPUTE_RUN, addr: &sh->state);
3962 set_bit(nr: STRIPE_OP_COMPUTE_BLK, addr: &s->ops_request);
3963 set_bit(nr: R5_Wantcompute, addr: &sh->dev[disk_idx].flags);
3964 set_bit(nr: R5_Wantcompute, addr: &sh->dev[other].flags);
3965 sh->ops.target = disk_idx;
3966 sh->ops.target2 = other;
3967 s->uptodate += 2;
3968 s->req_compute = 1;
3969 return 1;
3970 } else if (test_bit(R5_Insync, &dev->flags)) {
3971 set_bit(nr: R5_LOCKED, addr: &dev->flags);
3972 set_bit(nr: R5_Wantread, addr: &dev->flags);
3973 s->locked++;
3974 pr_debug("Reading block %d (sync=%d)\n",
3975 disk_idx, s->syncing);
3976 }
3977 }
3978
3979 return 0;
3980}
3981
3982/*
3983 * handle_stripe_fill - read or compute data to satisfy pending requests.
3984 */
3985static void handle_stripe_fill(struct stripe_head *sh,
3986 struct stripe_head_state *s,
3987 int disks)
3988{
3989 int i;
3990
3991 /* look for blocks to read/compute, skip this if a compute
3992 * is already in flight, or if the stripe contents are in the
3993 * midst of changing due to a write
3994 */
3995 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3996 !sh->reconstruct_state) {
3997
3998 /*
3999 * For degraded stripe with data in journal, do not handle
4000 * read requests yet, instead, flush the stripe to raid
4001 * disks first, this avoids handling complex rmw of write
4002 * back cache (prexor with orig_page, and then xor with
4003 * page) in the read path
4004 */
4005 if (s->to_read && s->injournal && s->failed) {
4006 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
4007 r5c_make_stripe_write_out(sh);
4008 goto out;
4009 }
4010
4011 for (i = disks; i--; )
4012 if (fetch_block(sh, s, disk_idx: i, disks))
4013 break;
4014 }
4015out:
4016 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4017}
4018
4019static void break_stripe_batch_list(struct stripe_head *head_sh,
4020 unsigned long handle_flags);
4021/* handle_stripe_clean_event
4022 * any written block on an uptodate or failed drive can be returned.
4023 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
4024 * never LOCKED, so we don't need to test 'failed' directly.
4025 */
4026static void handle_stripe_clean_event(struct r5conf *conf,
4027 struct stripe_head *sh, int disks)
4028{
4029 int i;
4030 struct r5dev *dev;
4031 int discard_pending = 0;
4032 struct stripe_head *head_sh = sh;
4033 bool do_endio = false;
4034
4035 for (i = disks; i--; )
4036 if (sh->dev[i].written) {
4037 dev = &sh->dev[i];
4038 if (!test_bit(R5_LOCKED, &dev->flags) &&
4039 (test_bit(R5_UPTODATE, &dev->flags) ||
4040 test_bit(R5_Discard, &dev->flags) ||
4041 test_bit(R5_SkipCopy, &dev->flags))) {
4042 /* We can return any write requests */
4043 struct bio *wbi, *wbi2;
4044 pr_debug("Return write for disc %d\n", i);
4045 if (test_and_clear_bit(nr: R5_Discard, addr: &dev->flags))
4046 clear_bit(nr: R5_UPTODATE, addr: &dev->flags);
4047 if (test_and_clear_bit(nr: R5_SkipCopy, addr: &dev->flags)) {
4048 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4049 }
4050 do_endio = true;
4051
4052returnbi:
4053 dev->page = dev->orig_page;
4054 wbi = dev->written;
4055 dev->written = NULL;
4056 while (wbi && wbi->bi_iter.bi_sector <
4057 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4058 wbi2 = r5_next_bio(conf, bio: wbi, sector: dev->sector);
4059 md_write_end(mddev: conf->mddev);
4060 bio_endio(wbi);
4061 wbi = wbi2;
4062 }
4063 md_bitmap_endwrite(bitmap: conf->mddev->bitmap, offset: sh->sector,
4064 RAID5_STRIPE_SECTORS(conf),
4065 success: !test_bit(STRIPE_DEGRADED, &sh->state),
4066 behind: 0);
4067 if (head_sh->batch_head) {
4068 sh = list_first_entry(&sh->batch_list,
4069 struct stripe_head,
4070 batch_list);
4071 if (sh != head_sh) {
4072 dev = &sh->dev[i];
4073 goto returnbi;
4074 }
4075 }
4076 sh = head_sh;
4077 dev = &sh->dev[i];
4078 } else if (test_bit(R5_Discard, &dev->flags))
4079 discard_pending = 1;
4080 }
4081
4082 log_stripe_write_finished(sh);
4083
4084 if (!discard_pending &&
4085 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4086 int hash;
4087 clear_bit(nr: R5_Discard, addr: &sh->dev[sh->pd_idx].flags);
4088 clear_bit(nr: R5_UPTODATE, addr: &sh->dev[sh->pd_idx].flags);
4089 if (sh->qd_idx >= 0) {
4090 clear_bit(nr: R5_Discard, addr: &sh->dev[sh->qd_idx].flags);
4091 clear_bit(nr: R5_UPTODATE, addr: &sh->dev[sh->qd_idx].flags);
4092 }
4093 /* now that discard is done we can proceed with any sync */
4094 clear_bit(nr: STRIPE_DISCARD, addr: &sh->state);
4095 /*
4096 * SCSI discard will change some bio fields and the stripe has
4097 * no updated data, so remove it from hash list and the stripe
4098 * will be reinitialized
4099 */
4100unhash:
4101 hash = sh->hash_lock_index;
4102 spin_lock_irq(lock: conf->hash_locks + hash);
4103 remove_hash(sh);
4104 spin_unlock_irq(lock: conf->hash_locks + hash);
4105 if (head_sh->batch_head) {
4106 sh = list_first_entry(&sh->batch_list,
4107 struct stripe_head, batch_list);
4108 if (sh != head_sh)
4109 goto unhash;
4110 }
4111 sh = head_sh;
4112
4113 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4114 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4115
4116 }
4117
4118 if (test_and_clear_bit(nr: STRIPE_FULL_WRITE, addr: &sh->state))
4119 if (atomic_dec_and_test(v: &conf->pending_full_writes))
4120 md_wakeup_thread(thread: conf->mddev->thread);
4121
4122 if (head_sh->batch_head && do_endio)
4123 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4124}
4125
4126/*
4127 * For RMW in write back cache, we need extra page in prexor to store the
4128 * old data. This page is stored in dev->orig_page.
4129 *
4130 * This function checks whether we have data for prexor. The exact logic
4131 * is:
4132 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4133 */
4134static inline bool uptodate_for_rmw(struct r5dev *dev)
4135{
4136 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4137 (!test_bit(R5_InJournal, &dev->flags) ||
4138 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4139}
4140
4141static int handle_stripe_dirtying(struct r5conf *conf,
4142 struct stripe_head *sh,
4143 struct stripe_head_state *s,
4144 int disks)
4145{
4146 int rmw = 0, rcw = 0, i;
4147 sector_t recovery_cp = conf->mddev->recovery_cp;
4148
4149 /* Check whether resync is now happening or should start.
4150 * If yes, then the array is dirty (after unclean shutdown or
4151 * initial creation), so parity in some stripes might be inconsistent.
4152 * In this case, we need to always do reconstruct-write, to ensure
4153 * that in case of drive failure or read-error correction, we
4154 * generate correct data from the parity.
4155 */
4156 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4157 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4158 s->failed == 0)) {
4159 /* Calculate the real rcw later - for now make it
4160 * look like rcw is cheaper
4161 */
4162 rcw = 1; rmw = 2;
4163 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4164 conf->rmw_level, (unsigned long long)recovery_cp,
4165 (unsigned long long)sh->sector);
4166 } else for (i = disks; i--; ) {
4167 /* would I have to read this buffer for read_modify_write */
4168 struct r5dev *dev = &sh->dev[i];
4169 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4170 i == sh->pd_idx || i == sh->qd_idx ||
4171 test_bit(R5_InJournal, &dev->flags)) &&
4172 !test_bit(R5_LOCKED, &dev->flags) &&
4173 !(uptodate_for_rmw(dev) ||
4174 test_bit(R5_Wantcompute, &dev->flags))) {
4175 if (test_bit(R5_Insync, &dev->flags))
4176 rmw++;
4177 else
4178 rmw += 2*disks; /* cannot read it */
4179 }
4180 /* Would I have to read this buffer for reconstruct_write */
4181 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4182 i != sh->pd_idx && i != sh->qd_idx &&
4183 !test_bit(R5_LOCKED, &dev->flags) &&
4184 !(test_bit(R5_UPTODATE, &dev->flags) ||
4185 test_bit(R5_Wantcompute, &dev->flags))) {
4186 if (test_bit(R5_Insync, &dev->flags))
4187 rcw++;
4188 else
4189 rcw += 2*disks;
4190 }
4191 }
4192
4193 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4194 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4195 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4196 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4197 /* prefer read-modify-write, but need to get some data */
4198 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4199 sh->sector, rmw);
4200
4201 for (i = disks; i--; ) {
4202 struct r5dev *dev = &sh->dev[i];
4203 if (test_bit(R5_InJournal, &dev->flags) &&
4204 dev->page == dev->orig_page &&
4205 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4206 /* alloc page for prexor */
4207 struct page *p = alloc_page(GFP_NOIO);
4208
4209 if (p) {
4210 dev->orig_page = p;
4211 continue;
4212 }
4213
4214 /*
4215 * alloc_page() failed, try use
4216 * disk_info->extra_page
4217 */
4218 if (!test_and_set_bit(nr: R5C_EXTRA_PAGE_IN_USE,
4219 addr: &conf->cache_state)) {
4220 r5c_use_extra_page(sh);
4221 break;
4222 }
4223
4224 /* extra_page in use, add to delayed_list */
4225 set_bit(nr: STRIPE_DELAYED, addr: &sh->state);
4226 s->waiting_extra_page = 1;
4227 return -EAGAIN;
4228 }
4229 }
4230
4231 for (i = disks; i--; ) {
4232 struct r5dev *dev = &sh->dev[i];
4233 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4234 i == sh->pd_idx || i == sh->qd_idx ||
4235 test_bit(R5_InJournal, &dev->flags)) &&
4236 !test_bit(R5_LOCKED, &dev->flags) &&
4237 !(uptodate_for_rmw(dev) ||
4238 test_bit(R5_Wantcompute, &dev->flags)) &&
4239 test_bit(R5_Insync, &dev->flags)) {
4240 if (test_bit(STRIPE_PREREAD_ACTIVE,
4241 &sh->state)) {
4242 pr_debug("Read_old block %d for r-m-w\n",
4243 i);
4244 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4245 set_bit(nr: R5_Wantread, addr: &dev->flags);
4246 s->locked++;
4247 } else
4248 set_bit(nr: STRIPE_DELAYED, addr: &sh->state);
4249 }
4250 }
4251 }
4252 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4253 /* want reconstruct write, but need to get some data */
4254 int qread =0;
4255 rcw = 0;
4256 for (i = disks; i--; ) {
4257 struct r5dev *dev = &sh->dev[i];
4258 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4259 i != sh->pd_idx && i != sh->qd_idx &&
4260 !test_bit(R5_LOCKED, &dev->flags) &&
4261 !(test_bit(R5_UPTODATE, &dev->flags) ||
4262 test_bit(R5_Wantcompute, &dev->flags))) {
4263 rcw++;
4264 if (test_bit(R5_Insync, &dev->flags) &&
4265 test_bit(STRIPE_PREREAD_ACTIVE,
4266 &sh->state)) {
4267 pr_debug("Read_old block "
4268 "%d for Reconstruct\n", i);
4269 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4270 set_bit(nr: R5_Wantread, addr: &dev->flags);
4271 s->locked++;
4272 qread++;
4273 } else
4274 set_bit(nr: STRIPE_DELAYED, addr: &sh->state);
4275 }
4276 }
4277 if (rcw && !mddev_is_dm(mddev: conf->mddev))
4278 blk_add_trace_msg(conf->mddev->gendisk->queue,
4279 "raid5 rcw %llu %d %d %d",
4280 (unsigned long long)sh->sector, rcw, qread,
4281 test_bit(STRIPE_DELAYED, &sh->state));
4282 }
4283
4284 if (rcw > disks && rmw > disks &&
4285 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4286 set_bit(nr: STRIPE_DELAYED, addr: &sh->state);
4287
4288 /* now if nothing is locked, and if we have enough data,
4289 * we can start a write request
4290 */
4291 /* since handle_stripe can be called at any time we need to handle the
4292 * case where a compute block operation has been submitted and then a
4293 * subsequent call wants to start a write request. raid_run_ops only
4294 * handles the case where compute block and reconstruct are requested
4295 * simultaneously. If this is not the case then new writes need to be
4296 * held off until the compute completes.
4297 */
4298 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4299 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4300 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4301 schedule_reconstruction(sh, s, rcw: rcw == 0, expand: 0);
4302 return 0;
4303}
4304
4305static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4306 struct stripe_head_state *s, int disks)
4307{
4308 struct r5dev *dev = NULL;
4309
4310 BUG_ON(sh->batch_head);
4311 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4312
4313 switch (sh->check_state) {
4314 case check_state_idle:
4315 /* start a new check operation if there are no failures */
4316 if (s->failed == 0) {
4317 BUG_ON(s->uptodate != disks);
4318 sh->check_state = check_state_run;
4319 set_bit(nr: STRIPE_OP_CHECK, addr: &s->ops_request);
4320 clear_bit(nr: R5_UPTODATE, addr: &sh->dev[sh->pd_idx].flags);
4321 s->uptodate--;
4322 break;
4323 }
4324 dev = &sh->dev[s->failed_num[0]];
4325 fallthrough;
4326 case check_state_compute_result:
4327 sh->check_state = check_state_idle;
4328 if (!dev)
4329 dev = &sh->dev[sh->pd_idx];
4330
4331 /* check that a write has not made the stripe insync */
4332 if (test_bit(STRIPE_INSYNC, &sh->state))
4333 break;
4334
4335 /* either failed parity check, or recovery is happening */
4336 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4337 BUG_ON(s->uptodate != disks);
4338
4339 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4340 s->locked++;
4341 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
4342
4343 clear_bit(nr: STRIPE_DEGRADED, addr: &sh->state);
4344 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4345 break;
4346 case check_state_run:
4347 break; /* we will be called again upon completion */
4348 case check_state_check_result:
4349 sh->check_state = check_state_idle;
4350
4351 /* if a failure occurred during the check operation, leave
4352 * STRIPE_INSYNC not set and let the stripe be handled again
4353 */
4354 if (s->failed)
4355 break;
4356
4357 /* handle a successful check operation, if parity is correct
4358 * we are done. Otherwise update the mismatch count and repair
4359 * parity if !MD_RECOVERY_CHECK
4360 */
4361 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4362 /* parity is correct (on disc,
4363 * not in buffer any more)
4364 */
4365 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4366 else {
4367 atomic64_add(RAID5_STRIPE_SECTORS(conf), v: &conf->mddev->resync_mismatches);
4368 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4369 /* don't try to repair!! */
4370 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4371 pr_warn_ratelimited("%s: mismatch sector in range "
4372 "%llu-%llu\n", mdname(conf->mddev),
4373 (unsigned long long) sh->sector,
4374 (unsigned long long) sh->sector +
4375 RAID5_STRIPE_SECTORS(conf));
4376 } else {
4377 sh->check_state = check_state_compute_run;
4378 set_bit(nr: STRIPE_COMPUTE_RUN, addr: &sh->state);
4379 set_bit(nr: STRIPE_OP_COMPUTE_BLK, addr: &s->ops_request);
4380 set_bit(nr: R5_Wantcompute,
4381 addr: &sh->dev[sh->pd_idx].flags);
4382 sh->ops.target = sh->pd_idx;
4383 sh->ops.target2 = -1;
4384 s->uptodate++;
4385 }
4386 }
4387 break;
4388 case check_state_compute_run:
4389 break;
4390 default:
4391 pr_err("%s: unknown check_state: %d sector: %llu\n",
4392 __func__, sh->check_state,
4393 (unsigned long long) sh->sector);
4394 BUG();
4395 }
4396}
4397
4398static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4399 struct stripe_head_state *s,
4400 int disks)
4401{
4402 int pd_idx = sh->pd_idx;
4403 int qd_idx = sh->qd_idx;
4404 struct r5dev *dev;
4405
4406 BUG_ON(sh->batch_head);
4407 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4408
4409 BUG_ON(s->failed > 2);
4410
4411 /* Want to check and possibly repair P and Q.
4412 * However there could be one 'failed' device, in which
4413 * case we can only check one of them, possibly using the
4414 * other to generate missing data
4415 */
4416
4417 switch (sh->check_state) {
4418 case check_state_idle:
4419 /* start a new check operation if there are < 2 failures */
4420 if (s->failed == s->q_failed) {
4421 /* The only possible failed device holds Q, so it
4422 * makes sense to check P (If anything else were failed,
4423 * we would have used P to recreate it).
4424 */
4425 sh->check_state = check_state_run;
4426 }
4427 if (!s->q_failed && s->failed < 2) {
4428 /* Q is not failed, and we didn't use it to generate
4429 * anything, so it makes sense to check it
4430 */
4431 if (sh->check_state == check_state_run)
4432 sh->check_state = check_state_run_pq;
4433 else
4434 sh->check_state = check_state_run_q;
4435 }
4436
4437 /* discard potentially stale zero_sum_result */
4438 sh->ops.zero_sum_result = 0;
4439
4440 if (sh->check_state == check_state_run) {
4441 /* async_xor_zero_sum destroys the contents of P */
4442 clear_bit(nr: R5_UPTODATE, addr: &sh->dev[pd_idx].flags);
4443 s->uptodate--;
4444 }
4445 if (sh->check_state >= check_state_run &&
4446 sh->check_state <= check_state_run_pq) {
4447 /* async_syndrome_zero_sum preserves P and Q, so
4448 * no need to mark them !uptodate here
4449 */
4450 set_bit(nr: STRIPE_OP_CHECK, addr: &s->ops_request);
4451 break;
4452 }
4453
4454 /* we have 2-disk failure */
4455 BUG_ON(s->failed != 2);
4456 fallthrough;
4457 case check_state_compute_result:
4458 sh->check_state = check_state_idle;
4459
4460 /* check that a write has not made the stripe insync */
4461 if (test_bit(STRIPE_INSYNC, &sh->state))
4462 break;
4463
4464 /* now write out any block on a failed drive,
4465 * or P or Q if they were recomputed
4466 */
4467 dev = NULL;
4468 if (s->failed == 2) {
4469 dev = &sh->dev[s->failed_num[1]];
4470 s->locked++;
4471 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4472 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
4473 }
4474 if (s->failed >= 1) {
4475 dev = &sh->dev[s->failed_num[0]];
4476 s->locked++;
4477 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4478 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
4479 }
4480 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4481 dev = &sh->dev[pd_idx];
4482 s->locked++;
4483 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4484 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
4485 }
4486 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4487 dev = &sh->dev[qd_idx];
4488 s->locked++;
4489 set_bit(nr: R5_LOCKED, addr: &dev->flags);
4490 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
4491 }
4492 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4493 "%s: disk%td not up to date\n",
4494 mdname(conf->mddev),
4495 dev - (struct r5dev *) &sh->dev)) {
4496 clear_bit(nr: R5_LOCKED, addr: &dev->flags);
4497 clear_bit(nr: R5_Wantwrite, addr: &dev->flags);
4498 s->locked--;
4499 }
4500 clear_bit(nr: STRIPE_DEGRADED, addr: &sh->state);
4501
4502 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4503 break;
4504 case check_state_run:
4505 case check_state_run_q:
4506 case check_state_run_pq:
4507 break; /* we will be called again upon completion */
4508 case check_state_check_result:
4509 sh->check_state = check_state_idle;
4510
4511 /* handle a successful check operation, if parity is correct
4512 * we are done. Otherwise update the mismatch count and repair
4513 * parity if !MD_RECOVERY_CHECK
4514 */
4515 if (sh->ops.zero_sum_result == 0) {
4516 /* both parities are correct */
4517 if (!s->failed)
4518 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4519 else {
4520 /* in contrast to the raid5 case we can validate
4521 * parity, but still have a failure to write
4522 * back
4523 */
4524 sh->check_state = check_state_compute_result;
4525 /* Returning at this point means that we may go
4526 * off and bring p and/or q uptodate again so
4527 * we make sure to check zero_sum_result again
4528 * to verify if p or q need writeback
4529 */
4530 }
4531 } else {
4532 atomic64_add(RAID5_STRIPE_SECTORS(conf), v: &conf->mddev->resync_mismatches);
4533 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4534 /* don't try to repair!! */
4535 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4536 pr_warn_ratelimited("%s: mismatch sector in range "
4537 "%llu-%llu\n", mdname(conf->mddev),
4538 (unsigned long long) sh->sector,
4539 (unsigned long long) sh->sector +
4540 RAID5_STRIPE_SECTORS(conf));
4541 } else {
4542 int *target = &sh->ops.target;
4543
4544 sh->ops.target = -1;
4545 sh->ops.target2 = -1;
4546 sh->check_state = check_state_compute_run;
4547 set_bit(nr: STRIPE_COMPUTE_RUN, addr: &sh->state);
4548 set_bit(nr: STRIPE_OP_COMPUTE_BLK, addr: &s->ops_request);
4549 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4550 set_bit(nr: R5_Wantcompute,
4551 addr: &sh->dev[pd_idx].flags);
4552 *target = pd_idx;
4553 target = &sh->ops.target2;
4554 s->uptodate++;
4555 }
4556 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4557 set_bit(nr: R5_Wantcompute,
4558 addr: &sh->dev[qd_idx].flags);
4559 *target = qd_idx;
4560 s->uptodate++;
4561 }
4562 }
4563 }
4564 break;
4565 case check_state_compute_run:
4566 break;
4567 default:
4568 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4569 __func__, sh->check_state,
4570 (unsigned long long) sh->sector);
4571 BUG();
4572 }
4573}
4574
4575static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4576{
4577 int i;
4578
4579 /* We have read all the blocks in this stripe and now we need to
4580 * copy some of them into a target stripe for expand.
4581 */
4582 struct dma_async_tx_descriptor *tx = NULL;
4583 BUG_ON(sh->batch_head);
4584 clear_bit(nr: STRIPE_EXPAND_SOURCE, addr: &sh->state);
4585 for (i = 0; i < sh->disks; i++)
4586 if (i != sh->pd_idx && i != sh->qd_idx) {
4587 int dd_idx, j;
4588 struct stripe_head *sh2;
4589 struct async_submit_ctl submit;
4590
4591 sector_t bn = raid5_compute_blocknr(sh, i, previous: 1);
4592 sector_t s = raid5_compute_sector(conf, r_sector: bn, previous: 0,
4593 dd_idx: &dd_idx, NULL);
4594 sh2 = raid5_get_active_stripe(conf, NULL, sector: s,
4595 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4596 if (sh2 == NULL)
4597 /* so far only the early blocks of this stripe
4598 * have been requested. When later blocks
4599 * get requested, we will try again
4600 */
4601 continue;
4602 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4603 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4604 /* must have already done this block */
4605 raid5_release_stripe(sh: sh2);
4606 continue;
4607 }
4608
4609 /* place all the copies on one channel */
4610 init_async_submit(args: &submit, flags: 0, tx, NULL, NULL, NULL);
4611 tx = async_memcpy(dest: sh2->dev[dd_idx].page,
4612 src: sh->dev[i].page, dest_offset: sh2->dev[dd_idx].offset,
4613 src_offset: sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4614 submit: &submit);
4615
4616 set_bit(nr: R5_Expanded, addr: &sh2->dev[dd_idx].flags);
4617 set_bit(nr: R5_UPTODATE, addr: &sh2->dev[dd_idx].flags);
4618 for (j = 0; j < conf->raid_disks; j++)
4619 if (j != sh2->pd_idx &&
4620 j != sh2->qd_idx &&
4621 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4622 break;
4623 if (j == conf->raid_disks) {
4624 set_bit(nr: STRIPE_EXPAND_READY, addr: &sh2->state);
4625 set_bit(nr: STRIPE_HANDLE, addr: &sh2->state);
4626 }
4627 raid5_release_stripe(sh: sh2);
4628
4629 }
4630 /* done submitting copies, wait for them to complete */
4631 async_tx_quiesce(tx: &tx);
4632}
4633
4634/*
4635 * handle_stripe - do things to a stripe.
4636 *
4637 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4638 * state of various bits to see what needs to be done.
4639 * Possible results:
4640 * return some read requests which now have data
4641 * return some write requests which are safely on storage
4642 * schedule a read on some buffers
4643 * schedule a write of some buffers
4644 * return confirmation of parity correctness
4645 *
4646 */
4647
4648static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4649{
4650 struct r5conf *conf = sh->raid_conf;
4651 int disks = sh->disks;
4652 struct r5dev *dev;
4653 int i;
4654 int do_recovery = 0;
4655
4656 memset(s, 0, sizeof(*s));
4657
4658 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4659 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4660 s->failed_num[0] = -1;
4661 s->failed_num[1] = -1;
4662 s->log_failed = r5l_log_disk_error(conf);
4663
4664 /* Now to look around and see what can be done */
4665 for (i=disks; i--; ) {
4666 struct md_rdev *rdev;
4667 int is_bad = 0;
4668
4669 dev = &sh->dev[i];
4670
4671 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4672 i, dev->flags,
4673 dev->toread, dev->towrite, dev->written);
4674 /* maybe we can reply to a read
4675 *
4676 * new wantfill requests are only permitted while
4677 * ops_complete_biofill is guaranteed to be inactive
4678 */
4679 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4680 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4681 set_bit(nr: R5_Wantfill, addr: &dev->flags);
4682
4683 /* now count some things */
4684 if (test_bit(R5_LOCKED, &dev->flags))
4685 s->locked++;
4686 if (test_bit(R5_UPTODATE, &dev->flags))
4687 s->uptodate++;
4688 if (test_bit(R5_Wantcompute, &dev->flags)) {
4689 s->compute++;
4690 BUG_ON(s->compute > 2);
4691 }
4692
4693 if (test_bit(R5_Wantfill, &dev->flags))
4694 s->to_fill++;
4695 else if (dev->toread)
4696 s->to_read++;
4697 if (dev->towrite) {
4698 s->to_write++;
4699 if (!test_bit(R5_OVERWRITE, &dev->flags))
4700 s->non_overwrite++;
4701 }
4702 if (dev->written)
4703 s->written++;
4704 /* Prefer to use the replacement for reads, but only
4705 * if it is recovered enough and has no bad blocks.
4706 */
4707 rdev = conf->disks[i].replacement;
4708 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4709 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4710 !rdev_has_badblock(rdev, s: sh->sector,
4711 RAID5_STRIPE_SECTORS(conf)))
4712 set_bit(nr: R5_ReadRepl, addr: &dev->flags);
4713 else {
4714 if (rdev && !test_bit(Faulty, &rdev->flags))
4715 set_bit(nr: R5_NeedReplace, addr: &dev->flags);
4716 else
4717 clear_bit(nr: R5_NeedReplace, addr: &dev->flags);
4718 rdev = conf->disks[i].rdev;
4719 clear_bit(nr: R5_ReadRepl, addr: &dev->flags);
4720 }
4721 if (rdev && test_bit(Faulty, &rdev->flags))
4722 rdev = NULL;
4723 if (rdev) {
4724 is_bad = rdev_has_badblock(rdev, s: sh->sector,
4725 RAID5_STRIPE_SECTORS(conf));
4726 if (s->blocked_rdev == NULL
4727 && (test_bit(Blocked, &rdev->flags)
4728 || is_bad < 0)) {
4729 if (is_bad < 0)
4730 set_bit(nr: BlockedBadBlocks,
4731 addr: &rdev->flags);
4732 s->blocked_rdev = rdev;
4733 atomic_inc(v: &rdev->nr_pending);
4734 }
4735 }
4736 clear_bit(nr: R5_Insync, addr: &dev->flags);
4737 if (!rdev)
4738 /* Not in-sync */;
4739 else if (is_bad) {
4740 /* also not in-sync */
4741 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4742 test_bit(R5_UPTODATE, &dev->flags)) {
4743 /* treat as in-sync, but with a read error
4744 * which we can now try to correct
4745 */
4746 set_bit(nr: R5_Insync, addr: &dev->flags);
4747 set_bit(nr: R5_ReadError, addr: &dev->flags);
4748 }
4749 } else if (test_bit(In_sync, &rdev->flags))
4750 set_bit(nr: R5_Insync, addr: &dev->flags);
4751 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4752 /* in sync if before recovery_offset */
4753 set_bit(nr: R5_Insync, addr: &dev->flags);
4754 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4755 test_bit(R5_Expanded, &dev->flags))
4756 /* If we've reshaped into here, we assume it is Insync.
4757 * We will shortly update recovery_offset to make
4758 * it official.
4759 */
4760 set_bit(nr: R5_Insync, addr: &dev->flags);
4761
4762 if (test_bit(R5_WriteError, &dev->flags)) {
4763 /* This flag does not apply to '.replacement'
4764 * only to .rdev, so make sure to check that*/
4765 struct md_rdev *rdev2 = conf->disks[i].rdev;
4766
4767 if (rdev2 == rdev)
4768 clear_bit(nr: R5_Insync, addr: &dev->flags);
4769 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4770 s->handle_bad_blocks = 1;
4771 atomic_inc(v: &rdev2->nr_pending);
4772 } else
4773 clear_bit(nr: R5_WriteError, addr: &dev->flags);
4774 }
4775 if (test_bit(R5_MadeGood, &dev->flags)) {
4776 /* This flag does not apply to '.replacement'
4777 * only to .rdev, so make sure to check that*/
4778 struct md_rdev *rdev2 = conf->disks[i].rdev;
4779
4780 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4781 s->handle_bad_blocks = 1;
4782 atomic_inc(v: &rdev2->nr_pending);
4783 } else
4784 clear_bit(nr: R5_MadeGood, addr: &dev->flags);
4785 }
4786 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4787 struct md_rdev *rdev2 = conf->disks[i].replacement;
4788
4789 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4790 s->handle_bad_blocks = 1;
4791 atomic_inc(v: &rdev2->nr_pending);
4792 } else
4793 clear_bit(nr: R5_MadeGoodRepl, addr: &dev->flags);
4794 }
4795 if (!test_bit(R5_Insync, &dev->flags)) {
4796 /* The ReadError flag will just be confusing now */
4797 clear_bit(nr: R5_ReadError, addr: &dev->flags);
4798 clear_bit(nr: R5_ReWrite, addr: &dev->flags);
4799 }
4800 if (test_bit(R5_ReadError, &dev->flags))
4801 clear_bit(nr: R5_Insync, addr: &dev->flags);
4802 if (!test_bit(R5_Insync, &dev->flags)) {
4803 if (s->failed < 2)
4804 s->failed_num[s->failed] = i;
4805 s->failed++;
4806 if (rdev && !test_bit(Faulty, &rdev->flags))
4807 do_recovery = 1;
4808 else if (!rdev) {
4809 rdev = conf->disks[i].replacement;
4810 if (rdev && !test_bit(Faulty, &rdev->flags))
4811 do_recovery = 1;
4812 }
4813 }
4814
4815 if (test_bit(R5_InJournal, &dev->flags))
4816 s->injournal++;
4817 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4818 s->just_cached++;
4819 }
4820 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4821 /* If there is a failed device being replaced,
4822 * we must be recovering.
4823 * else if we are after recovery_cp, we must be syncing
4824 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4825 * else we can only be replacing
4826 * sync and recovery both need to read all devices, and so
4827 * use the same flag.
4828 */
4829 if (do_recovery ||
4830 sh->sector >= conf->mddev->recovery_cp ||
4831 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4832 s->syncing = 1;
4833 else
4834 s->replacing = 1;
4835 }
4836}
4837
4838/*
4839 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4840 * a head which can now be handled.
4841 */
4842static int clear_batch_ready(struct stripe_head *sh)
4843{
4844 struct stripe_head *tmp;
4845 if (!test_and_clear_bit(nr: STRIPE_BATCH_READY, addr: &sh->state))
4846 return (sh->batch_head && sh->batch_head != sh);
4847 spin_lock(lock: &sh->stripe_lock);
4848 if (!sh->batch_head) {
4849 spin_unlock(lock: &sh->stripe_lock);
4850 return 0;
4851 }
4852
4853 /*
4854 * this stripe could be added to a batch list before we check
4855 * BATCH_READY, skips it
4856 */
4857 if (sh->batch_head != sh) {
4858 spin_unlock(lock: &sh->stripe_lock);
4859 return 1;
4860 }
4861 spin_lock(lock: &sh->batch_lock);
4862 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4863 clear_bit(nr: STRIPE_BATCH_READY, addr: &tmp->state);
4864 spin_unlock(lock: &sh->batch_lock);
4865 spin_unlock(lock: &sh->stripe_lock);
4866
4867 /*
4868 * BATCH_READY is cleared, no new stripes can be added.
4869 * batch_list can be accessed without lock
4870 */
4871 return 0;
4872}
4873
4874static void break_stripe_batch_list(struct stripe_head *head_sh,
4875 unsigned long handle_flags)
4876{
4877 struct stripe_head *sh, *next;
4878 int i;
4879 int do_wakeup = 0;
4880
4881 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4882
4883 list_del_init(entry: &sh->batch_list);
4884
4885 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4886 (1 << STRIPE_SYNCING) |
4887 (1 << STRIPE_REPLACED) |
4888 (1 << STRIPE_DELAYED) |
4889 (1 << STRIPE_BIT_DELAY) |
4890 (1 << STRIPE_FULL_WRITE) |
4891 (1 << STRIPE_BIOFILL_RUN) |
4892 (1 << STRIPE_COMPUTE_RUN) |
4893 (1 << STRIPE_DISCARD) |
4894 (1 << STRIPE_BATCH_READY) |
4895 (1 << STRIPE_BATCH_ERR) |
4896 (1 << STRIPE_BITMAP_PENDING)),
4897 "stripe state: %lx\n", sh->state);
4898 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4899 (1 << STRIPE_REPLACED)),
4900 "head stripe state: %lx\n", head_sh->state);
4901
4902 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4903 (1 << STRIPE_PREREAD_ACTIVE) |
4904 (1 << STRIPE_DEGRADED) |
4905 (1 << STRIPE_ON_UNPLUG_LIST)),
4906 head_sh->state & (1 << STRIPE_INSYNC));
4907
4908 sh->check_state = head_sh->check_state;
4909 sh->reconstruct_state = head_sh->reconstruct_state;
4910 spin_lock_irq(lock: &sh->stripe_lock);
4911 sh->batch_head = NULL;
4912 spin_unlock_irq(lock: &sh->stripe_lock);
4913 for (i = 0; i < sh->disks; i++) {
4914 if (test_and_clear_bit(nr: R5_Overlap, addr: &sh->dev[i].flags))
4915 do_wakeup = 1;
4916 sh->dev[i].flags = head_sh->dev[i].flags &
4917 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4918 }
4919 if (handle_flags == 0 ||
4920 sh->state & handle_flags)
4921 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4922 raid5_release_stripe(sh);
4923 }
4924 spin_lock_irq(lock: &head_sh->stripe_lock);
4925 head_sh->batch_head = NULL;
4926 spin_unlock_irq(lock: &head_sh->stripe_lock);
4927 for (i = 0; i < head_sh->disks; i++)
4928 if (test_and_clear_bit(nr: R5_Overlap, addr: &head_sh->dev[i].flags))
4929 do_wakeup = 1;
4930 if (head_sh->state & handle_flags)
4931 set_bit(nr: STRIPE_HANDLE, addr: &head_sh->state);
4932
4933 if (do_wakeup)
4934 wake_up(&head_sh->raid_conf->wait_for_overlap);
4935}
4936
4937static void handle_stripe(struct stripe_head *sh)
4938{
4939 struct stripe_head_state s;
4940 struct r5conf *conf = sh->raid_conf;
4941 int i;
4942 int prexor;
4943 int disks = sh->disks;
4944 struct r5dev *pdev, *qdev;
4945
4946 clear_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4947
4948 /*
4949 * handle_stripe should not continue handle the batched stripe, only
4950 * the head of batch list or lone stripe can continue. Otherwise we
4951 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4952 * is set for the batched stripe.
4953 */
4954 if (clear_batch_ready(sh))
4955 return;
4956
4957 if (test_and_set_bit_lock(nr: STRIPE_ACTIVE, addr: &sh->state)) {
4958 /* already being handled, ensure it gets handled
4959 * again when current action finishes */
4960 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4961 return;
4962 }
4963
4964 if (test_and_clear_bit(nr: STRIPE_BATCH_ERR, addr: &sh->state))
4965 break_stripe_batch_list(head_sh: sh, handle_flags: 0);
4966
4967 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4968 spin_lock(lock: &sh->stripe_lock);
4969 /*
4970 * Cannot process 'sync' concurrently with 'discard'.
4971 * Flush data in r5cache before 'sync'.
4972 */
4973 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4974 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4975 !test_bit(STRIPE_DISCARD, &sh->state) &&
4976 test_and_clear_bit(nr: STRIPE_SYNC_REQUESTED, addr: &sh->state)) {
4977 set_bit(nr: STRIPE_SYNCING, addr: &sh->state);
4978 clear_bit(nr: STRIPE_INSYNC, addr: &sh->state);
4979 clear_bit(nr: STRIPE_REPLACED, addr: &sh->state);
4980 }
4981 spin_unlock(lock: &sh->stripe_lock);
4982 }
4983 clear_bit(nr: STRIPE_DELAYED, addr: &sh->state);
4984
4985 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4986 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4987 (unsigned long long)sh->sector, sh->state,
4988 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4989 sh->check_state, sh->reconstruct_state);
4990
4991 analyse_stripe(sh, s: &s);
4992
4993 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4994 goto finish;
4995
4996 if (s.handle_bad_blocks ||
4997 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4998 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
4999 goto finish;
5000 }
5001
5002 if (unlikely(s.blocked_rdev)) {
5003 if (s.syncing || s.expanding || s.expanded ||
5004 s.replacing || s.to_write || s.written) {
5005 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
5006 goto finish;
5007 }
5008 /* There is nothing for the blocked_rdev to block */
5009 rdev_dec_pending(rdev: s.blocked_rdev, mddev: conf->mddev);
5010 s.blocked_rdev = NULL;
5011 }
5012
5013 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
5014 set_bit(nr: STRIPE_OP_BIOFILL, addr: &s.ops_request);
5015 set_bit(nr: STRIPE_BIOFILL_RUN, addr: &sh->state);
5016 }
5017
5018 pr_debug("locked=%d uptodate=%d to_read=%d"
5019 " to_write=%d failed=%d failed_num=%d,%d\n",
5020 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
5021 s.failed_num[0], s.failed_num[1]);
5022 /*
5023 * check if the array has lost more than max_degraded devices and,
5024 * if so, some requests might need to be failed.
5025 *
5026 * When journal device failed (log_failed), we will only process
5027 * the stripe if there is data need write to raid disks
5028 */
5029 if (s.failed > conf->max_degraded ||
5030 (s.log_failed && s.injournal == 0)) {
5031 sh->check_state = 0;
5032 sh->reconstruct_state = 0;
5033 break_stripe_batch_list(head_sh: sh, handle_flags: 0);
5034 if (s.to_read+s.to_write+s.written)
5035 handle_failed_stripe(conf, sh, s: &s, disks);
5036 if (s.syncing + s.replacing)
5037 handle_failed_sync(conf, sh, s: &s);
5038 }
5039
5040 /* Now we check to see if any write operations have recently
5041 * completed
5042 */
5043 prexor = 0;
5044 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
5045 prexor = 1;
5046 if (sh->reconstruct_state == reconstruct_state_drain_result ||
5047 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5048 sh->reconstruct_state = reconstruct_state_idle;
5049
5050 /* All the 'written' buffers and the parity block are ready to
5051 * be written back to disk
5052 */
5053 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5054 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5055 BUG_ON(sh->qd_idx >= 0 &&
5056 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5057 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5058 for (i = disks; i--; ) {
5059 struct r5dev *dev = &sh->dev[i];
5060 if (test_bit(R5_LOCKED, &dev->flags) &&
5061 (i == sh->pd_idx || i == sh->qd_idx ||
5062 dev->written || test_bit(R5_InJournal,
5063 &dev->flags))) {
5064 pr_debug("Writing block %d\n", i);
5065 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
5066 if (prexor)
5067 continue;
5068 if (s.failed > 1)
5069 continue;
5070 if (!test_bit(R5_Insync, &dev->flags) ||
5071 ((i == sh->pd_idx || i == sh->qd_idx) &&
5072 s.failed == 0))
5073 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
5074 }
5075 }
5076 if (test_and_clear_bit(nr: STRIPE_PREREAD_ACTIVE, addr: &sh->state))
5077 s.dec_preread_active = 1;
5078 }
5079
5080 /*
5081 * might be able to return some write requests if the parity blocks
5082 * are safe, or on a failed drive
5083 */
5084 pdev = &sh->dev[sh->pd_idx];
5085 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5086 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5087 qdev = &sh->dev[sh->qd_idx];
5088 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5089 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5090 || conf->level < 6;
5091
5092 if (s.written &&
5093 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5094 && !test_bit(R5_LOCKED, &pdev->flags)
5095 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5096 test_bit(R5_Discard, &pdev->flags))))) &&
5097 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5098 && !test_bit(R5_LOCKED, &qdev->flags)
5099 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5100 test_bit(R5_Discard, &qdev->flags))))))
5101 handle_stripe_clean_event(conf, sh, disks);
5102
5103 if (s.just_cached)
5104 r5c_handle_cached_data_endio(conf, sh, disks);
5105 log_stripe_write_finished(sh);
5106
5107 /* Now we might consider reading some blocks, either to check/generate
5108 * parity, or to satisfy requests
5109 * or to load a block that is being partially written.
5110 */
5111 if (s.to_read || s.non_overwrite
5112 || (s.to_write && s.failed)
5113 || (s.syncing && (s.uptodate + s.compute < disks))
5114 || s.replacing
5115 || s.expanding)
5116 handle_stripe_fill(sh, s: &s, disks);
5117
5118 /*
5119 * When the stripe finishes full journal write cycle (write to journal
5120 * and raid disk), this is the clean up procedure so it is ready for
5121 * next operation.
5122 */
5123 r5c_finish_stripe_write_out(conf, sh, s: &s);
5124
5125 /*
5126 * Now to consider new write requests, cache write back and what else,
5127 * if anything should be read. We do not handle new writes when:
5128 * 1/ A 'write' operation (copy+xor) is already in flight.
5129 * 2/ A 'check' operation is in flight, as it may clobber the parity
5130 * block.
5131 * 3/ A r5c cache log write is in flight.
5132 */
5133
5134 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5135 if (!r5c_is_writeback(log: conf->log)) {
5136 if (s.to_write)
5137 handle_stripe_dirtying(conf, sh, s: &s, disks);
5138 } else { /* write back cache */
5139 int ret = 0;
5140
5141 /* First, try handle writes in caching phase */
5142 if (s.to_write)
5143 ret = r5c_try_caching_write(conf, sh, s: &s,
5144 disks);
5145 /*
5146 * If caching phase failed: ret == -EAGAIN
5147 * OR
5148 * stripe under reclaim: !caching && injournal
5149 *
5150 * fall back to handle_stripe_dirtying()
5151 */
5152 if (ret == -EAGAIN ||
5153 /* stripe under reclaim: !caching && injournal */
5154 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5155 s.injournal > 0)) {
5156 ret = handle_stripe_dirtying(conf, sh, s: &s,
5157 disks);
5158 if (ret == -EAGAIN)
5159 goto finish;
5160 }
5161 }
5162 }
5163
5164 /* maybe we need to check and possibly fix the parity for this stripe
5165 * Any reads will already have been scheduled, so we just see if enough
5166 * data is available. The parity check is held off while parity
5167 * dependent operations are in flight.
5168 */
5169 if (sh->check_state ||
5170 (s.syncing && s.locked == 0 &&
5171 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5172 !test_bit(STRIPE_INSYNC, &sh->state))) {
5173 if (conf->level == 6)
5174 handle_parity_checks6(conf, sh, s: &s, disks);
5175 else
5176 handle_parity_checks5(conf, sh, s: &s, disks);
5177 }
5178
5179 if ((s.replacing || s.syncing) && s.locked == 0
5180 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5181 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5182 /* Write out to replacement devices where possible */
5183 for (i = 0; i < conf->raid_disks; i++)
5184 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5185 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5186 set_bit(nr: R5_WantReplace, addr: &sh->dev[i].flags);
5187 set_bit(nr: R5_LOCKED, addr: &sh->dev[i].flags);
5188 s.locked++;
5189 }
5190 if (s.replacing)
5191 set_bit(nr: STRIPE_INSYNC, addr: &sh->state);
5192 set_bit(nr: STRIPE_REPLACED, addr: &sh->state);
5193 }
5194 if ((s.syncing || s.replacing) && s.locked == 0 &&
5195 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5196 test_bit(STRIPE_INSYNC, &sh->state)) {
5197 md_done_sync(mddev: conf->mddev, RAID5_STRIPE_SECTORS(conf), ok: 1);
5198 clear_bit(nr: STRIPE_SYNCING, addr: &sh->state);
5199 if (test_and_clear_bit(nr: R5_Overlap, addr: &sh->dev[sh->pd_idx].flags))
5200 wake_up(&conf->wait_for_overlap);
5201 }
5202
5203 /* If the failed drives are just a ReadError, then we might need
5204 * to progress the repair/check process
5205 */
5206 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5207 for (i = 0; i < s.failed; i++) {
5208 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5209 if (test_bit(R5_ReadError, &dev->flags)
5210 && !test_bit(R5_LOCKED, &dev->flags)
5211 && test_bit(R5_UPTODATE, &dev->flags)
5212 ) {
5213 if (!test_bit(R5_ReWrite, &dev->flags)) {
5214 set_bit(nr: R5_Wantwrite, addr: &dev->flags);
5215 set_bit(nr: R5_ReWrite, addr: &dev->flags);
5216 } else
5217 /* let's read it back */
5218 set_bit(nr: R5_Wantread, addr: &dev->flags);
5219 set_bit(nr: R5_LOCKED, addr: &dev->flags);
5220 s.locked++;
5221 }
5222 }
5223
5224 /* Finish reconstruct operations initiated by the expansion process */
5225 if (sh->reconstruct_state == reconstruct_state_result) {
5226 struct stripe_head *sh_src
5227 = raid5_get_active_stripe(conf, NULL, sector: sh->sector,
5228 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5229 R5_GAS_NOQUIESCE);
5230 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5231 /* sh cannot be written until sh_src has been read.
5232 * so arrange for sh to be delayed a little
5233 */
5234 set_bit(nr: STRIPE_DELAYED, addr: &sh->state);
5235 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
5236 if (!test_and_set_bit(nr: STRIPE_PREREAD_ACTIVE,
5237 addr: &sh_src->state))
5238 atomic_inc(v: &conf->preread_active_stripes);
5239 raid5_release_stripe(sh: sh_src);
5240 goto finish;
5241 }
5242 if (sh_src)
5243 raid5_release_stripe(sh: sh_src);
5244
5245 sh->reconstruct_state = reconstruct_state_idle;
5246 clear_bit(nr: STRIPE_EXPANDING, addr: &sh->state);
5247 for (i = conf->raid_disks; i--; ) {
5248 set_bit(nr: R5_Wantwrite, addr: &sh->dev[i].flags);
5249 set_bit(nr: R5_LOCKED, addr: &sh->dev[i].flags);
5250 s.locked++;
5251 }
5252 }
5253
5254 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5255 !sh->reconstruct_state) {
5256 /* Need to write out all blocks after computing parity */
5257 sh->disks = conf->raid_disks;
5258 stripe_set_idx(stripe: sh->sector, conf, previous: 0, sh);
5259 schedule_reconstruction(sh, s: &s, rcw: 1, expand: 1);
5260 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5261 clear_bit(nr: STRIPE_EXPAND_READY, addr: &sh->state);
5262 atomic_dec(v: &conf->reshape_stripes);
5263 wake_up(&conf->wait_for_overlap);
5264 md_done_sync(mddev: conf->mddev, RAID5_STRIPE_SECTORS(conf), ok: 1);
5265 }
5266
5267 if (s.expanding && s.locked == 0 &&
5268 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5269 handle_stripe_expansion(conf, sh);
5270
5271finish:
5272 /* wait for this device to become unblocked */
5273 if (unlikely(s.blocked_rdev)) {
5274 if (conf->mddev->external)
5275 md_wait_for_blocked_rdev(rdev: s.blocked_rdev,
5276 mddev: conf->mddev);
5277 else
5278 /* Internal metadata will immediately
5279 * be written by raid5d, so we don't
5280 * need to wait here.
5281 */
5282 rdev_dec_pending(rdev: s.blocked_rdev,
5283 mddev: conf->mddev);
5284 }
5285
5286 if (s.handle_bad_blocks)
5287 for (i = disks; i--; ) {
5288 struct md_rdev *rdev;
5289 struct r5dev *dev = &sh->dev[i];
5290 if (test_and_clear_bit(nr: R5_WriteError, addr: &dev->flags)) {
5291 /* We own a safe reference to the rdev */
5292 rdev = conf->disks[i].rdev;
5293 if (!rdev_set_badblocks(rdev, s: sh->sector,
5294 RAID5_STRIPE_SECTORS(conf), is_new: 0))
5295 md_error(mddev: conf->mddev, rdev);
5296 rdev_dec_pending(rdev, mddev: conf->mddev);
5297 }
5298 if (test_and_clear_bit(nr: R5_MadeGood, addr: &dev->flags)) {
5299 rdev = conf->disks[i].rdev;
5300 rdev_clear_badblocks(rdev, s: sh->sector,
5301 RAID5_STRIPE_SECTORS(conf), is_new: 0);
5302 rdev_dec_pending(rdev, mddev: conf->mddev);
5303 }
5304 if (test_and_clear_bit(nr: R5_MadeGoodRepl, addr: &dev->flags)) {
5305 rdev = conf->disks[i].replacement;
5306 if (!rdev)
5307 /* rdev have been moved down */
5308 rdev = conf->disks[i].rdev;
5309 rdev_clear_badblocks(rdev, s: sh->sector,
5310 RAID5_STRIPE_SECTORS(conf), is_new: 0);
5311 rdev_dec_pending(rdev, mddev: conf->mddev);
5312 }
5313 }
5314
5315 if (s.ops_request)
5316 raid_run_ops(sh, ops_request: s.ops_request);
5317
5318 ops_run_io(sh, s: &s);
5319
5320 if (s.dec_preread_active) {
5321 /* We delay this until after ops_run_io so that if make_request
5322 * is waiting on a flush, it won't continue until the writes
5323 * have actually been submitted.
5324 */
5325 atomic_dec(v: &conf->preread_active_stripes);
5326 if (atomic_read(v: &conf->preread_active_stripes) <
5327 IO_THRESHOLD)
5328 md_wakeup_thread(thread: conf->mddev->thread);
5329 }
5330
5331 clear_bit_unlock(nr: STRIPE_ACTIVE, addr: &sh->state);
5332}
5333
5334static void raid5_activate_delayed(struct r5conf *conf)
5335 __must_hold(&conf->device_lock)
5336{
5337 if (atomic_read(v: &conf->preread_active_stripes) < IO_THRESHOLD) {
5338 while (!list_empty(head: &conf->delayed_list)) {
5339 struct list_head *l = conf->delayed_list.next;
5340 struct stripe_head *sh;
5341 sh = list_entry(l, struct stripe_head, lru);
5342 list_del_init(entry: l);
5343 clear_bit(nr: STRIPE_DELAYED, addr: &sh->state);
5344 if (!test_and_set_bit(nr: STRIPE_PREREAD_ACTIVE, addr: &sh->state))
5345 atomic_inc(v: &conf->preread_active_stripes);
5346 list_add_tail(new: &sh->lru, head: &conf->hold_list);
5347 raid5_wakeup_stripe_thread(sh);
5348 }
5349 }
5350}
5351
5352static void activate_bit_delay(struct r5conf *conf,
5353 struct list_head *temp_inactive_list)
5354 __must_hold(&conf->device_lock)
5355{
5356 struct list_head head;
5357 list_add(new: &head, head: &conf->bitmap_list);
5358 list_del_init(entry: &conf->bitmap_list);
5359 while (!list_empty(head: &head)) {
5360 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5361 int hash;
5362 list_del_init(entry: &sh->lru);
5363 atomic_inc(v: &sh->count);
5364 hash = sh->hash_lock_index;
5365 __release_stripe(conf, sh, temp_inactive_list: &temp_inactive_list[hash]);
5366 }
5367}
5368
5369static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5370{
5371 struct r5conf *conf = mddev->private;
5372 sector_t sector = bio->bi_iter.bi_sector;
5373 unsigned int chunk_sectors;
5374 unsigned int bio_sectors = bio_sectors(bio);
5375
5376 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5377 return chunk_sectors >=
5378 ((sector & (chunk_sectors - 1)) + bio_sectors);
5379}
5380
5381/*
5382 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5383 * later sampled by raid5d.
5384 */
5385static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5386{
5387 unsigned long flags;
5388
5389 spin_lock_irqsave(&conf->device_lock, flags);
5390
5391 bi->bi_next = conf->retry_read_aligned_list;
5392 conf->retry_read_aligned_list = bi;
5393
5394 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
5395 md_wakeup_thread(thread: conf->mddev->thread);
5396}
5397
5398static struct bio *remove_bio_from_retry(struct r5conf *conf,
5399 unsigned int *offset)
5400{
5401 struct bio *bi;
5402
5403 bi = conf->retry_read_aligned;
5404 if (bi) {
5405 *offset = conf->retry_read_offset;
5406 conf->retry_read_aligned = NULL;
5407 return bi;
5408 }
5409 bi = conf->retry_read_aligned_list;
5410 if(bi) {
5411 conf->retry_read_aligned_list = bi->bi_next;
5412 bi->bi_next = NULL;
5413 *offset = 0;
5414 }
5415
5416 return bi;
5417}
5418
5419/*
5420 * The "raid5_align_endio" should check if the read succeeded and if it
5421 * did, call bio_endio on the original bio (having bio_put the new bio
5422 * first).
5423 * If the read failed..
5424 */
5425static void raid5_align_endio(struct bio *bi)
5426{
5427 struct bio *raid_bi = bi->bi_private;
5428 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5429 struct mddev *mddev = rdev->mddev;
5430 struct r5conf *conf = mddev->private;
5431 blk_status_t error = bi->bi_status;
5432
5433 bio_put(bi);
5434 raid_bi->bi_next = NULL;
5435 rdev_dec_pending(rdev, mddev: conf->mddev);
5436
5437 if (!error) {
5438 bio_endio(raid_bi);
5439 if (atomic_dec_and_test(v: &conf->active_aligned_reads))
5440 wake_up(&conf->wait_for_quiescent);
5441 return;
5442 }
5443
5444 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5445
5446 add_bio_to_retry(bi: raid_bi, conf);
5447}
5448
5449static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5450{
5451 struct r5conf *conf = mddev->private;
5452 struct bio *align_bio;
5453 struct md_rdev *rdev;
5454 sector_t sector, end_sector;
5455 int dd_idx;
5456 bool did_inc;
5457
5458 if (!in_chunk_boundary(mddev, bio: raid_bio)) {
5459 pr_debug("%s: non aligned\n", __func__);
5460 return 0;
5461 }
5462
5463 sector = raid5_compute_sector(conf, r_sector: raid_bio->bi_iter.bi_sector, previous: 0,
5464 dd_idx: &dd_idx, NULL);
5465 end_sector = sector + bio_sectors(raid_bio);
5466
5467 if (r5c_big_stripe_cached(conf, sect: sector))
5468 return 0;
5469
5470 rdev = conf->disks[dd_idx].replacement;
5471 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5472 rdev->recovery_offset < end_sector) {
5473 rdev = conf->disks[dd_idx].rdev;
5474 if (!rdev)
5475 return 0;
5476 if (test_bit(Faulty, &rdev->flags) ||
5477 !(test_bit(In_sync, &rdev->flags) ||
5478 rdev->recovery_offset >= end_sector))
5479 return 0;
5480 }
5481
5482 atomic_inc(v: &rdev->nr_pending);
5483
5484 if (rdev_has_badblock(rdev, s: sector, bio_sectors(raid_bio))) {
5485 rdev_dec_pending(rdev, mddev);
5486 return 0;
5487 }
5488
5489 md_account_bio(mddev, bio: &raid_bio);
5490 raid_bio->bi_next = (void *)rdev;
5491
5492 align_bio = bio_alloc_clone(bdev: rdev->bdev, bio_src: raid_bio, GFP_NOIO,
5493 bs: &mddev->bio_set);
5494 align_bio->bi_end_io = raid5_align_endio;
5495 align_bio->bi_private = raid_bio;
5496 align_bio->bi_iter.bi_sector = sector;
5497
5498 /* No reshape active, so we can trust rdev->data_offset */
5499 align_bio->bi_iter.bi_sector += rdev->data_offset;
5500
5501 did_inc = false;
5502 if (conf->quiesce == 0) {
5503 atomic_inc(v: &conf->active_aligned_reads);
5504 did_inc = true;
5505 }
5506 /* need a memory barrier to detect the race with raid5_quiesce() */
5507 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5508 /* quiesce is in progress, so we need to undo io activation and wait
5509 * for it to finish
5510 */
5511 if (did_inc && atomic_dec_and_test(v: &conf->active_aligned_reads))
5512 wake_up(&conf->wait_for_quiescent);
5513 spin_lock_irq(lock: &conf->device_lock);
5514 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5515 conf->device_lock);
5516 atomic_inc(v: &conf->active_aligned_reads);
5517 spin_unlock_irq(lock: &conf->device_lock);
5518 }
5519
5520 mddev_trace_remap(mddev, bio: align_bio, sector: raid_bio->bi_iter.bi_sector);
5521 submit_bio_noacct(bio: align_bio);
5522 return 1;
5523}
5524
5525static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5526{
5527 struct bio *split;
5528 sector_t sector = raid_bio->bi_iter.bi_sector;
5529 unsigned chunk_sects = mddev->chunk_sectors;
5530 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5531
5532 if (sectors < bio_sectors(raid_bio)) {
5533 struct r5conf *conf = mddev->private;
5534 split = bio_split(bio: raid_bio, sectors, GFP_NOIO, bs: &conf->bio_split);
5535 bio_chain(split, raid_bio);
5536 submit_bio_noacct(bio: raid_bio);
5537 raid_bio = split;
5538 }
5539
5540 if (!raid5_read_one_chunk(mddev, raid_bio))
5541 return raid_bio;
5542
5543 return NULL;
5544}
5545
5546/* __get_priority_stripe - get the next stripe to process
5547 *
5548 * Full stripe writes are allowed to pass preread active stripes up until
5549 * the bypass_threshold is exceeded. In general the bypass_count
5550 * increments when the handle_list is handled before the hold_list; however, it
5551 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5552 * stripe with in flight i/o. The bypass_count will be reset when the
5553 * head of the hold_list has changed, i.e. the head was promoted to the
5554 * handle_list.
5555 */
5556static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5557 __must_hold(&conf->device_lock)
5558{
5559 struct stripe_head *sh, *tmp;
5560 struct list_head *handle_list = NULL;
5561 struct r5worker_group *wg;
5562 bool second_try = !r5c_is_writeback(log: conf->log) &&
5563 !r5l_log_disk_error(conf);
5564 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5565 r5l_log_disk_error(conf);
5566
5567again:
5568 wg = NULL;
5569 sh = NULL;
5570 if (conf->worker_cnt_per_group == 0) {
5571 handle_list = try_loprio ? &conf->loprio_list :
5572 &conf->handle_list;
5573 } else if (group != ANY_GROUP) {
5574 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5575 &conf->worker_groups[group].handle_list;
5576 wg = &conf->worker_groups[group];
5577 } else {
5578 int i;
5579 for (i = 0; i < conf->group_cnt; i++) {
5580 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5581 &conf->worker_groups[i].handle_list;
5582 wg = &conf->worker_groups[i];
5583 if (!list_empty(head: handle_list))
5584 break;
5585 }
5586 }
5587
5588 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5589 __func__,
5590 list_empty(handle_list) ? "empty" : "busy",
5591 list_empty(&conf->hold_list) ? "empty" : "busy",
5592 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5593
5594 if (!list_empty(head: handle_list)) {
5595 sh = list_entry(handle_list->next, typeof(*sh), lru);
5596
5597 if (list_empty(head: &conf->hold_list))
5598 conf->bypass_count = 0;
5599 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5600 if (conf->hold_list.next == conf->last_hold)
5601 conf->bypass_count++;
5602 else {
5603 conf->last_hold = conf->hold_list.next;
5604 conf->bypass_count -= conf->bypass_threshold;
5605 if (conf->bypass_count < 0)
5606 conf->bypass_count = 0;
5607 }
5608 }
5609 } else if (!list_empty(head: &conf->hold_list) &&
5610 ((conf->bypass_threshold &&
5611 conf->bypass_count > conf->bypass_threshold) ||
5612 atomic_read(v: &conf->pending_full_writes) == 0)) {
5613
5614 list_for_each_entry(tmp, &conf->hold_list, lru) {
5615 if (conf->worker_cnt_per_group == 0 ||
5616 group == ANY_GROUP ||
5617 !cpu_online(cpu: tmp->cpu) ||
5618 cpu_to_group(tmp->cpu) == group) {
5619 sh = tmp;
5620 break;
5621 }
5622 }
5623
5624 if (sh) {
5625 conf->bypass_count -= conf->bypass_threshold;
5626 if (conf->bypass_count < 0)
5627 conf->bypass_count = 0;
5628 }
5629 wg = NULL;
5630 }
5631
5632 if (!sh) {
5633 if (second_try)
5634 return NULL;
5635 second_try = true;
5636 try_loprio = !try_loprio;
5637 goto again;
5638 }
5639
5640 if (wg) {
5641 wg->stripes_cnt--;
5642 sh->group = NULL;
5643 }
5644 list_del_init(entry: &sh->lru);
5645 BUG_ON(atomic_inc_return(&sh->count) != 1);
5646 return sh;
5647}
5648
5649struct raid5_plug_cb {
5650 struct blk_plug_cb cb;
5651 struct list_head list;
5652 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5653};
5654
5655static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5656{
5657 struct raid5_plug_cb *cb = container_of(
5658 blk_cb, struct raid5_plug_cb, cb);
5659 struct stripe_head *sh;
5660 struct mddev *mddev = cb->cb.data;
5661 struct r5conf *conf = mddev->private;
5662 int cnt = 0;
5663 int hash;
5664
5665 if (cb->list.next && !list_empty(head: &cb->list)) {
5666 spin_lock_irq(lock: &conf->device_lock);
5667 while (!list_empty(head: &cb->list)) {
5668 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5669 list_del_init(entry: &sh->lru);
5670 /*
5671 * avoid race release_stripe_plug() sees
5672 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5673 * is still in our list
5674 */
5675 smp_mb__before_atomic();
5676 clear_bit(nr: STRIPE_ON_UNPLUG_LIST, addr: &sh->state);
5677 /*
5678 * STRIPE_ON_RELEASE_LIST could be set here. In that
5679 * case, the count is always > 1 here
5680 */
5681 hash = sh->hash_lock_index;
5682 __release_stripe(conf, sh, temp_inactive_list: &cb->temp_inactive_list[hash]);
5683 cnt++;
5684 }
5685 spin_unlock_irq(lock: &conf->device_lock);
5686 }
5687 release_inactive_stripe_list(conf, temp_inactive_list: cb->temp_inactive_list,
5688 NR_STRIPE_HASH_LOCKS);
5689 if (!mddev_is_dm(mddev))
5690 trace_block_unplug(q: mddev->gendisk->queue, depth: cnt, explicit: !from_schedule);
5691 kfree(objp: cb);
5692}
5693
5694static void release_stripe_plug(struct mddev *mddev,
5695 struct stripe_head *sh)
5696{
5697 struct blk_plug_cb *blk_cb = blk_check_plugged(
5698 unplug: raid5_unplug, data: mddev,
5699 size: sizeof(struct raid5_plug_cb));
5700 struct raid5_plug_cb *cb;
5701
5702 if (!blk_cb) {
5703 raid5_release_stripe(sh);
5704 return;
5705 }
5706
5707 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5708
5709 if (cb->list.next == NULL) {
5710 int i;
5711 INIT_LIST_HEAD(list: &cb->list);
5712 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5713 INIT_LIST_HEAD(list: cb->temp_inactive_list + i);
5714 }
5715
5716 if (!test_and_set_bit(nr: STRIPE_ON_UNPLUG_LIST, addr: &sh->state))
5717 list_add_tail(new: &sh->lru, head: &cb->list);
5718 else
5719 raid5_release_stripe(sh);
5720}
5721
5722static void make_discard_request(struct mddev *mddev, struct bio *bi)
5723{
5724 struct r5conf *conf = mddev->private;
5725 sector_t logical_sector, last_sector;
5726 struct stripe_head *sh;
5727 int stripe_sectors;
5728
5729 /* We need to handle this when io_uring supports discard/trim */
5730 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5731 return;
5732
5733 if (mddev->reshape_position != MaxSector)
5734 /* Skip discard while reshape is happening */
5735 return;
5736
5737 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5738 last_sector = bio_end_sector(bi);
5739
5740 bi->bi_next = NULL;
5741
5742 stripe_sectors = conf->chunk_sectors *
5743 (conf->raid_disks - conf->max_degraded);
5744 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5745 stripe_sectors);
5746 sector_div(last_sector, stripe_sectors);
5747
5748 logical_sector *= conf->chunk_sectors;
5749 last_sector *= conf->chunk_sectors;
5750
5751 for (; logical_sector < last_sector;
5752 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5753 DEFINE_WAIT(w);
5754 int d;
5755 again:
5756 sh = raid5_get_active_stripe(conf, NULL, sector: logical_sector, flags: 0);
5757 prepare_to_wait(wq_head: &conf->wait_for_overlap, wq_entry: &w,
5758 TASK_UNINTERRUPTIBLE);
5759 set_bit(nr: R5_Overlap, addr: &sh->dev[sh->pd_idx].flags);
5760 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5761 raid5_release_stripe(sh);
5762 schedule();
5763 goto again;
5764 }
5765 clear_bit(nr: R5_Overlap, addr: &sh->dev[sh->pd_idx].flags);
5766 spin_lock_irq(lock: &sh->stripe_lock);
5767 for (d = 0; d < conf->raid_disks; d++) {
5768 if (d == sh->pd_idx || d == sh->qd_idx)
5769 continue;
5770 if (sh->dev[d].towrite || sh->dev[d].toread) {
5771 set_bit(nr: R5_Overlap, addr: &sh->dev[d].flags);
5772 spin_unlock_irq(lock: &sh->stripe_lock);
5773 raid5_release_stripe(sh);
5774 schedule();
5775 goto again;
5776 }
5777 }
5778 set_bit(nr: STRIPE_DISCARD, addr: &sh->state);
5779 finish_wait(wq_head: &conf->wait_for_overlap, wq_entry: &w);
5780 sh->overwrite_disks = 0;
5781 for (d = 0; d < conf->raid_disks; d++) {
5782 if (d == sh->pd_idx || d == sh->qd_idx)
5783 continue;
5784 sh->dev[d].towrite = bi;
5785 set_bit(nr: R5_OVERWRITE, addr: &sh->dev[d].flags);
5786 bio_inc_remaining(bio: bi);
5787 md_write_inc(mddev, bi);
5788 sh->overwrite_disks++;
5789 }
5790 spin_unlock_irq(lock: &sh->stripe_lock);
5791 if (conf->mddev->bitmap) {
5792 for (d = 0;
5793 d < conf->raid_disks - conf->max_degraded;
5794 d++)
5795 md_bitmap_startwrite(bitmap: mddev->bitmap,
5796 offset: sh->sector,
5797 RAID5_STRIPE_SECTORS(conf),
5798 behind: 0);
5799 sh->bm_seq = conf->seq_flush + 1;
5800 set_bit(nr: STRIPE_BIT_DELAY, addr: &sh->state);
5801 }
5802
5803 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
5804 clear_bit(nr: STRIPE_DELAYED, addr: &sh->state);
5805 if (!test_and_set_bit(nr: STRIPE_PREREAD_ACTIVE, addr: &sh->state))
5806 atomic_inc(v: &conf->preread_active_stripes);
5807 release_stripe_plug(mddev, sh);
5808 }
5809
5810 bio_endio(bi);
5811}
5812
5813static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5814 sector_t reshape_sector)
5815{
5816 return mddev->reshape_backwards ? sector < reshape_sector :
5817 sector >= reshape_sector;
5818}
5819
5820static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5821 sector_t max, sector_t reshape_sector)
5822{
5823 return mddev->reshape_backwards ? max < reshape_sector :
5824 min >= reshape_sector;
5825}
5826
5827static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5828 struct stripe_head *sh)
5829{
5830 sector_t max_sector = 0, min_sector = MaxSector;
5831 bool ret = false;
5832 int dd_idx;
5833
5834 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5835 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5836 continue;
5837
5838 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5839 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5840 }
5841
5842 spin_lock_irq(lock: &conf->device_lock);
5843
5844 if (!range_ahead_of_reshape(mddev, min: min_sector, max: max_sector,
5845 reshape_sector: conf->reshape_progress))
5846 /* mismatch, need to try again */
5847 ret = true;
5848
5849 spin_unlock_irq(lock: &conf->device_lock);
5850
5851 return ret;
5852}
5853
5854static int add_all_stripe_bios(struct r5conf *conf,
5855 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5856 struct bio *bi, int forwrite, int previous)
5857{
5858 int dd_idx;
5859 int ret = 1;
5860
5861 spin_lock_irq(lock: &sh->stripe_lock);
5862
5863 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5864 struct r5dev *dev = &sh->dev[dd_idx];
5865
5866 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5867 continue;
5868
5869 if (dev->sector < ctx->first_sector ||
5870 dev->sector >= ctx->last_sector)
5871 continue;
5872
5873 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5874 set_bit(nr: R5_Overlap, addr: &dev->flags);
5875 ret = 0;
5876 continue;
5877 }
5878 }
5879
5880 if (!ret)
5881 goto out;
5882
5883 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5884 struct r5dev *dev = &sh->dev[dd_idx];
5885
5886 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5887 continue;
5888
5889 if (dev->sector < ctx->first_sector ||
5890 dev->sector >= ctx->last_sector)
5891 continue;
5892
5893 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5894 clear_bit(nr: (dev->sector - ctx->first_sector) >>
5895 RAID5_STRIPE_SHIFT(conf), addr: ctx->sectors_to_do);
5896 }
5897
5898out:
5899 spin_unlock_irq(lock: &sh->stripe_lock);
5900 return ret;
5901}
5902
5903static enum stripe_result make_stripe_request(struct mddev *mddev,
5904 struct r5conf *conf, struct stripe_request_ctx *ctx,
5905 sector_t logical_sector, struct bio *bi)
5906{
5907 const int rw = bio_data_dir(bi);
5908 enum stripe_result ret;
5909 struct stripe_head *sh;
5910 sector_t new_sector;
5911 int previous = 0, flags = 0;
5912 int seq, dd_idx;
5913
5914 seq = read_seqcount_begin(&conf->gen_lock);
5915
5916 if (unlikely(conf->reshape_progress != MaxSector)) {
5917 /*
5918 * Spinlock is needed as reshape_progress may be
5919 * 64bit on a 32bit platform, and so it might be
5920 * possible to see a half-updated value
5921 * Of course reshape_progress could change after
5922 * the lock is dropped, so once we get a reference
5923 * to the stripe that we think it is, we will have
5924 * to check again.
5925 */
5926 spin_lock_irq(lock: &conf->device_lock);
5927 if (ahead_of_reshape(mddev, sector: logical_sector,
5928 reshape_sector: conf->reshape_progress)) {
5929 previous = 1;
5930 } else {
5931 if (ahead_of_reshape(mddev, sector: logical_sector,
5932 reshape_sector: conf->reshape_safe)) {
5933 spin_unlock_irq(lock: &conf->device_lock);
5934 ret = STRIPE_SCHEDULE_AND_RETRY;
5935 goto out;
5936 }
5937 }
5938 spin_unlock_irq(lock: &conf->device_lock);
5939 }
5940
5941 new_sector = raid5_compute_sector(conf, r_sector: logical_sector, previous,
5942 dd_idx: &dd_idx, NULL);
5943 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5944 new_sector, logical_sector);
5945
5946 if (previous)
5947 flags |= R5_GAS_PREVIOUS;
5948 if (bi->bi_opf & REQ_RAHEAD)
5949 flags |= R5_GAS_NOBLOCK;
5950 sh = raid5_get_active_stripe(conf, ctx, sector: new_sector, flags);
5951 if (unlikely(!sh)) {
5952 /* cannot get stripe, just give-up */
5953 bi->bi_status = BLK_STS_IOERR;
5954 return STRIPE_FAIL;
5955 }
5956
5957 if (unlikely(previous) &&
5958 stripe_ahead_of_reshape(mddev, conf, sh)) {
5959 /*
5960 * Expansion moved on while waiting for a stripe.
5961 * Expansion could still move past after this
5962 * test, but as we are holding a reference to
5963 * 'sh', we know that if that happens,
5964 * STRIPE_EXPANDING will get set and the expansion
5965 * won't proceed until we finish with the stripe.
5966 */
5967 ret = STRIPE_SCHEDULE_AND_RETRY;
5968 goto out_release;
5969 }
5970
5971 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5972 /* Might have got the wrong stripe_head by accident */
5973 ret = STRIPE_RETRY;
5974 goto out_release;
5975 }
5976
5977 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5978 !add_all_stripe_bios(conf, ctx, sh, bi, forwrite: rw, previous)) {
5979 /*
5980 * Stripe is busy expanding or add failed due to
5981 * overlap. Flush everything and wait a while.
5982 */
5983 md_wakeup_thread(thread: mddev->thread);
5984 ret = STRIPE_SCHEDULE_AND_RETRY;
5985 goto out_release;
5986 }
5987
5988 if (stripe_can_batch(sh)) {
5989 stripe_add_to_batch_list(conf, sh, last_sh: ctx->batch_last);
5990 if (ctx->batch_last)
5991 raid5_release_stripe(sh: ctx->batch_last);
5992 atomic_inc(v: &sh->count);
5993 ctx->batch_last = sh;
5994 }
5995
5996 if (ctx->do_flush) {
5997 set_bit(nr: STRIPE_R5C_PREFLUSH, addr: &sh->state);
5998 /* we only need flush for one stripe */
5999 ctx->do_flush = false;
6000 }
6001
6002 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
6003 clear_bit(nr: STRIPE_DELAYED, addr: &sh->state);
6004 if ((!sh->batch_head || sh == sh->batch_head) &&
6005 (bi->bi_opf & REQ_SYNC) &&
6006 !test_and_set_bit(nr: STRIPE_PREREAD_ACTIVE, addr: &sh->state))
6007 atomic_inc(v: &conf->preread_active_stripes);
6008
6009 release_stripe_plug(mddev, sh);
6010 return STRIPE_SUCCESS;
6011
6012out_release:
6013 raid5_release_stripe(sh);
6014out:
6015 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6016 bi->bi_status = BLK_STS_RESOURCE;
6017 ret = STRIPE_WAIT_RESHAPE;
6018 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6019 }
6020 return ret;
6021}
6022
6023/*
6024 * If the bio covers multiple data disks, find sector within the bio that has
6025 * the lowest chunk offset in the first chunk.
6026 */
6027static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6028 struct bio *bi)
6029{
6030 int sectors_per_chunk = conf->chunk_sectors;
6031 int raid_disks = conf->raid_disks;
6032 int dd_idx;
6033 struct stripe_head sh;
6034 unsigned int chunk_offset;
6035 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6036 sector_t sector;
6037
6038 /* We pass in fake stripe_head to get back parity disk numbers */
6039 sector = raid5_compute_sector(conf, r_sector, previous: 0, dd_idx: &dd_idx, sh: &sh);
6040 chunk_offset = sector_div(sector, sectors_per_chunk);
6041 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6042 return r_sector;
6043 /*
6044 * Bio crosses to the next data disk. Check whether it's in the same
6045 * chunk.
6046 */
6047 dd_idx++;
6048 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6049 dd_idx++;
6050 if (dd_idx >= raid_disks)
6051 return r_sector;
6052 return r_sector + sectors_per_chunk - chunk_offset;
6053}
6054
6055static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6056{
6057 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6058 struct r5conf *conf = mddev->private;
6059 sector_t logical_sector;
6060 struct stripe_request_ctx ctx = {};
6061 const int rw = bio_data_dir(bi);
6062 enum stripe_result res;
6063 int s, stripe_cnt;
6064
6065 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6066 int ret = log_handle_flush_request(conf, bio: bi);
6067
6068 if (ret == 0)
6069 return true;
6070 if (ret == -ENODEV) {
6071 if (md_flush_request(mddev, bio: bi))
6072 return true;
6073 }
6074 /* ret == -EAGAIN, fallback */
6075 /*
6076 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6077 * we need to flush journal device
6078 */
6079 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6080 }
6081
6082 if (!md_write_start(mddev, bi))
6083 return false;
6084 /*
6085 * If array is degraded, better not do chunk aligned read because
6086 * later we might have to read it again in order to reconstruct
6087 * data on failed drives.
6088 */
6089 if (rw == READ && mddev->degraded == 0 &&
6090 mddev->reshape_position == MaxSector) {
6091 bi = chunk_aligned_read(mddev, raid_bio: bi);
6092 if (!bi)
6093 return true;
6094 }
6095
6096 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6097 make_discard_request(mddev, bi);
6098 md_write_end(mddev);
6099 return true;
6100 }
6101
6102 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6103 ctx.first_sector = logical_sector;
6104 ctx.last_sector = bio_end_sector(bi);
6105 bi->bi_next = NULL;
6106
6107 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6108 RAID5_STRIPE_SECTORS(conf));
6109 bitmap_set(map: ctx.sectors_to_do, start: 0, nbits: stripe_cnt);
6110
6111 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6112 bi->bi_iter.bi_sector, ctx.last_sector);
6113
6114 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6115 if ((bi->bi_opf & REQ_NOWAIT) &&
6116 (conf->reshape_progress != MaxSector) &&
6117 !ahead_of_reshape(mddev, sector: logical_sector, reshape_sector: conf->reshape_progress) &&
6118 ahead_of_reshape(mddev, sector: logical_sector, reshape_sector: conf->reshape_safe)) {
6119 bio_wouldblock_error(bio: bi);
6120 if (rw == WRITE)
6121 md_write_end(mddev);
6122 return true;
6123 }
6124 md_account_bio(mddev, bio: &bi);
6125
6126 /*
6127 * Lets start with the stripe with the lowest chunk offset in the first
6128 * chunk. That has the best chances of creating IOs adjacent to
6129 * previous IOs in case of sequential IO and thus creates the most
6130 * sequential IO pattern. We don't bother with the optimization when
6131 * reshaping as the performance benefit is not worth the complexity.
6132 */
6133 if (likely(conf->reshape_progress == MaxSector))
6134 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6135 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6136
6137 add_wait_queue(wq_head: &conf->wait_for_overlap, wq_entry: &wait);
6138 while (1) {
6139 res = make_stripe_request(mddev, conf, ctx: &ctx, logical_sector,
6140 bi);
6141 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6142 break;
6143
6144 if (res == STRIPE_RETRY)
6145 continue;
6146
6147 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6148 /*
6149 * Must release the reference to batch_last before
6150 * scheduling and waiting for work to be done,
6151 * otherwise the batch_last stripe head could prevent
6152 * raid5_activate_delayed() from making progress
6153 * and thus deadlocking.
6154 */
6155 if (ctx.batch_last) {
6156 raid5_release_stripe(sh: ctx.batch_last);
6157 ctx.batch_last = NULL;
6158 }
6159
6160 wait_woken(wq_entry: &wait, TASK_UNINTERRUPTIBLE,
6161 MAX_SCHEDULE_TIMEOUT);
6162 continue;
6163 }
6164
6165 s = find_next_bit_wrap(addr: ctx.sectors_to_do, size: stripe_cnt, offset: s);
6166 if (s == stripe_cnt)
6167 break;
6168
6169 logical_sector = ctx.first_sector +
6170 (s << RAID5_STRIPE_SHIFT(conf));
6171 }
6172 remove_wait_queue(wq_head: &conf->wait_for_overlap, wq_entry: &wait);
6173
6174 if (ctx.batch_last)
6175 raid5_release_stripe(sh: ctx.batch_last);
6176
6177 if (rw == WRITE)
6178 md_write_end(mddev);
6179 if (res == STRIPE_WAIT_RESHAPE) {
6180 md_free_cloned_bio(bio: bi);
6181 return false;
6182 }
6183
6184 bio_endio(bi);
6185 return true;
6186}
6187
6188static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6189
6190static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6191{
6192 /* reshaping is quite different to recovery/resync so it is
6193 * handled quite separately ... here.
6194 *
6195 * On each call to sync_request, we gather one chunk worth of
6196 * destination stripes and flag them as expanding.
6197 * Then we find all the source stripes and request reads.
6198 * As the reads complete, handle_stripe will copy the data
6199 * into the destination stripe and release that stripe.
6200 */
6201 struct r5conf *conf = mddev->private;
6202 struct stripe_head *sh;
6203 struct md_rdev *rdev;
6204 sector_t first_sector, last_sector;
6205 int raid_disks = conf->previous_raid_disks;
6206 int data_disks = raid_disks - conf->max_degraded;
6207 int new_data_disks = conf->raid_disks - conf->max_degraded;
6208 int i;
6209 int dd_idx;
6210 sector_t writepos, readpos, safepos;
6211 sector_t stripe_addr;
6212 int reshape_sectors;
6213 struct list_head stripes;
6214 sector_t retn;
6215
6216 if (sector_nr == 0) {
6217 /* If restarting in the middle, skip the initial sectors */
6218 if (mddev->reshape_backwards &&
6219 conf->reshape_progress < raid5_size(mddev, sectors: 0, raid_disks: 0)) {
6220 sector_nr = raid5_size(mddev, sectors: 0, raid_disks: 0)
6221 - conf->reshape_progress;
6222 } else if (mddev->reshape_backwards &&
6223 conf->reshape_progress == MaxSector) {
6224 /* shouldn't happen, but just in case, finish up.*/
6225 sector_nr = MaxSector;
6226 } else if (!mddev->reshape_backwards &&
6227 conf->reshape_progress > 0)
6228 sector_nr = conf->reshape_progress;
6229 sector_div(sector_nr, new_data_disks);
6230 if (sector_nr) {
6231 mddev->curr_resync_completed = sector_nr;
6232 sysfs_notify_dirent_safe(sd: mddev->sysfs_completed);
6233 *skipped = 1;
6234 retn = sector_nr;
6235 goto finish;
6236 }
6237 }
6238
6239 /* We need to process a full chunk at a time.
6240 * If old and new chunk sizes differ, we need to process the
6241 * largest of these
6242 */
6243
6244 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6245
6246 /* We update the metadata at least every 10 seconds, or when
6247 * the data about to be copied would over-write the source of
6248 * the data at the front of the range. i.e. one new_stripe
6249 * along from reshape_progress new_maps to after where
6250 * reshape_safe old_maps to
6251 */
6252 writepos = conf->reshape_progress;
6253 sector_div(writepos, new_data_disks);
6254 readpos = conf->reshape_progress;
6255 sector_div(readpos, data_disks);
6256 safepos = conf->reshape_safe;
6257 sector_div(safepos, data_disks);
6258 if (mddev->reshape_backwards) {
6259 BUG_ON(writepos < reshape_sectors);
6260 writepos -= reshape_sectors;
6261 readpos += reshape_sectors;
6262 safepos += reshape_sectors;
6263 } else {
6264 writepos += reshape_sectors;
6265 /* readpos and safepos are worst-case calculations.
6266 * A negative number is overly pessimistic, and causes
6267 * obvious problems for unsigned storage. So clip to 0.
6268 */
6269 readpos -= min_t(sector_t, reshape_sectors, readpos);
6270 safepos -= min_t(sector_t, reshape_sectors, safepos);
6271 }
6272
6273 /* Having calculated the 'writepos' possibly use it
6274 * to set 'stripe_addr' which is where we will write to.
6275 */
6276 if (mddev->reshape_backwards) {
6277 BUG_ON(conf->reshape_progress == 0);
6278 stripe_addr = writepos;
6279 BUG_ON((mddev->dev_sectors &
6280 ~((sector_t)reshape_sectors - 1))
6281 - reshape_sectors - stripe_addr
6282 != sector_nr);
6283 } else {
6284 BUG_ON(writepos != sector_nr + reshape_sectors);
6285 stripe_addr = sector_nr;
6286 }
6287
6288 /* 'writepos' is the most advanced device address we might write.
6289 * 'readpos' is the least advanced device address we might read.
6290 * 'safepos' is the least address recorded in the metadata as having
6291 * been reshaped.
6292 * If there is a min_offset_diff, these are adjusted either by
6293 * increasing the safepos/readpos if diff is negative, or
6294 * increasing writepos if diff is positive.
6295 * If 'readpos' is then behind 'writepos', there is no way that we can
6296 * ensure safety in the face of a crash - that must be done by userspace
6297 * making a backup of the data. So in that case there is no particular
6298 * rush to update metadata.
6299 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6300 * update the metadata to advance 'safepos' to match 'readpos' so that
6301 * we can be safe in the event of a crash.
6302 * So we insist on updating metadata if safepos is behind writepos and
6303 * readpos is beyond writepos.
6304 * In any case, update the metadata every 10 seconds.
6305 * Maybe that number should be configurable, but I'm not sure it is
6306 * worth it.... maybe it could be a multiple of safemode_delay???
6307 */
6308 if (conf->min_offset_diff < 0) {
6309 safepos += -conf->min_offset_diff;
6310 readpos += -conf->min_offset_diff;
6311 } else
6312 writepos += conf->min_offset_diff;
6313
6314 if ((mddev->reshape_backwards
6315 ? (safepos > writepos && readpos < writepos)
6316 : (safepos < writepos && readpos > writepos)) ||
6317 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6318 /* Cannot proceed until we've updated the superblock... */
6319 wait_event(conf->wait_for_overlap,
6320 atomic_read(&conf->reshape_stripes)==0
6321 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6322 if (atomic_read(v: &conf->reshape_stripes) != 0)
6323 return 0;
6324 mddev->reshape_position = conf->reshape_progress;
6325 mddev->curr_resync_completed = sector_nr;
6326 if (!mddev->reshape_backwards)
6327 /* Can update recovery_offset */
6328 rdev_for_each(rdev, mddev)
6329 if (rdev->raid_disk >= 0 &&
6330 !test_bit(Journal, &rdev->flags) &&
6331 !test_bit(In_sync, &rdev->flags) &&
6332 rdev->recovery_offset < sector_nr)
6333 rdev->recovery_offset = sector_nr;
6334
6335 conf->reshape_checkpoint = jiffies;
6336 set_bit(nr: MD_SB_CHANGE_DEVS, addr: &mddev->sb_flags);
6337 md_wakeup_thread(thread: mddev->thread);
6338 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6339 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6340 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6341 return 0;
6342 spin_lock_irq(lock: &conf->device_lock);
6343 conf->reshape_safe = mddev->reshape_position;
6344 spin_unlock_irq(lock: &conf->device_lock);
6345 wake_up(&conf->wait_for_overlap);
6346 sysfs_notify_dirent_safe(sd: mddev->sysfs_completed);
6347 }
6348
6349 INIT_LIST_HEAD(list: &stripes);
6350 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6351 int j;
6352 int skipped_disk = 0;
6353 sh = raid5_get_active_stripe(conf, NULL, sector: stripe_addr+i,
6354 R5_GAS_NOQUIESCE);
6355 set_bit(nr: STRIPE_EXPANDING, addr: &sh->state);
6356 atomic_inc(v: &conf->reshape_stripes);
6357 /* If any of this stripe is beyond the end of the old
6358 * array, then we need to zero those blocks
6359 */
6360 for (j=sh->disks; j--;) {
6361 sector_t s;
6362 if (j == sh->pd_idx)
6363 continue;
6364 if (conf->level == 6 &&
6365 j == sh->qd_idx)
6366 continue;
6367 s = raid5_compute_blocknr(sh, i: j, previous: 0);
6368 if (s < raid5_size(mddev, sectors: 0, raid_disks: 0)) {
6369 skipped_disk = 1;
6370 continue;
6371 }
6372 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6373 set_bit(nr: R5_Expanded, addr: &sh->dev[j].flags);
6374 set_bit(nr: R5_UPTODATE, addr: &sh->dev[j].flags);
6375 }
6376 if (!skipped_disk) {
6377 set_bit(nr: STRIPE_EXPAND_READY, addr: &sh->state);
6378 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
6379 }
6380 list_add(new: &sh->lru, head: &stripes);
6381 }
6382 spin_lock_irq(lock: &conf->device_lock);
6383 if (mddev->reshape_backwards)
6384 conf->reshape_progress -= reshape_sectors * new_data_disks;
6385 else
6386 conf->reshape_progress += reshape_sectors * new_data_disks;
6387 spin_unlock_irq(lock: &conf->device_lock);
6388 /* Ok, those stripe are ready. We can start scheduling
6389 * reads on the source stripes.
6390 * The source stripes are determined by mapping the first and last
6391 * block on the destination stripes.
6392 */
6393 first_sector =
6394 raid5_compute_sector(conf, r_sector: stripe_addr*(new_data_disks),
6395 previous: 1, dd_idx: &dd_idx, NULL);
6396 last_sector =
6397 raid5_compute_sector(conf, r_sector: ((stripe_addr+reshape_sectors)
6398 * new_data_disks - 1),
6399 previous: 1, dd_idx: &dd_idx, NULL);
6400 if (last_sector >= mddev->dev_sectors)
6401 last_sector = mddev->dev_sectors - 1;
6402 while (first_sector <= last_sector) {
6403 sh = raid5_get_active_stripe(conf, NULL, sector: first_sector,
6404 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6405 set_bit(nr: STRIPE_EXPAND_SOURCE, addr: &sh->state);
6406 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
6407 raid5_release_stripe(sh);
6408 first_sector += RAID5_STRIPE_SECTORS(conf);
6409 }
6410 /* Now that the sources are clearly marked, we can release
6411 * the destination stripes
6412 */
6413 while (!list_empty(head: &stripes)) {
6414 sh = list_entry(stripes.next, struct stripe_head, lru);
6415 list_del_init(entry: &sh->lru);
6416 raid5_release_stripe(sh);
6417 }
6418 /* If this takes us to the resync_max point where we have to pause,
6419 * then we need to write out the superblock.
6420 */
6421 sector_nr += reshape_sectors;
6422 retn = reshape_sectors;
6423finish:
6424 if (mddev->curr_resync_completed > mddev->resync_max ||
6425 (sector_nr - mddev->curr_resync_completed) * 2
6426 >= mddev->resync_max - mddev->curr_resync_completed) {
6427 /* Cannot proceed until we've updated the superblock... */
6428 wait_event(conf->wait_for_overlap,
6429 atomic_read(&conf->reshape_stripes) == 0
6430 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6431 if (atomic_read(v: &conf->reshape_stripes) != 0)
6432 goto ret;
6433 mddev->reshape_position = conf->reshape_progress;
6434 mddev->curr_resync_completed = sector_nr;
6435 if (!mddev->reshape_backwards)
6436 /* Can update recovery_offset */
6437 rdev_for_each(rdev, mddev)
6438 if (rdev->raid_disk >= 0 &&
6439 !test_bit(Journal, &rdev->flags) &&
6440 !test_bit(In_sync, &rdev->flags) &&
6441 rdev->recovery_offset < sector_nr)
6442 rdev->recovery_offset = sector_nr;
6443 conf->reshape_checkpoint = jiffies;
6444 set_bit(nr: MD_SB_CHANGE_DEVS, addr: &mddev->sb_flags);
6445 md_wakeup_thread(thread: mddev->thread);
6446 wait_event(mddev->sb_wait,
6447 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6448 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6449 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6450 goto ret;
6451 spin_lock_irq(lock: &conf->device_lock);
6452 conf->reshape_safe = mddev->reshape_position;
6453 spin_unlock_irq(lock: &conf->device_lock);
6454 wake_up(&conf->wait_for_overlap);
6455 sysfs_notify_dirent_safe(sd: mddev->sysfs_completed);
6456 }
6457ret:
6458 return retn;
6459}
6460
6461static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6462 int *skipped)
6463{
6464 struct r5conf *conf = mddev->private;
6465 struct stripe_head *sh;
6466 sector_t max_sector = mddev->dev_sectors;
6467 sector_t sync_blocks;
6468 int still_degraded = 0;
6469 int i;
6470
6471 if (sector_nr >= max_sector) {
6472 /* just being told to finish up .. nothing much to do */
6473
6474 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6475 end_reshape(conf);
6476 return 0;
6477 }
6478
6479 if (mddev->curr_resync < max_sector) /* aborted */
6480 md_bitmap_end_sync(bitmap: mddev->bitmap, offset: mddev->curr_resync,
6481 blocks: &sync_blocks, aborted: 1);
6482 else /* completed sync */
6483 conf->fullsync = 0;
6484 md_bitmap_close_sync(bitmap: mddev->bitmap);
6485
6486 return 0;
6487 }
6488
6489 /* Allow raid5_quiesce to complete */
6490 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6491
6492 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6493 return reshape_request(mddev, sector_nr, skipped);
6494
6495 /* No need to check resync_max as we never do more than one
6496 * stripe, and as resync_max will always be on a chunk boundary,
6497 * if the check in md_do_sync didn't fire, there is no chance
6498 * of overstepping resync_max here
6499 */
6500
6501 /* if there is too many failed drives and we are trying
6502 * to resync, then assert that we are finished, because there is
6503 * nothing we can do.
6504 */
6505 if (mddev->degraded >= conf->max_degraded &&
6506 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6507 sector_t rv = mddev->dev_sectors - sector_nr;
6508 *skipped = 1;
6509 return rv;
6510 }
6511 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6512 !conf->fullsync &&
6513 !md_bitmap_start_sync(bitmap: mddev->bitmap, offset: sector_nr, blocks: &sync_blocks, degraded: 1) &&
6514 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6515 /* we can skip this block, and probably more */
6516 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6517 *skipped = 1;
6518 /* keep things rounded to whole stripes */
6519 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6520 }
6521
6522 md_bitmap_cond_end_sync(bitmap: mddev->bitmap, sector: sector_nr, force: false);
6523
6524 sh = raid5_get_active_stripe(conf, NULL, sector: sector_nr,
6525 R5_GAS_NOBLOCK);
6526 if (sh == NULL) {
6527 sh = raid5_get_active_stripe(conf, NULL, sector: sector_nr, flags: 0);
6528 /* make sure we don't swamp the stripe cache if someone else
6529 * is trying to get access
6530 */
6531 schedule_timeout_uninterruptible(timeout: 1);
6532 }
6533 /* Need to check if array will still be degraded after recovery/resync
6534 * Note in case of > 1 drive failures it's possible we're rebuilding
6535 * one drive while leaving another faulty drive in array.
6536 */
6537 for (i = 0; i < conf->raid_disks; i++) {
6538 struct md_rdev *rdev = conf->disks[i].rdev;
6539
6540 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6541 still_degraded = 1;
6542 }
6543
6544 md_bitmap_start_sync(bitmap: mddev->bitmap, offset: sector_nr, blocks: &sync_blocks, degraded: still_degraded);
6545
6546 set_bit(nr: STRIPE_SYNC_REQUESTED, addr: &sh->state);
6547 set_bit(nr: STRIPE_HANDLE, addr: &sh->state);
6548
6549 raid5_release_stripe(sh);
6550
6551 return RAID5_STRIPE_SECTORS(conf);
6552}
6553
6554static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6555 unsigned int offset)
6556{
6557 /* We may not be able to submit a whole bio at once as there
6558 * may not be enough stripe_heads available.
6559 * We cannot pre-allocate enough stripe_heads as we may need
6560 * more than exist in the cache (if we allow ever large chunks).
6561 * So we do one stripe head at a time and record in
6562 * ->bi_hw_segments how many have been done.
6563 *
6564 * We *know* that this entire raid_bio is in one chunk, so
6565 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6566 */
6567 struct stripe_head *sh;
6568 int dd_idx;
6569 sector_t sector, logical_sector, last_sector;
6570 int scnt = 0;
6571 int handled = 0;
6572
6573 logical_sector = raid_bio->bi_iter.bi_sector &
6574 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6575 sector = raid5_compute_sector(conf, r_sector: logical_sector,
6576 previous: 0, dd_idx: &dd_idx, NULL);
6577 last_sector = bio_end_sector(raid_bio);
6578
6579 for (; logical_sector < last_sector;
6580 logical_sector += RAID5_STRIPE_SECTORS(conf),
6581 sector += RAID5_STRIPE_SECTORS(conf),
6582 scnt++) {
6583
6584 if (scnt < offset)
6585 /* already done this stripe */
6586 continue;
6587
6588 sh = raid5_get_active_stripe(conf, NULL, sector,
6589 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6590 if (!sh) {
6591 /* failed to get a stripe - must wait */
6592 conf->retry_read_aligned = raid_bio;
6593 conf->retry_read_offset = scnt;
6594 return handled;
6595 }
6596
6597 if (!add_stripe_bio(sh, bi: raid_bio, dd_idx, forwrite: 0, previous: 0)) {
6598 raid5_release_stripe(sh);
6599 conf->retry_read_aligned = raid_bio;
6600 conf->retry_read_offset = scnt;
6601 return handled;
6602 }
6603
6604 set_bit(nr: R5_ReadNoMerge, addr: &sh->dev[dd_idx].flags);
6605 handle_stripe(sh);
6606 raid5_release_stripe(sh);
6607 handled++;
6608 }
6609
6610 bio_endio(raid_bio);
6611
6612 if (atomic_dec_and_test(v: &conf->active_aligned_reads))
6613 wake_up(&conf->wait_for_quiescent);
6614 return handled;
6615}
6616
6617static int handle_active_stripes(struct r5conf *conf, int group,
6618 struct r5worker *worker,
6619 struct list_head *temp_inactive_list)
6620 __must_hold(&conf->device_lock)
6621{
6622 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6623 int i, batch_size = 0, hash;
6624 bool release_inactive = false;
6625
6626 while (batch_size < MAX_STRIPE_BATCH &&
6627 (sh = __get_priority_stripe(conf, group)) != NULL)
6628 batch[batch_size++] = sh;
6629
6630 if (batch_size == 0) {
6631 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6632 if (!list_empty(head: temp_inactive_list + i))
6633 break;
6634 if (i == NR_STRIPE_HASH_LOCKS) {
6635 spin_unlock_irq(lock: &conf->device_lock);
6636 log_flush_stripe_to_raid(conf);
6637 spin_lock_irq(lock: &conf->device_lock);
6638 return batch_size;
6639 }
6640 release_inactive = true;
6641 }
6642 spin_unlock_irq(lock: &conf->device_lock);
6643
6644 release_inactive_stripe_list(conf, temp_inactive_list,
6645 NR_STRIPE_HASH_LOCKS);
6646
6647 r5l_flush_stripe_to_raid(log: conf->log);
6648 if (release_inactive) {
6649 spin_lock_irq(lock: &conf->device_lock);
6650 return 0;
6651 }
6652
6653 for (i = 0; i < batch_size; i++)
6654 handle_stripe(sh: batch[i]);
6655 log_write_stripe_run(conf);
6656
6657 cond_resched();
6658
6659 spin_lock_irq(lock: &conf->device_lock);
6660 for (i = 0; i < batch_size; i++) {
6661 hash = batch[i]->hash_lock_index;
6662 __release_stripe(conf, sh: batch[i], temp_inactive_list: &temp_inactive_list[hash]);
6663 }
6664 return batch_size;
6665}
6666
6667static void raid5_do_work(struct work_struct *work)
6668{
6669 struct r5worker *worker = container_of(work, struct r5worker, work);
6670 struct r5worker_group *group = worker->group;
6671 struct r5conf *conf = group->conf;
6672 struct mddev *mddev = conf->mddev;
6673 int group_id = group - conf->worker_groups;
6674 int handled;
6675 struct blk_plug plug;
6676
6677 pr_debug("+++ raid5worker active\n");
6678
6679 blk_start_plug(&plug);
6680 handled = 0;
6681 spin_lock_irq(lock: &conf->device_lock);
6682 while (1) {
6683 int batch_size, released;
6684
6685 released = release_stripe_list(conf, temp_inactive_list: worker->temp_inactive_list);
6686
6687 batch_size = handle_active_stripes(conf, group: group_id, worker,
6688 temp_inactive_list: worker->temp_inactive_list);
6689 worker->working = false;
6690 if (!batch_size && !released)
6691 break;
6692 handled += batch_size;
6693 wait_event_lock_irq(mddev->sb_wait,
6694 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6695 conf->device_lock);
6696 }
6697 pr_debug("%d stripes handled\n", handled);
6698
6699 spin_unlock_irq(lock: &conf->device_lock);
6700
6701 flush_deferred_bios(conf);
6702
6703 r5l_flush_stripe_to_raid(log: conf->log);
6704
6705 async_tx_issue_pending_all();
6706 blk_finish_plug(&plug);
6707
6708 pr_debug("--- raid5worker inactive\n");
6709}
6710
6711/*
6712 * This is our raid5 kernel thread.
6713 *
6714 * We scan the hash table for stripes which can be handled now.
6715 * During the scan, completed stripes are saved for us by the interrupt
6716 * handler, so that they will not have to wait for our next wakeup.
6717 */
6718static void raid5d(struct md_thread *thread)
6719{
6720 struct mddev *mddev = thread->mddev;
6721 struct r5conf *conf = mddev->private;
6722 int handled;
6723 struct blk_plug plug;
6724
6725 pr_debug("+++ raid5d active\n");
6726
6727 md_check_recovery(mddev);
6728
6729 blk_start_plug(&plug);
6730 handled = 0;
6731 spin_lock_irq(lock: &conf->device_lock);
6732 while (1) {
6733 struct bio *bio;
6734 int batch_size, released;
6735 unsigned int offset;
6736
6737 released = release_stripe_list(conf, temp_inactive_list: conf->temp_inactive_list);
6738 if (released)
6739 clear_bit(nr: R5_DID_ALLOC, addr: &conf->cache_state);
6740
6741 if (
6742 !list_empty(head: &conf->bitmap_list)) {
6743 /* Now is a good time to flush some bitmap updates */
6744 conf->seq_flush++;
6745 spin_unlock_irq(lock: &conf->device_lock);
6746 md_bitmap_unplug(bitmap: mddev->bitmap);
6747 spin_lock_irq(lock: &conf->device_lock);
6748 conf->seq_write = conf->seq_flush;
6749 activate_bit_delay(conf, temp_inactive_list: conf->temp_inactive_list);
6750 }
6751 raid5_activate_delayed(conf);
6752
6753 while ((bio = remove_bio_from_retry(conf, offset: &offset))) {
6754 int ok;
6755 spin_unlock_irq(lock: &conf->device_lock);
6756 ok = retry_aligned_read(conf, raid_bio: bio, offset);
6757 spin_lock_irq(lock: &conf->device_lock);
6758 if (!ok)
6759 break;
6760 handled++;
6761 }
6762
6763 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6764 temp_inactive_list: conf->temp_inactive_list);
6765 if (!batch_size && !released)
6766 break;
6767 handled += batch_size;
6768
6769 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6770 spin_unlock_irq(lock: &conf->device_lock);
6771 md_check_recovery(mddev);
6772 spin_lock_irq(lock: &conf->device_lock);
6773
6774 /*
6775 * Waiting on MD_SB_CHANGE_PENDING below may deadlock
6776 * seeing md_check_recovery() is needed to clear
6777 * the flag when using mdmon.
6778 */
6779 continue;
6780 }
6781
6782 wait_event_lock_irq(mddev->sb_wait,
6783 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6784 conf->device_lock);
6785 }
6786 pr_debug("%d stripes handled\n", handled);
6787
6788 spin_unlock_irq(lock: &conf->device_lock);
6789 if (test_and_clear_bit(nr: R5_ALLOC_MORE, addr: &conf->cache_state) &&
6790 mutex_trylock(lock: &conf->cache_size_mutex)) {
6791 grow_one_stripe(conf, __GFP_NOWARN);
6792 /* Set flag even if allocation failed. This helps
6793 * slow down allocation requests when mem is short
6794 */
6795 set_bit(nr: R5_DID_ALLOC, addr: &conf->cache_state);
6796 mutex_unlock(lock: &conf->cache_size_mutex);
6797 }
6798
6799 flush_deferred_bios(conf);
6800
6801 r5l_flush_stripe_to_raid(log: conf->log);
6802
6803 async_tx_issue_pending_all();
6804 blk_finish_plug(&plug);
6805
6806 pr_debug("--- raid5d inactive\n");
6807}
6808
6809static ssize_t
6810raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6811{
6812 struct r5conf *conf;
6813 int ret = 0;
6814 spin_lock(lock: &mddev->lock);
6815 conf = mddev->private;
6816 if (conf)
6817 ret = sprintf(buf: page, fmt: "%d\n", conf->min_nr_stripes);
6818 spin_unlock(lock: &mddev->lock);
6819 return ret;
6820}
6821
6822int
6823raid5_set_cache_size(struct mddev *mddev, int size)
6824{
6825 int result = 0;
6826 struct r5conf *conf = mddev->private;
6827
6828 if (size <= 16 || size > 32768)
6829 return -EINVAL;
6830
6831 WRITE_ONCE(conf->min_nr_stripes, size);
6832 mutex_lock(&conf->cache_size_mutex);
6833 while (size < conf->max_nr_stripes &&
6834 drop_one_stripe(conf))
6835 ;
6836 mutex_unlock(lock: &conf->cache_size_mutex);
6837
6838 md_allow_write(mddev);
6839
6840 mutex_lock(&conf->cache_size_mutex);
6841 while (size > conf->max_nr_stripes)
6842 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6843 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6844 result = -ENOMEM;
6845 break;
6846 }
6847 mutex_unlock(lock: &conf->cache_size_mutex);
6848
6849 return result;
6850}
6851EXPORT_SYMBOL(raid5_set_cache_size);
6852
6853static ssize_t
6854raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6855{
6856 struct r5conf *conf;
6857 unsigned long new;
6858 int err;
6859
6860 if (len >= PAGE_SIZE)
6861 return -EINVAL;
6862 if (kstrtoul(s: page, base: 10, res: &new))
6863 return -EINVAL;
6864 err = mddev_lock(mddev);
6865 if (err)
6866 return err;
6867 conf = mddev->private;
6868 if (!conf)
6869 err = -ENODEV;
6870 else
6871 err = raid5_set_cache_size(mddev, new);
6872 mddev_unlock(mddev);
6873
6874 return err ?: len;
6875}
6876
6877static struct md_sysfs_entry
6878raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6879 raid5_show_stripe_cache_size,
6880 raid5_store_stripe_cache_size);
6881
6882static ssize_t
6883raid5_show_rmw_level(struct mddev *mddev, char *page)
6884{
6885 struct r5conf *conf = mddev->private;
6886 if (conf)
6887 return sprintf(buf: page, fmt: "%d\n", conf->rmw_level);
6888 else
6889 return 0;
6890}
6891
6892static ssize_t
6893raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6894{
6895 struct r5conf *conf = mddev->private;
6896 unsigned long new;
6897
6898 if (!conf)
6899 return -ENODEV;
6900
6901 if (len >= PAGE_SIZE)
6902 return -EINVAL;
6903
6904 if (kstrtoul(s: page, base: 10, res: &new))
6905 return -EINVAL;
6906
6907 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6908 return -EINVAL;
6909
6910 if (new != PARITY_DISABLE_RMW &&
6911 new != PARITY_ENABLE_RMW &&
6912 new != PARITY_PREFER_RMW)
6913 return -EINVAL;
6914
6915 conf->rmw_level = new;
6916 return len;
6917}
6918
6919static struct md_sysfs_entry
6920raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6921 raid5_show_rmw_level,
6922 raid5_store_rmw_level);
6923
6924static ssize_t
6925raid5_show_stripe_size(struct mddev *mddev, char *page)
6926{
6927 struct r5conf *conf;
6928 int ret = 0;
6929
6930 spin_lock(lock: &mddev->lock);
6931 conf = mddev->private;
6932 if (conf)
6933 ret = sprintf(buf: page, fmt: "%lu\n", RAID5_STRIPE_SIZE(conf));
6934 spin_unlock(lock: &mddev->lock);
6935 return ret;
6936}
6937
6938#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6939static ssize_t
6940raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6941{
6942 struct r5conf *conf;
6943 unsigned long new;
6944 int err;
6945 int size;
6946
6947 if (len >= PAGE_SIZE)
6948 return -EINVAL;
6949 if (kstrtoul(page, 10, &new))
6950 return -EINVAL;
6951
6952 /*
6953 * The value should not be bigger than PAGE_SIZE. It requires to
6954 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6955 * of two.
6956 */
6957 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6958 new > PAGE_SIZE || new == 0 ||
6959 new != roundup_pow_of_two(new))
6960 return -EINVAL;
6961
6962 err = mddev_suspend_and_lock(mddev);
6963 if (err)
6964 return err;
6965
6966 conf = mddev->private;
6967 if (!conf) {
6968 err = -ENODEV;
6969 goto out_unlock;
6970 }
6971
6972 if (new == conf->stripe_size)
6973 goto out_unlock;
6974
6975 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6976 conf->stripe_size, new);
6977
6978 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6979 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6980 err = -EBUSY;
6981 goto out_unlock;
6982 }
6983
6984 mutex_lock(&conf->cache_size_mutex);
6985 size = conf->max_nr_stripes;
6986
6987 shrink_stripes(conf);
6988
6989 conf->stripe_size = new;
6990 conf->stripe_shift = ilog2(new) - 9;
6991 conf->stripe_sectors = new >> 9;
6992 if (grow_stripes(conf, size)) {
6993 pr_warn("md/raid:%s: couldn't allocate buffers\n",
6994 mdname(mddev));
6995 err = -ENOMEM;
6996 }
6997 mutex_unlock(&conf->cache_size_mutex);
6998
6999out_unlock:
7000 mddev_unlock_and_resume(mddev);
7001 return err ?: len;
7002}
7003
7004static struct md_sysfs_entry
7005raid5_stripe_size = __ATTR(stripe_size, 0644,
7006 raid5_show_stripe_size,
7007 raid5_store_stripe_size);
7008#else
7009static struct md_sysfs_entry
7010raid5_stripe_size = __ATTR(stripe_size, 0444,
7011 raid5_show_stripe_size,
7012 NULL);
7013#endif
7014
7015static ssize_t
7016raid5_show_preread_threshold(struct mddev *mddev, char *page)
7017{
7018 struct r5conf *conf;
7019 int ret = 0;
7020 spin_lock(lock: &mddev->lock);
7021 conf = mddev->private;
7022 if (conf)
7023 ret = sprintf(buf: page, fmt: "%d\n", conf->bypass_threshold);
7024 spin_unlock(lock: &mddev->lock);
7025 return ret;
7026}
7027
7028static ssize_t
7029raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7030{
7031 struct r5conf *conf;
7032 unsigned long new;
7033 int err;
7034
7035 if (len >= PAGE_SIZE)
7036 return -EINVAL;
7037 if (kstrtoul(s: page, base: 10, res: &new))
7038 return -EINVAL;
7039
7040 err = mddev_lock(mddev);
7041 if (err)
7042 return err;
7043 conf = mddev->private;
7044 if (!conf)
7045 err = -ENODEV;
7046 else if (new > conf->min_nr_stripes)
7047 err = -EINVAL;
7048 else
7049 conf->bypass_threshold = new;
7050 mddev_unlock(mddev);
7051 return err ?: len;
7052}
7053
7054static struct md_sysfs_entry
7055raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7056 S_IRUGO | S_IWUSR,
7057 raid5_show_preread_threshold,
7058 raid5_store_preread_threshold);
7059
7060static ssize_t
7061raid5_show_skip_copy(struct mddev *mddev, char *page)
7062{
7063 struct r5conf *conf;
7064 int ret = 0;
7065 spin_lock(lock: &mddev->lock);
7066 conf = mddev->private;
7067 if (conf)
7068 ret = sprintf(buf: page, fmt: "%d\n", conf->skip_copy);
7069 spin_unlock(lock: &mddev->lock);
7070 return ret;
7071}
7072
7073static ssize_t
7074raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7075{
7076 struct r5conf *conf;
7077 unsigned long new;
7078 int err;
7079
7080 if (len >= PAGE_SIZE)
7081 return -EINVAL;
7082 if (kstrtoul(s: page, base: 10, res: &new))
7083 return -EINVAL;
7084 new = !!new;
7085
7086 err = mddev_suspend_and_lock(mddev);
7087 if (err)
7088 return err;
7089 conf = mddev->private;
7090 if (!conf)
7091 err = -ENODEV;
7092 else if (new != conf->skip_copy) {
7093 struct request_queue *q = mddev->gendisk->queue;
7094
7095 conf->skip_copy = new;
7096 if (new)
7097 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
7098 else
7099 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
7100 }
7101 mddev_unlock_and_resume(mddev);
7102 return err ?: len;
7103}
7104
7105static struct md_sysfs_entry
7106raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7107 raid5_show_skip_copy,
7108 raid5_store_skip_copy);
7109
7110static ssize_t
7111stripe_cache_active_show(struct mddev *mddev, char *page)
7112{
7113 struct r5conf *conf = mddev->private;
7114 if (conf)
7115 return sprintf(buf: page, fmt: "%d\n", atomic_read(v: &conf->active_stripes));
7116 else
7117 return 0;
7118}
7119
7120static struct md_sysfs_entry
7121raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7122
7123static ssize_t
7124raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7125{
7126 struct r5conf *conf;
7127 int ret = 0;
7128 spin_lock(lock: &mddev->lock);
7129 conf = mddev->private;
7130 if (conf)
7131 ret = sprintf(buf: page, fmt: "%d\n", conf->worker_cnt_per_group);
7132 spin_unlock(lock: &mddev->lock);
7133 return ret;
7134}
7135
7136static int alloc_thread_groups(struct r5conf *conf, int cnt,
7137 int *group_cnt,
7138 struct r5worker_group **worker_groups);
7139static ssize_t
7140raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7141{
7142 struct r5conf *conf;
7143 unsigned int new;
7144 int err;
7145 struct r5worker_group *new_groups, *old_groups;
7146 int group_cnt;
7147
7148 if (len >= PAGE_SIZE)
7149 return -EINVAL;
7150 if (kstrtouint(s: page, base: 10, res: &new))
7151 return -EINVAL;
7152 /* 8192 should be big enough */
7153 if (new > 8192)
7154 return -EINVAL;
7155
7156 err = mddev_suspend_and_lock(mddev);
7157 if (err)
7158 return err;
7159 conf = mddev->private;
7160 if (!conf)
7161 err = -ENODEV;
7162 else if (new != conf->worker_cnt_per_group) {
7163 old_groups = conf->worker_groups;
7164 if (old_groups)
7165 flush_workqueue(raid5_wq);
7166
7167 err = alloc_thread_groups(conf, cnt: new, group_cnt: &group_cnt, worker_groups: &new_groups);
7168 if (!err) {
7169 spin_lock_irq(lock: &conf->device_lock);
7170 conf->group_cnt = group_cnt;
7171 conf->worker_cnt_per_group = new;
7172 conf->worker_groups = new_groups;
7173 spin_unlock_irq(lock: &conf->device_lock);
7174
7175 if (old_groups)
7176 kfree(objp: old_groups[0].workers);
7177 kfree(objp: old_groups);
7178 }
7179 }
7180 mddev_unlock_and_resume(mddev);
7181
7182 return err ?: len;
7183}
7184
7185static struct md_sysfs_entry
7186raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7187 raid5_show_group_thread_cnt,
7188 raid5_store_group_thread_cnt);
7189
7190static struct attribute *raid5_attrs[] = {
7191 &raid5_stripecache_size.attr,
7192 &raid5_stripecache_active.attr,
7193 &raid5_preread_bypass_threshold.attr,
7194 &raid5_group_thread_cnt.attr,
7195 &raid5_skip_copy.attr,
7196 &raid5_rmw_level.attr,
7197 &raid5_stripe_size.attr,
7198 &r5c_journal_mode.attr,
7199 &ppl_write_hint.attr,
7200 NULL,
7201};
7202static const struct attribute_group raid5_attrs_group = {
7203 .name = NULL,
7204 .attrs = raid5_attrs,
7205};
7206
7207static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7208 struct r5worker_group **worker_groups)
7209{
7210 int i, j, k;
7211 ssize_t size;
7212 struct r5worker *workers;
7213
7214 if (cnt == 0) {
7215 *group_cnt = 0;
7216 *worker_groups = NULL;
7217 return 0;
7218 }
7219 *group_cnt = num_possible_nodes();
7220 size = sizeof(struct r5worker) * cnt;
7221 workers = kcalloc(n: size, size: *group_cnt, GFP_NOIO);
7222 *worker_groups = kcalloc(n: *group_cnt, size: sizeof(struct r5worker_group),
7223 GFP_NOIO);
7224 if (!*worker_groups || !workers) {
7225 kfree(objp: workers);
7226 kfree(objp: *worker_groups);
7227 return -ENOMEM;
7228 }
7229
7230 for (i = 0; i < *group_cnt; i++) {
7231 struct r5worker_group *group;
7232
7233 group = &(*worker_groups)[i];
7234 INIT_LIST_HEAD(list: &group->handle_list);
7235 INIT_LIST_HEAD(list: &group->loprio_list);
7236 group->conf = conf;
7237 group->workers = workers + i * cnt;
7238
7239 for (j = 0; j < cnt; j++) {
7240 struct r5worker *worker = group->workers + j;
7241 worker->group = group;
7242 INIT_WORK(&worker->work, raid5_do_work);
7243
7244 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7245 INIT_LIST_HEAD(list: worker->temp_inactive_list + k);
7246 }
7247 }
7248
7249 return 0;
7250}
7251
7252static void free_thread_groups(struct r5conf *conf)
7253{
7254 if (conf->worker_groups)
7255 kfree(objp: conf->worker_groups[0].workers);
7256 kfree(objp: conf->worker_groups);
7257 conf->worker_groups = NULL;
7258}
7259
7260static sector_t
7261raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7262{
7263 struct r5conf *conf = mddev->private;
7264
7265 if (!sectors)
7266 sectors = mddev->dev_sectors;
7267 if (!raid_disks)
7268 /* size is defined by the smallest of previous and new size */
7269 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7270
7271 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7272 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7273 return sectors * (raid_disks - conf->max_degraded);
7274}
7275
7276static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7277{
7278 safe_put_page(p: percpu->spare_page);
7279 percpu->spare_page = NULL;
7280 kvfree(addr: percpu->scribble);
7281 percpu->scribble = NULL;
7282}
7283
7284static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7285{
7286 if (conf->level == 6 && !percpu->spare_page) {
7287 percpu->spare_page = alloc_page(GFP_KERNEL);
7288 if (!percpu->spare_page)
7289 return -ENOMEM;
7290 }
7291
7292 if (scribble_alloc(percpu,
7293 max(conf->raid_disks,
7294 conf->previous_raid_disks),
7295 max(conf->chunk_sectors,
7296 conf->prev_chunk_sectors)
7297 / RAID5_STRIPE_SECTORS(conf))) {
7298 free_scratch_buffer(conf, percpu);
7299 return -ENOMEM;
7300 }
7301
7302 local_lock_init(&percpu->lock);
7303 return 0;
7304}
7305
7306static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7307{
7308 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7309
7310 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7311 return 0;
7312}
7313
7314static void raid5_free_percpu(struct r5conf *conf)
7315{
7316 if (!conf->percpu)
7317 return;
7318
7319 cpuhp_state_remove_instance(state: CPUHP_MD_RAID5_PREPARE, node: &conf->node);
7320 free_percpu(pdata: conf->percpu);
7321}
7322
7323static void free_conf(struct r5conf *conf)
7324{
7325 int i;
7326
7327 log_exit(conf);
7328
7329 shrinker_free(shrinker: conf->shrinker);
7330 free_thread_groups(conf);
7331 shrink_stripes(conf);
7332 raid5_free_percpu(conf);
7333 for (i = 0; i < conf->pool_size; i++)
7334 if (conf->disks[i].extra_page)
7335 put_page(page: conf->disks[i].extra_page);
7336 kfree(objp: conf->disks);
7337 bioset_exit(&conf->bio_split);
7338 kfree(objp: conf->stripe_hashtbl);
7339 kfree(objp: conf->pending_data);
7340 kfree(objp: conf);
7341}
7342
7343static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7344{
7345 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7346 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7347
7348 if (alloc_scratch_buffer(conf, percpu)) {
7349 pr_warn("%s: failed memory allocation for cpu%u\n",
7350 __func__, cpu);
7351 return -ENOMEM;
7352 }
7353 return 0;
7354}
7355
7356static int raid5_alloc_percpu(struct r5conf *conf)
7357{
7358 int err = 0;
7359
7360 conf->percpu = alloc_percpu(struct raid5_percpu);
7361 if (!conf->percpu)
7362 return -ENOMEM;
7363
7364 err = cpuhp_state_add_instance(state: CPUHP_MD_RAID5_PREPARE, node: &conf->node);
7365 if (!err) {
7366 conf->scribble_disks = max(conf->raid_disks,
7367 conf->previous_raid_disks);
7368 conf->scribble_sectors = max(conf->chunk_sectors,
7369 conf->prev_chunk_sectors);
7370 }
7371 return err;
7372}
7373
7374static unsigned long raid5_cache_scan(struct shrinker *shrink,
7375 struct shrink_control *sc)
7376{
7377 struct r5conf *conf = shrink->private_data;
7378 unsigned long ret = SHRINK_STOP;
7379
7380 if (mutex_trylock(lock: &conf->cache_size_mutex)) {
7381 ret= 0;
7382 while (ret < sc->nr_to_scan &&
7383 conf->max_nr_stripes > conf->min_nr_stripes) {
7384 if (drop_one_stripe(conf) == 0) {
7385 ret = SHRINK_STOP;
7386 break;
7387 }
7388 ret++;
7389 }
7390 mutex_unlock(lock: &conf->cache_size_mutex);
7391 }
7392 return ret;
7393}
7394
7395static unsigned long raid5_cache_count(struct shrinker *shrink,
7396 struct shrink_control *sc)
7397{
7398 struct r5conf *conf = shrink->private_data;
7399 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7400 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7401
7402 if (max_stripes < min_stripes)
7403 /* unlikely, but not impossible */
7404 return 0;
7405 return max_stripes - min_stripes;
7406}
7407
7408static struct r5conf *setup_conf(struct mddev *mddev)
7409{
7410 struct r5conf *conf;
7411 int raid_disk, memory, max_disks;
7412 struct md_rdev *rdev;
7413 struct disk_info *disk;
7414 char pers_name[6];
7415 int i;
7416 int group_cnt;
7417 struct r5worker_group *new_group;
7418 int ret = -ENOMEM;
7419
7420 if (mddev->new_level != 5
7421 && mddev->new_level != 4
7422 && mddev->new_level != 6) {
7423 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7424 mdname(mddev), mddev->new_level);
7425 return ERR_PTR(error: -EIO);
7426 }
7427 if ((mddev->new_level == 5
7428 && !algorithm_valid_raid5(layout: mddev->new_layout)) ||
7429 (mddev->new_level == 6
7430 && !algorithm_valid_raid6(layout: mddev->new_layout))) {
7431 pr_warn("md/raid:%s: layout %d not supported\n",
7432 mdname(mddev), mddev->new_layout);
7433 return ERR_PTR(error: -EIO);
7434 }
7435 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7436 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7437 mdname(mddev), mddev->raid_disks);
7438 return ERR_PTR(error: -EINVAL);
7439 }
7440
7441 if (!mddev->new_chunk_sectors ||
7442 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7443 !is_power_of_2(n: mddev->new_chunk_sectors)) {
7444 pr_warn("md/raid:%s: invalid chunk size %d\n",
7445 mdname(mddev), mddev->new_chunk_sectors << 9);
7446 return ERR_PTR(error: -EINVAL);
7447 }
7448
7449 conf = kzalloc(size: sizeof(struct r5conf), GFP_KERNEL);
7450 if (conf == NULL)
7451 goto abort;
7452
7453#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7454 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7455 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7456 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7457#endif
7458 INIT_LIST_HEAD(list: &conf->free_list);
7459 INIT_LIST_HEAD(list: &conf->pending_list);
7460 conf->pending_data = kcalloc(PENDING_IO_MAX,
7461 size: sizeof(struct r5pending_data),
7462 GFP_KERNEL);
7463 if (!conf->pending_data)
7464 goto abort;
7465 for (i = 0; i < PENDING_IO_MAX; i++)
7466 list_add(new: &conf->pending_data[i].sibling, head: &conf->free_list);
7467 /* Don't enable multi-threading by default*/
7468 if (!alloc_thread_groups(conf, cnt: 0, group_cnt: &group_cnt, worker_groups: &new_group)) {
7469 conf->group_cnt = group_cnt;
7470 conf->worker_cnt_per_group = 0;
7471 conf->worker_groups = new_group;
7472 } else
7473 goto abort;
7474 spin_lock_init(&conf->device_lock);
7475 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7476 mutex_init(&conf->cache_size_mutex);
7477
7478 init_waitqueue_head(&conf->wait_for_quiescent);
7479 init_waitqueue_head(&conf->wait_for_stripe);
7480 init_waitqueue_head(&conf->wait_for_overlap);
7481 INIT_LIST_HEAD(list: &conf->handle_list);
7482 INIT_LIST_HEAD(list: &conf->loprio_list);
7483 INIT_LIST_HEAD(list: &conf->hold_list);
7484 INIT_LIST_HEAD(list: &conf->delayed_list);
7485 INIT_LIST_HEAD(list: &conf->bitmap_list);
7486 init_llist_head(list: &conf->released_stripes);
7487 atomic_set(v: &conf->active_stripes, i: 0);
7488 atomic_set(v: &conf->preread_active_stripes, i: 0);
7489 atomic_set(v: &conf->active_aligned_reads, i: 0);
7490 spin_lock_init(&conf->pending_bios_lock);
7491 conf->batch_bio_dispatch = true;
7492 rdev_for_each(rdev, mddev) {
7493 if (test_bit(Journal, &rdev->flags))
7494 continue;
7495 if (bdev_nonrot(bdev: rdev->bdev)) {
7496 conf->batch_bio_dispatch = false;
7497 break;
7498 }
7499 }
7500
7501 conf->bypass_threshold = BYPASS_THRESHOLD;
7502 conf->recovery_disabled = mddev->recovery_disabled - 1;
7503
7504 conf->raid_disks = mddev->raid_disks;
7505 if (mddev->reshape_position == MaxSector)
7506 conf->previous_raid_disks = mddev->raid_disks;
7507 else
7508 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7509 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7510
7511 conf->disks = kcalloc(n: max_disks, size: sizeof(struct disk_info),
7512 GFP_KERNEL);
7513
7514 if (!conf->disks)
7515 goto abort;
7516
7517 for (i = 0; i < max_disks; i++) {
7518 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7519 if (!conf->disks[i].extra_page)
7520 goto abort;
7521 }
7522
7523 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, flags: 0);
7524 if (ret)
7525 goto abort;
7526 conf->mddev = mddev;
7527
7528 ret = -ENOMEM;
7529 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7530 if (!conf->stripe_hashtbl)
7531 goto abort;
7532
7533 /* We init hash_locks[0] separately to that it can be used
7534 * as the reference lock in the spin_lock_nest_lock() call
7535 * in lock_all_device_hash_locks_irq in order to convince
7536 * lockdep that we know what we are doing.
7537 */
7538 spin_lock_init(conf->hash_locks);
7539 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7540 spin_lock_init(conf->hash_locks + i);
7541
7542 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7543 INIT_LIST_HEAD(list: conf->inactive_list + i);
7544
7545 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7546 INIT_LIST_HEAD(list: conf->temp_inactive_list + i);
7547
7548 atomic_set(v: &conf->r5c_cached_full_stripes, i: 0);
7549 INIT_LIST_HEAD(list: &conf->r5c_full_stripe_list);
7550 atomic_set(v: &conf->r5c_cached_partial_stripes, i: 0);
7551 INIT_LIST_HEAD(list: &conf->r5c_partial_stripe_list);
7552 atomic_set(v: &conf->r5c_flushing_full_stripes, i: 0);
7553 atomic_set(v: &conf->r5c_flushing_partial_stripes, i: 0);
7554
7555 conf->level = mddev->new_level;
7556 conf->chunk_sectors = mddev->new_chunk_sectors;
7557 ret = raid5_alloc_percpu(conf);
7558 if (ret)
7559 goto abort;
7560
7561 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7562
7563 ret = -EIO;
7564 rdev_for_each(rdev, mddev) {
7565 raid_disk = rdev->raid_disk;
7566 if (raid_disk >= max_disks
7567 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7568 continue;
7569 disk = conf->disks + raid_disk;
7570
7571 if (test_bit(Replacement, &rdev->flags)) {
7572 if (disk->replacement)
7573 goto abort;
7574 RCU_INIT_POINTER(disk->replacement, rdev);
7575 } else {
7576 if (disk->rdev)
7577 goto abort;
7578 RCU_INIT_POINTER(disk->rdev, rdev);
7579 }
7580
7581 if (test_bit(In_sync, &rdev->flags)) {
7582 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7583 mdname(mddev), rdev->bdev, raid_disk);
7584 } else if (rdev->saved_raid_disk != raid_disk)
7585 /* Cannot rely on bitmap to complete recovery */
7586 conf->fullsync = 1;
7587 }
7588
7589 conf->level = mddev->new_level;
7590 if (conf->level == 6) {
7591 conf->max_degraded = 2;
7592 if (raid6_call.xor_syndrome)
7593 conf->rmw_level = PARITY_ENABLE_RMW;
7594 else
7595 conf->rmw_level = PARITY_DISABLE_RMW;
7596 } else {
7597 conf->max_degraded = 1;
7598 conf->rmw_level = PARITY_ENABLE_RMW;
7599 }
7600 conf->algorithm = mddev->new_layout;
7601 conf->reshape_progress = mddev->reshape_position;
7602 if (conf->reshape_progress != MaxSector) {
7603 conf->prev_chunk_sectors = mddev->chunk_sectors;
7604 conf->prev_algo = mddev->layout;
7605 } else {
7606 conf->prev_chunk_sectors = conf->chunk_sectors;
7607 conf->prev_algo = conf->algorithm;
7608 }
7609
7610 conf->min_nr_stripes = NR_STRIPES;
7611 if (mddev->reshape_position != MaxSector) {
7612 int stripes = max_t(int,
7613 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7614 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7615 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7616 if (conf->min_nr_stripes != NR_STRIPES)
7617 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7618 mdname(mddev), conf->min_nr_stripes);
7619 }
7620 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7621 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7622 atomic_set(v: &conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7623 if (grow_stripes(conf, num: conf->min_nr_stripes)) {
7624 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7625 mdname(mddev), memory);
7626 ret = -ENOMEM;
7627 goto abort;
7628 } else
7629 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7630 /*
7631 * Losing a stripe head costs more than the time to refill it,
7632 * it reduces the queue depth and so can hurt throughput.
7633 * So set it rather large, scaled by number of devices.
7634 */
7635 conf->shrinker = shrinker_alloc(flags: 0, fmt: "md-raid5:%s", mdname(mddev));
7636 if (!conf->shrinker) {
7637 ret = -ENOMEM;
7638 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7639 mdname(mddev));
7640 goto abort;
7641 }
7642
7643 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7644 conf->shrinker->scan_objects = raid5_cache_scan;
7645 conf->shrinker->count_objects = raid5_cache_count;
7646 conf->shrinker->batch = 128;
7647 conf->shrinker->private_data = conf;
7648
7649 shrinker_register(shrinker: conf->shrinker);
7650
7651 sprintf(buf: pers_name, fmt: "raid%d", mddev->new_level);
7652 rcu_assign_pointer(conf->thread,
7653 md_register_thread(raid5d, mddev, pers_name));
7654 if (!conf->thread) {
7655 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7656 mdname(mddev));
7657 ret = -ENOMEM;
7658 goto abort;
7659 }
7660
7661 return conf;
7662
7663 abort:
7664 if (conf)
7665 free_conf(conf);
7666 return ERR_PTR(error: ret);
7667}
7668
7669static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7670{
7671 switch (algo) {
7672 case ALGORITHM_PARITY_0:
7673 if (raid_disk < max_degraded)
7674 return 1;
7675 break;
7676 case ALGORITHM_PARITY_N:
7677 if (raid_disk >= raid_disks - max_degraded)
7678 return 1;
7679 break;
7680 case ALGORITHM_PARITY_0_6:
7681 if (raid_disk == 0 ||
7682 raid_disk == raid_disks - 1)
7683 return 1;
7684 break;
7685 case ALGORITHM_LEFT_ASYMMETRIC_6:
7686 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7687 case ALGORITHM_LEFT_SYMMETRIC_6:
7688 case ALGORITHM_RIGHT_SYMMETRIC_6:
7689 if (raid_disk == raid_disks - 1)
7690 return 1;
7691 }
7692 return 0;
7693}
7694
7695static int raid5_set_limits(struct mddev *mddev)
7696{
7697 struct r5conf *conf = mddev->private;
7698 struct queue_limits lim;
7699 int data_disks, stripe;
7700 struct md_rdev *rdev;
7701
7702 /*
7703 * The read-ahead size must cover two whole stripes, which is
7704 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7705 */
7706 data_disks = conf->previous_raid_disks - conf->max_degraded;
7707
7708 /*
7709 * We can only discard a whole stripe. It doesn't make sense to
7710 * discard data disk but write parity disk
7711 */
7712 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7713
7714 blk_set_stacking_limits(lim: &lim);
7715 lim.io_min = mddev->chunk_sectors << 9;
7716 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7717 lim.raid_partial_stripes_expensive = 1;
7718 lim.discard_granularity = stripe;
7719 lim.max_write_zeroes_sectors = 0;
7720 mddev_stack_rdev_limits(mddev, lim: &lim);
7721 rdev_for_each(rdev, mddev)
7722 queue_limits_stack_bdev(t: &lim, bdev: rdev->bdev, offset: rdev->new_data_offset,
7723 pfx: mddev->gendisk->disk_name);
7724
7725 /*
7726 * Zeroing is required for discard, otherwise data could be lost.
7727 *
7728 * Consider a scenario: discard a stripe (the stripe could be
7729 * inconsistent if discard_zeroes_data is 0); write one disk of the
7730 * stripe (the stripe could be inconsistent again depending on which
7731 * disks are used to calculate parity); the disk is broken; The stripe
7732 * data of this disk is lost.
7733 *
7734 * We only allow DISCARD if the sysadmin has confirmed that only safe
7735 * devices are in use by setting a module parameter. A better idea
7736 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7737 * required to be safe.
7738 */
7739 if (!devices_handle_discard_safely ||
7740 lim.max_discard_sectors < (stripe >> 9) ||
7741 lim.discard_granularity < stripe)
7742 lim.max_hw_discard_sectors = 0;
7743
7744 /*
7745 * Requests require having a bitmap for each stripe.
7746 * Limit the max sectors based on this.
7747 */
7748 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7749
7750 /* No restrictions on the number of segments in the request */
7751 lim.max_segments = USHRT_MAX;
7752
7753 return queue_limits_set(q: mddev->gendisk->queue, lim: &lim);
7754}
7755
7756static int raid5_run(struct mddev *mddev)
7757{
7758 struct r5conf *conf;
7759 int dirty_parity_disks = 0;
7760 struct md_rdev *rdev;
7761 struct md_rdev *journal_dev = NULL;
7762 sector_t reshape_offset = 0;
7763 int i;
7764 long long min_offset_diff = 0;
7765 int first = 1;
7766 int ret = -EIO;
7767
7768 if (mddev->recovery_cp != MaxSector)
7769 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7770 mdname(mddev));
7771
7772 rdev_for_each(rdev, mddev) {
7773 long long diff;
7774
7775 if (test_bit(Journal, &rdev->flags)) {
7776 journal_dev = rdev;
7777 continue;
7778 }
7779 if (rdev->raid_disk < 0)
7780 continue;
7781 diff = (rdev->new_data_offset - rdev->data_offset);
7782 if (first) {
7783 min_offset_diff = diff;
7784 first = 0;
7785 } else if (mddev->reshape_backwards &&
7786 diff < min_offset_diff)
7787 min_offset_diff = diff;
7788 else if (!mddev->reshape_backwards &&
7789 diff > min_offset_diff)
7790 min_offset_diff = diff;
7791 }
7792
7793 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7794 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7795 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7796 mdname(mddev));
7797 return -EINVAL;
7798 }
7799
7800 if (mddev->reshape_position != MaxSector) {
7801 /* Check that we can continue the reshape.
7802 * Difficulties arise if the stripe we would write to
7803 * next is at or after the stripe we would read from next.
7804 * For a reshape that changes the number of devices, this
7805 * is only possible for a very short time, and mdadm makes
7806 * sure that time appears to have past before assembling
7807 * the array. So we fail if that time hasn't passed.
7808 * For a reshape that keeps the number of devices the same
7809 * mdadm must be monitoring the reshape can keeping the
7810 * critical areas read-only and backed up. It will start
7811 * the array in read-only mode, so we check for that.
7812 */
7813 sector_t here_new, here_old;
7814 int old_disks;
7815 int max_degraded = (mddev->level == 6 ? 2 : 1);
7816 int chunk_sectors;
7817 int new_data_disks;
7818
7819 if (journal_dev) {
7820 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7821 mdname(mddev));
7822 return -EINVAL;
7823 }
7824
7825 if (mddev->new_level != mddev->level) {
7826 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7827 mdname(mddev));
7828 return -EINVAL;
7829 }
7830 old_disks = mddev->raid_disks - mddev->delta_disks;
7831 /* reshape_position must be on a new-stripe boundary, and one
7832 * further up in new geometry must map after here in old
7833 * geometry.
7834 * If the chunk sizes are different, then as we perform reshape
7835 * in units of the largest of the two, reshape_position needs
7836 * be a multiple of the largest chunk size times new data disks.
7837 */
7838 here_new = mddev->reshape_position;
7839 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7840 new_data_disks = mddev->raid_disks - max_degraded;
7841 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7842 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7843 mdname(mddev));
7844 return -EINVAL;
7845 }
7846 reshape_offset = here_new * chunk_sectors;
7847 /* here_new is the stripe we will write to */
7848 here_old = mddev->reshape_position;
7849 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7850 /* here_old is the first stripe that we might need to read
7851 * from */
7852 if (mddev->delta_disks == 0) {
7853 /* We cannot be sure it is safe to start an in-place
7854 * reshape. It is only safe if user-space is monitoring
7855 * and taking constant backups.
7856 * mdadm always starts a situation like this in
7857 * readonly mode so it can take control before
7858 * allowing any writes. So just check for that.
7859 */
7860 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7861 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7862 /* not really in-place - so OK */;
7863 else if (mddev->ro == 0) {
7864 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7865 mdname(mddev));
7866 return -EINVAL;
7867 }
7868 } else if (mddev->reshape_backwards
7869 ? (here_new * chunk_sectors + min_offset_diff <=
7870 here_old * chunk_sectors)
7871 : (here_new * chunk_sectors >=
7872 here_old * chunk_sectors + (-min_offset_diff))) {
7873 /* Reading from the same stripe as writing to - bad */
7874 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7875 mdname(mddev));
7876 return -EINVAL;
7877 }
7878 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7879 /* OK, we should be able to continue; */
7880 } else {
7881 BUG_ON(mddev->level != mddev->new_level);
7882 BUG_ON(mddev->layout != mddev->new_layout);
7883 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7884 BUG_ON(mddev->delta_disks != 0);
7885 }
7886
7887 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7888 test_bit(MD_HAS_PPL, &mddev->flags)) {
7889 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7890 mdname(mddev));
7891 clear_bit(nr: MD_HAS_PPL, addr: &mddev->flags);
7892 clear_bit(nr: MD_HAS_MULTIPLE_PPLS, addr: &mddev->flags);
7893 }
7894
7895 if (mddev->private == NULL)
7896 conf = setup_conf(mddev);
7897 else
7898 conf = mddev->private;
7899
7900 if (IS_ERR(ptr: conf))
7901 return PTR_ERR(ptr: conf);
7902
7903 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7904 if (!journal_dev) {
7905 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7906 mdname(mddev));
7907 mddev->ro = 1;
7908 set_disk_ro(disk: mddev->gendisk, read_only: 1);
7909 } else if (mddev->recovery_cp == MaxSector)
7910 set_bit(nr: MD_JOURNAL_CLEAN, addr: &mddev->flags);
7911 }
7912
7913 conf->min_offset_diff = min_offset_diff;
7914 rcu_assign_pointer(mddev->thread, conf->thread);
7915 rcu_assign_pointer(conf->thread, NULL);
7916 mddev->private = conf;
7917
7918 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7919 i++) {
7920 rdev = conf->disks[i].rdev;
7921 if (!rdev)
7922 continue;
7923 if (conf->disks[i].replacement &&
7924 conf->reshape_progress != MaxSector) {
7925 /* replacements and reshape simply do not mix. */
7926 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7927 goto abort;
7928 }
7929 if (test_bit(In_sync, &rdev->flags))
7930 continue;
7931 /* This disc is not fully in-sync. However if it
7932 * just stored parity (beyond the recovery_offset),
7933 * when we don't need to be concerned about the
7934 * array being dirty.
7935 * When reshape goes 'backwards', we never have
7936 * partially completed devices, so we only need
7937 * to worry about reshape going forwards.
7938 */
7939 /* Hack because v0.91 doesn't store recovery_offset properly. */
7940 if (mddev->major_version == 0 &&
7941 mddev->minor_version > 90)
7942 rdev->recovery_offset = reshape_offset;
7943
7944 if (rdev->recovery_offset < reshape_offset) {
7945 /* We need to check old and new layout */
7946 if (!only_parity(raid_disk: rdev->raid_disk,
7947 algo: conf->algorithm,
7948 raid_disks: conf->raid_disks,
7949 max_degraded: conf->max_degraded))
7950 continue;
7951 }
7952 if (!only_parity(raid_disk: rdev->raid_disk,
7953 algo: conf->prev_algo,
7954 raid_disks: conf->previous_raid_disks,
7955 max_degraded: conf->max_degraded))
7956 continue;
7957 dirty_parity_disks++;
7958 }
7959
7960 /*
7961 * 0 for a fully functional array, 1 or 2 for a degraded array.
7962 */
7963 mddev->degraded = raid5_calc_degraded(conf);
7964
7965 if (has_failed(conf)) {
7966 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7967 mdname(mddev), mddev->degraded, conf->raid_disks);
7968 goto abort;
7969 }
7970
7971 /* device size must be a multiple of chunk size */
7972 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7973 mddev->resync_max_sectors = mddev->dev_sectors;
7974
7975 if (mddev->degraded > dirty_parity_disks &&
7976 mddev->recovery_cp != MaxSector) {
7977 if (test_bit(MD_HAS_PPL, &mddev->flags))
7978 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7979 mdname(mddev));
7980 else if (mddev->ok_start_degraded)
7981 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7982 mdname(mddev));
7983 else {
7984 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7985 mdname(mddev));
7986 goto abort;
7987 }
7988 }
7989
7990 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7991 mdname(mddev), conf->level,
7992 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7993 mddev->new_layout);
7994
7995 print_raid5_conf(conf);
7996
7997 if (conf->reshape_progress != MaxSector) {
7998 conf->reshape_safe = conf->reshape_progress;
7999 atomic_set(v: &conf->reshape_stripes, i: 0);
8000 clear_bit(nr: MD_RECOVERY_SYNC, addr: &mddev->recovery);
8001 clear_bit(nr: MD_RECOVERY_CHECK, addr: &mddev->recovery);
8002 set_bit(nr: MD_RECOVERY_RESHAPE, addr: &mddev->recovery);
8003 set_bit(nr: MD_RECOVERY_NEEDED, addr: &mddev->recovery);
8004 }
8005
8006 /* Ok, everything is just fine now */
8007 if (mddev->to_remove == &raid5_attrs_group)
8008 mddev->to_remove = NULL;
8009 else if (mddev->kobj.sd &&
8010 sysfs_create_group(kobj: &mddev->kobj, grp: &raid5_attrs_group))
8011 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8012 mdname(mddev));
8013 md_set_array_sectors(mddev, array_sectors: raid5_size(mddev, sectors: 0, raid_disks: 0));
8014
8015 if (!mddev_is_dm(mddev)) {
8016 ret = raid5_set_limits(mddev);
8017 if (ret)
8018 goto abort;
8019 }
8020
8021 if (log_init(conf, journal_dev, ppl: raid5_has_ppl(conf)))
8022 goto abort;
8023
8024 return 0;
8025abort:
8026 md_unregister_thread(mddev, threadp: &mddev->thread);
8027 print_raid5_conf(conf);
8028 free_conf(conf);
8029 mddev->private = NULL;
8030 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8031 return ret;
8032}
8033
8034static void raid5_free(struct mddev *mddev, void *priv)
8035{
8036 struct r5conf *conf = priv;
8037
8038 free_conf(conf);
8039 mddev->to_remove = &raid5_attrs_group;
8040}
8041
8042static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8043{
8044 struct r5conf *conf = mddev->private;
8045 int i;
8046
8047 lockdep_assert_held(&mddev->lock);
8048
8049 seq_printf(m: seq, fmt: " level %d, %dk chunk, algorithm %d", mddev->level,
8050 conf->chunk_sectors / 2, mddev->layout);
8051 seq_printf (m: seq, fmt: " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8052 for (i = 0; i < conf->raid_disks; i++) {
8053 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8054
8055 seq_printf (m: seq, fmt: "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8056 }
8057 seq_printf (m: seq, fmt: "]");
8058}
8059
8060static void print_raid5_conf (struct r5conf *conf)
8061{
8062 struct md_rdev *rdev;
8063 int i;
8064
8065 pr_debug("RAID conf printout:\n");
8066 if (!conf) {
8067 pr_debug("(conf==NULL)\n");
8068 return;
8069 }
8070 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8071 conf->raid_disks,
8072 conf->raid_disks - conf->mddev->degraded);
8073
8074 rcu_read_lock();
8075 for (i = 0; i < conf->raid_disks; i++) {
8076 rdev = rcu_dereference(conf->disks[i].rdev);
8077 if (rdev)
8078 pr_debug(" disk %d, o:%d, dev:%pg\n",
8079 i, !test_bit(Faulty, &rdev->flags),
8080 rdev->bdev);
8081 }
8082 rcu_read_unlock();
8083}
8084
8085static int raid5_spare_active(struct mddev *mddev)
8086{
8087 int i;
8088 struct r5conf *conf = mddev->private;
8089 struct md_rdev *rdev, *replacement;
8090 int count = 0;
8091 unsigned long flags;
8092
8093 for (i = 0; i < conf->raid_disks; i++) {
8094 rdev = conf->disks[i].rdev;
8095 replacement = conf->disks[i].replacement;
8096 if (replacement
8097 && replacement->recovery_offset == MaxSector
8098 && !test_bit(Faulty, &replacement->flags)
8099 && !test_and_set_bit(nr: In_sync, addr: &replacement->flags)) {
8100 /* Replacement has just become active. */
8101 if (!rdev
8102 || !test_and_clear_bit(nr: In_sync, addr: &rdev->flags))
8103 count++;
8104 if (rdev) {
8105 /* Replaced device not technically faulty,
8106 * but we need to be sure it gets removed
8107 * and never re-added.
8108 */
8109 set_bit(nr: Faulty, addr: &rdev->flags);
8110 sysfs_notify_dirent_safe(
8111 sd: rdev->sysfs_state);
8112 }
8113 sysfs_notify_dirent_safe(sd: replacement->sysfs_state);
8114 } else if (rdev
8115 && rdev->recovery_offset == MaxSector
8116 && !test_bit(Faulty, &rdev->flags)
8117 && !test_and_set_bit(nr: In_sync, addr: &rdev->flags)) {
8118 count++;
8119 sysfs_notify_dirent_safe(sd: rdev->sysfs_state);
8120 }
8121 }
8122 spin_lock_irqsave(&conf->device_lock, flags);
8123 mddev->degraded = raid5_calc_degraded(conf);
8124 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
8125 print_raid5_conf(conf);
8126 return count;
8127}
8128
8129static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8130{
8131 struct r5conf *conf = mddev->private;
8132 int err = 0;
8133 int number = rdev->raid_disk;
8134 struct md_rdev **rdevp;
8135 struct disk_info *p;
8136 struct md_rdev *tmp;
8137
8138 print_raid5_conf(conf);
8139 if (test_bit(Journal, &rdev->flags) && conf->log) {
8140 /*
8141 * we can't wait pending write here, as this is called in
8142 * raid5d, wait will deadlock.
8143 * neilb: there is no locking about new writes here,
8144 * so this cannot be safe.
8145 */
8146 if (atomic_read(v: &conf->active_stripes) ||
8147 atomic_read(v: &conf->r5c_cached_full_stripes) ||
8148 atomic_read(v: &conf->r5c_cached_partial_stripes)) {
8149 return -EBUSY;
8150 }
8151 log_exit(conf);
8152 return 0;
8153 }
8154 if (unlikely(number >= conf->pool_size))
8155 return 0;
8156 p = conf->disks + number;
8157 if (rdev == p->rdev)
8158 rdevp = &p->rdev;
8159 else if (rdev == p->replacement)
8160 rdevp = &p->replacement;
8161 else
8162 return 0;
8163
8164 if (number >= conf->raid_disks &&
8165 conf->reshape_progress == MaxSector)
8166 clear_bit(nr: In_sync, addr: &rdev->flags);
8167
8168 if (test_bit(In_sync, &rdev->flags) ||
8169 atomic_read(v: &rdev->nr_pending)) {
8170 err = -EBUSY;
8171 goto abort;
8172 }
8173 /* Only remove non-faulty devices if recovery
8174 * isn't possible.
8175 */
8176 if (!test_bit(Faulty, &rdev->flags) &&
8177 mddev->recovery_disabled != conf->recovery_disabled &&
8178 !has_failed(conf) &&
8179 (!p->replacement || p->replacement == rdev) &&
8180 number < conf->raid_disks) {
8181 err = -EBUSY;
8182 goto abort;
8183 }
8184 WRITE_ONCE(*rdevp, NULL);
8185 if (!err) {
8186 err = log_modify(conf, rdev, add: false);
8187 if (err)
8188 goto abort;
8189 }
8190
8191 tmp = p->replacement;
8192 if (tmp) {
8193 /* We must have just cleared 'rdev' */
8194 WRITE_ONCE(p->rdev, tmp);
8195 clear_bit(nr: Replacement, addr: &tmp->flags);
8196 WRITE_ONCE(p->replacement, NULL);
8197
8198 if (!err)
8199 err = log_modify(conf, rdev: tmp, add: true);
8200 }
8201
8202 clear_bit(nr: WantReplacement, addr: &rdev->flags);
8203abort:
8204
8205 print_raid5_conf(conf);
8206 return err;
8207}
8208
8209static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8210{
8211 struct r5conf *conf = mddev->private;
8212 int ret, err = -EEXIST;
8213 int disk;
8214 struct disk_info *p;
8215 struct md_rdev *tmp;
8216 int first = 0;
8217 int last = conf->raid_disks - 1;
8218
8219 if (test_bit(Journal, &rdev->flags)) {
8220 if (conf->log)
8221 return -EBUSY;
8222
8223 rdev->raid_disk = 0;
8224 /*
8225 * The array is in readonly mode if journal is missing, so no
8226 * write requests running. We should be safe
8227 */
8228 ret = log_init(conf, journal_dev: rdev, ppl: false);
8229 if (ret)
8230 return ret;
8231
8232 ret = r5l_start(log: conf->log);
8233 if (ret)
8234 return ret;
8235
8236 return 0;
8237 }
8238 if (mddev->recovery_disabled == conf->recovery_disabled)
8239 return -EBUSY;
8240
8241 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8242 /* no point adding a device */
8243 return -EINVAL;
8244
8245 if (rdev->raid_disk >= 0)
8246 first = last = rdev->raid_disk;
8247
8248 /*
8249 * find the disk ... but prefer rdev->saved_raid_disk
8250 * if possible.
8251 */
8252 if (rdev->saved_raid_disk >= first &&
8253 rdev->saved_raid_disk <= last &&
8254 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8255 first = rdev->saved_raid_disk;
8256
8257 for (disk = first; disk <= last; disk++) {
8258 p = conf->disks + disk;
8259 if (p->rdev == NULL) {
8260 clear_bit(nr: In_sync, addr: &rdev->flags);
8261 rdev->raid_disk = disk;
8262 if (rdev->saved_raid_disk != disk)
8263 conf->fullsync = 1;
8264 WRITE_ONCE(p->rdev, rdev);
8265
8266 err = log_modify(conf, rdev, add: true);
8267
8268 goto out;
8269 }
8270 }
8271 for (disk = first; disk <= last; disk++) {
8272 p = conf->disks + disk;
8273 tmp = p->rdev;
8274 if (test_bit(WantReplacement, &tmp->flags) &&
8275 mddev->reshape_position == MaxSector &&
8276 p->replacement == NULL) {
8277 clear_bit(nr: In_sync, addr: &rdev->flags);
8278 set_bit(nr: Replacement, addr: &rdev->flags);
8279 rdev->raid_disk = disk;
8280 err = 0;
8281 conf->fullsync = 1;
8282 WRITE_ONCE(p->replacement, rdev);
8283 break;
8284 }
8285 }
8286out:
8287 print_raid5_conf(conf);
8288 return err;
8289}
8290
8291static int raid5_resize(struct mddev *mddev, sector_t sectors)
8292{
8293 /* no resync is happening, and there is enough space
8294 * on all devices, so we can resize.
8295 * We need to make sure resync covers any new space.
8296 * If the array is shrinking we should possibly wait until
8297 * any io in the removed space completes, but it hardly seems
8298 * worth it.
8299 */
8300 sector_t newsize;
8301 struct r5conf *conf = mddev->private;
8302
8303 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8304 return -EINVAL;
8305 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8306 newsize = raid5_size(mddev, sectors, raid_disks: mddev->raid_disks);
8307 if (mddev->external_size &&
8308 mddev->array_sectors > newsize)
8309 return -EINVAL;
8310 if (mddev->bitmap) {
8311 int ret = md_bitmap_resize(bitmap: mddev->bitmap, blocks: sectors, chunksize: 0, init: 0);
8312 if (ret)
8313 return ret;
8314 }
8315 md_set_array_sectors(mddev, array_sectors: newsize);
8316 if (sectors > mddev->dev_sectors &&
8317 mddev->recovery_cp > mddev->dev_sectors) {
8318 mddev->recovery_cp = mddev->dev_sectors;
8319 set_bit(nr: MD_RECOVERY_NEEDED, addr: &mddev->recovery);
8320 }
8321 mddev->dev_sectors = sectors;
8322 mddev->resync_max_sectors = sectors;
8323 return 0;
8324}
8325
8326static int check_stripe_cache(struct mddev *mddev)
8327{
8328 /* Can only proceed if there are plenty of stripe_heads.
8329 * We need a minimum of one full stripe,, and for sensible progress
8330 * it is best to have about 4 times that.
8331 * If we require 4 times, then the default 256 4K stripe_heads will
8332 * allow for chunk sizes up to 256K, which is probably OK.
8333 * If the chunk size is greater, user-space should request more
8334 * stripe_heads first.
8335 */
8336 struct r5conf *conf = mddev->private;
8337 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8338 > conf->min_nr_stripes ||
8339 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8340 > conf->min_nr_stripes) {
8341 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8342 mdname(mddev),
8343 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8344 / RAID5_STRIPE_SIZE(conf))*4);
8345 return 0;
8346 }
8347 return 1;
8348}
8349
8350static int check_reshape(struct mddev *mddev)
8351{
8352 struct r5conf *conf = mddev->private;
8353
8354 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8355 return -EINVAL;
8356 if (mddev->delta_disks == 0 &&
8357 mddev->new_layout == mddev->layout &&
8358 mddev->new_chunk_sectors == mddev->chunk_sectors)
8359 return 0; /* nothing to do */
8360 if (has_failed(conf))
8361 return -EINVAL;
8362 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8363 /* We might be able to shrink, but the devices must
8364 * be made bigger first.
8365 * For raid6, 4 is the minimum size.
8366 * Otherwise 2 is the minimum
8367 */
8368 int min = 2;
8369 if (mddev->level == 6)
8370 min = 4;
8371 if (mddev->raid_disks + mddev->delta_disks < min)
8372 return -EINVAL;
8373 }
8374
8375 if (!check_stripe_cache(mddev))
8376 return -ENOSPC;
8377
8378 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8379 mddev->delta_disks > 0)
8380 if (resize_chunks(conf,
8381 new_disks: conf->previous_raid_disks
8382 + max(0, mddev->delta_disks),
8383 max(mddev->new_chunk_sectors,
8384 mddev->chunk_sectors)
8385 ) < 0)
8386 return -ENOMEM;
8387
8388 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8389 return 0; /* never bother to shrink */
8390 return resize_stripes(conf, newsize: (conf->previous_raid_disks
8391 + mddev->delta_disks));
8392}
8393
8394static int raid5_start_reshape(struct mddev *mddev)
8395{
8396 struct r5conf *conf = mddev->private;
8397 struct md_rdev *rdev;
8398 int spares = 0;
8399 int i;
8400 unsigned long flags;
8401
8402 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8403 return -EBUSY;
8404
8405 if (!check_stripe_cache(mddev))
8406 return -ENOSPC;
8407
8408 if (has_failed(conf))
8409 return -EINVAL;
8410
8411 /* raid5 can't handle concurrent reshape and recovery */
8412 if (mddev->recovery_cp < MaxSector)
8413 return -EBUSY;
8414 for (i = 0; i < conf->raid_disks; i++)
8415 if (conf->disks[i].replacement)
8416 return -EBUSY;
8417
8418 rdev_for_each(rdev, mddev) {
8419 if (!test_bit(In_sync, &rdev->flags)
8420 && !test_bit(Faulty, &rdev->flags))
8421 spares++;
8422 }
8423
8424 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8425 /* Not enough devices even to make a degraded array
8426 * of that size
8427 */
8428 return -EINVAL;
8429
8430 /* Refuse to reduce size of the array. Any reductions in
8431 * array size must be through explicit setting of array_size
8432 * attribute.
8433 */
8434 if (raid5_size(mddev, sectors: 0, raid_disks: conf->raid_disks + mddev->delta_disks)
8435 < mddev->array_sectors) {
8436 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8437 mdname(mddev));
8438 return -EINVAL;
8439 }
8440
8441 atomic_set(v: &conf->reshape_stripes, i: 0);
8442 spin_lock_irq(lock: &conf->device_lock);
8443 write_seqcount_begin(&conf->gen_lock);
8444 conf->previous_raid_disks = conf->raid_disks;
8445 conf->raid_disks += mddev->delta_disks;
8446 conf->prev_chunk_sectors = conf->chunk_sectors;
8447 conf->chunk_sectors = mddev->new_chunk_sectors;
8448 conf->prev_algo = conf->algorithm;
8449 conf->algorithm = mddev->new_layout;
8450 conf->generation++;
8451 /* Code that selects data_offset needs to see the generation update
8452 * if reshape_progress has been set - so a memory barrier needed.
8453 */
8454 smp_mb();
8455 if (mddev->reshape_backwards)
8456 conf->reshape_progress = raid5_size(mddev, sectors: 0, raid_disks: 0);
8457 else
8458 conf->reshape_progress = 0;
8459 conf->reshape_safe = conf->reshape_progress;
8460 write_seqcount_end(&conf->gen_lock);
8461 spin_unlock_irq(lock: &conf->device_lock);
8462
8463 /* Now make sure any requests that proceeded on the assumption
8464 * the reshape wasn't running - like Discard or Read - have
8465 * completed.
8466 */
8467 raid5_quiesce(mddev, quiesce: true);
8468 raid5_quiesce(mddev, quiesce: false);
8469
8470 /* Add some new drives, as many as will fit.
8471 * We know there are enough to make the newly sized array work.
8472 * Don't add devices if we are reducing the number of
8473 * devices in the array. This is because it is not possible
8474 * to correctly record the "partially reconstructed" state of
8475 * such devices during the reshape and confusion could result.
8476 */
8477 if (mddev->delta_disks >= 0) {
8478 rdev_for_each(rdev, mddev)
8479 if (rdev->raid_disk < 0 &&
8480 !test_bit(Faulty, &rdev->flags)) {
8481 if (raid5_add_disk(mddev, rdev) == 0) {
8482 if (rdev->raid_disk
8483 >= conf->previous_raid_disks)
8484 set_bit(nr: In_sync, addr: &rdev->flags);
8485 else
8486 rdev->recovery_offset = 0;
8487
8488 /* Failure here is OK */
8489 sysfs_link_rdev(mddev, rdev);
8490 }
8491 } else if (rdev->raid_disk >= conf->previous_raid_disks
8492 && !test_bit(Faulty, &rdev->flags)) {
8493 /* This is a spare that was manually added */
8494 set_bit(nr: In_sync, addr: &rdev->flags);
8495 }
8496
8497 /* When a reshape changes the number of devices,
8498 * ->degraded is measured against the larger of the
8499 * pre and post number of devices.
8500 */
8501 spin_lock_irqsave(&conf->device_lock, flags);
8502 mddev->degraded = raid5_calc_degraded(conf);
8503 spin_unlock_irqrestore(lock: &conf->device_lock, flags);
8504 }
8505 mddev->raid_disks = conf->raid_disks;
8506 mddev->reshape_position = conf->reshape_progress;
8507 set_bit(nr: MD_SB_CHANGE_DEVS, addr: &mddev->sb_flags);
8508
8509 clear_bit(nr: MD_RECOVERY_SYNC, addr: &mddev->recovery);
8510 clear_bit(nr: MD_RECOVERY_CHECK, addr: &mddev->recovery);
8511 clear_bit(nr: MD_RECOVERY_DONE, addr: &mddev->recovery);
8512 set_bit(nr: MD_RECOVERY_RESHAPE, addr: &mddev->recovery);
8513 set_bit(nr: MD_RECOVERY_NEEDED, addr: &mddev->recovery);
8514 conf->reshape_checkpoint = jiffies;
8515 md_new_event();
8516 return 0;
8517}
8518
8519/* This is called from the reshape thread and should make any
8520 * changes needed in 'conf'
8521 */
8522static void end_reshape(struct r5conf *conf)
8523{
8524
8525 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8526 struct md_rdev *rdev;
8527
8528 spin_lock_irq(lock: &conf->device_lock);
8529 conf->previous_raid_disks = conf->raid_disks;
8530 md_finish_reshape(mddev: conf->mddev);
8531 smp_wmb();
8532 conf->reshape_progress = MaxSector;
8533 conf->mddev->reshape_position = MaxSector;
8534 rdev_for_each(rdev, conf->mddev)
8535 if (rdev->raid_disk >= 0 &&
8536 !test_bit(Journal, &rdev->flags) &&
8537 !test_bit(In_sync, &rdev->flags))
8538 rdev->recovery_offset = MaxSector;
8539 spin_unlock_irq(lock: &conf->device_lock);
8540 wake_up(&conf->wait_for_overlap);
8541
8542 mddev_update_io_opt(mddev: conf->mddev,
8543 nr_stripes: conf->raid_disks - conf->max_degraded);
8544 }
8545}
8546
8547/* This is called from the raid5d thread with mddev_lock held.
8548 * It makes config changes to the device.
8549 */
8550static void raid5_finish_reshape(struct mddev *mddev)
8551{
8552 struct r5conf *conf = mddev->private;
8553 struct md_rdev *rdev;
8554
8555 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8556
8557 if (mddev->delta_disks <= 0) {
8558 int d;
8559 spin_lock_irq(lock: &conf->device_lock);
8560 mddev->degraded = raid5_calc_degraded(conf);
8561 spin_unlock_irq(lock: &conf->device_lock);
8562 for (d = conf->raid_disks ;
8563 d < conf->raid_disks - mddev->delta_disks;
8564 d++) {
8565 rdev = conf->disks[d].rdev;
8566 if (rdev)
8567 clear_bit(nr: In_sync, addr: &rdev->flags);
8568 rdev = conf->disks[d].replacement;
8569 if (rdev)
8570 clear_bit(nr: In_sync, addr: &rdev->flags);
8571 }
8572 }
8573 mddev->layout = conf->algorithm;
8574 mddev->chunk_sectors = conf->chunk_sectors;
8575 mddev->reshape_position = MaxSector;
8576 mddev->delta_disks = 0;
8577 mddev->reshape_backwards = 0;
8578 }
8579}
8580
8581static void raid5_quiesce(struct mddev *mddev, int quiesce)
8582{
8583 struct r5conf *conf = mddev->private;
8584
8585 if (quiesce) {
8586 /* stop all writes */
8587 lock_all_device_hash_locks_irq(conf);
8588 /* '2' tells resync/reshape to pause so that all
8589 * active stripes can drain
8590 */
8591 r5c_flush_cache(conf, INT_MAX);
8592 /* need a memory barrier to make sure read_one_chunk() sees
8593 * quiesce started and reverts to slow (locked) path.
8594 */
8595 smp_store_release(&conf->quiesce, 2);
8596 wait_event_cmd(conf->wait_for_quiescent,
8597 atomic_read(&conf->active_stripes) == 0 &&
8598 atomic_read(&conf->active_aligned_reads) == 0,
8599 unlock_all_device_hash_locks_irq(conf),
8600 lock_all_device_hash_locks_irq(conf));
8601 conf->quiesce = 1;
8602 unlock_all_device_hash_locks_irq(conf);
8603 /* allow reshape to continue */
8604 wake_up(&conf->wait_for_overlap);
8605 } else {
8606 /* re-enable writes */
8607 lock_all_device_hash_locks_irq(conf);
8608 conf->quiesce = 0;
8609 wake_up(&conf->wait_for_quiescent);
8610 wake_up(&conf->wait_for_overlap);
8611 unlock_all_device_hash_locks_irq(conf);
8612 }
8613 log_quiesce(conf, quiesce);
8614}
8615
8616static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8617{
8618 struct r0conf *raid0_conf = mddev->private;
8619 sector_t sectors;
8620
8621 /* for raid0 takeover only one zone is supported */
8622 if (raid0_conf->nr_strip_zones > 1) {
8623 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8624 mdname(mddev));
8625 return ERR_PTR(error: -EINVAL);
8626 }
8627
8628 sectors = raid0_conf->strip_zone[0].zone_end;
8629 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8630 mddev->dev_sectors = sectors;
8631 mddev->new_level = level;
8632 mddev->new_layout = ALGORITHM_PARITY_N;
8633 mddev->new_chunk_sectors = mddev->chunk_sectors;
8634 mddev->raid_disks += 1;
8635 mddev->delta_disks = 1;
8636 /* make sure it will be not marked as dirty */
8637 mddev->recovery_cp = MaxSector;
8638
8639 return setup_conf(mddev);
8640}
8641
8642static void *raid5_takeover_raid1(struct mddev *mddev)
8643{
8644 int chunksect;
8645 void *ret;
8646
8647 if (mddev->raid_disks != 2 ||
8648 mddev->degraded > 1)
8649 return ERR_PTR(error: -EINVAL);
8650
8651 /* Should check if there are write-behind devices? */
8652
8653 chunksect = 64*2; /* 64K by default */
8654
8655 /* The array must be an exact multiple of chunksize */
8656 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8657 chunksect >>= 1;
8658
8659 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8660 /* array size does not allow a suitable chunk size */
8661 return ERR_PTR(error: -EINVAL);
8662
8663 mddev->new_level = 5;
8664 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8665 mddev->new_chunk_sectors = chunksect;
8666
8667 ret = setup_conf(mddev);
8668 if (!IS_ERR(ptr: ret))
8669 mddev_clear_unsupported_flags(mddev,
8670 UNSUPPORTED_MDDEV_FLAGS);
8671 return ret;
8672}
8673
8674static void *raid5_takeover_raid6(struct mddev *mddev)
8675{
8676 int new_layout;
8677
8678 switch (mddev->layout) {
8679 case ALGORITHM_LEFT_ASYMMETRIC_6:
8680 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8681 break;
8682 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8683 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8684 break;
8685 case ALGORITHM_LEFT_SYMMETRIC_6:
8686 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8687 break;
8688 case ALGORITHM_RIGHT_SYMMETRIC_6:
8689 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8690 break;
8691 case ALGORITHM_PARITY_0_6:
8692 new_layout = ALGORITHM_PARITY_0;
8693 break;
8694 case ALGORITHM_PARITY_N:
8695 new_layout = ALGORITHM_PARITY_N;
8696 break;
8697 default:
8698 return ERR_PTR(error: -EINVAL);
8699 }
8700 mddev->new_level = 5;
8701 mddev->new_layout = new_layout;
8702 mddev->delta_disks = -1;
8703 mddev->raid_disks -= 1;
8704 return setup_conf(mddev);
8705}
8706
8707static int raid5_check_reshape(struct mddev *mddev)
8708{
8709 /* For a 2-drive array, the layout and chunk size can be changed
8710 * immediately as not restriping is needed.
8711 * For larger arrays we record the new value - after validation
8712 * to be used by a reshape pass.
8713 */
8714 struct r5conf *conf = mddev->private;
8715 int new_chunk = mddev->new_chunk_sectors;
8716
8717 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(layout: mddev->new_layout))
8718 return -EINVAL;
8719 if (new_chunk > 0) {
8720 if (!is_power_of_2(n: new_chunk))
8721 return -EINVAL;
8722 if (new_chunk < (PAGE_SIZE>>9))
8723 return -EINVAL;
8724 if (mddev->array_sectors & (new_chunk-1))
8725 /* not factor of array size */
8726 return -EINVAL;
8727 }
8728
8729 /* They look valid */
8730
8731 if (mddev->raid_disks == 2) {
8732 /* can make the change immediately */
8733 if (mddev->new_layout >= 0) {
8734 conf->algorithm = mddev->new_layout;
8735 mddev->layout = mddev->new_layout;
8736 }
8737 if (new_chunk > 0) {
8738 conf->chunk_sectors = new_chunk ;
8739 mddev->chunk_sectors = new_chunk;
8740 }
8741 set_bit(nr: MD_SB_CHANGE_DEVS, addr: &mddev->sb_flags);
8742 md_wakeup_thread(thread: mddev->thread);
8743 }
8744 return check_reshape(mddev);
8745}
8746
8747static int raid6_check_reshape(struct mddev *mddev)
8748{
8749 int new_chunk = mddev->new_chunk_sectors;
8750
8751 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(layout: mddev->new_layout))
8752 return -EINVAL;
8753 if (new_chunk > 0) {
8754 if (!is_power_of_2(n: new_chunk))
8755 return -EINVAL;
8756 if (new_chunk < (PAGE_SIZE >> 9))
8757 return -EINVAL;
8758 if (mddev->array_sectors & (new_chunk-1))
8759 /* not factor of array size */
8760 return -EINVAL;
8761 }
8762
8763 /* They look valid */
8764 return check_reshape(mddev);
8765}
8766
8767static void *raid5_takeover(struct mddev *mddev)
8768{
8769 /* raid5 can take over:
8770 * raid0 - if there is only one strip zone - make it a raid4 layout
8771 * raid1 - if there are two drives. We need to know the chunk size
8772 * raid4 - trivial - just use a raid4 layout.
8773 * raid6 - Providing it is a *_6 layout
8774 */
8775 if (mddev->level == 0)
8776 return raid45_takeover_raid0(mddev, level: 5);
8777 if (mddev->level == 1)
8778 return raid5_takeover_raid1(mddev);
8779 if (mddev->level == 4) {
8780 mddev->new_layout = ALGORITHM_PARITY_N;
8781 mddev->new_level = 5;
8782 return setup_conf(mddev);
8783 }
8784 if (mddev->level == 6)
8785 return raid5_takeover_raid6(mddev);
8786
8787 return ERR_PTR(error: -EINVAL);
8788}
8789
8790static void *raid4_takeover(struct mddev *mddev)
8791{
8792 /* raid4 can take over:
8793 * raid0 - if there is only one strip zone
8794 * raid5 - if layout is right
8795 */
8796 if (mddev->level == 0)
8797 return raid45_takeover_raid0(mddev, level: 4);
8798 if (mddev->level == 5 &&
8799 mddev->layout == ALGORITHM_PARITY_N) {
8800 mddev->new_layout = 0;
8801 mddev->new_level = 4;
8802 return setup_conf(mddev);
8803 }
8804 return ERR_PTR(error: -EINVAL);
8805}
8806
8807static struct md_personality raid5_personality;
8808
8809static void *raid6_takeover(struct mddev *mddev)
8810{
8811 /* Currently can only take over a raid5. We map the
8812 * personality to an equivalent raid6 personality
8813 * with the Q block at the end.
8814 */
8815 int new_layout;
8816
8817 if (mddev->pers != &raid5_personality)
8818 return ERR_PTR(error: -EINVAL);
8819 if (mddev->degraded > 1)
8820 return ERR_PTR(error: -EINVAL);
8821 if (mddev->raid_disks > 253)
8822 return ERR_PTR(error: -EINVAL);
8823 if (mddev->raid_disks < 3)
8824 return ERR_PTR(error: -EINVAL);
8825
8826 switch (mddev->layout) {
8827 case ALGORITHM_LEFT_ASYMMETRIC:
8828 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8829 break;
8830 case ALGORITHM_RIGHT_ASYMMETRIC:
8831 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8832 break;
8833 case ALGORITHM_LEFT_SYMMETRIC:
8834 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8835 break;
8836 case ALGORITHM_RIGHT_SYMMETRIC:
8837 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8838 break;
8839 case ALGORITHM_PARITY_0:
8840 new_layout = ALGORITHM_PARITY_0_6;
8841 break;
8842 case ALGORITHM_PARITY_N:
8843 new_layout = ALGORITHM_PARITY_N;
8844 break;
8845 default:
8846 return ERR_PTR(error: -EINVAL);
8847 }
8848 mddev->new_level = 6;
8849 mddev->new_layout = new_layout;
8850 mddev->delta_disks = 1;
8851 mddev->raid_disks += 1;
8852 return setup_conf(mddev);
8853}
8854
8855static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8856{
8857 struct r5conf *conf;
8858 int err;
8859
8860 err = mddev_suspend_and_lock(mddev);
8861 if (err)
8862 return err;
8863 conf = mddev->private;
8864 if (!conf) {
8865 mddev_unlock_and_resume(mddev);
8866 return -ENODEV;
8867 }
8868
8869 if (strncmp(buf, "ppl", 3) == 0) {
8870 /* ppl only works with RAID 5 */
8871 if (!raid5_has_ppl(conf) && conf->level == 5) {
8872 err = log_init(conf, NULL, ppl: true);
8873 if (!err) {
8874 err = resize_stripes(conf, newsize: conf->pool_size);
8875 if (err)
8876 log_exit(conf);
8877 }
8878 } else
8879 err = -EINVAL;
8880 } else if (strncmp(buf, "resync", 6) == 0) {
8881 if (raid5_has_ppl(conf)) {
8882 log_exit(conf);
8883 err = resize_stripes(conf, newsize: conf->pool_size);
8884 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8885 r5l_log_disk_error(conf)) {
8886 bool journal_dev_exists = false;
8887 struct md_rdev *rdev;
8888
8889 rdev_for_each(rdev, mddev)
8890 if (test_bit(Journal, &rdev->flags)) {
8891 journal_dev_exists = true;
8892 break;
8893 }
8894
8895 if (!journal_dev_exists)
8896 clear_bit(nr: MD_HAS_JOURNAL, addr: &mddev->flags);
8897 else /* need remove journal device first */
8898 err = -EBUSY;
8899 } else
8900 err = -EINVAL;
8901 } else {
8902 err = -EINVAL;
8903 }
8904
8905 if (!err)
8906 md_update_sb(mddev, force: 1);
8907
8908 mddev_unlock_and_resume(mddev);
8909
8910 return err;
8911}
8912
8913static int raid5_start(struct mddev *mddev)
8914{
8915 struct r5conf *conf = mddev->private;
8916
8917 return r5l_start(log: conf->log);
8918}
8919
8920/*
8921 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8922 * if rehsape is still in progress, io that is waiting for reshape can never be
8923 * done now, hence wake up and handle those IO.
8924 */
8925static void raid5_prepare_suspend(struct mddev *mddev)
8926{
8927 struct r5conf *conf = mddev->private;
8928
8929 wake_up(&conf->wait_for_overlap);
8930}
8931
8932static struct md_personality raid6_personality =
8933{
8934 .name = "raid6",
8935 .level = 6,
8936 .owner = THIS_MODULE,
8937 .make_request = raid5_make_request,
8938 .run = raid5_run,
8939 .start = raid5_start,
8940 .free = raid5_free,
8941 .status = raid5_status,
8942 .error_handler = raid5_error,
8943 .hot_add_disk = raid5_add_disk,
8944 .hot_remove_disk= raid5_remove_disk,
8945 .spare_active = raid5_spare_active,
8946 .sync_request = raid5_sync_request,
8947 .resize = raid5_resize,
8948 .size = raid5_size,
8949 .check_reshape = raid6_check_reshape,
8950 .start_reshape = raid5_start_reshape,
8951 .finish_reshape = raid5_finish_reshape,
8952 .quiesce = raid5_quiesce,
8953 .takeover = raid6_takeover,
8954 .change_consistency_policy = raid5_change_consistency_policy,
8955 .prepare_suspend = raid5_prepare_suspend,
8956};
8957static struct md_personality raid5_personality =
8958{
8959 .name = "raid5",
8960 .level = 5,
8961 .owner = THIS_MODULE,
8962 .make_request = raid5_make_request,
8963 .run = raid5_run,
8964 .start = raid5_start,
8965 .free = raid5_free,
8966 .status = raid5_status,
8967 .error_handler = raid5_error,
8968 .hot_add_disk = raid5_add_disk,
8969 .hot_remove_disk= raid5_remove_disk,
8970 .spare_active = raid5_spare_active,
8971 .sync_request = raid5_sync_request,
8972 .resize = raid5_resize,
8973 .size = raid5_size,
8974 .check_reshape = raid5_check_reshape,
8975 .start_reshape = raid5_start_reshape,
8976 .finish_reshape = raid5_finish_reshape,
8977 .quiesce = raid5_quiesce,
8978 .takeover = raid5_takeover,
8979 .change_consistency_policy = raid5_change_consistency_policy,
8980 .prepare_suspend = raid5_prepare_suspend,
8981};
8982
8983static struct md_personality raid4_personality =
8984{
8985 .name = "raid4",
8986 .level = 4,
8987 .owner = THIS_MODULE,
8988 .make_request = raid5_make_request,
8989 .run = raid5_run,
8990 .start = raid5_start,
8991 .free = raid5_free,
8992 .status = raid5_status,
8993 .error_handler = raid5_error,
8994 .hot_add_disk = raid5_add_disk,
8995 .hot_remove_disk= raid5_remove_disk,
8996 .spare_active = raid5_spare_active,
8997 .sync_request = raid5_sync_request,
8998 .resize = raid5_resize,
8999 .size = raid5_size,
9000 .check_reshape = raid5_check_reshape,
9001 .start_reshape = raid5_start_reshape,
9002 .finish_reshape = raid5_finish_reshape,
9003 .quiesce = raid5_quiesce,
9004 .takeover = raid4_takeover,
9005 .change_consistency_policy = raid5_change_consistency_policy,
9006 .prepare_suspend = raid5_prepare_suspend,
9007};
9008
9009static int __init raid5_init(void)
9010{
9011 int ret;
9012
9013 raid5_wq = alloc_workqueue(fmt: "raid5wq",
9014 flags: WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, max_active: 0);
9015 if (!raid5_wq)
9016 return -ENOMEM;
9017
9018 ret = cpuhp_setup_state_multi(state: CPUHP_MD_RAID5_PREPARE,
9019 name: "md/raid5:prepare",
9020 startup: raid456_cpu_up_prepare,
9021 teardown: raid456_cpu_dead);
9022 if (ret) {
9023 destroy_workqueue(wq: raid5_wq);
9024 return ret;
9025 }
9026 register_md_personality(p: &raid6_personality);
9027 register_md_personality(p: &raid5_personality);
9028 register_md_personality(p: &raid4_personality);
9029 return 0;
9030}
9031
9032static void raid5_exit(void)
9033{
9034 unregister_md_personality(p: &raid6_personality);
9035 unregister_md_personality(p: &raid5_personality);
9036 unregister_md_personality(p: &raid4_personality);
9037 cpuhp_remove_multi_state(state: CPUHP_MD_RAID5_PREPARE);
9038 destroy_workqueue(wq: raid5_wq);
9039}
9040
9041module_init(raid5_init);
9042module_exit(raid5_exit);
9043MODULE_LICENSE("GPL");
9044MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9045MODULE_ALIAS("md-personality-4"); /* RAID5 */
9046MODULE_ALIAS("md-raid5");
9047MODULE_ALIAS("md-raid4");
9048MODULE_ALIAS("md-level-5");
9049MODULE_ALIAS("md-level-4");
9050MODULE_ALIAS("md-personality-8"); /* RAID6 */
9051MODULE_ALIAS("md-raid6");
9052MODULE_ALIAS("md-level-6");
9053
9054/* This used to be two separate modules, they were: */
9055MODULE_ALIAS("raid5");
9056MODULE_ALIAS("raid6");
9057

source code of linux/drivers/md/raid5.c