1// SPDX-License-Identifier: GPL-2.0
2/*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11#include <linux/acpi.h>
12#include <linux/kernel.h>
13#include <linux/delay.h>
14#include <linux/dmi.h>
15#include <linux/init.h>
16#include <linux/msi.h>
17#include <linux/of.h>
18#include <linux/pci.h>
19#include <linux/pm.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/spinlock.h>
23#include <linux/string.h>
24#include <linux/log2.h>
25#include <linux/logic_pio.h>
26#include <linux/pm_wakeup.h>
27#include <linux/device.h>
28#include <linux/pm_runtime.h>
29#include <linux/pci_hotplug.h>
30#include <linux/vmalloc.h>
31#include <asm/dma.h>
32#include <linux/aer.h>
33#include <linux/bitfield.h>
34#include "pci.h"
35
36DEFINE_MUTEX(pci_slot_mutex);
37
38const char *pci_power_names[] = {
39 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40};
41EXPORT_SYMBOL_GPL(pci_power_names);
42
43#ifdef CONFIG_X86_32
44int isa_dma_bridge_buggy;
45EXPORT_SYMBOL(isa_dma_bridge_buggy);
46#endif
47
48int pci_pci_problems;
49EXPORT_SYMBOL(pci_pci_problems);
50
51unsigned int pci_pm_d3hot_delay;
52
53static void pci_pme_list_scan(struct work_struct *work);
54
55static LIST_HEAD(pci_pme_list);
56static DEFINE_MUTEX(pci_pme_list_mutex);
57static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
58
59struct pci_pme_device {
60 struct list_head list;
61 struct pci_dev *dev;
62};
63
64#define PME_TIMEOUT 1000 /* How long between PME checks */
65
66/*
67 * Following exit from Conventional Reset, devices must be ready within 1 sec
68 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
69 * Reset (PCIe r6.0 sec 5.8).
70 */
71#define PCI_RESET_WAIT 1000 /* msec */
72
73/*
74 * Devices may extend the 1 sec period through Request Retry Status
75 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
76 * limit, but 60 sec ought to be enough for any device to become
77 * responsive.
78 */
79#define PCIE_RESET_READY_POLL_MS 60000 /* msec */
80
81static void pci_dev_d3_sleep(struct pci_dev *dev)
82{
83 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
84 unsigned int upper;
85
86 if (delay_ms) {
87 /* Use a 20% upper bound, 1ms minimum */
88 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
89 usleep_range(min: delay_ms * USEC_PER_MSEC,
90 max: (delay_ms + upper) * USEC_PER_MSEC);
91 }
92}
93
94bool pci_reset_supported(struct pci_dev *dev)
95{
96 return dev->reset_methods[0] != 0;
97}
98
99#ifdef CONFIG_PCI_DOMAINS
100int pci_domains_supported = 1;
101#endif
102
103#define DEFAULT_CARDBUS_IO_SIZE (256)
104#define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
105/* pci=cbmemsize=nnM,cbiosize=nn can override this */
106unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
107unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
108
109#define DEFAULT_HOTPLUG_IO_SIZE (256)
110#define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
111#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
112/* hpiosize=nn can override this */
113unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
114/*
115 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
116 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
117 * pci=hpmemsize=nnM overrides both
118 */
119unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
120unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
121
122#define DEFAULT_HOTPLUG_BUS_SIZE 1
123unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
124
125
126/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
127#ifdef CONFIG_PCIE_BUS_TUNE_OFF
128enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
129#elif defined CONFIG_PCIE_BUS_SAFE
130enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
131#elif defined CONFIG_PCIE_BUS_PERFORMANCE
132enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
133#elif defined CONFIG_PCIE_BUS_PEER2PEER
134enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
135#else
136enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
137#endif
138
139/*
140 * The default CLS is used if arch didn't set CLS explicitly and not
141 * all pci devices agree on the same value. Arch can override either
142 * the dfl or actual value as it sees fit. Don't forget this is
143 * measured in 32-bit words, not bytes.
144 */
145u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
146u8 pci_cache_line_size;
147
148/*
149 * If we set up a device for bus mastering, we need to check the latency
150 * timer as certain BIOSes forget to set it properly.
151 */
152unsigned int pcibios_max_latency = 255;
153
154/* If set, the PCIe ARI capability will not be used. */
155static bool pcie_ari_disabled;
156
157/* If set, the PCIe ATS capability will not be used. */
158static bool pcie_ats_disabled;
159
160/* If set, the PCI config space of each device is printed during boot. */
161bool pci_early_dump;
162
163bool pci_ats_disabled(void)
164{
165 return pcie_ats_disabled;
166}
167EXPORT_SYMBOL_GPL(pci_ats_disabled);
168
169/* Disable bridge_d3 for all PCIe ports */
170static bool pci_bridge_d3_disable;
171/* Force bridge_d3 for all PCIe ports */
172static bool pci_bridge_d3_force;
173
174static int __init pcie_port_pm_setup(char *str)
175{
176 if (!strcmp(str, "off"))
177 pci_bridge_d3_disable = true;
178 else if (!strcmp(str, "force"))
179 pci_bridge_d3_force = true;
180 return 1;
181}
182__setup("pcie_port_pm=", pcie_port_pm_setup);
183
184/**
185 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
186 * @bus: pointer to PCI bus structure to search
187 *
188 * Given a PCI bus, returns the highest PCI bus number present in the set
189 * including the given PCI bus and its list of child PCI buses.
190 */
191unsigned char pci_bus_max_busnr(struct pci_bus *bus)
192{
193 struct pci_bus *tmp;
194 unsigned char max, n;
195
196 max = bus->busn_res.end;
197 list_for_each_entry(tmp, &bus->children, node) {
198 n = pci_bus_max_busnr(bus: tmp);
199 if (n > max)
200 max = n;
201 }
202 return max;
203}
204EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
205
206/**
207 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
208 * @pdev: the PCI device
209 *
210 * Returns error bits set in PCI_STATUS and clears them.
211 */
212int pci_status_get_and_clear_errors(struct pci_dev *pdev)
213{
214 u16 status;
215 int ret;
216
217 ret = pci_read_config_word(dev: pdev, PCI_STATUS, val: &status);
218 if (ret != PCIBIOS_SUCCESSFUL)
219 return -EIO;
220
221 status &= PCI_STATUS_ERROR_BITS;
222 if (status)
223 pci_write_config_word(dev: pdev, PCI_STATUS, val: status);
224
225 return status;
226}
227EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
228
229#ifdef CONFIG_HAS_IOMEM
230static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
231 bool write_combine)
232{
233 struct resource *res = &pdev->resource[bar];
234 resource_size_t start = res->start;
235 resource_size_t size = resource_size(res);
236
237 /*
238 * Make sure the BAR is actually a memory resource, not an IO resource
239 */
240 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
241 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
242 return NULL;
243 }
244
245 if (write_combine)
246 return ioremap_wc(offset: start, size);
247
248 return ioremap(offset: start, size);
249}
250
251void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
252{
253 return __pci_ioremap_resource(pdev, bar, write_combine: false);
254}
255EXPORT_SYMBOL_GPL(pci_ioremap_bar);
256
257void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
258{
259 return __pci_ioremap_resource(pdev, bar, write_combine: true);
260}
261EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
262#endif
263
264/**
265 * pci_dev_str_match_path - test if a path string matches a device
266 * @dev: the PCI device to test
267 * @path: string to match the device against
268 * @endptr: pointer to the string after the match
269 *
270 * Test if a string (typically from a kernel parameter) formatted as a
271 * path of device/function addresses matches a PCI device. The string must
272 * be of the form:
273 *
274 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
275 *
276 * A path for a device can be obtained using 'lspci -t'. Using a path
277 * is more robust against bus renumbering than using only a single bus,
278 * device and function address.
279 *
280 * Returns 1 if the string matches the device, 0 if it does not and
281 * a negative error code if it fails to parse the string.
282 */
283static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
284 const char **endptr)
285{
286 int ret;
287 unsigned int seg, bus, slot, func;
288 char *wpath, *p;
289 char end;
290
291 *endptr = strchrnul(path, ';');
292
293 wpath = kmemdup_nul(s: path, len: *endptr - path, GFP_ATOMIC);
294 if (!wpath)
295 return -ENOMEM;
296
297 while (1) {
298 p = strrchr(wpath, '/');
299 if (!p)
300 break;
301 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
302 if (ret != 2) {
303 ret = -EINVAL;
304 goto free_and_exit;
305 }
306
307 if (dev->devfn != PCI_DEVFN(slot, func)) {
308 ret = 0;
309 goto free_and_exit;
310 }
311
312 /*
313 * Note: we don't need to get a reference to the upstream
314 * bridge because we hold a reference to the top level
315 * device which should hold a reference to the bridge,
316 * and so on.
317 */
318 dev = pci_upstream_bridge(dev);
319 if (!dev) {
320 ret = 0;
321 goto free_and_exit;
322 }
323
324 *p = 0;
325 }
326
327 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
328 &func, &end);
329 if (ret != 4) {
330 seg = 0;
331 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
332 if (ret != 3) {
333 ret = -EINVAL;
334 goto free_and_exit;
335 }
336 }
337
338 ret = (seg == pci_domain_nr(bus: dev->bus) &&
339 bus == dev->bus->number &&
340 dev->devfn == PCI_DEVFN(slot, func));
341
342free_and_exit:
343 kfree(objp: wpath);
344 return ret;
345}
346
347/**
348 * pci_dev_str_match - test if a string matches a device
349 * @dev: the PCI device to test
350 * @p: string to match the device against
351 * @endptr: pointer to the string after the match
352 *
353 * Test if a string (typically from a kernel parameter) matches a specified
354 * PCI device. The string may be of one of the following formats:
355 *
356 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
357 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
358 *
359 * The first format specifies a PCI bus/device/function address which
360 * may change if new hardware is inserted, if motherboard firmware changes,
361 * or due to changes caused in kernel parameters. If the domain is
362 * left unspecified, it is taken to be 0. In order to be robust against
363 * bus renumbering issues, a path of PCI device/function numbers may be used
364 * to address the specific device. The path for a device can be determined
365 * through the use of 'lspci -t'.
366 *
367 * The second format matches devices using IDs in the configuration
368 * space which may match multiple devices in the system. A value of 0
369 * for any field will match all devices. (Note: this differs from
370 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
371 * legacy reasons and convenience so users don't have to specify
372 * FFFFFFFFs on the command line.)
373 *
374 * Returns 1 if the string matches the device, 0 if it does not and
375 * a negative error code if the string cannot be parsed.
376 */
377static int pci_dev_str_match(struct pci_dev *dev, const char *p,
378 const char **endptr)
379{
380 int ret;
381 int count;
382 unsigned short vendor, device, subsystem_vendor, subsystem_device;
383
384 if (strncmp(p, "pci:", 4) == 0) {
385 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
386 p += 4;
387 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
388 &subsystem_vendor, &subsystem_device, &count);
389 if (ret != 4) {
390 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
391 if (ret != 2)
392 return -EINVAL;
393
394 subsystem_vendor = 0;
395 subsystem_device = 0;
396 }
397
398 p += count;
399
400 if ((!vendor || vendor == dev->vendor) &&
401 (!device || device == dev->device) &&
402 (!subsystem_vendor ||
403 subsystem_vendor == dev->subsystem_vendor) &&
404 (!subsystem_device ||
405 subsystem_device == dev->subsystem_device))
406 goto found;
407 } else {
408 /*
409 * PCI Bus, Device, Function IDs are specified
410 * (optionally, may include a path of devfns following it)
411 */
412 ret = pci_dev_str_match_path(dev, path: p, endptr: &p);
413 if (ret < 0)
414 return ret;
415 else if (ret)
416 goto found;
417 }
418
419 *endptr = p;
420 return 0;
421
422found:
423 *endptr = p;
424 return 1;
425}
426
427static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
428 u8 pos, int cap, int *ttl)
429{
430 u8 id;
431 u16 ent;
432
433 pci_bus_read_config_byte(bus, devfn, where: pos, val: &pos);
434
435 while ((*ttl)--) {
436 if (pos < 0x40)
437 break;
438 pos &= ~3;
439 pci_bus_read_config_word(bus, devfn, where: pos, val: &ent);
440
441 id = ent & 0xff;
442 if (id == 0xff)
443 break;
444 if (id == cap)
445 return pos;
446 pos = (ent >> 8);
447 }
448 return 0;
449}
450
451static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
452 u8 pos, int cap)
453{
454 int ttl = PCI_FIND_CAP_TTL;
455
456 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, ttl: &ttl);
457}
458
459u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
460{
461 return __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn,
462 pos: pos + PCI_CAP_LIST_NEXT, cap);
463}
464EXPORT_SYMBOL_GPL(pci_find_next_capability);
465
466static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
467 unsigned int devfn, u8 hdr_type)
468{
469 u16 status;
470
471 pci_bus_read_config_word(bus, devfn, PCI_STATUS, val: &status);
472 if (!(status & PCI_STATUS_CAP_LIST))
473 return 0;
474
475 switch (hdr_type) {
476 case PCI_HEADER_TYPE_NORMAL:
477 case PCI_HEADER_TYPE_BRIDGE:
478 return PCI_CAPABILITY_LIST;
479 case PCI_HEADER_TYPE_CARDBUS:
480 return PCI_CB_CAPABILITY_LIST;
481 }
482
483 return 0;
484}
485
486/**
487 * pci_find_capability - query for devices' capabilities
488 * @dev: PCI device to query
489 * @cap: capability code
490 *
491 * Tell if a device supports a given PCI capability.
492 * Returns the address of the requested capability structure within the
493 * device's PCI configuration space or 0 in case the device does not
494 * support it. Possible values for @cap include:
495 *
496 * %PCI_CAP_ID_PM Power Management
497 * %PCI_CAP_ID_AGP Accelerated Graphics Port
498 * %PCI_CAP_ID_VPD Vital Product Data
499 * %PCI_CAP_ID_SLOTID Slot Identification
500 * %PCI_CAP_ID_MSI Message Signalled Interrupts
501 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
502 * %PCI_CAP_ID_PCIX PCI-X
503 * %PCI_CAP_ID_EXP PCI Express
504 */
505u8 pci_find_capability(struct pci_dev *dev, int cap)
506{
507 u8 pos;
508
509 pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type);
510 if (pos)
511 pos = __pci_find_next_cap(bus: dev->bus, devfn: dev->devfn, pos, cap);
512
513 return pos;
514}
515EXPORT_SYMBOL(pci_find_capability);
516
517/**
518 * pci_bus_find_capability - query for devices' capabilities
519 * @bus: the PCI bus to query
520 * @devfn: PCI device to query
521 * @cap: capability code
522 *
523 * Like pci_find_capability() but works for PCI devices that do not have a
524 * pci_dev structure set up yet.
525 *
526 * Returns the address of the requested capability structure within the
527 * device's PCI configuration space or 0 in case the device does not
528 * support it.
529 */
530u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
531{
532 u8 hdr_type, pos;
533
534 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, val: &hdr_type);
535
536 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type: hdr_type & PCI_HEADER_TYPE_MASK);
537 if (pos)
538 pos = __pci_find_next_cap(bus, devfn, pos, cap);
539
540 return pos;
541}
542EXPORT_SYMBOL(pci_bus_find_capability);
543
544/**
545 * pci_find_next_ext_capability - Find an extended capability
546 * @dev: PCI device to query
547 * @start: address at which to start looking (0 to start at beginning of list)
548 * @cap: capability code
549 *
550 * Returns the address of the next matching extended capability structure
551 * within the device's PCI configuration space or 0 if the device does
552 * not support it. Some capabilities can occur several times, e.g., the
553 * vendor-specific capability, and this provides a way to find them all.
554 */
555u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
556{
557 u32 header;
558 int ttl;
559 u16 pos = PCI_CFG_SPACE_SIZE;
560
561 /* minimum 8 bytes per capability */
562 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
563
564 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
565 return 0;
566
567 if (start)
568 pos = start;
569
570 if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL)
571 return 0;
572
573 /*
574 * If we have no capabilities, this is indicated by cap ID,
575 * cap version and next pointer all being 0.
576 */
577 if (header == 0)
578 return 0;
579
580 while (ttl-- > 0) {
581 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
582 return pos;
583
584 pos = PCI_EXT_CAP_NEXT(header);
585 if (pos < PCI_CFG_SPACE_SIZE)
586 break;
587
588 if (pci_read_config_dword(dev, where: pos, val: &header) != PCIBIOS_SUCCESSFUL)
589 break;
590 }
591
592 return 0;
593}
594EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
595
596/**
597 * pci_find_ext_capability - Find an extended capability
598 * @dev: PCI device to query
599 * @cap: capability code
600 *
601 * Returns the address of the requested extended capability structure
602 * within the device's PCI configuration space or 0 if the device does
603 * not support it. Possible values for @cap include:
604 *
605 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
606 * %PCI_EXT_CAP_ID_VC Virtual Channel
607 * %PCI_EXT_CAP_ID_DSN Device Serial Number
608 * %PCI_EXT_CAP_ID_PWR Power Budgeting
609 */
610u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
611{
612 return pci_find_next_ext_capability(dev, 0, cap);
613}
614EXPORT_SYMBOL_GPL(pci_find_ext_capability);
615
616/**
617 * pci_get_dsn - Read and return the 8-byte Device Serial Number
618 * @dev: PCI device to query
619 *
620 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
621 * Number.
622 *
623 * Returns the DSN, or zero if the capability does not exist.
624 */
625u64 pci_get_dsn(struct pci_dev *dev)
626{
627 u32 dword;
628 u64 dsn;
629 int pos;
630
631 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
632 if (!pos)
633 return 0;
634
635 /*
636 * The Device Serial Number is two dwords offset 4 bytes from the
637 * capability position. The specification says that the first dword is
638 * the lower half, and the second dword is the upper half.
639 */
640 pos += 4;
641 pci_read_config_dword(dev, where: pos, val: &dword);
642 dsn = (u64)dword;
643 pci_read_config_dword(dev, where: pos + 4, val: &dword);
644 dsn |= ((u64)dword) << 32;
645
646 return dsn;
647}
648EXPORT_SYMBOL_GPL(pci_get_dsn);
649
650static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
651{
652 int rc, ttl = PCI_FIND_CAP_TTL;
653 u8 cap, mask;
654
655 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
656 mask = HT_3BIT_CAP_MASK;
657 else
658 mask = HT_5BIT_CAP_MASK;
659
660 pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn, pos,
661 PCI_CAP_ID_HT, ttl: &ttl);
662 while (pos) {
663 rc = pci_read_config_byte(dev, where: pos + 3, val: &cap);
664 if (rc != PCIBIOS_SUCCESSFUL)
665 return 0;
666
667 if ((cap & mask) == ht_cap)
668 return pos;
669
670 pos = __pci_find_next_cap_ttl(bus: dev->bus, devfn: dev->devfn,
671 pos: pos + PCI_CAP_LIST_NEXT,
672 PCI_CAP_ID_HT, ttl: &ttl);
673 }
674
675 return 0;
676}
677
678/**
679 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
680 * @dev: PCI device to query
681 * @pos: Position from which to continue searching
682 * @ht_cap: HyperTransport capability code
683 *
684 * To be used in conjunction with pci_find_ht_capability() to search for
685 * all capabilities matching @ht_cap. @pos should always be a value returned
686 * from pci_find_ht_capability().
687 *
688 * NB. To be 100% safe against broken PCI devices, the caller should take
689 * steps to avoid an infinite loop.
690 */
691u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
692{
693 return __pci_find_next_ht_cap(dev, pos: pos + PCI_CAP_LIST_NEXT, ht_cap);
694}
695EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
696
697/**
698 * pci_find_ht_capability - query a device's HyperTransport capabilities
699 * @dev: PCI device to query
700 * @ht_cap: HyperTransport capability code
701 *
702 * Tell if a device supports a given HyperTransport capability.
703 * Returns an address within the device's PCI configuration space
704 * or 0 in case the device does not support the request capability.
705 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
706 * which has a HyperTransport capability matching @ht_cap.
707 */
708u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
709{
710 u8 pos;
711
712 pos = __pci_bus_find_cap_start(bus: dev->bus, devfn: dev->devfn, hdr_type: dev->hdr_type);
713 if (pos)
714 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
715
716 return pos;
717}
718EXPORT_SYMBOL_GPL(pci_find_ht_capability);
719
720/**
721 * pci_find_vsec_capability - Find a vendor-specific extended capability
722 * @dev: PCI device to query
723 * @vendor: Vendor ID for which capability is defined
724 * @cap: Vendor-specific capability ID
725 *
726 * If @dev has Vendor ID @vendor, search for a VSEC capability with
727 * VSEC ID @cap. If found, return the capability offset in
728 * config space; otherwise return 0.
729 */
730u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
731{
732 u16 vsec = 0;
733 u32 header;
734 int ret;
735
736 if (vendor != dev->vendor)
737 return 0;
738
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 ret = pci_read_config_dword(dev, where: vsec + PCI_VNDR_HEADER, val: &header);
742 if (ret != PCIBIOS_SUCCESSFUL)
743 continue;
744
745 if (PCI_VNDR_HEADER_ID(header) == cap)
746 return vsec;
747 }
748
749 return 0;
750}
751EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752
753/**
754 * pci_find_dvsec_capability - Find DVSEC for vendor
755 * @dev: PCI device to query
756 * @vendor: Vendor ID to match for the DVSEC
757 * @dvsec: Designated Vendor-specific capability ID
758 *
759 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
760 * offset in config space; otherwise return 0.
761 */
762u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
763{
764 int pos;
765
766 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
767 if (!pos)
768 return 0;
769
770 while (pos) {
771 u16 v, id;
772
773 pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER1, val: &v);
774 pci_read_config_word(dev, where: pos + PCI_DVSEC_HEADER2, val: &id);
775 if (vendor == v && dvsec == id)
776 return pos;
777
778 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
779 }
780
781 return 0;
782}
783EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784
785/**
786 * pci_find_parent_resource - return resource region of parent bus of given
787 * region
788 * @dev: PCI device structure contains resources to be searched
789 * @res: child resource record for which parent is sought
790 *
791 * For given resource region of given device, return the resource region of
792 * parent bus the given region is contained in.
793 */
794struct resource *pci_find_parent_resource(const struct pci_dev *dev,
795 struct resource *res)
796{
797 const struct pci_bus *bus = dev->bus;
798 struct resource *r;
799
800 pci_bus_for_each_resource(bus, r) {
801 if (!r)
802 continue;
803 if (resource_contains(r1: r, r2: res)) {
804
805 /*
806 * If the window is prefetchable but the BAR is
807 * not, the allocator made a mistake.
808 */
809 if (r->flags & IORESOURCE_PREFETCH &&
810 !(res->flags & IORESOURCE_PREFETCH))
811 return NULL;
812
813 /*
814 * If we're below a transparent bridge, there may
815 * be both a positively-decoded aperture and a
816 * subtractively-decoded region that contain the BAR.
817 * We want the positively-decoded one, so this depends
818 * on pci_bus_for_each_resource() giving us those
819 * first.
820 */
821 return r;
822 }
823 }
824 return NULL;
825}
826EXPORT_SYMBOL(pci_find_parent_resource);
827
828/**
829 * pci_find_resource - Return matching PCI device resource
830 * @dev: PCI device to query
831 * @res: Resource to look for
832 *
833 * Goes over standard PCI resources (BARs) and checks if the given resource
834 * is partially or fully contained in any of them. In that case the
835 * matching resource is returned, %NULL otherwise.
836 */
837struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
838{
839 int i;
840
841 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
842 struct resource *r = &dev->resource[i];
843
844 if (r->start && resource_contains(r1: r, r2: res))
845 return r;
846 }
847
848 return NULL;
849}
850EXPORT_SYMBOL(pci_find_resource);
851
852/**
853 * pci_resource_name - Return the name of the PCI resource
854 * @dev: PCI device to query
855 * @i: index of the resource
856 *
857 * Return the standard PCI resource (BAR) name according to their index.
858 */
859const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
860{
861 static const char * const bar_name[] = {
862 "BAR 0",
863 "BAR 1",
864 "BAR 2",
865 "BAR 3",
866 "BAR 4",
867 "BAR 5",
868 "ROM",
869#ifdef CONFIG_PCI_IOV
870 "VF BAR 0",
871 "VF BAR 1",
872 "VF BAR 2",
873 "VF BAR 3",
874 "VF BAR 4",
875 "VF BAR 5",
876#endif
877 "bridge window", /* "io" included in %pR */
878 "bridge window", /* "mem" included in %pR */
879 "bridge window", /* "mem pref" included in %pR */
880 };
881 static const char * const cardbus_name[] = {
882 "BAR 1",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 "unknown",
888#ifdef CONFIG_PCI_IOV
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 "unknown",
895#endif
896 "CardBus bridge window 0", /* I/O */
897 "CardBus bridge window 1", /* I/O */
898 "CardBus bridge window 0", /* mem */
899 "CardBus bridge window 1", /* mem */
900 };
901
902 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
903 i < ARRAY_SIZE(cardbus_name))
904 return cardbus_name[i];
905
906 if (i < ARRAY_SIZE(bar_name))
907 return bar_name[i];
908
909 return "unknown";
910}
911
912/**
913 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
914 * @dev: the PCI device to operate on
915 * @pos: config space offset of status word
916 * @mask: mask of bit(s) to care about in status word
917 *
918 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
919 */
920int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
921{
922 int i;
923
924 /* Wait for Transaction Pending bit clean */
925 for (i = 0; i < 4; i++) {
926 u16 status;
927 if (i)
928 msleep(msecs: (1 << (i - 1)) * 100);
929
930 pci_read_config_word(dev, where: pos, val: &status);
931 if (!(status & mask))
932 return 1;
933 }
934
935 return 0;
936}
937
938static int pci_acs_enable;
939
940/**
941 * pci_request_acs - ask for ACS to be enabled if supported
942 */
943void pci_request_acs(void)
944{
945 pci_acs_enable = 1;
946}
947
948static const char *disable_acs_redir_param;
949
950/**
951 * pci_disable_acs_redir - disable ACS redirect capabilities
952 * @dev: the PCI device
953 *
954 * For only devices specified in the disable_acs_redir parameter.
955 */
956static void pci_disable_acs_redir(struct pci_dev *dev)
957{
958 int ret = 0;
959 const char *p;
960 int pos;
961 u16 ctrl;
962
963 if (!disable_acs_redir_param)
964 return;
965
966 p = disable_acs_redir_param;
967 while (*p) {
968 ret = pci_dev_str_match(dev, p, endptr: &p);
969 if (ret < 0) {
970 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
971 disable_acs_redir_param);
972
973 break;
974 } else if (ret == 1) {
975 /* Found a match */
976 break;
977 }
978
979 if (*p != ';' && *p != ',') {
980 /* End of param or invalid format */
981 break;
982 }
983 p++;
984 }
985
986 if (ret != 1)
987 return;
988
989 if (!pci_dev_specific_disable_acs_redir(dev))
990 return;
991
992 pos = dev->acs_cap;
993 if (!pos) {
994 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
995 return;
996 }
997
998 pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &ctrl);
999
1000 /* P2P Request & Completion Redirect */
1001 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
1002
1003 pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: ctrl);
1004
1005 pci_info(dev, "disabled ACS redirect\n");
1006}
1007
1008/**
1009 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1010 * @dev: the PCI device
1011 */
1012static void pci_std_enable_acs(struct pci_dev *dev)
1013{
1014 int pos;
1015 u16 cap;
1016 u16 ctrl;
1017
1018 pos = dev->acs_cap;
1019 if (!pos)
1020 return;
1021
1022 pci_read_config_word(dev, where: pos + PCI_ACS_CAP, val: &cap);
1023 pci_read_config_word(dev, where: pos + PCI_ACS_CTRL, val: &ctrl);
1024
1025 /* Source Validation */
1026 ctrl |= (cap & PCI_ACS_SV);
1027
1028 /* P2P Request Redirect */
1029 ctrl |= (cap & PCI_ACS_RR);
1030
1031 /* P2P Completion Redirect */
1032 ctrl |= (cap & PCI_ACS_CR);
1033
1034 /* Upstream Forwarding */
1035 ctrl |= (cap & PCI_ACS_UF);
1036
1037 /* Enable Translation Blocking for external devices and noats */
1038 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1039 ctrl |= (cap & PCI_ACS_TB);
1040
1041 pci_write_config_word(dev, where: pos + PCI_ACS_CTRL, val: ctrl);
1042}
1043
1044/**
1045 * pci_enable_acs - enable ACS if hardware support it
1046 * @dev: the PCI device
1047 */
1048static void pci_enable_acs(struct pci_dev *dev)
1049{
1050 if (!pci_acs_enable)
1051 goto disable_acs_redir;
1052
1053 if (!pci_dev_specific_enable_acs(dev))
1054 goto disable_acs_redir;
1055
1056 pci_std_enable_acs(dev);
1057
1058disable_acs_redir:
1059 /*
1060 * Note: pci_disable_acs_redir() must be called even if ACS was not
1061 * enabled by the kernel because it may have been enabled by
1062 * platform firmware. So if we are told to disable it, we should
1063 * always disable it after setting the kernel's default
1064 * preferences.
1065 */
1066 pci_disable_acs_redir(dev);
1067}
1068
1069/**
1070 * pcie_read_tlp_log - read TLP Header Log
1071 * @dev: PCIe device
1072 * @where: PCI Config offset of TLP Header Log
1073 * @tlp_log: TLP Log structure to fill
1074 *
1075 * Fill @tlp_log from TLP Header Log registers, e.g., AER or DPC.
1076 *
1077 * Return: 0 on success and filled TLP Log structure, <0 on error.
1078 */
1079int pcie_read_tlp_log(struct pci_dev *dev, int where,
1080 struct pcie_tlp_log *tlp_log)
1081{
1082 int i, ret;
1083
1084 memset(tlp_log, 0, sizeof(*tlp_log));
1085
1086 for (i = 0; i < 4; i++) {
1087 ret = pci_read_config_dword(dev, where: where + i * 4,
1088 val: &tlp_log->dw[i]);
1089 if (ret)
1090 return pcibios_err_to_errno(err: ret);
1091 }
1092
1093 return 0;
1094}
1095EXPORT_SYMBOL_GPL(pcie_read_tlp_log);
1096
1097/**
1098 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1099 * @dev: PCI device to have its BARs restored
1100 *
1101 * Restore the BAR values for a given device, so as to make it
1102 * accessible by its driver.
1103 */
1104static void pci_restore_bars(struct pci_dev *dev)
1105{
1106 int i;
1107
1108 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1109 pci_update_resource(dev, resno: i);
1110}
1111
1112static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1113{
1114 if (pci_use_mid_pm())
1115 return true;
1116
1117 return acpi_pci_power_manageable(dev);
1118}
1119
1120static inline int platform_pci_set_power_state(struct pci_dev *dev,
1121 pci_power_t t)
1122{
1123 if (pci_use_mid_pm())
1124 return mid_pci_set_power_state(pdev: dev, state: t);
1125
1126 return acpi_pci_set_power_state(dev, state: t);
1127}
1128
1129static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1130{
1131 if (pci_use_mid_pm())
1132 return mid_pci_get_power_state(pdev: dev);
1133
1134 return acpi_pci_get_power_state(dev);
1135}
1136
1137static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1138{
1139 if (!pci_use_mid_pm())
1140 acpi_pci_refresh_power_state(dev);
1141}
1142
1143static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1144{
1145 if (pci_use_mid_pm())
1146 return PCI_POWER_ERROR;
1147
1148 return acpi_pci_choose_state(pdev: dev);
1149}
1150
1151static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1152{
1153 if (pci_use_mid_pm())
1154 return PCI_POWER_ERROR;
1155
1156 return acpi_pci_wakeup(dev, enable);
1157}
1158
1159static inline bool platform_pci_need_resume(struct pci_dev *dev)
1160{
1161 if (pci_use_mid_pm())
1162 return false;
1163
1164 return acpi_pci_need_resume(dev);
1165}
1166
1167static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1168{
1169 if (pci_use_mid_pm())
1170 return false;
1171
1172 return acpi_pci_bridge_d3(dev);
1173}
1174
1175/**
1176 * pci_update_current_state - Read power state of given device and cache it
1177 * @dev: PCI device to handle.
1178 * @state: State to cache in case the device doesn't have the PM capability
1179 *
1180 * The power state is read from the PMCSR register, which however is
1181 * inaccessible in D3cold. The platform firmware is therefore queried first
1182 * to detect accessibility of the register. In case the platform firmware
1183 * reports an incorrect state or the device isn't power manageable by the
1184 * platform at all, we try to detect D3cold by testing accessibility of the
1185 * vendor ID in config space.
1186 */
1187void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1188{
1189 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1190 dev->current_state = PCI_D3cold;
1191 } else if (dev->pm_cap) {
1192 u16 pmcsr;
1193
1194 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1195 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1196 dev->current_state = PCI_D3cold;
1197 return;
1198 }
1199 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1200 } else {
1201 dev->current_state = state;
1202 }
1203}
1204
1205/**
1206 * pci_refresh_power_state - Refresh the given device's power state data
1207 * @dev: Target PCI device.
1208 *
1209 * Ask the platform to refresh the devices power state information and invoke
1210 * pci_update_current_state() to update its current PCI power state.
1211 */
1212void pci_refresh_power_state(struct pci_dev *dev)
1213{
1214 platform_pci_refresh_power_state(dev);
1215 pci_update_current_state(dev, state: dev->current_state);
1216}
1217
1218/**
1219 * pci_platform_power_transition - Use platform to change device power state
1220 * @dev: PCI device to handle.
1221 * @state: State to put the device into.
1222 */
1223int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1224{
1225 int error;
1226
1227 error = platform_pci_set_power_state(dev, t: state);
1228 if (!error)
1229 pci_update_current_state(dev, state);
1230 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1231 dev->current_state = PCI_D0;
1232
1233 return error;
1234}
1235EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1236
1237static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1238{
1239 pm_request_resume(dev: &pci_dev->dev);
1240 return 0;
1241}
1242
1243/**
1244 * pci_resume_bus - Walk given bus and runtime resume devices on it
1245 * @bus: Top bus of the subtree to walk.
1246 */
1247void pci_resume_bus(struct pci_bus *bus)
1248{
1249 if (bus)
1250 pci_walk_bus(top: bus, cb: pci_resume_one, NULL);
1251}
1252
1253static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1254{
1255 int delay = 1;
1256 bool retrain = false;
1257 struct pci_dev *bridge;
1258
1259 if (pci_is_pcie(dev)) {
1260 bridge = pci_upstream_bridge(dev);
1261 if (bridge)
1262 retrain = true;
1263 }
1264
1265 /*
1266 * After reset, the device should not silently discard config
1267 * requests, but it may still indicate that it needs more time by
1268 * responding to them with CRS completions. The Root Port will
1269 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1270 * the read (except when CRS SV is enabled and the read was for the
1271 * Vendor ID; in that case it synthesizes 0x0001 data).
1272 *
1273 * Wait for the device to return a non-CRS completion. Read the
1274 * Command register instead of Vendor ID so we don't have to
1275 * contend with the CRS SV value.
1276 */
1277 for (;;) {
1278 u32 id;
1279
1280 pci_read_config_dword(dev, PCI_COMMAND, val: &id);
1281 if (!PCI_POSSIBLE_ERROR(id))
1282 break;
1283
1284 if (delay > timeout) {
1285 pci_warn(dev, "not ready %dms after %s; giving up\n",
1286 delay - 1, reset_type);
1287 return -ENOTTY;
1288 }
1289
1290 if (delay > PCI_RESET_WAIT) {
1291 if (retrain) {
1292 retrain = false;
1293 if (pcie_failed_link_retrain(dev: bridge)) {
1294 delay = 1;
1295 continue;
1296 }
1297 }
1298 pci_info(dev, "not ready %dms after %s; waiting\n",
1299 delay - 1, reset_type);
1300 }
1301
1302 msleep(msecs: delay);
1303 delay *= 2;
1304 }
1305
1306 if (delay > PCI_RESET_WAIT)
1307 pci_info(dev, "ready %dms after %s\n", delay - 1,
1308 reset_type);
1309 else
1310 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1311 reset_type);
1312
1313 return 0;
1314}
1315
1316/**
1317 * pci_power_up - Put the given device into D0
1318 * @dev: PCI device to power up
1319 *
1320 * On success, return 0 or 1, depending on whether or not it is necessary to
1321 * restore the device's BARs subsequently (1 is returned in that case).
1322 *
1323 * On failure, return a negative error code. Always return failure if @dev
1324 * lacks a Power Management Capability, even if the platform was able to
1325 * put the device in D0 via non-PCI means.
1326 */
1327int pci_power_up(struct pci_dev *dev)
1328{
1329 bool need_restore;
1330 pci_power_t state;
1331 u16 pmcsr;
1332
1333 platform_pci_set_power_state(dev, PCI_D0);
1334
1335 if (!dev->pm_cap) {
1336 state = platform_pci_get_power_state(dev);
1337 if (state == PCI_UNKNOWN)
1338 dev->current_state = PCI_D0;
1339 else
1340 dev->current_state = state;
1341
1342 return -EIO;
1343 }
1344
1345 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1346 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1347 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1348 pci_power_name(dev->current_state));
1349 dev->current_state = PCI_D3cold;
1350 return -EIO;
1351 }
1352
1353 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1354
1355 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1356 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1357
1358 if (state == PCI_D0)
1359 goto end;
1360
1361 /*
1362 * Force the entire word to 0. This doesn't affect PME_Status, disables
1363 * PME_En, and sets PowerState to 0.
1364 */
1365 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: 0);
1366
1367 /* Mandatory transition delays; see PCI PM 1.2. */
1368 if (state == PCI_D3hot)
1369 pci_dev_d3_sleep(dev);
1370 else if (state == PCI_D2)
1371 udelay(PCI_PM_D2_DELAY);
1372
1373end:
1374 dev->current_state = PCI_D0;
1375 if (need_restore)
1376 return 1;
1377
1378 return 0;
1379}
1380
1381/**
1382 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1383 * @dev: PCI device to power up
1384 * @locked: whether pci_bus_sem is held
1385 *
1386 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1387 * to confirm the state change, restore its BARs if they might be lost and
1388 * reconfigure ASPM in accordance with the new power state.
1389 *
1390 * If pci_restore_state() is going to be called right after a power state change
1391 * to D0, it is more efficient to use pci_power_up() directly instead of this
1392 * function.
1393 */
1394static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1395{
1396 u16 pmcsr;
1397 int ret;
1398
1399 ret = pci_power_up(dev);
1400 if (ret < 0) {
1401 if (dev->current_state == PCI_D0)
1402 return 0;
1403
1404 return ret;
1405 }
1406
1407 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1408 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1409 if (dev->current_state != PCI_D0) {
1410 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1411 pci_power_name(dev->current_state));
1412 } else if (ret > 0) {
1413 /*
1414 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1415 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1416 * from D3hot to D0 _may_ perform an internal reset, thereby
1417 * going to "D0 Uninitialized" rather than "D0 Initialized".
1418 * For example, at least some versions of the 3c905B and the
1419 * 3c556B exhibit this behaviour.
1420 *
1421 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1422 * devices in a D3hot state at boot. Consequently, we need to
1423 * restore at least the BARs so that the device will be
1424 * accessible to its driver.
1425 */
1426 pci_restore_bars(dev);
1427 }
1428
1429 if (dev->bus->self)
1430 pcie_aspm_pm_state_change(pdev: dev->bus->self, locked);
1431
1432 return 0;
1433}
1434
1435/**
1436 * __pci_dev_set_current_state - Set current state of a PCI device
1437 * @dev: Device to handle
1438 * @data: pointer to state to be set
1439 */
1440static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1441{
1442 pci_power_t state = *(pci_power_t *)data;
1443
1444 dev->current_state = state;
1445 return 0;
1446}
1447
1448/**
1449 * pci_bus_set_current_state - Walk given bus and set current state of devices
1450 * @bus: Top bus of the subtree to walk.
1451 * @state: state to be set
1452 */
1453void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1454{
1455 if (bus)
1456 pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1457}
1458
1459static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1460{
1461 if (!bus)
1462 return;
1463
1464 if (locked)
1465 pci_walk_bus_locked(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1466 else
1467 pci_walk_bus(top: bus, cb: __pci_dev_set_current_state, userdata: &state);
1468}
1469
1470/**
1471 * pci_set_low_power_state - Put a PCI device into a low-power state.
1472 * @dev: PCI device to handle.
1473 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1474 * @locked: whether pci_bus_sem is held
1475 *
1476 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1477 *
1478 * RETURN VALUE:
1479 * -EINVAL if the requested state is invalid.
1480 * -EIO if device does not support PCI PM or its PM capabilities register has a
1481 * wrong version, or device doesn't support the requested state.
1482 * 0 if device already is in the requested state.
1483 * 0 if device's power state has been successfully changed.
1484 */
1485static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1486{
1487 u16 pmcsr;
1488
1489 if (!dev->pm_cap)
1490 return -EIO;
1491
1492 /*
1493 * Validate transition: We can enter D0 from any state, but if
1494 * we're already in a low-power state, we can only go deeper. E.g.,
1495 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1496 * we'd have to go from D3 to D0, then to D1.
1497 */
1498 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1499 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1500 pci_power_name(dev->current_state),
1501 pci_power_name(state));
1502 return -EINVAL;
1503 }
1504
1505 /* Check if this device supports the desired state */
1506 if ((state == PCI_D1 && !dev->d1_support)
1507 || (state == PCI_D2 && !dev->d2_support))
1508 return -EIO;
1509
1510 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1511 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1512 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1513 pci_power_name(dev->current_state),
1514 pci_power_name(state));
1515 dev->current_state = PCI_D3cold;
1516 return -EIO;
1517 }
1518
1519 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1520 pmcsr |= state;
1521
1522 /* Enter specified state */
1523 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
1524
1525 /* Mandatory power management transition delays; see PCI PM 1.2. */
1526 if (state == PCI_D3hot)
1527 pci_dev_d3_sleep(dev);
1528 else if (state == PCI_D2)
1529 udelay(PCI_PM_D2_DELAY);
1530
1531 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
1532 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1533 if (dev->current_state != state)
1534 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1535 pci_power_name(dev->current_state),
1536 pci_power_name(state));
1537
1538 if (dev->bus->self)
1539 pcie_aspm_pm_state_change(pdev: dev->bus->self, locked);
1540
1541 return 0;
1542}
1543
1544static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1545{
1546 int error;
1547
1548 /* Bound the state we're entering */
1549 if (state > PCI_D3cold)
1550 state = PCI_D3cold;
1551 else if (state < PCI_D0)
1552 state = PCI_D0;
1553 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1554
1555 /*
1556 * If the device or the parent bridge do not support PCI
1557 * PM, ignore the request if we're doing anything other
1558 * than putting it into D0 (which would only happen on
1559 * boot).
1560 */
1561 return 0;
1562
1563 /* Check if we're already there */
1564 if (dev->current_state == state)
1565 return 0;
1566
1567 if (state == PCI_D0)
1568 return pci_set_full_power_state(dev, locked);
1569
1570 /*
1571 * This device is quirked not to be put into D3, so don't put it in
1572 * D3
1573 */
1574 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1575 return 0;
1576
1577 if (state == PCI_D3cold) {
1578 /*
1579 * To put the device in D3cold, put it into D3hot in the native
1580 * way, then put it into D3cold using platform ops.
1581 */
1582 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1583
1584 if (pci_platform_power_transition(dev, PCI_D3cold))
1585 return error;
1586
1587 /* Powering off a bridge may power off the whole hierarchy */
1588 if (dev->current_state == PCI_D3cold)
1589 __pci_bus_set_current_state(bus: dev->subordinate, PCI_D3cold, locked);
1590 } else {
1591 error = pci_set_low_power_state(dev, state, locked);
1592
1593 if (pci_platform_power_transition(dev, state))
1594 return error;
1595 }
1596
1597 return 0;
1598}
1599
1600/**
1601 * pci_set_power_state - Set the power state of a PCI device
1602 * @dev: PCI device to handle.
1603 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1604 *
1605 * Transition a device to a new power state, using the platform firmware and/or
1606 * the device's PCI PM registers.
1607 *
1608 * RETURN VALUE:
1609 * -EINVAL if the requested state is invalid.
1610 * -EIO if device does not support PCI PM or its PM capabilities register has a
1611 * wrong version, or device doesn't support the requested state.
1612 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1613 * 0 if device already is in the requested state.
1614 * 0 if the transition is to D3 but D3 is not supported.
1615 * 0 if device's power state has been successfully changed.
1616 */
1617int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1618{
1619 return __pci_set_power_state(dev, state, locked: false);
1620}
1621EXPORT_SYMBOL(pci_set_power_state);
1622
1623int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1624{
1625 lockdep_assert_held(&pci_bus_sem);
1626
1627 return __pci_set_power_state(dev, state, locked: true);
1628}
1629EXPORT_SYMBOL(pci_set_power_state_locked);
1630
1631#define PCI_EXP_SAVE_REGS 7
1632
1633static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1634 u16 cap, bool extended)
1635{
1636 struct pci_cap_saved_state *tmp;
1637
1638 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1639 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1640 return tmp;
1641 }
1642 return NULL;
1643}
1644
1645struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1646{
1647 return _pci_find_saved_cap(pci_dev: dev, cap, extended: false);
1648}
1649
1650struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1651{
1652 return _pci_find_saved_cap(pci_dev: dev, cap, extended: true);
1653}
1654
1655static int pci_save_pcie_state(struct pci_dev *dev)
1656{
1657 int i = 0;
1658 struct pci_cap_saved_state *save_state;
1659 u16 *cap;
1660
1661 if (!pci_is_pcie(dev))
1662 return 0;
1663
1664 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1665 if (!save_state) {
1666 pci_err(dev, "buffer not found in %s\n", __func__);
1667 return -ENOMEM;
1668 }
1669
1670 cap = (u16 *)&save_state->cap.data[0];
1671 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &cap[i++]);
1672 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, val: &cap[i++]);
1673 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, val: &cap[i++]);
1674 pcie_capability_read_word(dev, PCI_EXP_RTCTL, val: &cap[i++]);
1675 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, val: &cap[i++]);
1676 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, val: &cap[i++]);
1677 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, val: &cap[i++]);
1678
1679 pci_save_aspm_l1ss_state(dev);
1680 pci_save_ltr_state(dev);
1681
1682 return 0;
1683}
1684
1685static void pci_restore_pcie_state(struct pci_dev *dev)
1686{
1687 int i = 0;
1688 struct pci_cap_saved_state *save_state;
1689 u16 *cap;
1690
1691 /*
1692 * Restore max latencies (in the LTR capability) before enabling
1693 * LTR itself in PCI_EXP_DEVCTL2.
1694 */
1695 pci_restore_ltr_state(dev);
1696 pci_restore_aspm_l1ss_state(dev);
1697
1698 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1699 if (!save_state)
1700 return;
1701
1702 /*
1703 * Downstream ports reset the LTR enable bit when link goes down.
1704 * Check and re-configure the bit here before restoring device.
1705 * PCIe r5.0, sec 7.5.3.16.
1706 */
1707 pci_bridge_reconfigure_ltr(pdev: dev);
1708
1709 cap = (u16 *)&save_state->cap.data[0];
1710 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, val: cap[i++]);
1711 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, val: cap[i++]);
1712 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, val: cap[i++]);
1713 pcie_capability_write_word(dev, PCI_EXP_RTCTL, val: cap[i++]);
1714 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, val: cap[i++]);
1715 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, val: cap[i++]);
1716 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, val: cap[i++]);
1717}
1718
1719static int pci_save_pcix_state(struct pci_dev *dev)
1720{
1721 int pos;
1722 struct pci_cap_saved_state *save_state;
1723
1724 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1725 if (!pos)
1726 return 0;
1727
1728 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1729 if (!save_state) {
1730 pci_err(dev, "buffer not found in %s\n", __func__);
1731 return -ENOMEM;
1732 }
1733
1734 pci_read_config_word(dev, where: pos + PCI_X_CMD,
1735 val: (u16 *)save_state->cap.data);
1736
1737 return 0;
1738}
1739
1740static void pci_restore_pcix_state(struct pci_dev *dev)
1741{
1742 int i = 0, pos;
1743 struct pci_cap_saved_state *save_state;
1744 u16 *cap;
1745
1746 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1747 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1748 if (!save_state || !pos)
1749 return;
1750 cap = (u16 *)&save_state->cap.data[0];
1751
1752 pci_write_config_word(dev, where: pos + PCI_X_CMD, val: cap[i++]);
1753}
1754
1755/**
1756 * pci_save_state - save the PCI configuration space of a device before
1757 * suspending
1758 * @dev: PCI device that we're dealing with
1759 */
1760int pci_save_state(struct pci_dev *dev)
1761{
1762 int i;
1763 /* XXX: 100% dword access ok here? */
1764 for (i = 0; i < 16; i++) {
1765 pci_read_config_dword(dev, where: i * 4, val: &dev->saved_config_space[i]);
1766 pci_dbg(dev, "save config %#04x: %#010x\n",
1767 i * 4, dev->saved_config_space[i]);
1768 }
1769 dev->state_saved = true;
1770
1771 i = pci_save_pcie_state(dev);
1772 if (i != 0)
1773 return i;
1774
1775 i = pci_save_pcix_state(dev);
1776 if (i != 0)
1777 return i;
1778
1779 pci_save_dpc_state(dev);
1780 pci_save_aer_state(dev);
1781 pci_save_ptm_state(dev);
1782 return pci_save_vc_state(dev);
1783}
1784EXPORT_SYMBOL(pci_save_state);
1785
1786static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1787 u32 saved_val, int retry, bool force)
1788{
1789 u32 val;
1790
1791 pci_read_config_dword(dev: pdev, where: offset, val: &val);
1792 if (!force && val == saved_val)
1793 return;
1794
1795 for (;;) {
1796 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1797 offset, val, saved_val);
1798 pci_write_config_dword(dev: pdev, where: offset, val: saved_val);
1799 if (retry-- <= 0)
1800 return;
1801
1802 pci_read_config_dword(dev: pdev, where: offset, val: &val);
1803 if (val == saved_val)
1804 return;
1805
1806 mdelay(1);
1807 }
1808}
1809
1810static void pci_restore_config_space_range(struct pci_dev *pdev,
1811 int start, int end, int retry,
1812 bool force)
1813{
1814 int index;
1815
1816 for (index = end; index >= start; index--)
1817 pci_restore_config_dword(pdev, offset: 4 * index,
1818 saved_val: pdev->saved_config_space[index],
1819 retry, force);
1820}
1821
1822static void pci_restore_config_space(struct pci_dev *pdev)
1823{
1824 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1825 pci_restore_config_space_range(pdev, start: 10, end: 15, retry: 0, force: false);
1826 /* Restore BARs before the command register. */
1827 pci_restore_config_space_range(pdev, start: 4, end: 9, retry: 10, force: false);
1828 pci_restore_config_space_range(pdev, start: 0, end: 3, retry: 0, force: false);
1829 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1830 pci_restore_config_space_range(pdev, start: 12, end: 15, retry: 0, force: false);
1831
1832 /*
1833 * Force rewriting of prefetch registers to avoid S3 resume
1834 * issues on Intel PCI bridges that occur when these
1835 * registers are not explicitly written.
1836 */
1837 pci_restore_config_space_range(pdev, start: 9, end: 11, retry: 0, force: true);
1838 pci_restore_config_space_range(pdev, start: 0, end: 8, retry: 0, force: false);
1839 } else {
1840 pci_restore_config_space_range(pdev, start: 0, end: 15, retry: 0, force: false);
1841 }
1842}
1843
1844static void pci_restore_rebar_state(struct pci_dev *pdev)
1845{
1846 unsigned int pos, nbars, i;
1847 u32 ctrl;
1848
1849 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1850 if (!pos)
1851 return;
1852
1853 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
1854 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1855
1856 for (i = 0; i < nbars; i++, pos += 8) {
1857 struct resource *res;
1858 int bar_idx, size;
1859
1860 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
1861 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1862 res = pdev->resource + bar_idx;
1863 size = pci_rebar_bytes_to_size(bytes: resource_size(res));
1864 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1865 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1866 pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl);
1867 }
1868}
1869
1870/**
1871 * pci_restore_state - Restore the saved state of a PCI device
1872 * @dev: PCI device that we're dealing with
1873 */
1874void pci_restore_state(struct pci_dev *dev)
1875{
1876 if (!dev->state_saved)
1877 return;
1878
1879 pci_restore_pcie_state(dev);
1880 pci_restore_pasid_state(pdev: dev);
1881 pci_restore_pri_state(pdev: dev);
1882 pci_restore_ats_state(dev);
1883 pci_restore_vc_state(dev);
1884 pci_restore_rebar_state(pdev: dev);
1885 pci_restore_dpc_state(dev);
1886 pci_restore_ptm_state(dev);
1887
1888 pci_aer_clear_status(dev);
1889 pci_restore_aer_state(dev);
1890
1891 pci_restore_config_space(pdev: dev);
1892
1893 pci_restore_pcix_state(dev);
1894 pci_restore_msi_state(dev);
1895
1896 /* Restore ACS and IOV configuration state */
1897 pci_enable_acs(dev);
1898 pci_restore_iov_state(dev);
1899
1900 dev->state_saved = false;
1901}
1902EXPORT_SYMBOL(pci_restore_state);
1903
1904struct pci_saved_state {
1905 u32 config_space[16];
1906 struct pci_cap_saved_data cap[];
1907};
1908
1909/**
1910 * pci_store_saved_state - Allocate and return an opaque struct containing
1911 * the device saved state.
1912 * @dev: PCI device that we're dealing with
1913 *
1914 * Return NULL if no state or error.
1915 */
1916struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1917{
1918 struct pci_saved_state *state;
1919 struct pci_cap_saved_state *tmp;
1920 struct pci_cap_saved_data *cap;
1921 size_t size;
1922
1923 if (!dev->state_saved)
1924 return NULL;
1925
1926 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1927
1928 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1929 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1930
1931 state = kzalloc(size, GFP_KERNEL);
1932 if (!state)
1933 return NULL;
1934
1935 memcpy(state->config_space, dev->saved_config_space,
1936 sizeof(state->config_space));
1937
1938 cap = state->cap;
1939 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1940 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1941 memcpy(cap, &tmp->cap, len);
1942 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1943 }
1944 /* Empty cap_save terminates list */
1945
1946 return state;
1947}
1948EXPORT_SYMBOL_GPL(pci_store_saved_state);
1949
1950/**
1951 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1952 * @dev: PCI device that we're dealing with
1953 * @state: Saved state returned from pci_store_saved_state()
1954 */
1955int pci_load_saved_state(struct pci_dev *dev,
1956 struct pci_saved_state *state)
1957{
1958 struct pci_cap_saved_data *cap;
1959
1960 dev->state_saved = false;
1961
1962 if (!state)
1963 return 0;
1964
1965 memcpy(dev->saved_config_space, state->config_space,
1966 sizeof(state->config_space));
1967
1968 cap = state->cap;
1969 while (cap->size) {
1970 struct pci_cap_saved_state *tmp;
1971
1972 tmp = _pci_find_saved_cap(pci_dev: dev, cap: cap->cap_nr, extended: cap->cap_extended);
1973 if (!tmp || tmp->cap.size != cap->size)
1974 return -EINVAL;
1975
1976 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1977 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1978 sizeof(struct pci_cap_saved_data) + cap->size);
1979 }
1980
1981 dev->state_saved = true;
1982 return 0;
1983}
1984EXPORT_SYMBOL_GPL(pci_load_saved_state);
1985
1986/**
1987 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1988 * and free the memory allocated for it.
1989 * @dev: PCI device that we're dealing with
1990 * @state: Pointer to saved state returned from pci_store_saved_state()
1991 */
1992int pci_load_and_free_saved_state(struct pci_dev *dev,
1993 struct pci_saved_state **state)
1994{
1995 int ret = pci_load_saved_state(dev, *state);
1996 kfree(objp: *state);
1997 *state = NULL;
1998 return ret;
1999}
2000EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2001
2002int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2003{
2004 return pci_enable_resources(dev, mask: bars);
2005}
2006
2007static int do_pci_enable_device(struct pci_dev *dev, int bars)
2008{
2009 int err;
2010 struct pci_dev *bridge;
2011 u16 cmd;
2012 u8 pin;
2013
2014 err = pci_set_power_state(dev, PCI_D0);
2015 if (err < 0 && err != -EIO)
2016 return err;
2017
2018 bridge = pci_upstream_bridge(dev);
2019 if (bridge)
2020 pcie_aspm_powersave_config_link(pdev: bridge);
2021
2022 err = pcibios_enable_device(dev, bars);
2023 if (err < 0)
2024 return err;
2025 pci_fixup_device(pass: pci_fixup_enable, dev);
2026
2027 if (dev->msi_enabled || dev->msix_enabled)
2028 return 0;
2029
2030 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, val: &pin);
2031 if (pin) {
2032 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
2033 if (cmd & PCI_COMMAND_INTX_DISABLE)
2034 pci_write_config_word(dev, PCI_COMMAND,
2035 val: cmd & ~PCI_COMMAND_INTX_DISABLE);
2036 }
2037
2038 return 0;
2039}
2040
2041/**
2042 * pci_reenable_device - Resume abandoned device
2043 * @dev: PCI device to be resumed
2044 *
2045 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2046 * to be called by normal code, write proper resume handler and use it instead.
2047 */
2048int pci_reenable_device(struct pci_dev *dev)
2049{
2050 if (pci_is_enabled(pdev: dev))
2051 return do_pci_enable_device(dev, bars: (1 << PCI_NUM_RESOURCES) - 1);
2052 return 0;
2053}
2054EXPORT_SYMBOL(pci_reenable_device);
2055
2056static void pci_enable_bridge(struct pci_dev *dev)
2057{
2058 struct pci_dev *bridge;
2059 int retval;
2060
2061 bridge = pci_upstream_bridge(dev);
2062 if (bridge)
2063 pci_enable_bridge(dev: bridge);
2064
2065 if (pci_is_enabled(pdev: dev)) {
2066 if (!dev->is_busmaster)
2067 pci_set_master(dev);
2068 return;
2069 }
2070
2071 retval = pci_enable_device(dev);
2072 if (retval)
2073 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2074 retval);
2075 pci_set_master(dev);
2076}
2077
2078static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2079{
2080 struct pci_dev *bridge;
2081 int err;
2082 int i, bars = 0;
2083
2084 /*
2085 * Power state could be unknown at this point, either due to a fresh
2086 * boot or a device removal call. So get the current power state
2087 * so that things like MSI message writing will behave as expected
2088 * (e.g. if the device really is in D0 at enable time).
2089 */
2090 pci_update_current_state(dev, state: dev->current_state);
2091
2092 if (atomic_inc_return(v: &dev->enable_cnt) > 1)
2093 return 0; /* already enabled */
2094
2095 bridge = pci_upstream_bridge(dev);
2096 if (bridge)
2097 pci_enable_bridge(dev: bridge);
2098
2099 /* only skip sriov related */
2100 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2101 if (dev->resource[i].flags & flags)
2102 bars |= (1 << i);
2103 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2104 if (dev->resource[i].flags & flags)
2105 bars |= (1 << i);
2106
2107 err = do_pci_enable_device(dev, bars);
2108 if (err < 0)
2109 atomic_dec(v: &dev->enable_cnt);
2110 return err;
2111}
2112
2113/**
2114 * pci_enable_device_io - Initialize a device for use with IO space
2115 * @dev: PCI device to be initialized
2116 *
2117 * Initialize device before it's used by a driver. Ask low-level code
2118 * to enable I/O resources. Wake up the device if it was suspended.
2119 * Beware, this function can fail.
2120 */
2121int pci_enable_device_io(struct pci_dev *dev)
2122{
2123 return pci_enable_device_flags(dev, IORESOURCE_IO);
2124}
2125EXPORT_SYMBOL(pci_enable_device_io);
2126
2127/**
2128 * pci_enable_device_mem - Initialize a device for use with Memory space
2129 * @dev: PCI device to be initialized
2130 *
2131 * Initialize device before it's used by a driver. Ask low-level code
2132 * to enable Memory resources. Wake up the device if it was suspended.
2133 * Beware, this function can fail.
2134 */
2135int pci_enable_device_mem(struct pci_dev *dev)
2136{
2137 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2138}
2139EXPORT_SYMBOL(pci_enable_device_mem);
2140
2141/**
2142 * pci_enable_device - Initialize device before it's used by a driver.
2143 * @dev: PCI device to be initialized
2144 *
2145 * Initialize device before it's used by a driver. Ask low-level code
2146 * to enable I/O and memory. Wake up the device if it was suspended.
2147 * Beware, this function can fail.
2148 *
2149 * Note we don't actually enable the device many times if we call
2150 * this function repeatedly (we just increment the count).
2151 */
2152int pci_enable_device(struct pci_dev *dev)
2153{
2154 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2155}
2156EXPORT_SYMBOL(pci_enable_device);
2157
2158/*
2159 * pcibios_device_add - provide arch specific hooks when adding device dev
2160 * @dev: the PCI device being added
2161 *
2162 * Permits the platform to provide architecture specific functionality when
2163 * devices are added. This is the default implementation. Architecture
2164 * implementations can override this.
2165 */
2166int __weak pcibios_device_add(struct pci_dev *dev)
2167{
2168 return 0;
2169}
2170
2171/**
2172 * pcibios_release_device - provide arch specific hooks when releasing
2173 * device dev
2174 * @dev: the PCI device being released
2175 *
2176 * Permits the platform to provide architecture specific functionality when
2177 * devices are released. This is the default implementation. Architecture
2178 * implementations can override this.
2179 */
2180void __weak pcibios_release_device(struct pci_dev *dev) {}
2181
2182/**
2183 * pcibios_disable_device - disable arch specific PCI resources for device dev
2184 * @dev: the PCI device to disable
2185 *
2186 * Disables architecture specific PCI resources for the device. This
2187 * is the default implementation. Architecture implementations can
2188 * override this.
2189 */
2190void __weak pcibios_disable_device(struct pci_dev *dev) {}
2191
2192static void do_pci_disable_device(struct pci_dev *dev)
2193{
2194 u16 pci_command;
2195
2196 pci_read_config_word(dev, PCI_COMMAND, val: &pci_command);
2197 if (pci_command & PCI_COMMAND_MASTER) {
2198 pci_command &= ~PCI_COMMAND_MASTER;
2199 pci_write_config_word(dev, PCI_COMMAND, val: pci_command);
2200 }
2201
2202 pcibios_disable_device(dev);
2203}
2204
2205/**
2206 * pci_disable_enabled_device - Disable device without updating enable_cnt
2207 * @dev: PCI device to disable
2208 *
2209 * NOTE: This function is a backend of PCI power management routines and is
2210 * not supposed to be called drivers.
2211 */
2212void pci_disable_enabled_device(struct pci_dev *dev)
2213{
2214 if (pci_is_enabled(pdev: dev))
2215 do_pci_disable_device(dev);
2216}
2217
2218/**
2219 * pci_disable_device - Disable PCI device after use
2220 * @dev: PCI device to be disabled
2221 *
2222 * Signal to the system that the PCI device is not in use by the system
2223 * anymore. This only involves disabling PCI bus-mastering, if active.
2224 *
2225 * Note we don't actually disable the device until all callers of
2226 * pci_enable_device() have called pci_disable_device().
2227 */
2228void pci_disable_device(struct pci_dev *dev)
2229{
2230 struct pci_devres *dr;
2231
2232 dr = find_pci_dr(pdev: dev);
2233 if (dr)
2234 dr->enabled = 0;
2235
2236 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2237 "disabling already-disabled device");
2238
2239 if (atomic_dec_return(v: &dev->enable_cnt) != 0)
2240 return;
2241
2242 do_pci_disable_device(dev);
2243
2244 dev->is_busmaster = 0;
2245}
2246EXPORT_SYMBOL(pci_disable_device);
2247
2248/**
2249 * pcibios_set_pcie_reset_state - set reset state for device dev
2250 * @dev: the PCIe device reset
2251 * @state: Reset state to enter into
2252 *
2253 * Set the PCIe reset state for the device. This is the default
2254 * implementation. Architecture implementations can override this.
2255 */
2256int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2257 enum pcie_reset_state state)
2258{
2259 return -EINVAL;
2260}
2261
2262/**
2263 * pci_set_pcie_reset_state - set reset state for device dev
2264 * @dev: the PCIe device reset
2265 * @state: Reset state to enter into
2266 *
2267 * Sets the PCI reset state for the device.
2268 */
2269int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2270{
2271 return pcibios_set_pcie_reset_state(dev, state);
2272}
2273EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2274
2275#ifdef CONFIG_PCIEAER
2276void pcie_clear_device_status(struct pci_dev *dev)
2277{
2278 u16 sta;
2279
2280 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, val: &sta);
2281 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, val: sta);
2282}
2283#endif
2284
2285/**
2286 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2287 * @dev: PCIe root port or event collector.
2288 */
2289void pcie_clear_root_pme_status(struct pci_dev *dev)
2290{
2291 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2292}
2293
2294/**
2295 * pci_check_pme_status - Check if given device has generated PME.
2296 * @dev: Device to check.
2297 *
2298 * Check the PME status of the device and if set, clear it and clear PME enable
2299 * (if set). Return 'true' if PME status and PME enable were both set or
2300 * 'false' otherwise.
2301 */
2302bool pci_check_pme_status(struct pci_dev *dev)
2303{
2304 int pmcsr_pos;
2305 u16 pmcsr;
2306 bool ret = false;
2307
2308 if (!dev->pm_cap)
2309 return false;
2310
2311 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2312 pci_read_config_word(dev, where: pmcsr_pos, val: &pmcsr);
2313 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2314 return false;
2315
2316 /* Clear PME status. */
2317 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2318 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2319 /* Disable PME to avoid interrupt flood. */
2320 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2321 ret = true;
2322 }
2323
2324 pci_write_config_word(dev, where: pmcsr_pos, val: pmcsr);
2325
2326 return ret;
2327}
2328
2329/**
2330 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2331 * @dev: Device to handle.
2332 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2333 *
2334 * Check if @dev has generated PME and queue a resume request for it in that
2335 * case.
2336 */
2337static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2338{
2339 if (pme_poll_reset && dev->pme_poll)
2340 dev->pme_poll = false;
2341
2342 if (pci_check_pme_status(dev)) {
2343 pci_wakeup_event(dev);
2344 pm_request_resume(dev: &dev->dev);
2345 }
2346 return 0;
2347}
2348
2349/**
2350 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2351 * @bus: Top bus of the subtree to walk.
2352 */
2353void pci_pme_wakeup_bus(struct pci_bus *bus)
2354{
2355 if (bus)
2356 pci_walk_bus(top: bus, cb: pci_pme_wakeup, userdata: (void *)true);
2357}
2358
2359
2360/**
2361 * pci_pme_capable - check the capability of PCI device to generate PME#
2362 * @dev: PCI device to handle.
2363 * @state: PCI state from which device will issue PME#.
2364 */
2365bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2366{
2367 if (!dev->pm_cap)
2368 return false;
2369
2370 return !!(dev->pme_support & (1 << state));
2371}
2372EXPORT_SYMBOL(pci_pme_capable);
2373
2374static void pci_pme_list_scan(struct work_struct *work)
2375{
2376 struct pci_pme_device *pme_dev, *n;
2377
2378 mutex_lock(&pci_pme_list_mutex);
2379 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2380 struct pci_dev *pdev = pme_dev->dev;
2381
2382 if (pdev->pme_poll) {
2383 struct pci_dev *bridge = pdev->bus->self;
2384 struct device *dev = &pdev->dev;
2385 struct device *bdev = bridge ? &bridge->dev : NULL;
2386 int bref = 0;
2387
2388 /*
2389 * If we have a bridge, it should be in an active/D0
2390 * state or the configuration space of subordinate
2391 * devices may not be accessible or stable over the
2392 * course of the call.
2393 */
2394 if (bdev) {
2395 bref = pm_runtime_get_if_active(dev: bdev);
2396 if (!bref)
2397 continue;
2398
2399 if (bridge->current_state != PCI_D0)
2400 goto put_bridge;
2401 }
2402
2403 /*
2404 * The device itself should be suspended but config
2405 * space must be accessible, therefore it cannot be in
2406 * D3cold.
2407 */
2408 if (pm_runtime_suspended(dev) &&
2409 pdev->current_state != PCI_D3cold)
2410 pci_pme_wakeup(dev: pdev, NULL);
2411
2412put_bridge:
2413 if (bref > 0)
2414 pm_runtime_put(dev: bdev);
2415 } else {
2416 list_del(entry: &pme_dev->list);
2417 kfree(objp: pme_dev);
2418 }
2419 }
2420 if (!list_empty(head: &pci_pme_list))
2421 queue_delayed_work(wq: system_freezable_wq, dwork: &pci_pme_work,
2422 delay: msecs_to_jiffies(PME_TIMEOUT));
2423 mutex_unlock(lock: &pci_pme_list_mutex);
2424}
2425
2426static void __pci_pme_active(struct pci_dev *dev, bool enable)
2427{
2428 u16 pmcsr;
2429
2430 if (!dev->pme_support)
2431 return;
2432
2433 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
2434 /* Clear PME_Status by writing 1 to it and enable PME# */
2435 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2436 if (!enable)
2437 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2438
2439 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
2440}
2441
2442/**
2443 * pci_pme_restore - Restore PME configuration after config space restore.
2444 * @dev: PCI device to update.
2445 */
2446void pci_pme_restore(struct pci_dev *dev)
2447{
2448 u16 pmcsr;
2449
2450 if (!dev->pme_support)
2451 return;
2452
2453 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &pmcsr);
2454 if (dev->wakeup_prepared) {
2455 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2456 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2457 } else {
2458 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2459 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2460 }
2461 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: pmcsr);
2462}
2463
2464/**
2465 * pci_pme_active - enable or disable PCI device's PME# function
2466 * @dev: PCI device to handle.
2467 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2468 *
2469 * The caller must verify that the device is capable of generating PME# before
2470 * calling this function with @enable equal to 'true'.
2471 */
2472void pci_pme_active(struct pci_dev *dev, bool enable)
2473{
2474 __pci_pme_active(dev, enable);
2475
2476 /*
2477 * PCI (as opposed to PCIe) PME requires that the device have
2478 * its PME# line hooked up correctly. Not all hardware vendors
2479 * do this, so the PME never gets delivered and the device
2480 * remains asleep. The easiest way around this is to
2481 * periodically walk the list of suspended devices and check
2482 * whether any have their PME flag set. The assumption is that
2483 * we'll wake up often enough anyway that this won't be a huge
2484 * hit, and the power savings from the devices will still be a
2485 * win.
2486 *
2487 * Although PCIe uses in-band PME message instead of PME# line
2488 * to report PME, PME does not work for some PCIe devices in
2489 * reality. For example, there are devices that set their PME
2490 * status bits, but don't really bother to send a PME message;
2491 * there are PCI Express Root Ports that don't bother to
2492 * trigger interrupts when they receive PME messages from the
2493 * devices below. So PME poll is used for PCIe devices too.
2494 */
2495
2496 if (dev->pme_poll) {
2497 struct pci_pme_device *pme_dev;
2498 if (enable) {
2499 pme_dev = kmalloc(size: sizeof(struct pci_pme_device),
2500 GFP_KERNEL);
2501 if (!pme_dev) {
2502 pci_warn(dev, "can't enable PME#\n");
2503 return;
2504 }
2505 pme_dev->dev = dev;
2506 mutex_lock(&pci_pme_list_mutex);
2507 list_add(new: &pme_dev->list, head: &pci_pme_list);
2508 if (list_is_singular(head: &pci_pme_list))
2509 queue_delayed_work(wq: system_freezable_wq,
2510 dwork: &pci_pme_work,
2511 delay: msecs_to_jiffies(PME_TIMEOUT));
2512 mutex_unlock(lock: &pci_pme_list_mutex);
2513 } else {
2514 mutex_lock(&pci_pme_list_mutex);
2515 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2516 if (pme_dev->dev == dev) {
2517 list_del(entry: &pme_dev->list);
2518 kfree(objp: pme_dev);
2519 break;
2520 }
2521 }
2522 mutex_unlock(lock: &pci_pme_list_mutex);
2523 }
2524 }
2525
2526 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2527}
2528EXPORT_SYMBOL(pci_pme_active);
2529
2530/**
2531 * __pci_enable_wake - enable PCI device as wakeup event source
2532 * @dev: PCI device affected
2533 * @state: PCI state from which device will issue wakeup events
2534 * @enable: True to enable event generation; false to disable
2535 *
2536 * This enables the device as a wakeup event source, or disables it.
2537 * When such events involves platform-specific hooks, those hooks are
2538 * called automatically by this routine.
2539 *
2540 * Devices with legacy power management (no standard PCI PM capabilities)
2541 * always require such platform hooks.
2542 *
2543 * RETURN VALUE:
2544 * 0 is returned on success
2545 * -EINVAL is returned if device is not supposed to wake up the system
2546 * Error code depending on the platform is returned if both the platform and
2547 * the native mechanism fail to enable the generation of wake-up events
2548 */
2549static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2550{
2551 int ret = 0;
2552
2553 /*
2554 * Bridges that are not power-manageable directly only signal
2555 * wakeup on behalf of subordinate devices which is set up
2556 * elsewhere, so skip them. However, bridges that are
2557 * power-manageable may signal wakeup for themselves (for example,
2558 * on a hotplug event) and they need to be covered here.
2559 */
2560 if (!pci_power_manageable(pci_dev: dev))
2561 return 0;
2562
2563 /* Don't do the same thing twice in a row for one device. */
2564 if (!!enable == !!dev->wakeup_prepared)
2565 return 0;
2566
2567 /*
2568 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2569 * Anderson we should be doing PME# wake enable followed by ACPI wake
2570 * enable. To disable wake-up we call the platform first, for symmetry.
2571 */
2572
2573 if (enable) {
2574 int error;
2575
2576 /*
2577 * Enable PME signaling if the device can signal PME from
2578 * D3cold regardless of whether or not it can signal PME from
2579 * the current target state, because that will allow it to
2580 * signal PME when the hierarchy above it goes into D3cold and
2581 * the device itself ends up in D3cold as a result of that.
2582 */
2583 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2584 pci_pme_active(dev, true);
2585 else
2586 ret = 1;
2587 error = platform_pci_set_wakeup(dev, enable: true);
2588 if (ret)
2589 ret = error;
2590 if (!ret)
2591 dev->wakeup_prepared = true;
2592 } else {
2593 platform_pci_set_wakeup(dev, enable: false);
2594 pci_pme_active(dev, false);
2595 dev->wakeup_prepared = false;
2596 }
2597
2598 return ret;
2599}
2600
2601/**
2602 * pci_enable_wake - change wakeup settings for a PCI device
2603 * @pci_dev: Target device
2604 * @state: PCI state from which device will issue wakeup events
2605 * @enable: Whether or not to enable event generation
2606 *
2607 * If @enable is set, check device_may_wakeup() for the device before calling
2608 * __pci_enable_wake() for it.
2609 */
2610int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2611{
2612 if (enable && !device_may_wakeup(dev: &pci_dev->dev))
2613 return -EINVAL;
2614
2615 return __pci_enable_wake(dev: pci_dev, state, enable);
2616}
2617EXPORT_SYMBOL(pci_enable_wake);
2618
2619/**
2620 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2621 * @dev: PCI device to prepare
2622 * @enable: True to enable wake-up event generation; false to disable
2623 *
2624 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2625 * and this function allows them to set that up cleanly - pci_enable_wake()
2626 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2627 * ordering constraints.
2628 *
2629 * This function only returns error code if the device is not allowed to wake
2630 * up the system from sleep or it is not capable of generating PME# from both
2631 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2632 */
2633int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2634{
2635 return pci_pme_capable(dev, PCI_D3cold) ?
2636 pci_enable_wake(dev, PCI_D3cold, enable) :
2637 pci_enable_wake(dev, PCI_D3hot, enable);
2638}
2639EXPORT_SYMBOL(pci_wake_from_d3);
2640
2641/**
2642 * pci_target_state - find an appropriate low power state for a given PCI dev
2643 * @dev: PCI device
2644 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2645 *
2646 * Use underlying platform code to find a supported low power state for @dev.
2647 * If the platform can't manage @dev, return the deepest state from which it
2648 * can generate wake events, based on any available PME info.
2649 */
2650static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2651{
2652 if (platform_pci_power_manageable(dev)) {
2653 /*
2654 * Call the platform to find the target state for the device.
2655 */
2656 pci_power_t state = platform_pci_choose_state(dev);
2657
2658 switch (state) {
2659 case PCI_POWER_ERROR:
2660 case PCI_UNKNOWN:
2661 return PCI_D3hot;
2662
2663 case PCI_D1:
2664 case PCI_D2:
2665 if (pci_no_d1d2(dev))
2666 return PCI_D3hot;
2667 }
2668
2669 return state;
2670 }
2671
2672 /*
2673 * If the device is in D3cold even though it's not power-manageable by
2674 * the platform, it may have been powered down by non-standard means.
2675 * Best to let it slumber.
2676 */
2677 if (dev->current_state == PCI_D3cold)
2678 return PCI_D3cold;
2679 else if (!dev->pm_cap)
2680 return PCI_D0;
2681
2682 if (wakeup && dev->pme_support) {
2683 pci_power_t state = PCI_D3hot;
2684
2685 /*
2686 * Find the deepest state from which the device can generate
2687 * PME#.
2688 */
2689 while (state && !(dev->pme_support & (1 << state)))
2690 state--;
2691
2692 if (state)
2693 return state;
2694 else if (dev->pme_support & 1)
2695 return PCI_D0;
2696 }
2697
2698 return PCI_D3hot;
2699}
2700
2701/**
2702 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2703 * into a sleep state
2704 * @dev: Device to handle.
2705 *
2706 * Choose the power state appropriate for the device depending on whether
2707 * it can wake up the system and/or is power manageable by the platform
2708 * (PCI_D3hot is the default) and put the device into that state.
2709 */
2710int pci_prepare_to_sleep(struct pci_dev *dev)
2711{
2712 bool wakeup = device_may_wakeup(dev: &dev->dev);
2713 pci_power_t target_state = pci_target_state(dev, wakeup);
2714 int error;
2715
2716 if (target_state == PCI_POWER_ERROR)
2717 return -EIO;
2718
2719 pci_enable_wake(dev, target_state, wakeup);
2720
2721 error = pci_set_power_state(dev, target_state);
2722
2723 if (error)
2724 pci_enable_wake(dev, target_state, false);
2725
2726 return error;
2727}
2728EXPORT_SYMBOL(pci_prepare_to_sleep);
2729
2730/**
2731 * pci_back_from_sleep - turn PCI device on during system-wide transition
2732 * into working state
2733 * @dev: Device to handle.
2734 *
2735 * Disable device's system wake-up capability and put it into D0.
2736 */
2737int pci_back_from_sleep(struct pci_dev *dev)
2738{
2739 int ret = pci_set_power_state(dev, PCI_D0);
2740
2741 if (ret)
2742 return ret;
2743
2744 pci_enable_wake(dev, PCI_D0, false);
2745 return 0;
2746}
2747EXPORT_SYMBOL(pci_back_from_sleep);
2748
2749/**
2750 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2751 * @dev: PCI device being suspended.
2752 *
2753 * Prepare @dev to generate wake-up events at run time and put it into a low
2754 * power state.
2755 */
2756int pci_finish_runtime_suspend(struct pci_dev *dev)
2757{
2758 pci_power_t target_state;
2759 int error;
2760
2761 target_state = pci_target_state(dev, wakeup: device_can_wakeup(dev: &dev->dev));
2762 if (target_state == PCI_POWER_ERROR)
2763 return -EIO;
2764
2765 __pci_enable_wake(dev, state: target_state, enable: pci_dev_run_wake(dev));
2766
2767 error = pci_set_power_state(dev, target_state);
2768
2769 if (error)
2770 pci_enable_wake(dev, target_state, false);
2771
2772 return error;
2773}
2774
2775/**
2776 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2777 * @dev: Device to check.
2778 *
2779 * Return true if the device itself is capable of generating wake-up events
2780 * (through the platform or using the native PCIe PME) or if the device supports
2781 * PME and one of its upstream bridges can generate wake-up events.
2782 */
2783bool pci_dev_run_wake(struct pci_dev *dev)
2784{
2785 struct pci_bus *bus = dev->bus;
2786
2787 if (!dev->pme_support)
2788 return false;
2789
2790 /* PME-capable in principle, but not from the target power state */
2791 if (!pci_pme_capable(dev, pci_target_state(dev, wakeup: true)))
2792 return false;
2793
2794 if (device_can_wakeup(dev: &dev->dev))
2795 return true;
2796
2797 while (bus->parent) {
2798 struct pci_dev *bridge = bus->self;
2799
2800 if (device_can_wakeup(dev: &bridge->dev))
2801 return true;
2802
2803 bus = bus->parent;
2804 }
2805
2806 /* We have reached the root bus. */
2807 if (bus->bridge)
2808 return device_can_wakeup(dev: bus->bridge);
2809
2810 return false;
2811}
2812EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2813
2814/**
2815 * pci_dev_need_resume - Check if it is necessary to resume the device.
2816 * @pci_dev: Device to check.
2817 *
2818 * Return 'true' if the device is not runtime-suspended or it has to be
2819 * reconfigured due to wakeup settings difference between system and runtime
2820 * suspend, or the current power state of it is not suitable for the upcoming
2821 * (system-wide) transition.
2822 */
2823bool pci_dev_need_resume(struct pci_dev *pci_dev)
2824{
2825 struct device *dev = &pci_dev->dev;
2826 pci_power_t target_state;
2827
2828 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(dev: pci_dev))
2829 return true;
2830
2831 target_state = pci_target_state(dev: pci_dev, wakeup: device_may_wakeup(dev));
2832
2833 /*
2834 * If the earlier platform check has not triggered, D3cold is just power
2835 * removal on top of D3hot, so no need to resume the device in that
2836 * case.
2837 */
2838 return target_state != pci_dev->current_state &&
2839 target_state != PCI_D3cold &&
2840 pci_dev->current_state != PCI_D3hot;
2841}
2842
2843/**
2844 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2845 * @pci_dev: Device to check.
2846 *
2847 * If the device is suspended and it is not configured for system wakeup,
2848 * disable PME for it to prevent it from waking up the system unnecessarily.
2849 *
2850 * Note that if the device's power state is D3cold and the platform check in
2851 * pci_dev_need_resume() has not triggered, the device's configuration need not
2852 * be changed.
2853 */
2854void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2855{
2856 struct device *dev = &pci_dev->dev;
2857
2858 spin_lock_irq(lock: &dev->power.lock);
2859
2860 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2861 pci_dev->current_state < PCI_D3cold)
2862 __pci_pme_active(dev: pci_dev, enable: false);
2863
2864 spin_unlock_irq(lock: &dev->power.lock);
2865}
2866
2867/**
2868 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2869 * @pci_dev: Device to handle.
2870 *
2871 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2872 * it might have been disabled during the prepare phase of system suspend if
2873 * the device was not configured for system wakeup.
2874 */
2875void pci_dev_complete_resume(struct pci_dev *pci_dev)
2876{
2877 struct device *dev = &pci_dev->dev;
2878
2879 if (!pci_dev_run_wake(pci_dev))
2880 return;
2881
2882 spin_lock_irq(lock: &dev->power.lock);
2883
2884 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2885 __pci_pme_active(dev: pci_dev, enable: true);
2886
2887 spin_unlock_irq(lock: &dev->power.lock);
2888}
2889
2890/**
2891 * pci_choose_state - Choose the power state of a PCI device.
2892 * @dev: Target PCI device.
2893 * @state: Target state for the whole system.
2894 *
2895 * Returns PCI power state suitable for @dev and @state.
2896 */
2897pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2898{
2899 if (state.event == PM_EVENT_ON)
2900 return PCI_D0;
2901
2902 return pci_target_state(dev, wakeup: false);
2903}
2904EXPORT_SYMBOL(pci_choose_state);
2905
2906void pci_config_pm_runtime_get(struct pci_dev *pdev)
2907{
2908 struct device *dev = &pdev->dev;
2909 struct device *parent = dev->parent;
2910
2911 if (parent)
2912 pm_runtime_get_sync(dev: parent);
2913 pm_runtime_get_noresume(dev);
2914 /*
2915 * pdev->current_state is set to PCI_D3cold during suspending,
2916 * so wait until suspending completes
2917 */
2918 pm_runtime_barrier(dev);
2919 /*
2920 * Only need to resume devices in D3cold, because config
2921 * registers are still accessible for devices suspended but
2922 * not in D3cold.
2923 */
2924 if (pdev->current_state == PCI_D3cold)
2925 pm_runtime_resume(dev);
2926}
2927
2928void pci_config_pm_runtime_put(struct pci_dev *pdev)
2929{
2930 struct device *dev = &pdev->dev;
2931 struct device *parent = dev->parent;
2932
2933 pm_runtime_put(dev);
2934 if (parent)
2935 pm_runtime_put_sync(dev: parent);
2936}
2937
2938static const struct dmi_system_id bridge_d3_blacklist[] = {
2939#ifdef CONFIG_X86
2940 {
2941 /*
2942 * Gigabyte X299 root port is not marked as hotplug capable
2943 * which allows Linux to power manage it. However, this
2944 * confuses the BIOS SMI handler so don't power manage root
2945 * ports on that system.
2946 */
2947 .ident = "X299 DESIGNARE EX-CF",
2948 .matches = {
2949 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2950 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2951 },
2952 },
2953 {
2954 /*
2955 * Downstream device is not accessible after putting a root port
2956 * into D3cold and back into D0 on Elo Continental Z2 board
2957 */
2958 .ident = "Elo Continental Z2",
2959 .matches = {
2960 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2961 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2962 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2963 },
2964 },
2965#endif
2966 { }
2967};
2968
2969/**
2970 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2971 * @bridge: Bridge to check
2972 *
2973 * This function checks if it is possible to move the bridge to D3.
2974 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2975 */
2976bool pci_bridge_d3_possible(struct pci_dev *bridge)
2977{
2978 if (!pci_is_pcie(dev: bridge))
2979 return false;
2980
2981 switch (pci_pcie_type(dev: bridge)) {
2982 case PCI_EXP_TYPE_ROOT_PORT:
2983 case PCI_EXP_TYPE_UPSTREAM:
2984 case PCI_EXP_TYPE_DOWNSTREAM:
2985 if (pci_bridge_d3_disable)
2986 return false;
2987
2988 /*
2989 * Hotplug ports handled by firmware in System Management Mode
2990 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2991 */
2992 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2993 return false;
2994
2995 if (pci_bridge_d3_force)
2996 return true;
2997
2998 /* Even the oldest 2010 Thunderbolt controller supports D3. */
2999 if (bridge->is_thunderbolt)
3000 return true;
3001
3002 /* Platform might know better if the bridge supports D3 */
3003 if (platform_pci_bridge_d3(dev: bridge))
3004 return true;
3005
3006 /*
3007 * Hotplug ports handled natively by the OS were not validated
3008 * by vendors for runtime D3 at least until 2018 because there
3009 * was no OS support.
3010 */
3011 if (bridge->is_hotplug_bridge)
3012 return false;
3013
3014 if (dmi_check_system(list: bridge_d3_blacklist))
3015 return false;
3016
3017 /*
3018 * It should be safe to put PCIe ports from 2015 or newer
3019 * to D3.
3020 */
3021 if (dmi_get_bios_year() >= 2015)
3022 return true;
3023 break;
3024 }
3025
3026 return false;
3027}
3028
3029static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3030{
3031 bool *d3cold_ok = data;
3032
3033 if (/* The device needs to be allowed to go D3cold ... */
3034 dev->no_d3cold || !dev->d3cold_allowed ||
3035
3036 /* ... and if it is wakeup capable to do so from D3cold. */
3037 (device_may_wakeup(dev: &dev->dev) &&
3038 !pci_pme_capable(dev, PCI_D3cold)) ||
3039
3040 /* If it is a bridge it must be allowed to go to D3. */
3041 !pci_power_manageable(pci_dev: dev))
3042
3043 *d3cold_ok = false;
3044
3045 return !*d3cold_ok;
3046}
3047
3048/*
3049 * pci_bridge_d3_update - Update bridge D3 capabilities
3050 * @dev: PCI device which is changed
3051 *
3052 * Update upstream bridge PM capabilities accordingly depending on if the
3053 * device PM configuration was changed or the device is being removed. The
3054 * change is also propagated upstream.
3055 */
3056void pci_bridge_d3_update(struct pci_dev *dev)
3057{
3058 bool remove = !device_is_registered(dev: &dev->dev);
3059 struct pci_dev *bridge;
3060 bool d3cold_ok = true;
3061
3062 bridge = pci_upstream_bridge(dev);
3063 if (!bridge || !pci_bridge_d3_possible(bridge))
3064 return;
3065
3066 /*
3067 * If D3 is currently allowed for the bridge, removing one of its
3068 * children won't change that.
3069 */
3070 if (remove && bridge->bridge_d3)
3071 return;
3072
3073 /*
3074 * If D3 is currently allowed for the bridge and a child is added or
3075 * changed, disallowance of D3 can only be caused by that child, so
3076 * we only need to check that single device, not any of its siblings.
3077 *
3078 * If D3 is currently not allowed for the bridge, checking the device
3079 * first may allow us to skip checking its siblings.
3080 */
3081 if (!remove)
3082 pci_dev_check_d3cold(dev, data: &d3cold_ok);
3083
3084 /*
3085 * If D3 is currently not allowed for the bridge, this may be caused
3086 * either by the device being changed/removed or any of its siblings,
3087 * so we need to go through all children to find out if one of them
3088 * continues to block D3.
3089 */
3090 if (d3cold_ok && !bridge->bridge_d3)
3091 pci_walk_bus(top: bridge->subordinate, cb: pci_dev_check_d3cold,
3092 userdata: &d3cold_ok);
3093
3094 if (bridge->bridge_d3 != d3cold_ok) {
3095 bridge->bridge_d3 = d3cold_ok;
3096 /* Propagate change to upstream bridges */
3097 pci_bridge_d3_update(dev: bridge);
3098 }
3099}
3100
3101/**
3102 * pci_d3cold_enable - Enable D3cold for device
3103 * @dev: PCI device to handle
3104 *
3105 * This function can be used in drivers to enable D3cold from the device
3106 * they handle. It also updates upstream PCI bridge PM capabilities
3107 * accordingly.
3108 */
3109void pci_d3cold_enable(struct pci_dev *dev)
3110{
3111 if (dev->no_d3cold) {
3112 dev->no_d3cold = false;
3113 pci_bridge_d3_update(dev);
3114 }
3115}
3116EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3117
3118/**
3119 * pci_d3cold_disable - Disable D3cold for device
3120 * @dev: PCI device to handle
3121 *
3122 * This function can be used in drivers to disable D3cold from the device
3123 * they handle. It also updates upstream PCI bridge PM capabilities
3124 * accordingly.
3125 */
3126void pci_d3cold_disable(struct pci_dev *dev)
3127{
3128 if (!dev->no_d3cold) {
3129 dev->no_d3cold = true;
3130 pci_bridge_d3_update(dev);
3131 }
3132}
3133EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3134
3135/**
3136 * pci_pm_init - Initialize PM functions of given PCI device
3137 * @dev: PCI device to handle.
3138 */
3139void pci_pm_init(struct pci_dev *dev)
3140{
3141 int pm;
3142 u16 status;
3143 u16 pmc;
3144
3145 pm_runtime_forbid(dev: &dev->dev);
3146 pm_runtime_set_active(dev: &dev->dev);
3147 pm_runtime_enable(dev: &dev->dev);
3148 device_enable_async_suspend(dev: &dev->dev);
3149 dev->wakeup_prepared = false;
3150
3151 dev->pm_cap = 0;
3152 dev->pme_support = 0;
3153
3154 /* find PCI PM capability in list */
3155 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3156 if (!pm)
3157 return;
3158 /* Check device's ability to generate PME# */
3159 pci_read_config_word(dev, where: pm + PCI_PM_PMC, val: &pmc);
3160
3161 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3162 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3163 pmc & PCI_PM_CAP_VER_MASK);
3164 return;
3165 }
3166
3167 dev->pm_cap = pm;
3168 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3169 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3170 dev->bridge_d3 = pci_bridge_d3_possible(bridge: dev);
3171 dev->d3cold_allowed = true;
3172
3173 dev->d1_support = false;
3174 dev->d2_support = false;
3175 if (!pci_no_d1d2(dev)) {
3176 if (pmc & PCI_PM_CAP_D1)
3177 dev->d1_support = true;
3178 if (pmc & PCI_PM_CAP_D2)
3179 dev->d2_support = true;
3180
3181 if (dev->d1_support || dev->d2_support)
3182 pci_info(dev, "supports%s%s\n",
3183 dev->d1_support ? " D1" : "",
3184 dev->d2_support ? " D2" : "");
3185 }
3186
3187 pmc &= PCI_PM_CAP_PME_MASK;
3188 if (pmc) {
3189 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3190 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3191 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3192 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3193 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3194 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3195 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3196 dev->pme_poll = true;
3197 /*
3198 * Make device's PM flags reflect the wake-up capability, but
3199 * let the user space enable it to wake up the system as needed.
3200 */
3201 device_set_wakeup_capable(dev: &dev->dev, capable: true);
3202 /* Disable the PME# generation functionality */
3203 pci_pme_active(dev, false);
3204 }
3205
3206 pci_read_config_word(dev, PCI_STATUS, val: &status);
3207 if (status & PCI_STATUS_IMM_READY)
3208 dev->imm_ready = 1;
3209}
3210
3211static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3212{
3213 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3214
3215 switch (prop) {
3216 case PCI_EA_P_MEM:
3217 case PCI_EA_P_VF_MEM:
3218 flags |= IORESOURCE_MEM;
3219 break;
3220 case PCI_EA_P_MEM_PREFETCH:
3221 case PCI_EA_P_VF_MEM_PREFETCH:
3222 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3223 break;
3224 case PCI_EA_P_IO:
3225 flags |= IORESOURCE_IO;
3226 break;
3227 default:
3228 return 0;
3229 }
3230
3231 return flags;
3232}
3233
3234static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3235 u8 prop)
3236{
3237 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3238 return &dev->resource[bei];
3239#ifdef CONFIG_PCI_IOV
3240 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3241 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3242 return &dev->resource[PCI_IOV_RESOURCES +
3243 bei - PCI_EA_BEI_VF_BAR0];
3244#endif
3245 else if (bei == PCI_EA_BEI_ROM)
3246 return &dev->resource[PCI_ROM_RESOURCE];
3247 else
3248 return NULL;
3249}
3250
3251/* Read an Enhanced Allocation (EA) entry */
3252static int pci_ea_read(struct pci_dev *dev, int offset)
3253{
3254 struct resource *res;
3255 const char *res_name;
3256 int ent_size, ent_offset = offset;
3257 resource_size_t start, end;
3258 unsigned long flags;
3259 u32 dw0, bei, base, max_offset;
3260 u8 prop;
3261 bool support_64 = (sizeof(resource_size_t) >= 8);
3262
3263 pci_read_config_dword(dev, where: ent_offset, val: &dw0);
3264 ent_offset += 4;
3265
3266 /* Entry size field indicates DWORDs after 1st */
3267 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3268
3269 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3270 goto out;
3271
3272 bei = FIELD_GET(PCI_EA_BEI, dw0);
3273 prop = FIELD_GET(PCI_EA_PP, dw0);
3274
3275 /*
3276 * If the Property is in the reserved range, try the Secondary
3277 * Property instead.
3278 */
3279 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3280 prop = FIELD_GET(PCI_EA_SP, dw0);
3281 if (prop > PCI_EA_P_BRIDGE_IO)
3282 goto out;
3283
3284 res = pci_ea_get_resource(dev, bei, prop);
3285 res_name = pci_resource_name(dev, i: bei);
3286 if (!res) {
3287 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3288 goto out;
3289 }
3290
3291 flags = pci_ea_flags(dev, prop);
3292 if (!flags) {
3293 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3294 goto out;
3295 }
3296
3297 /* Read Base */
3298 pci_read_config_dword(dev, where: ent_offset, val: &base);
3299 start = (base & PCI_EA_FIELD_MASK);
3300 ent_offset += 4;
3301
3302 /* Read MaxOffset */
3303 pci_read_config_dword(dev, where: ent_offset, val: &max_offset);
3304 ent_offset += 4;
3305
3306 /* Read Base MSBs (if 64-bit entry) */
3307 if (base & PCI_EA_IS_64) {
3308 u32 base_upper;
3309
3310 pci_read_config_dword(dev, where: ent_offset, val: &base_upper);
3311 ent_offset += 4;
3312
3313 flags |= IORESOURCE_MEM_64;
3314
3315 /* entry starts above 32-bit boundary, can't use */
3316 if (!support_64 && base_upper)
3317 goto out;
3318
3319 if (support_64)
3320 start |= ((u64)base_upper << 32);
3321 }
3322
3323 end = start + (max_offset | 0x03);
3324
3325 /* Read MaxOffset MSBs (if 64-bit entry) */
3326 if (max_offset & PCI_EA_IS_64) {
3327 u32 max_offset_upper;
3328
3329 pci_read_config_dword(dev, where: ent_offset, val: &max_offset_upper);
3330 ent_offset += 4;
3331
3332 flags |= IORESOURCE_MEM_64;
3333
3334 /* entry too big, can't use */
3335 if (!support_64 && max_offset_upper)
3336 goto out;
3337
3338 if (support_64)
3339 end += ((u64)max_offset_upper << 32);
3340 }
3341
3342 if (end < start) {
3343 pci_err(dev, "EA Entry crosses address boundary\n");
3344 goto out;
3345 }
3346
3347 if (ent_size != ent_offset - offset) {
3348 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3349 ent_size, ent_offset - offset);
3350 goto out;
3351 }
3352
3353 res->name = pci_name(pdev: dev);
3354 res->start = start;
3355 res->end = end;
3356 res->flags = flags;
3357
3358 if (bei <= PCI_EA_BEI_BAR5)
3359 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3360 res_name, res, prop);
3361 else if (bei == PCI_EA_BEI_ROM)
3362 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3363 res_name, res, prop);
3364 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3365 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3366 res_name, res, prop);
3367 else
3368 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3369 bei, res, prop);
3370
3371out:
3372 return offset + ent_size;
3373}
3374
3375/* Enhanced Allocation Initialization */
3376void pci_ea_init(struct pci_dev *dev)
3377{
3378 int ea;
3379 u8 num_ent;
3380 int offset;
3381 int i;
3382
3383 /* find PCI EA capability in list */
3384 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3385 if (!ea)
3386 return;
3387
3388 /* determine the number of entries */
3389 pci_bus_read_config_byte(bus: dev->bus, devfn: dev->devfn, where: ea + PCI_EA_NUM_ENT,
3390 val: &num_ent);
3391 num_ent &= PCI_EA_NUM_ENT_MASK;
3392
3393 offset = ea + PCI_EA_FIRST_ENT;
3394
3395 /* Skip DWORD 2 for type 1 functions */
3396 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3397 offset += 4;
3398
3399 /* parse each EA entry */
3400 for (i = 0; i < num_ent; ++i)
3401 offset = pci_ea_read(dev, offset);
3402}
3403
3404static void pci_add_saved_cap(struct pci_dev *pci_dev,
3405 struct pci_cap_saved_state *new_cap)
3406{
3407 hlist_add_head(n: &new_cap->next, h: &pci_dev->saved_cap_space);
3408}
3409
3410/**
3411 * _pci_add_cap_save_buffer - allocate buffer for saving given
3412 * capability registers
3413 * @dev: the PCI device
3414 * @cap: the capability to allocate the buffer for
3415 * @extended: Standard or Extended capability ID
3416 * @size: requested size of the buffer
3417 */
3418static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3419 bool extended, unsigned int size)
3420{
3421 int pos;
3422 struct pci_cap_saved_state *save_state;
3423
3424 if (extended)
3425 pos = pci_find_ext_capability(dev, cap);
3426 else
3427 pos = pci_find_capability(dev, cap);
3428
3429 if (!pos)
3430 return 0;
3431
3432 save_state = kzalloc(size: sizeof(*save_state) + size, GFP_KERNEL);
3433 if (!save_state)
3434 return -ENOMEM;
3435
3436 save_state->cap.cap_nr = cap;
3437 save_state->cap.cap_extended = extended;
3438 save_state->cap.size = size;
3439 pci_add_saved_cap(pci_dev: dev, new_cap: save_state);
3440
3441 return 0;
3442}
3443
3444int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3445{
3446 return _pci_add_cap_save_buffer(dev, cap, extended: false, size);
3447}
3448
3449int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3450{
3451 return _pci_add_cap_save_buffer(dev, cap, extended: true, size);
3452}
3453
3454/**
3455 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3456 * @dev: the PCI device
3457 */
3458void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3459{
3460 int error;
3461
3462 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3463 PCI_EXP_SAVE_REGS * sizeof(u16));
3464 if (error)
3465 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3466
3467 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, size: sizeof(u16));
3468 if (error)
3469 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3470
3471 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3472 size: 2 * sizeof(u16));
3473 if (error)
3474 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3475
3476 pci_allocate_vc_save_buffers(dev);
3477}
3478
3479void pci_free_cap_save_buffers(struct pci_dev *dev)
3480{
3481 struct pci_cap_saved_state *tmp;
3482 struct hlist_node *n;
3483
3484 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3485 kfree(objp: tmp);
3486}
3487
3488/**
3489 * pci_configure_ari - enable or disable ARI forwarding
3490 * @dev: the PCI device
3491 *
3492 * If @dev and its upstream bridge both support ARI, enable ARI in the
3493 * bridge. Otherwise, disable ARI in the bridge.
3494 */
3495void pci_configure_ari(struct pci_dev *dev)
3496{
3497 u32 cap;
3498 struct pci_dev *bridge;
3499
3500 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3501 return;
3502
3503 bridge = dev->bus->self;
3504 if (!bridge)
3505 return;
3506
3507 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap);
3508 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3509 return;
3510
3511 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3512 pcie_capability_set_word(dev: bridge, PCI_EXP_DEVCTL2,
3513 PCI_EXP_DEVCTL2_ARI);
3514 bridge->ari_enabled = 1;
3515 } else {
3516 pcie_capability_clear_word(dev: bridge, PCI_EXP_DEVCTL2,
3517 PCI_EXP_DEVCTL2_ARI);
3518 bridge->ari_enabled = 0;
3519 }
3520}
3521
3522static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3523{
3524 int pos;
3525 u16 cap, ctrl;
3526
3527 pos = pdev->acs_cap;
3528 if (!pos)
3529 return false;
3530
3531 /*
3532 * Except for egress control, capabilities are either required
3533 * or only required if controllable. Features missing from the
3534 * capability field can therefore be assumed as hard-wired enabled.
3535 */
3536 pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CAP, val: &cap);
3537 acs_flags &= (cap | PCI_ACS_EC);
3538
3539 pci_read_config_word(dev: pdev, where: pos + PCI_ACS_CTRL, val: &ctrl);
3540 return (ctrl & acs_flags) == acs_flags;
3541}
3542
3543/**
3544 * pci_acs_enabled - test ACS against required flags for a given device
3545 * @pdev: device to test
3546 * @acs_flags: required PCI ACS flags
3547 *
3548 * Return true if the device supports the provided flags. Automatically
3549 * filters out flags that are not implemented on multifunction devices.
3550 *
3551 * Note that this interface checks the effective ACS capabilities of the
3552 * device rather than the actual capabilities. For instance, most single
3553 * function endpoints are not required to support ACS because they have no
3554 * opportunity for peer-to-peer access. We therefore return 'true'
3555 * regardless of whether the device exposes an ACS capability. This makes
3556 * it much easier for callers of this function to ignore the actual type
3557 * or topology of the device when testing ACS support.
3558 */
3559bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3560{
3561 int ret;
3562
3563 ret = pci_dev_specific_acs_enabled(dev: pdev, acs_flags);
3564 if (ret >= 0)
3565 return ret > 0;
3566
3567 /*
3568 * Conventional PCI and PCI-X devices never support ACS, either
3569 * effectively or actually. The shared bus topology implies that
3570 * any device on the bus can receive or snoop DMA.
3571 */
3572 if (!pci_is_pcie(dev: pdev))
3573 return false;
3574
3575 switch (pci_pcie_type(dev: pdev)) {
3576 /*
3577 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3578 * but since their primary interface is PCI/X, we conservatively
3579 * handle them as we would a non-PCIe device.
3580 */
3581 case PCI_EXP_TYPE_PCIE_BRIDGE:
3582 /*
3583 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3584 * applicable... must never implement an ACS Extended Capability...".
3585 * This seems arbitrary, but we take a conservative interpretation
3586 * of this statement.
3587 */
3588 case PCI_EXP_TYPE_PCI_BRIDGE:
3589 case PCI_EXP_TYPE_RC_EC:
3590 return false;
3591 /*
3592 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3593 * implement ACS in order to indicate their peer-to-peer capabilities,
3594 * regardless of whether they are single- or multi-function devices.
3595 */
3596 case PCI_EXP_TYPE_DOWNSTREAM:
3597 case PCI_EXP_TYPE_ROOT_PORT:
3598 return pci_acs_flags_enabled(pdev, acs_flags);
3599 /*
3600 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3601 * implemented by the remaining PCIe types to indicate peer-to-peer
3602 * capabilities, but only when they are part of a multifunction
3603 * device. The footnote for section 6.12 indicates the specific
3604 * PCIe types included here.
3605 */
3606 case PCI_EXP_TYPE_ENDPOINT:
3607 case PCI_EXP_TYPE_UPSTREAM:
3608 case PCI_EXP_TYPE_LEG_END:
3609 case PCI_EXP_TYPE_RC_END:
3610 if (!pdev->multifunction)
3611 break;
3612
3613 return pci_acs_flags_enabled(pdev, acs_flags);
3614 }
3615
3616 /*
3617 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3618 * to single function devices with the exception of downstream ports.
3619 */
3620 return true;
3621}
3622
3623/**
3624 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3625 * @start: starting downstream device
3626 * @end: ending upstream device or NULL to search to the root bus
3627 * @acs_flags: required flags
3628 *
3629 * Walk up a device tree from start to end testing PCI ACS support. If
3630 * any step along the way does not support the required flags, return false.
3631 */
3632bool pci_acs_path_enabled(struct pci_dev *start,
3633 struct pci_dev *end, u16 acs_flags)
3634{
3635 struct pci_dev *pdev, *parent = start;
3636
3637 do {
3638 pdev = parent;
3639
3640 if (!pci_acs_enabled(pdev, acs_flags))
3641 return false;
3642
3643 if (pci_is_root_bus(pbus: pdev->bus))
3644 return (end == NULL);
3645
3646 parent = pdev->bus->self;
3647 } while (pdev != end);
3648
3649 return true;
3650}
3651
3652/**
3653 * pci_acs_init - Initialize ACS if hardware supports it
3654 * @dev: the PCI device
3655 */
3656void pci_acs_init(struct pci_dev *dev)
3657{
3658 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3659
3660 /*
3661 * Attempt to enable ACS regardless of capability because some Root
3662 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3663 * the standard ACS capability but still support ACS via those
3664 * quirks.
3665 */
3666 pci_enable_acs(dev);
3667}
3668
3669/**
3670 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3671 * @pdev: PCI device
3672 * @bar: BAR to find
3673 *
3674 * Helper to find the position of the ctrl register for a BAR.
3675 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3676 * Returns -ENOENT if no ctrl register for the BAR could be found.
3677 */
3678static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3679{
3680 unsigned int pos, nbars, i;
3681 u32 ctrl;
3682
3683 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3684 if (!pos)
3685 return -ENOTSUPP;
3686
3687 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3688 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3689
3690 for (i = 0; i < nbars; i++, pos += 8) {
3691 int bar_idx;
3692
3693 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3694 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3695 if (bar_idx == bar)
3696 return pos;
3697 }
3698
3699 return -ENOENT;
3700}
3701
3702/**
3703 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3704 * @pdev: PCI device
3705 * @bar: BAR to query
3706 *
3707 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3708 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3709 */
3710u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3711{
3712 int pos;
3713 u32 cap;
3714
3715 pos = pci_rebar_find_pos(pdev, bar);
3716 if (pos < 0)
3717 return 0;
3718
3719 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CAP, val: &cap);
3720 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3721
3722 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3723 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3724 bar == 0 && cap == 0x700)
3725 return 0x3f00;
3726
3727 return cap;
3728}
3729EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3730
3731/**
3732 * pci_rebar_get_current_size - get the current size of a BAR
3733 * @pdev: PCI device
3734 * @bar: BAR to set size to
3735 *
3736 * Read the size of a BAR from the resizable BAR config.
3737 * Returns size if found or negative error code.
3738 */
3739int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3740{
3741 int pos;
3742 u32 ctrl;
3743
3744 pos = pci_rebar_find_pos(pdev, bar);
3745 if (pos < 0)
3746 return pos;
3747
3748 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3749 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3750}
3751
3752/**
3753 * pci_rebar_set_size - set a new size for a BAR
3754 * @pdev: PCI device
3755 * @bar: BAR to set size to
3756 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3757 *
3758 * Set the new size of a BAR as defined in the spec.
3759 * Returns zero if resizing was successful, error code otherwise.
3760 */
3761int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3762{
3763 int pos;
3764 u32 ctrl;
3765
3766 pos = pci_rebar_find_pos(pdev, bar);
3767 if (pos < 0)
3768 return pos;
3769
3770 pci_read_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: &ctrl);
3771 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3772 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3773 pci_write_config_dword(dev: pdev, where: pos + PCI_REBAR_CTRL, val: ctrl);
3774 return 0;
3775}
3776
3777/**
3778 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3779 * @dev: the PCI device
3780 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3781 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3782 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3783 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3784 *
3785 * Return 0 if all upstream bridges support AtomicOp routing, egress
3786 * blocking is disabled on all upstream ports, and the root port supports
3787 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3788 * AtomicOp completion), or negative otherwise.
3789 */
3790int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3791{
3792 struct pci_bus *bus = dev->bus;
3793 struct pci_dev *bridge;
3794 u32 cap, ctl2;
3795
3796 /*
3797 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3798 * in Device Control 2 is reserved in VFs and the PF value applies
3799 * to all associated VFs.
3800 */
3801 if (dev->is_virtfn)
3802 return -EINVAL;
3803
3804 if (!pci_is_pcie(dev))
3805 return -EINVAL;
3806
3807 /*
3808 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3809 * AtomicOp requesters. For now, we only support endpoints as
3810 * requesters and root ports as completers. No endpoints as
3811 * completers, and no peer-to-peer.
3812 */
3813
3814 switch (pci_pcie_type(dev)) {
3815 case PCI_EXP_TYPE_ENDPOINT:
3816 case PCI_EXP_TYPE_LEG_END:
3817 case PCI_EXP_TYPE_RC_END:
3818 break;
3819 default:
3820 return -EINVAL;
3821 }
3822
3823 while (bus->parent) {
3824 bridge = bus->self;
3825
3826 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCAP2, val: &cap);
3827
3828 switch (pci_pcie_type(dev: bridge)) {
3829 /* Ensure switch ports support AtomicOp routing */
3830 case PCI_EXP_TYPE_UPSTREAM:
3831 case PCI_EXP_TYPE_DOWNSTREAM:
3832 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3833 return -EINVAL;
3834 break;
3835
3836 /* Ensure root port supports all the sizes we care about */
3837 case PCI_EXP_TYPE_ROOT_PORT:
3838 if ((cap & cap_mask) != cap_mask)
3839 return -EINVAL;
3840 break;
3841 }
3842
3843 /* Ensure upstream ports don't block AtomicOps on egress */
3844 if (pci_pcie_type(dev: bridge) == PCI_EXP_TYPE_UPSTREAM) {
3845 pcie_capability_read_dword(dev: bridge, PCI_EXP_DEVCTL2,
3846 val: &ctl2);
3847 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3848 return -EINVAL;
3849 }
3850
3851 bus = bus->parent;
3852 }
3853
3854 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3855 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3856 return 0;
3857}
3858EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3859
3860/**
3861 * pci_release_region - Release a PCI bar
3862 * @pdev: PCI device whose resources were previously reserved by
3863 * pci_request_region()
3864 * @bar: BAR to release
3865 *
3866 * Releases the PCI I/O and memory resources previously reserved by a
3867 * successful call to pci_request_region(). Call this function only
3868 * after all use of the PCI regions has ceased.
3869 */
3870void pci_release_region(struct pci_dev *pdev, int bar)
3871{
3872 struct pci_devres *dr;
3873
3874 if (pci_resource_len(pdev, bar) == 0)
3875 return;
3876 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3877 release_region(pci_resource_start(pdev, bar),
3878 pci_resource_len(pdev, bar));
3879 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3880 release_mem_region(pci_resource_start(pdev, bar),
3881 pci_resource_len(pdev, bar));
3882
3883 dr = find_pci_dr(pdev);
3884 if (dr)
3885 dr->region_mask &= ~(1 << bar);
3886}
3887EXPORT_SYMBOL(pci_release_region);
3888
3889/**
3890 * __pci_request_region - Reserved PCI I/O and memory resource
3891 * @pdev: PCI device whose resources are to be reserved
3892 * @bar: BAR to be reserved
3893 * @res_name: Name to be associated with resource.
3894 * @exclusive: whether the region access is exclusive or not
3895 *
3896 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3897 * being reserved by owner @res_name. Do not access any
3898 * address inside the PCI regions unless this call returns
3899 * successfully.
3900 *
3901 * If @exclusive is set, then the region is marked so that userspace
3902 * is explicitly not allowed to map the resource via /dev/mem or
3903 * sysfs MMIO access.
3904 *
3905 * Returns 0 on success, or %EBUSY on error. A warning
3906 * message is also printed on failure.
3907 */
3908static int __pci_request_region(struct pci_dev *pdev, int bar,
3909 const char *res_name, int exclusive)
3910{
3911 struct pci_devres *dr;
3912
3913 if (pci_resource_len(pdev, bar) == 0)
3914 return 0;
3915
3916 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3917 if (!request_region(pci_resource_start(pdev, bar),
3918 pci_resource_len(pdev, bar), res_name))
3919 goto err_out;
3920 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3921 if (!__request_mem_region(pci_resource_start(pdev, bar),
3922 pci_resource_len(pdev, bar), res_name,
3923 exclusive))
3924 goto err_out;
3925 }
3926
3927 dr = find_pci_dr(pdev);
3928 if (dr)
3929 dr->region_mask |= 1 << bar;
3930
3931 return 0;
3932
3933err_out:
3934 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3935 &pdev->resource[bar]);
3936 return -EBUSY;
3937}
3938
3939/**
3940 * pci_request_region - Reserve PCI I/O and memory resource
3941 * @pdev: PCI device whose resources are to be reserved
3942 * @bar: BAR to be reserved
3943 * @res_name: Name to be associated with resource
3944 *
3945 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3946 * being reserved by owner @res_name. Do not access any
3947 * address inside the PCI regions unless this call returns
3948 * successfully.
3949 *
3950 * Returns 0 on success, or %EBUSY on error. A warning
3951 * message is also printed on failure.
3952 */
3953int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3954{
3955 return __pci_request_region(pdev, bar, res_name, exclusive: 0);
3956}
3957EXPORT_SYMBOL(pci_request_region);
3958
3959/**
3960 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3961 * @pdev: PCI device whose resources were previously reserved
3962 * @bars: Bitmask of BARs to be released
3963 *
3964 * Release selected PCI I/O and memory resources previously reserved.
3965 * Call this function only after all use of the PCI regions has ceased.
3966 */
3967void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3968{
3969 int i;
3970
3971 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3972 if (bars & (1 << i))
3973 pci_release_region(pdev, i);
3974}
3975EXPORT_SYMBOL(pci_release_selected_regions);
3976
3977static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3978 const char *res_name, int excl)
3979{
3980 int i;
3981
3982 for (i = 0; i < PCI_STD_NUM_BARS; i++)
3983 if (bars & (1 << i))
3984 if (__pci_request_region(pdev, bar: i, res_name, exclusive: excl))
3985 goto err_out;
3986 return 0;
3987
3988err_out:
3989 while (--i >= 0)
3990 if (bars & (1 << i))
3991 pci_release_region(pdev, i);
3992
3993 return -EBUSY;
3994}
3995
3996
3997/**
3998 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3999 * @pdev: PCI device whose resources are to be reserved
4000 * @bars: Bitmask of BARs to be requested
4001 * @res_name: Name to be associated with resource
4002 */
4003int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4004 const char *res_name)
4005{
4006 return __pci_request_selected_regions(pdev, bars, res_name, excl: 0);
4007}
4008EXPORT_SYMBOL(pci_request_selected_regions);
4009
4010int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4011 const char *res_name)
4012{
4013 return __pci_request_selected_regions(pdev, bars, res_name,
4014 IORESOURCE_EXCLUSIVE);
4015}
4016EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4017
4018/**
4019 * pci_release_regions - Release reserved PCI I/O and memory resources
4020 * @pdev: PCI device whose resources were previously reserved by
4021 * pci_request_regions()
4022 *
4023 * Releases all PCI I/O and memory resources previously reserved by a
4024 * successful call to pci_request_regions(). Call this function only
4025 * after all use of the PCI regions has ceased.
4026 */
4027
4028void pci_release_regions(struct pci_dev *pdev)
4029{
4030 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4031}
4032EXPORT_SYMBOL(pci_release_regions);
4033
4034/**
4035 * pci_request_regions - Reserve PCI I/O and memory resources
4036 * @pdev: PCI device whose resources are to be reserved
4037 * @res_name: Name to be associated with resource.
4038 *
4039 * Mark all PCI regions associated with PCI device @pdev as
4040 * being reserved by owner @res_name. Do not access any
4041 * address inside the PCI regions unless this call returns
4042 * successfully.
4043 *
4044 * Returns 0 on success, or %EBUSY on error. A warning
4045 * message is also printed on failure.
4046 */
4047int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4048{
4049 return pci_request_selected_regions(pdev,
4050 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4051}
4052EXPORT_SYMBOL(pci_request_regions);
4053
4054/**
4055 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4056 * @pdev: PCI device whose resources are to be reserved
4057 * @res_name: Name to be associated with resource.
4058 *
4059 * Mark all PCI regions associated with PCI device @pdev as being reserved
4060 * by owner @res_name. Do not access any address inside the PCI regions
4061 * unless this call returns successfully.
4062 *
4063 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4064 * and the sysfs MMIO access will not be allowed.
4065 *
4066 * Returns 0 on success, or %EBUSY on error. A warning message is also
4067 * printed on failure.
4068 */
4069int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4070{
4071 return pci_request_selected_regions_exclusive(pdev,
4072 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4073}
4074EXPORT_SYMBOL(pci_request_regions_exclusive);
4075
4076/*
4077 * Record the PCI IO range (expressed as CPU physical address + size).
4078 * Return a negative value if an error has occurred, zero otherwise
4079 */
4080int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4081 resource_size_t size)
4082{
4083 int ret = 0;
4084#ifdef PCI_IOBASE
4085 struct logic_pio_hwaddr *range;
4086
4087 if (!size || addr + size < addr)
4088 return -EINVAL;
4089
4090 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4091 if (!range)
4092 return -ENOMEM;
4093
4094 range->fwnode = fwnode;
4095 range->size = size;
4096 range->hw_start = addr;
4097 range->flags = LOGIC_PIO_CPU_MMIO;
4098
4099 ret = logic_pio_register_range(range);
4100 if (ret)
4101 kfree(range);
4102
4103 /* Ignore duplicates due to deferred probing */
4104 if (ret == -EEXIST)
4105 ret = 0;
4106#endif
4107
4108 return ret;
4109}
4110
4111phys_addr_t pci_pio_to_address(unsigned long pio)
4112{
4113#ifdef PCI_IOBASE
4114 if (pio < MMIO_UPPER_LIMIT)
4115 return logic_pio_to_hwaddr(pio);
4116#endif
4117
4118 return (phys_addr_t) OF_BAD_ADDR;
4119}
4120EXPORT_SYMBOL_GPL(pci_pio_to_address);
4121
4122unsigned long __weak pci_address_to_pio(phys_addr_t address)
4123{
4124#ifdef PCI_IOBASE
4125 return logic_pio_trans_cpuaddr(address);
4126#else
4127 if (address > IO_SPACE_LIMIT)
4128 return (unsigned long)-1;
4129
4130 return (unsigned long) address;
4131#endif
4132}
4133
4134/**
4135 * pci_remap_iospace - Remap the memory mapped I/O space
4136 * @res: Resource describing the I/O space
4137 * @phys_addr: physical address of range to be mapped
4138 *
4139 * Remap the memory mapped I/O space described by the @res and the CPU
4140 * physical address @phys_addr into virtual address space. Only
4141 * architectures that have memory mapped IO functions defined (and the
4142 * PCI_IOBASE value defined) should call this function.
4143 */
4144#ifndef pci_remap_iospace
4145int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4146{
4147#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4148 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4149
4150 if (!(res->flags & IORESOURCE_IO))
4151 return -EINVAL;
4152
4153 if (res->end > IO_SPACE_LIMIT)
4154 return -EINVAL;
4155
4156 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4157 pgprot_device(PAGE_KERNEL));
4158#else
4159 /*
4160 * This architecture does not have memory mapped I/O space,
4161 * so this function should never be called
4162 */
4163 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4164 return -ENODEV;
4165#endif
4166}
4167EXPORT_SYMBOL(pci_remap_iospace);
4168#endif
4169
4170/**
4171 * pci_unmap_iospace - Unmap the memory mapped I/O space
4172 * @res: resource to be unmapped
4173 *
4174 * Unmap the CPU virtual address @res from virtual address space. Only
4175 * architectures that have memory mapped IO functions defined (and the
4176 * PCI_IOBASE value defined) should call this function.
4177 */
4178void pci_unmap_iospace(struct resource *res)
4179{
4180#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4181 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4182
4183 vunmap_range(vaddr, vaddr + resource_size(res));
4184#endif
4185}
4186EXPORT_SYMBOL(pci_unmap_iospace);
4187
4188static void __pci_set_master(struct pci_dev *dev, bool enable)
4189{
4190 u16 old_cmd, cmd;
4191
4192 pci_read_config_word(dev, PCI_COMMAND, val: &old_cmd);
4193 if (enable)
4194 cmd = old_cmd | PCI_COMMAND_MASTER;
4195 else
4196 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4197 if (cmd != old_cmd) {
4198 pci_dbg(dev, "%s bus mastering\n",
4199 enable ? "enabling" : "disabling");
4200 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4201 }
4202 dev->is_busmaster = enable;
4203}
4204
4205/**
4206 * pcibios_setup - process "pci=" kernel boot arguments
4207 * @str: string used to pass in "pci=" kernel boot arguments
4208 *
4209 * Process kernel boot arguments. This is the default implementation.
4210 * Architecture specific implementations can override this as necessary.
4211 */
4212char * __weak __init pcibios_setup(char *str)
4213{
4214 return str;
4215}
4216
4217/**
4218 * pcibios_set_master - enable PCI bus-mastering for device dev
4219 * @dev: the PCI device to enable
4220 *
4221 * Enables PCI bus-mastering for the device. This is the default
4222 * implementation. Architecture specific implementations can override
4223 * this if necessary.
4224 */
4225void __weak pcibios_set_master(struct pci_dev *dev)
4226{
4227 u8 lat;
4228
4229 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4230 if (pci_is_pcie(dev))
4231 return;
4232
4233 pci_read_config_byte(dev, PCI_LATENCY_TIMER, val: &lat);
4234 if (lat < 16)
4235 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4236 else if (lat > pcibios_max_latency)
4237 lat = pcibios_max_latency;
4238 else
4239 return;
4240
4241 pci_write_config_byte(dev, PCI_LATENCY_TIMER, val: lat);
4242}
4243
4244/**
4245 * pci_set_master - enables bus-mastering for device dev
4246 * @dev: the PCI device to enable
4247 *
4248 * Enables bus-mastering on the device and calls pcibios_set_master()
4249 * to do the needed arch specific settings.
4250 */
4251void pci_set_master(struct pci_dev *dev)
4252{
4253 __pci_set_master(dev, enable: true);
4254 pcibios_set_master(dev);
4255}
4256EXPORT_SYMBOL(pci_set_master);
4257
4258/**
4259 * pci_clear_master - disables bus-mastering for device dev
4260 * @dev: the PCI device to disable
4261 */
4262void pci_clear_master(struct pci_dev *dev)
4263{
4264 __pci_set_master(dev, enable: false);
4265}
4266EXPORT_SYMBOL(pci_clear_master);
4267
4268/**
4269 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4270 * @dev: the PCI device for which MWI is to be enabled
4271 *
4272 * Helper function for pci_set_mwi.
4273 * Originally copied from drivers/net/acenic.c.
4274 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4275 *
4276 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4277 */
4278int pci_set_cacheline_size(struct pci_dev *dev)
4279{
4280 u8 cacheline_size;
4281
4282 if (!pci_cache_line_size)
4283 return -EINVAL;
4284
4285 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4286 equal to or multiple of the right value. */
4287 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size);
4288 if (cacheline_size >= pci_cache_line_size &&
4289 (cacheline_size % pci_cache_line_size) == 0)
4290 return 0;
4291
4292 /* Write the correct value. */
4293 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, val: pci_cache_line_size);
4294 /* Read it back. */
4295 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, val: &cacheline_size);
4296 if (cacheline_size == pci_cache_line_size)
4297 return 0;
4298
4299 pci_dbg(dev, "cache line size of %d is not supported\n",
4300 pci_cache_line_size << 2);
4301
4302 return -EINVAL;
4303}
4304EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4305
4306/**
4307 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4308 * @dev: the PCI device for which MWI is enabled
4309 *
4310 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4311 *
4312 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4313 */
4314int pci_set_mwi(struct pci_dev *dev)
4315{
4316#ifdef PCI_DISABLE_MWI
4317 return 0;
4318#else
4319 int rc;
4320 u16 cmd;
4321
4322 rc = pci_set_cacheline_size(dev);
4323 if (rc)
4324 return rc;
4325
4326 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4327 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4328 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4329 cmd |= PCI_COMMAND_INVALIDATE;
4330 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4331 }
4332 return 0;
4333#endif
4334}
4335EXPORT_SYMBOL(pci_set_mwi);
4336
4337/**
4338 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4339 * @dev: the PCI device for which MWI is enabled
4340 *
4341 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4342 * Callers are not required to check the return value.
4343 *
4344 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4345 */
4346int pci_try_set_mwi(struct pci_dev *dev)
4347{
4348#ifdef PCI_DISABLE_MWI
4349 return 0;
4350#else
4351 return pci_set_mwi(dev);
4352#endif
4353}
4354EXPORT_SYMBOL(pci_try_set_mwi);
4355
4356/**
4357 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4358 * @dev: the PCI device to disable
4359 *
4360 * Disables PCI Memory-Write-Invalidate transaction on the device
4361 */
4362void pci_clear_mwi(struct pci_dev *dev)
4363{
4364#ifndef PCI_DISABLE_MWI
4365 u16 cmd;
4366
4367 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4368 if (cmd & PCI_COMMAND_INVALIDATE) {
4369 cmd &= ~PCI_COMMAND_INVALIDATE;
4370 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4371 }
4372#endif
4373}
4374EXPORT_SYMBOL(pci_clear_mwi);
4375
4376/**
4377 * pci_disable_parity - disable parity checking for device
4378 * @dev: the PCI device to operate on
4379 *
4380 * Disable parity checking for device @dev
4381 */
4382void pci_disable_parity(struct pci_dev *dev)
4383{
4384 u16 cmd;
4385
4386 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
4387 if (cmd & PCI_COMMAND_PARITY) {
4388 cmd &= ~PCI_COMMAND_PARITY;
4389 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
4390 }
4391}
4392
4393/**
4394 * pci_intx - enables/disables PCI INTx for device dev
4395 * @pdev: the PCI device to operate on
4396 * @enable: boolean: whether to enable or disable PCI INTx
4397 *
4398 * Enables/disables PCI INTx for device @pdev
4399 */
4400void pci_intx(struct pci_dev *pdev, int enable)
4401{
4402 u16 pci_command, new;
4403
4404 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &pci_command);
4405
4406 if (enable)
4407 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4408 else
4409 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4410
4411 if (new != pci_command) {
4412 struct pci_devres *dr;
4413
4414 pci_write_config_word(dev: pdev, PCI_COMMAND, val: new);
4415
4416 dr = find_pci_dr(pdev);
4417 if (dr && !dr->restore_intx) {
4418 dr->restore_intx = 1;
4419 dr->orig_intx = !enable;
4420 }
4421 }
4422}
4423EXPORT_SYMBOL_GPL(pci_intx);
4424
4425/**
4426 * pci_wait_for_pending_transaction - wait for pending transaction
4427 * @dev: the PCI device to operate on
4428 *
4429 * Return 0 if transaction is pending 1 otherwise.
4430 */
4431int pci_wait_for_pending_transaction(struct pci_dev *dev)
4432{
4433 if (!pci_is_pcie(dev))
4434 return 1;
4435
4436 return pci_wait_for_pending(dev, pos: pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4437 PCI_EXP_DEVSTA_TRPND);
4438}
4439EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4440
4441/**
4442 * pcie_flr - initiate a PCIe function level reset
4443 * @dev: device to reset
4444 *
4445 * Initiate a function level reset unconditionally on @dev without
4446 * checking any flags and DEVCAP
4447 */
4448int pcie_flr(struct pci_dev *dev)
4449{
4450 if (!pci_wait_for_pending_transaction(dev))
4451 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4452
4453 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4454
4455 if (dev->imm_ready)
4456 return 0;
4457
4458 /*
4459 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4460 * 100ms, but may silently discard requests while the FLR is in
4461 * progress. Wait 100ms before trying to access the device.
4462 */
4463 msleep(msecs: 100);
4464
4465 return pci_dev_wait(dev, reset_type: "FLR", PCIE_RESET_READY_POLL_MS);
4466}
4467EXPORT_SYMBOL_GPL(pcie_flr);
4468
4469/**
4470 * pcie_reset_flr - initiate a PCIe function level reset
4471 * @dev: device to reset
4472 * @probe: if true, return 0 if device can be reset this way
4473 *
4474 * Initiate a function level reset on @dev.
4475 */
4476int pcie_reset_flr(struct pci_dev *dev, bool probe)
4477{
4478 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4479 return -ENOTTY;
4480
4481 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4482 return -ENOTTY;
4483
4484 if (probe)
4485 return 0;
4486
4487 return pcie_flr(dev);
4488}
4489EXPORT_SYMBOL_GPL(pcie_reset_flr);
4490
4491static int pci_af_flr(struct pci_dev *dev, bool probe)
4492{
4493 int pos;
4494 u8 cap;
4495
4496 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4497 if (!pos)
4498 return -ENOTTY;
4499
4500 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4501 return -ENOTTY;
4502
4503 pci_read_config_byte(dev, where: pos + PCI_AF_CAP, val: &cap);
4504 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4505 return -ENOTTY;
4506
4507 if (probe)
4508 return 0;
4509
4510 /*
4511 * Wait for Transaction Pending bit to clear. A word-aligned test
4512 * is used, so we use the control offset rather than status and shift
4513 * the test bit to match.
4514 */
4515 if (!pci_wait_for_pending(dev, pos: pos + PCI_AF_CTRL,
4516 PCI_AF_STATUS_TP << 8))
4517 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4518
4519 pci_write_config_byte(dev, where: pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4520
4521 if (dev->imm_ready)
4522 return 0;
4523
4524 /*
4525 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4526 * updated 27 July 2006; a device must complete an FLR within
4527 * 100ms, but may silently discard requests while the FLR is in
4528 * progress. Wait 100ms before trying to access the device.
4529 */
4530 msleep(msecs: 100);
4531
4532 return pci_dev_wait(dev, reset_type: "AF_FLR", PCIE_RESET_READY_POLL_MS);
4533}
4534
4535/**
4536 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4537 * @dev: Device to reset.
4538 * @probe: if true, return 0 if the device can be reset this way.
4539 *
4540 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4541 * unset, it will be reinitialized internally when going from PCI_D3hot to
4542 * PCI_D0. If that's the case and the device is not in a low-power state
4543 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4544 *
4545 * NOTE: This causes the caller to sleep for twice the device power transition
4546 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4547 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4548 * Moreover, only devices in D0 can be reset by this function.
4549 */
4550static int pci_pm_reset(struct pci_dev *dev, bool probe)
4551{
4552 u16 csr;
4553
4554 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4555 return -ENOTTY;
4556
4557 pci_read_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: &csr);
4558 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4559 return -ENOTTY;
4560
4561 if (probe)
4562 return 0;
4563
4564 if (dev->current_state != PCI_D0)
4565 return -EINVAL;
4566
4567 csr &= ~PCI_PM_CTRL_STATE_MASK;
4568 csr |= PCI_D3hot;
4569 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr);
4570 pci_dev_d3_sleep(dev);
4571
4572 csr &= ~PCI_PM_CTRL_STATE_MASK;
4573 csr |= PCI_D0;
4574 pci_write_config_word(dev, where: dev->pm_cap + PCI_PM_CTRL, val: csr);
4575 pci_dev_d3_sleep(dev);
4576
4577 return pci_dev_wait(dev, reset_type: "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4578}
4579
4580/**
4581 * pcie_wait_for_link_status - Wait for link status change
4582 * @pdev: Device whose link to wait for.
4583 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4584 * @active: Waiting for active or inactive?
4585 *
4586 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4587 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4588 */
4589static int pcie_wait_for_link_status(struct pci_dev *pdev,
4590 bool use_lt, bool active)
4591{
4592 u16 lnksta_mask, lnksta_match;
4593 unsigned long end_jiffies;
4594 u16 lnksta;
4595
4596 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4597 lnksta_match = active ? lnksta_mask : 0;
4598
4599 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4600 do {
4601 pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta);
4602 if ((lnksta & lnksta_mask) == lnksta_match)
4603 return 0;
4604 msleep(msecs: 1);
4605 } while (time_before(jiffies, end_jiffies));
4606
4607 return -ETIMEDOUT;
4608}
4609
4610/**
4611 * pcie_retrain_link - Request a link retrain and wait for it to complete
4612 * @pdev: Device whose link to retrain.
4613 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4614 *
4615 * Retrain completion status is retrieved from the Link Status Register
4616 * according to @use_lt. It is not verified whether the use of the DLLLA
4617 * bit is valid.
4618 *
4619 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4620 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4621 */
4622int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4623{
4624 int rc;
4625
4626 /*
4627 * Ensure the updated LNKCTL parameters are used during link
4628 * training by checking that there is no ongoing link training to
4629 * avoid LTSSM race as recommended in Implementation Note at the
4630 * end of PCIe r6.0.1 sec 7.5.3.7.
4631 */
4632 rc = pcie_wait_for_link_status(pdev, use_lt, active: !use_lt);
4633 if (rc)
4634 return rc;
4635
4636 pcie_capability_set_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4637 if (pdev->clear_retrain_link) {
4638 /*
4639 * Due to an erratum in some devices the Retrain Link bit
4640 * needs to be cleared again manually to allow the link
4641 * training to succeed.
4642 */
4643 pcie_capability_clear_word(dev: pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4644 }
4645
4646 return pcie_wait_for_link_status(pdev, use_lt, active: !use_lt);
4647}
4648
4649/**
4650 * pcie_wait_for_link_delay - Wait until link is active or inactive
4651 * @pdev: Bridge device
4652 * @active: waiting for active or inactive?
4653 * @delay: Delay to wait after link has become active (in ms)
4654 *
4655 * Use this to wait till link becomes active or inactive.
4656 */
4657static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4658 int delay)
4659{
4660 int rc;
4661
4662 /*
4663 * Some controllers might not implement link active reporting. In this
4664 * case, we wait for 1000 ms + any delay requested by the caller.
4665 */
4666 if (!pdev->link_active_reporting) {
4667 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4668 return true;
4669 }
4670
4671 /*
4672 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4673 * after which we should expect an link active if the reset was
4674 * successful. If so, software must wait a minimum 100ms before sending
4675 * configuration requests to devices downstream this port.
4676 *
4677 * If the link fails to activate, either the device was physically
4678 * removed or the link is permanently failed.
4679 */
4680 if (active)
4681 msleep(msecs: 20);
4682 rc = pcie_wait_for_link_status(pdev, use_lt: false, active);
4683 if (active) {
4684 if (rc)
4685 rc = pcie_failed_link_retrain(dev: pdev);
4686 if (rc)
4687 return false;
4688
4689 msleep(msecs: delay);
4690 return true;
4691 }
4692
4693 if (rc)
4694 return false;
4695
4696 return true;
4697}
4698
4699/**
4700 * pcie_wait_for_link - Wait until link is active or inactive
4701 * @pdev: Bridge device
4702 * @active: waiting for active or inactive?
4703 *
4704 * Use this to wait till link becomes active or inactive.
4705 */
4706bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4707{
4708 return pcie_wait_for_link_delay(pdev, active, delay: 100);
4709}
4710
4711/*
4712 * Find maximum D3cold delay required by all the devices on the bus. The
4713 * spec says 100 ms, but firmware can lower it and we allow drivers to
4714 * increase it as well.
4715 *
4716 * Called with @pci_bus_sem locked for reading.
4717 */
4718static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4719{
4720 const struct pci_dev *pdev;
4721 int min_delay = 100;
4722 int max_delay = 0;
4723
4724 list_for_each_entry(pdev, &bus->devices, bus_list) {
4725 if (pdev->d3cold_delay < min_delay)
4726 min_delay = pdev->d3cold_delay;
4727 if (pdev->d3cold_delay > max_delay)
4728 max_delay = pdev->d3cold_delay;
4729 }
4730
4731 return max(min_delay, max_delay);
4732}
4733
4734/**
4735 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4736 * @dev: PCI bridge
4737 * @reset_type: reset type in human-readable form
4738 *
4739 * Handle necessary delays before access to the devices on the secondary
4740 * side of the bridge are permitted after D3cold to D0 transition
4741 * or Conventional Reset.
4742 *
4743 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4744 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4745 * 4.3.2.
4746 *
4747 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4748 * failed to become accessible.
4749 */
4750int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4751{
4752 struct pci_dev *child;
4753 int delay;
4754
4755 if (pci_dev_is_disconnected(dev))
4756 return 0;
4757
4758 if (!pci_is_bridge(dev))
4759 return 0;
4760
4761 down_read(sem: &pci_bus_sem);
4762
4763 /*
4764 * We only deal with devices that are present currently on the bus.
4765 * For any hot-added devices the access delay is handled in pciehp
4766 * board_added(). In case of ACPI hotplug the firmware is expected
4767 * to configure the devices before OS is notified.
4768 */
4769 if (!dev->subordinate || list_empty(head: &dev->subordinate->devices)) {
4770 up_read(sem: &pci_bus_sem);
4771 return 0;
4772 }
4773
4774 /* Take d3cold_delay requirements into account */
4775 delay = pci_bus_max_d3cold_delay(bus: dev->subordinate);
4776 if (!delay) {
4777 up_read(sem: &pci_bus_sem);
4778 return 0;
4779 }
4780
4781 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4782 bus_list);
4783 up_read(sem: &pci_bus_sem);
4784
4785 /*
4786 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4787 * accessing the device after reset (that is 1000 ms + 100 ms).
4788 */
4789 if (!pci_is_pcie(dev)) {
4790 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4791 msleep(msecs: 1000 + delay);
4792 return 0;
4793 }
4794
4795 /*
4796 * For PCIe downstream and root ports that do not support speeds
4797 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4798 * speeds (gen3) we need to wait first for the data link layer to
4799 * become active.
4800 *
4801 * However, 100 ms is the minimum and the PCIe spec says the
4802 * software must allow at least 1s before it can determine that the
4803 * device that did not respond is a broken device. Also device can
4804 * take longer than that to respond if it indicates so through Request
4805 * Retry Status completions.
4806 *
4807 * Therefore we wait for 100 ms and check for the device presence
4808 * until the timeout expires.
4809 */
4810 if (!pcie_downstream_port(dev))
4811 return 0;
4812
4813 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4814 u16 status;
4815
4816 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4817 msleep(msecs: delay);
4818
4819 if (!pci_dev_wait(dev: child, reset_type, PCI_RESET_WAIT - delay))
4820 return 0;
4821
4822 /*
4823 * If the port supports active link reporting we now check
4824 * whether the link is active and if not bail out early with
4825 * the assumption that the device is not present anymore.
4826 */
4827 if (!dev->link_active_reporting)
4828 return -ENOTTY;
4829
4830 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &status);
4831 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4832 return -ENOTTY;
4833
4834 return pci_dev_wait(dev: child, reset_type,
4835 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4836 }
4837
4838 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4839 delay);
4840 if (!pcie_wait_for_link_delay(pdev: dev, active: true, delay)) {
4841 /* Did not train, no need to wait any further */
4842 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4843 return -ENOTTY;
4844 }
4845
4846 return pci_dev_wait(dev: child, reset_type,
4847 PCIE_RESET_READY_POLL_MS - delay);
4848}
4849
4850void pci_reset_secondary_bus(struct pci_dev *dev)
4851{
4852 u16 ctrl;
4853
4854 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, val: &ctrl);
4855 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4856 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl);
4857
4858 /*
4859 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4860 * this to 2ms to ensure that we meet the minimum requirement.
4861 */
4862 msleep(msecs: 2);
4863
4864 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4865 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, val: ctrl);
4866}
4867
4868void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4869{
4870 pci_reset_secondary_bus(dev);
4871}
4872
4873/**
4874 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4875 * @dev: Bridge device
4876 *
4877 * Use the bridge control register to assert reset on the secondary bus.
4878 * Devices on the secondary bus are left in power-on state.
4879 */
4880int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4881{
4882 pcibios_reset_secondary_bus(dev);
4883
4884 return pci_bridge_wait_for_secondary_bus(dev, reset_type: "bus reset");
4885}
4886EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4887
4888static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
4889{
4890 struct pci_dev *pdev;
4891
4892 if (pci_is_root_bus(pbus: dev->bus) || dev->subordinate ||
4893 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4894 return -ENOTTY;
4895
4896 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4897 if (pdev != dev)
4898 return -ENOTTY;
4899
4900 if (probe)
4901 return 0;
4902
4903 return pci_bridge_secondary_bus_reset(dev->bus->self);
4904}
4905
4906static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
4907{
4908 int rc = -ENOTTY;
4909
4910 if (!hotplug || !try_module_get(module: hotplug->owner))
4911 return rc;
4912
4913 if (hotplug->ops->reset_slot)
4914 rc = hotplug->ops->reset_slot(hotplug, probe);
4915
4916 module_put(module: hotplug->owner);
4917
4918 return rc;
4919}
4920
4921static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
4922{
4923 if (dev->multifunction || dev->subordinate || !dev->slot ||
4924 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4925 return -ENOTTY;
4926
4927 return pci_reset_hotplug_slot(hotplug: dev->slot->hotplug, probe);
4928}
4929
4930static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
4931{
4932 int rc;
4933
4934 rc = pci_dev_reset_slot_function(dev, probe);
4935 if (rc != -ENOTTY)
4936 return rc;
4937 return pci_parent_bus_reset(dev, probe);
4938}
4939
4940void pci_dev_lock(struct pci_dev *dev)
4941{
4942 /* block PM suspend, driver probe, etc. */
4943 device_lock(dev: &dev->dev);
4944 pci_cfg_access_lock(dev);
4945}
4946EXPORT_SYMBOL_GPL(pci_dev_lock);
4947
4948/* Return 1 on successful lock, 0 on contention */
4949int pci_dev_trylock(struct pci_dev *dev)
4950{
4951 if (device_trylock(dev: &dev->dev)) {
4952 if (pci_cfg_access_trylock(dev))
4953 return 1;
4954 device_unlock(dev: &dev->dev);
4955 }
4956
4957 return 0;
4958}
4959EXPORT_SYMBOL_GPL(pci_dev_trylock);
4960
4961void pci_dev_unlock(struct pci_dev *dev)
4962{
4963 pci_cfg_access_unlock(dev);
4964 device_unlock(dev: &dev->dev);
4965}
4966EXPORT_SYMBOL_GPL(pci_dev_unlock);
4967
4968static void pci_dev_save_and_disable(struct pci_dev *dev)
4969{
4970 const struct pci_error_handlers *err_handler =
4971 dev->driver ? dev->driver->err_handler : NULL;
4972
4973 /*
4974 * dev->driver->err_handler->reset_prepare() is protected against
4975 * races with ->remove() by the device lock, which must be held by
4976 * the caller.
4977 */
4978 if (err_handler && err_handler->reset_prepare)
4979 err_handler->reset_prepare(dev);
4980
4981 /*
4982 * Wake-up device prior to save. PM registers default to D0 after
4983 * reset and a simple register restore doesn't reliably return
4984 * to a non-D0 state anyway.
4985 */
4986 pci_set_power_state(dev, PCI_D0);
4987
4988 pci_save_state(dev);
4989 /*
4990 * Disable the device by clearing the Command register, except for
4991 * INTx-disable which is set. This not only disables MMIO and I/O port
4992 * BARs, but also prevents the device from being Bus Master, preventing
4993 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4994 * compliant devices, INTx-disable prevents legacy interrupts.
4995 */
4996 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4997}
4998
4999static void pci_dev_restore(struct pci_dev *dev)
5000{
5001 const struct pci_error_handlers *err_handler =
5002 dev->driver ? dev->driver->err_handler : NULL;
5003
5004 pci_restore_state(dev);
5005
5006 /*
5007 * dev->driver->err_handler->reset_done() is protected against
5008 * races with ->remove() by the device lock, which must be held by
5009 * the caller.
5010 */
5011 if (err_handler && err_handler->reset_done)
5012 err_handler->reset_done(dev);
5013}
5014
5015/* dev->reset_methods[] is a 0-terminated list of indices into this array */
5016static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5017 { },
5018 { pci_dev_specific_reset, .name = "device_specific" },
5019 { pci_dev_acpi_reset, .name = "acpi" },
5020 { pcie_reset_flr, .name = "flr" },
5021 { pci_af_flr, .name = "af_flr" },
5022 { pci_pm_reset, .name = "pm" },
5023 { pci_reset_bus_function, .name = "bus" },
5024};
5025
5026static ssize_t reset_method_show(struct device *dev,
5027 struct device_attribute *attr, char *buf)
5028{
5029 struct pci_dev *pdev = to_pci_dev(dev);
5030 ssize_t len = 0;
5031 int i, m;
5032
5033 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5034 m = pdev->reset_methods[i];
5035 if (!m)
5036 break;
5037
5038 len += sysfs_emit_at(buf, at: len, fmt: "%s%s", len ? " " : "",
5039 pci_reset_fn_methods[m].name);
5040 }
5041
5042 if (len)
5043 len += sysfs_emit_at(buf, at: len, fmt: "\n");
5044
5045 return len;
5046}
5047
5048static int reset_method_lookup(const char *name)
5049{
5050 int m;
5051
5052 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5053 if (sysfs_streq(s1: name, s2: pci_reset_fn_methods[m].name))
5054 return m;
5055 }
5056
5057 return 0; /* not found */
5058}
5059
5060static ssize_t reset_method_store(struct device *dev,
5061 struct device_attribute *attr,
5062 const char *buf, size_t count)
5063{
5064 struct pci_dev *pdev = to_pci_dev(dev);
5065 char *options, *name;
5066 int m, n;
5067 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5068
5069 if (sysfs_streq(s1: buf, s2: "")) {
5070 pdev->reset_methods[0] = 0;
5071 pci_warn(pdev, "All device reset methods disabled by user");
5072 return count;
5073 }
5074
5075 if (sysfs_streq(s1: buf, s2: "default")) {
5076 pci_init_reset_methods(dev: pdev);
5077 return count;
5078 }
5079
5080 options = kstrndup(s: buf, len: count, GFP_KERNEL);
5081 if (!options)
5082 return -ENOMEM;
5083
5084 n = 0;
5085 while ((name = strsep(&options, " ")) != NULL) {
5086 if (sysfs_streq(s1: name, s2: ""))
5087 continue;
5088
5089 name = strim(name);
5090
5091 m = reset_method_lookup(name);
5092 if (!m) {
5093 pci_err(pdev, "Invalid reset method '%s'", name);
5094 goto error;
5095 }
5096
5097 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5098 pci_err(pdev, "Unsupported reset method '%s'", name);
5099 goto error;
5100 }
5101
5102 if (n == PCI_NUM_RESET_METHODS - 1) {
5103 pci_err(pdev, "Too many reset methods\n");
5104 goto error;
5105 }
5106
5107 reset_methods[n++] = m;
5108 }
5109
5110 reset_methods[n] = 0;
5111
5112 /* Warn if dev-specific supported but not highest priority */
5113 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5114 reset_methods[0] != 1)
5115 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5116 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5117 kfree(objp: options);
5118 return count;
5119
5120error:
5121 /* Leave previous methods unchanged */
5122 kfree(objp: options);
5123 return -EINVAL;
5124}
5125static DEVICE_ATTR_RW(reset_method);
5126
5127static struct attribute *pci_dev_reset_method_attrs[] = {
5128 &dev_attr_reset_method.attr,
5129 NULL,
5130};
5131
5132static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5133 struct attribute *a, int n)
5134{
5135 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5136
5137 if (!pci_reset_supported(dev: pdev))
5138 return 0;
5139
5140 return a->mode;
5141}
5142
5143const struct attribute_group pci_dev_reset_method_attr_group = {
5144 .attrs = pci_dev_reset_method_attrs,
5145 .is_visible = pci_dev_reset_method_attr_is_visible,
5146};
5147
5148/**
5149 * __pci_reset_function_locked - reset a PCI device function while holding
5150 * the @dev mutex lock.
5151 * @dev: PCI device to reset
5152 *
5153 * Some devices allow an individual function to be reset without affecting
5154 * other functions in the same device. The PCI device must be responsive
5155 * to PCI config space in order to use this function.
5156 *
5157 * The device function is presumed to be unused and the caller is holding
5158 * the device mutex lock when this function is called.
5159 *
5160 * Resetting the device will make the contents of PCI configuration space
5161 * random, so any caller of this must be prepared to reinitialise the
5162 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5163 * etc.
5164 *
5165 * Returns 0 if the device function was successfully reset or negative if the
5166 * device doesn't support resetting a single function.
5167 */
5168int __pci_reset_function_locked(struct pci_dev *dev)
5169{
5170 int i, m, rc;
5171
5172 might_sleep();
5173
5174 /*
5175 * A reset method returns -ENOTTY if it doesn't support this device and
5176 * we should try the next method.
5177 *
5178 * If it returns 0 (success), we're finished. If it returns any other
5179 * error, we're also finished: this indicates that further reset
5180 * mechanisms might be broken on the device.
5181 */
5182 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5183 m = dev->reset_methods[i];
5184 if (!m)
5185 return -ENOTTY;
5186
5187 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5188 if (!rc)
5189 return 0;
5190 if (rc != -ENOTTY)
5191 return rc;
5192 }
5193
5194 return -ENOTTY;
5195}
5196EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5197
5198/**
5199 * pci_init_reset_methods - check whether device can be safely reset
5200 * and store supported reset mechanisms.
5201 * @dev: PCI device to check for reset mechanisms
5202 *
5203 * Some devices allow an individual function to be reset without affecting
5204 * other functions in the same device. The PCI device must be in D0-D3hot
5205 * state.
5206 *
5207 * Stores reset mechanisms supported by device in reset_methods byte array
5208 * which is a member of struct pci_dev.
5209 */
5210void pci_init_reset_methods(struct pci_dev *dev)
5211{
5212 int m, i, rc;
5213
5214 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5215
5216 might_sleep();
5217
5218 i = 0;
5219 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5220 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5221 if (!rc)
5222 dev->reset_methods[i++] = m;
5223 else if (rc != -ENOTTY)
5224 break;
5225 }
5226
5227 dev->reset_methods[i] = 0;
5228}
5229
5230/**
5231 * pci_reset_function - quiesce and reset a PCI device function
5232 * @dev: PCI device to reset
5233 *
5234 * Some devices allow an individual function to be reset without affecting
5235 * other functions in the same device. The PCI device must be responsive
5236 * to PCI config space in order to use this function.
5237 *
5238 * This function does not just reset the PCI portion of a device, but
5239 * clears all the state associated with the device. This function differs
5240 * from __pci_reset_function_locked() in that it saves and restores device state
5241 * over the reset and takes the PCI device lock.
5242 *
5243 * Returns 0 if the device function was successfully reset or negative if the
5244 * device doesn't support resetting a single function.
5245 */
5246int pci_reset_function(struct pci_dev *dev)
5247{
5248 int rc;
5249
5250 if (!pci_reset_supported(dev))
5251 return -ENOTTY;
5252
5253 pci_dev_lock(dev);
5254 pci_dev_save_and_disable(dev);
5255
5256 rc = __pci_reset_function_locked(dev);
5257
5258 pci_dev_restore(dev);
5259 pci_dev_unlock(dev);
5260
5261 return rc;
5262}
5263EXPORT_SYMBOL_GPL(pci_reset_function);
5264
5265/**
5266 * pci_reset_function_locked - quiesce and reset a PCI device function
5267 * @dev: PCI device to reset
5268 *
5269 * Some devices allow an individual function to be reset without affecting
5270 * other functions in the same device. The PCI device must be responsive
5271 * to PCI config space in order to use this function.
5272 *
5273 * This function does not just reset the PCI portion of a device, but
5274 * clears all the state associated with the device. This function differs
5275 * from __pci_reset_function_locked() in that it saves and restores device state
5276 * over the reset. It also differs from pci_reset_function() in that it
5277 * requires the PCI device lock to be held.
5278 *
5279 * Returns 0 if the device function was successfully reset or negative if the
5280 * device doesn't support resetting a single function.
5281 */
5282int pci_reset_function_locked(struct pci_dev *dev)
5283{
5284 int rc;
5285
5286 if (!pci_reset_supported(dev))
5287 return -ENOTTY;
5288
5289 pci_dev_save_and_disable(dev);
5290
5291 rc = __pci_reset_function_locked(dev);
5292
5293 pci_dev_restore(dev);
5294
5295 return rc;
5296}
5297EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5298
5299/**
5300 * pci_try_reset_function - quiesce and reset a PCI device function
5301 * @dev: PCI device to reset
5302 *
5303 * Same as above, except return -EAGAIN if unable to lock device.
5304 */
5305int pci_try_reset_function(struct pci_dev *dev)
5306{
5307 int rc;
5308
5309 if (!pci_reset_supported(dev))
5310 return -ENOTTY;
5311
5312 if (!pci_dev_trylock(dev))
5313 return -EAGAIN;
5314
5315 pci_dev_save_and_disable(dev);
5316 rc = __pci_reset_function_locked(dev);
5317 pci_dev_restore(dev);
5318 pci_dev_unlock(dev);
5319
5320 return rc;
5321}
5322EXPORT_SYMBOL_GPL(pci_try_reset_function);
5323
5324/* Do any devices on or below this bus prevent a bus reset? */
5325static bool pci_bus_resettable(struct pci_bus *bus)
5326{
5327 struct pci_dev *dev;
5328
5329
5330 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5331 return false;
5332
5333 list_for_each_entry(dev, &bus->devices, bus_list) {
5334 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5335 (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate)))
5336 return false;
5337 }
5338
5339 return true;
5340}
5341
5342/* Lock devices from the top of the tree down */
5343static void pci_bus_lock(struct pci_bus *bus)
5344{
5345 struct pci_dev *dev;
5346
5347 list_for_each_entry(dev, &bus->devices, bus_list) {
5348 pci_dev_lock(dev);
5349 if (dev->subordinate)
5350 pci_bus_lock(bus: dev->subordinate);
5351 }
5352}
5353
5354/* Unlock devices from the bottom of the tree up */
5355static void pci_bus_unlock(struct pci_bus *bus)
5356{
5357 struct pci_dev *dev;
5358
5359 list_for_each_entry(dev, &bus->devices, bus_list) {
5360 if (dev->subordinate)
5361 pci_bus_unlock(bus: dev->subordinate);
5362 pci_dev_unlock(dev);
5363 }
5364}
5365
5366/* Return 1 on successful lock, 0 on contention */
5367static int pci_bus_trylock(struct pci_bus *bus)
5368{
5369 struct pci_dev *dev;
5370
5371 list_for_each_entry(dev, &bus->devices, bus_list) {
5372 if (!pci_dev_trylock(dev))
5373 goto unlock;
5374 if (dev->subordinate) {
5375 if (!pci_bus_trylock(bus: dev->subordinate)) {
5376 pci_dev_unlock(dev);
5377 goto unlock;
5378 }
5379 }
5380 }
5381 return 1;
5382
5383unlock:
5384 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5385 if (dev->subordinate)
5386 pci_bus_unlock(bus: dev->subordinate);
5387 pci_dev_unlock(dev);
5388 }
5389 return 0;
5390}
5391
5392/* Do any devices on or below this slot prevent a bus reset? */
5393static bool pci_slot_resettable(struct pci_slot *slot)
5394{
5395 struct pci_dev *dev;
5396
5397 if (slot->bus->self &&
5398 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5399 return false;
5400
5401 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5402 if (!dev->slot || dev->slot != slot)
5403 continue;
5404 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5405 (dev->subordinate && !pci_bus_resettable(bus: dev->subordinate)))
5406 return false;
5407 }
5408
5409 return true;
5410}
5411
5412/* Lock devices from the top of the tree down */
5413static void pci_slot_lock(struct pci_slot *slot)
5414{
5415 struct pci_dev *dev;
5416
5417 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5418 if (!dev->slot || dev->slot != slot)
5419 continue;
5420 pci_dev_lock(dev);
5421 if (dev->subordinate)
5422 pci_bus_lock(bus: dev->subordinate);
5423 }
5424}
5425
5426/* Unlock devices from the bottom of the tree up */
5427static void pci_slot_unlock(struct pci_slot *slot)
5428{
5429 struct pci_dev *dev;
5430
5431 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5432 if (!dev->slot || dev->slot != slot)
5433 continue;
5434 if (dev->subordinate)
5435 pci_bus_unlock(bus: dev->subordinate);
5436 pci_dev_unlock(dev);
5437 }
5438}
5439
5440/* Return 1 on successful lock, 0 on contention */
5441static int pci_slot_trylock(struct pci_slot *slot)
5442{
5443 struct pci_dev *dev;
5444
5445 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5446 if (!dev->slot || dev->slot != slot)
5447 continue;
5448 if (!pci_dev_trylock(dev))
5449 goto unlock;
5450 if (dev->subordinate) {
5451 if (!pci_bus_trylock(bus: dev->subordinate)) {
5452 pci_dev_unlock(dev);
5453 goto unlock;
5454 }
5455 }
5456 }
5457 return 1;
5458
5459unlock:
5460 list_for_each_entry_continue_reverse(dev,
5461 &slot->bus->devices, bus_list) {
5462 if (!dev->slot || dev->slot != slot)
5463 continue;
5464 if (dev->subordinate)
5465 pci_bus_unlock(bus: dev->subordinate);
5466 pci_dev_unlock(dev);
5467 }
5468 return 0;
5469}
5470
5471/*
5472 * Save and disable devices from the top of the tree down while holding
5473 * the @dev mutex lock for the entire tree.
5474 */
5475static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5476{
5477 struct pci_dev *dev;
5478
5479 list_for_each_entry(dev, &bus->devices, bus_list) {
5480 pci_dev_save_and_disable(dev);
5481 if (dev->subordinate)
5482 pci_bus_save_and_disable_locked(bus: dev->subordinate);
5483 }
5484}
5485
5486/*
5487 * Restore devices from top of the tree down while holding @dev mutex lock
5488 * for the entire tree. Parent bridges need to be restored before we can
5489 * get to subordinate devices.
5490 */
5491static void pci_bus_restore_locked(struct pci_bus *bus)
5492{
5493 struct pci_dev *dev;
5494
5495 list_for_each_entry(dev, &bus->devices, bus_list) {
5496 pci_dev_restore(dev);
5497 if (dev->subordinate)
5498 pci_bus_restore_locked(bus: dev->subordinate);
5499 }
5500}
5501
5502/*
5503 * Save and disable devices from the top of the tree down while holding
5504 * the @dev mutex lock for the entire tree.
5505 */
5506static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5507{
5508 struct pci_dev *dev;
5509
5510 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5511 if (!dev->slot || dev->slot != slot)
5512 continue;
5513 pci_dev_save_and_disable(dev);
5514 if (dev->subordinate)
5515 pci_bus_save_and_disable_locked(bus: dev->subordinate);
5516 }
5517}
5518
5519/*
5520 * Restore devices from top of the tree down while holding @dev mutex lock
5521 * for the entire tree. Parent bridges need to be restored before we can
5522 * get to subordinate devices.
5523 */
5524static void pci_slot_restore_locked(struct pci_slot *slot)
5525{
5526 struct pci_dev *dev;
5527
5528 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5529 if (!dev->slot || dev->slot != slot)
5530 continue;
5531 pci_dev_restore(dev);
5532 if (dev->subordinate)
5533 pci_bus_restore_locked(bus: dev->subordinate);
5534 }
5535}
5536
5537static int pci_slot_reset(struct pci_slot *slot, bool probe)
5538{
5539 int rc;
5540
5541 if (!slot || !pci_slot_resettable(slot))
5542 return -ENOTTY;
5543
5544 if (!probe)
5545 pci_slot_lock(slot);
5546
5547 might_sleep();
5548
5549 rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, probe);
5550
5551 if (!probe)
5552 pci_slot_unlock(slot);
5553
5554 return rc;
5555}
5556
5557/**
5558 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5559 * @slot: PCI slot to probe
5560 *
5561 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5562 */
5563int pci_probe_reset_slot(struct pci_slot *slot)
5564{
5565 return pci_slot_reset(slot, PCI_RESET_PROBE);
5566}
5567EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5568
5569/**
5570 * __pci_reset_slot - Try to reset a PCI slot
5571 * @slot: PCI slot to reset
5572 *
5573 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5574 * independent of other slots. For instance, some slots may support slot power
5575 * control. In the case of a 1:1 bus to slot architecture, this function may
5576 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5577 * Generally a slot reset should be attempted before a bus reset. All of the
5578 * function of the slot and any subordinate buses behind the slot are reset
5579 * through this function. PCI config space of all devices in the slot and
5580 * behind the slot is saved before and restored after reset.
5581 *
5582 * Same as above except return -EAGAIN if the slot cannot be locked
5583 */
5584static int __pci_reset_slot(struct pci_slot *slot)
5585{
5586 int rc;
5587
5588 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5589 if (rc)
5590 return rc;
5591
5592 if (pci_slot_trylock(slot)) {
5593 pci_slot_save_and_disable_locked(slot);
5594 might_sleep();
5595 rc = pci_reset_hotplug_slot(hotplug: slot->hotplug, PCI_RESET_DO_RESET);
5596 pci_slot_restore_locked(slot);
5597 pci_slot_unlock(slot);
5598 } else
5599 rc = -EAGAIN;
5600
5601 return rc;
5602}
5603
5604static int pci_bus_reset(struct pci_bus *bus, bool probe)
5605{
5606 int ret;
5607
5608 if (!bus->self || !pci_bus_resettable(bus))
5609 return -ENOTTY;
5610
5611 if (probe)
5612 return 0;
5613
5614 pci_bus_lock(bus);
5615
5616 might_sleep();
5617
5618 ret = pci_bridge_secondary_bus_reset(bus->self);
5619
5620 pci_bus_unlock(bus);
5621
5622 return ret;
5623}
5624
5625/**
5626 * pci_bus_error_reset - reset the bridge's subordinate bus
5627 * @bridge: The parent device that connects to the bus to reset
5628 *
5629 * This function will first try to reset the slots on this bus if the method is
5630 * available. If slot reset fails or is not available, this will fall back to a
5631 * secondary bus reset.
5632 */
5633int pci_bus_error_reset(struct pci_dev *bridge)
5634{
5635 struct pci_bus *bus = bridge->subordinate;
5636 struct pci_slot *slot;
5637
5638 if (!bus)
5639 return -ENOTTY;
5640
5641 mutex_lock(&pci_slot_mutex);
5642 if (list_empty(head: &bus->slots))
5643 goto bus_reset;
5644
5645 list_for_each_entry(slot, &bus->slots, list)
5646 if (pci_probe_reset_slot(slot))
5647 goto bus_reset;
5648
5649 list_for_each_entry(slot, &bus->slots, list)
5650 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5651 goto bus_reset;
5652
5653 mutex_unlock(lock: &pci_slot_mutex);
5654 return 0;
5655bus_reset:
5656 mutex_unlock(lock: &pci_slot_mutex);
5657 return pci_bus_reset(bus: bridge->subordinate, PCI_RESET_DO_RESET);
5658}
5659
5660/**
5661 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5662 * @bus: PCI bus to probe
5663 *
5664 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5665 */
5666int pci_probe_reset_bus(struct pci_bus *bus)
5667{
5668 return pci_bus_reset(bus, PCI_RESET_PROBE);
5669}
5670EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5671
5672/**
5673 * __pci_reset_bus - Try to reset a PCI bus
5674 * @bus: top level PCI bus to reset
5675 *
5676 * Same as above except return -EAGAIN if the bus cannot be locked
5677 */
5678static int __pci_reset_bus(struct pci_bus *bus)
5679{
5680 int rc;
5681
5682 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5683 if (rc)
5684 return rc;
5685
5686 if (pci_bus_trylock(bus)) {
5687 pci_bus_save_and_disable_locked(bus);
5688 might_sleep();
5689 rc = pci_bridge_secondary_bus_reset(bus->self);
5690 pci_bus_restore_locked(bus);
5691 pci_bus_unlock(bus);
5692 } else
5693 rc = -EAGAIN;
5694
5695 return rc;
5696}
5697
5698/**
5699 * pci_reset_bus - Try to reset a PCI bus
5700 * @pdev: top level PCI device to reset via slot/bus
5701 *
5702 * Same as above except return -EAGAIN if the bus cannot be locked
5703 */
5704int pci_reset_bus(struct pci_dev *pdev)
5705{
5706 return (!pci_probe_reset_slot(pdev->slot)) ?
5707 __pci_reset_slot(slot: pdev->slot) : __pci_reset_bus(bus: pdev->bus);
5708}
5709EXPORT_SYMBOL_GPL(pci_reset_bus);
5710
5711/**
5712 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5713 * @dev: PCI device to query
5714 *
5715 * Returns mmrbc: maximum designed memory read count in bytes or
5716 * appropriate error value.
5717 */
5718int pcix_get_max_mmrbc(struct pci_dev *dev)
5719{
5720 int cap;
5721 u32 stat;
5722
5723 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5724 if (!cap)
5725 return -EINVAL;
5726
5727 if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat))
5728 return -EINVAL;
5729
5730 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5731}
5732EXPORT_SYMBOL(pcix_get_max_mmrbc);
5733
5734/**
5735 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5736 * @dev: PCI device to query
5737 *
5738 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5739 * value.
5740 */
5741int pcix_get_mmrbc(struct pci_dev *dev)
5742{
5743 int cap;
5744 u16 cmd;
5745
5746 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5747 if (!cap)
5748 return -EINVAL;
5749
5750 if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd))
5751 return -EINVAL;
5752
5753 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5754}
5755EXPORT_SYMBOL(pcix_get_mmrbc);
5756
5757/**
5758 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5759 * @dev: PCI device to query
5760 * @mmrbc: maximum memory read count in bytes
5761 * valid values are 512, 1024, 2048, 4096
5762 *
5763 * If possible sets maximum memory read byte count, some bridges have errata
5764 * that prevent this.
5765 */
5766int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5767{
5768 int cap;
5769 u32 stat, v, o;
5770 u16 cmd;
5771
5772 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(n: mmrbc))
5773 return -EINVAL;
5774
5775 v = ffs(mmrbc) - 10;
5776
5777 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5778 if (!cap)
5779 return -EINVAL;
5780
5781 if (pci_read_config_dword(dev, where: cap + PCI_X_STATUS, val: &stat))
5782 return -EINVAL;
5783
5784 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5785 return -E2BIG;
5786
5787 if (pci_read_config_word(dev, where: cap + PCI_X_CMD, val: &cmd))
5788 return -EINVAL;
5789
5790 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5791 if (o != v) {
5792 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5793 return -EIO;
5794
5795 cmd &= ~PCI_X_CMD_MAX_READ;
5796 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5797 if (pci_write_config_word(dev, where: cap + PCI_X_CMD, val: cmd))
5798 return -EIO;
5799 }
5800 return 0;
5801}
5802EXPORT_SYMBOL(pcix_set_mmrbc);
5803
5804/**
5805 * pcie_get_readrq - get PCI Express read request size
5806 * @dev: PCI device to query
5807 *
5808 * Returns maximum memory read request in bytes or appropriate error value.
5809 */
5810int pcie_get_readrq(struct pci_dev *dev)
5811{
5812 u16 ctl;
5813
5814 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl);
5815
5816 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5817}
5818EXPORT_SYMBOL(pcie_get_readrq);
5819
5820/**
5821 * pcie_set_readrq - set PCI Express maximum memory read request
5822 * @dev: PCI device to query
5823 * @rq: maximum memory read count in bytes
5824 * valid values are 128, 256, 512, 1024, 2048, 4096
5825 *
5826 * If possible sets maximum memory read request in bytes
5827 */
5828int pcie_set_readrq(struct pci_dev *dev, int rq)
5829{
5830 u16 v;
5831 int ret;
5832 struct pci_host_bridge *bridge = pci_find_host_bridge(bus: dev->bus);
5833
5834 if (rq < 128 || rq > 4096 || !is_power_of_2(n: rq))
5835 return -EINVAL;
5836
5837 /*
5838 * If using the "performance" PCIe config, we clamp the read rq
5839 * size to the max packet size to keep the host bridge from
5840 * generating requests larger than we can cope with.
5841 */
5842 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5843 int mps = pcie_get_mps(dev);
5844
5845 if (mps < rq)
5846 rq = mps;
5847 }
5848
5849 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5850
5851 if (bridge->no_inc_mrrs) {
5852 int max_mrrs = pcie_get_readrq(dev);
5853
5854 if (rq > max_mrrs) {
5855 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5856 return -EINVAL;
5857 }
5858 }
5859
5860 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5861 PCI_EXP_DEVCTL_READRQ, set: v);
5862
5863 return pcibios_err_to_errno(err: ret);
5864}
5865EXPORT_SYMBOL(pcie_set_readrq);
5866
5867/**
5868 * pcie_get_mps - get PCI Express maximum payload size
5869 * @dev: PCI device to query
5870 *
5871 * Returns maximum payload size in bytes
5872 */
5873int pcie_get_mps(struct pci_dev *dev)
5874{
5875 u16 ctl;
5876
5877 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, val: &ctl);
5878
5879 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5880}
5881EXPORT_SYMBOL(pcie_get_mps);
5882
5883/**
5884 * pcie_set_mps - set PCI Express maximum payload size
5885 * @dev: PCI device to query
5886 * @mps: maximum payload size in bytes
5887 * valid values are 128, 256, 512, 1024, 2048, 4096
5888 *
5889 * If possible sets maximum payload size
5890 */
5891int pcie_set_mps(struct pci_dev *dev, int mps)
5892{
5893 u16 v;
5894 int ret;
5895
5896 if (mps < 128 || mps > 4096 || !is_power_of_2(n: mps))
5897 return -EINVAL;
5898
5899 v = ffs(mps) - 8;
5900 if (v > dev->pcie_mpss)
5901 return -EINVAL;
5902 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
5903
5904 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5905 PCI_EXP_DEVCTL_PAYLOAD, set: v);
5906
5907 return pcibios_err_to_errno(err: ret);
5908}
5909EXPORT_SYMBOL(pcie_set_mps);
5910
5911static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
5912{
5913 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
5914}
5915
5916int pcie_link_speed_mbps(struct pci_dev *pdev)
5917{
5918 u16 lnksta;
5919 int err;
5920
5921 err = pcie_capability_read_word(dev: pdev, PCI_EXP_LNKSTA, val: &lnksta);
5922 if (err)
5923 return err;
5924
5925 switch (to_pcie_link_speed(lnksta)) {
5926 case PCIE_SPEED_2_5GT:
5927 return 2500;
5928 case PCIE_SPEED_5_0GT:
5929 return 5000;
5930 case PCIE_SPEED_8_0GT:
5931 return 8000;
5932 case PCIE_SPEED_16_0GT:
5933 return 16000;
5934 case PCIE_SPEED_32_0GT:
5935 return 32000;
5936 case PCIE_SPEED_64_0GT:
5937 return 64000;
5938 default:
5939 break;
5940 }
5941
5942 return -EINVAL;
5943}
5944EXPORT_SYMBOL(pcie_link_speed_mbps);
5945
5946/**
5947 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5948 * device and its bandwidth limitation
5949 * @dev: PCI device to query
5950 * @limiting_dev: storage for device causing the bandwidth limitation
5951 * @speed: storage for speed of limiting device
5952 * @width: storage for width of limiting device
5953 *
5954 * Walk up the PCI device chain and find the point where the minimum
5955 * bandwidth is available. Return the bandwidth available there and (if
5956 * limiting_dev, speed, and width pointers are supplied) information about
5957 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
5958 * raw bandwidth.
5959 */
5960u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5961 enum pci_bus_speed *speed,
5962 enum pcie_link_width *width)
5963{
5964 u16 lnksta;
5965 enum pci_bus_speed next_speed;
5966 enum pcie_link_width next_width;
5967 u32 bw, next_bw;
5968
5969 if (speed)
5970 *speed = PCI_SPEED_UNKNOWN;
5971 if (width)
5972 *width = PCIE_LNK_WIDTH_UNKNOWN;
5973
5974 bw = 0;
5975
5976 while (dev) {
5977 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, val: &lnksta);
5978
5979 next_speed = to_pcie_link_speed(lnksta);
5980 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
5981
5982 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5983
5984 /* Check if current device limits the total bandwidth */
5985 if (!bw || next_bw <= bw) {
5986 bw = next_bw;
5987
5988 if (limiting_dev)
5989 *limiting_dev = dev;
5990 if (speed)
5991 *speed = next_speed;
5992 if (width)
5993 *width = next_width;
5994 }
5995
5996 dev = pci_upstream_bridge(dev);
5997 }
5998
5999 return bw;
6000}
6001EXPORT_SYMBOL(pcie_bandwidth_available);
6002
6003/**
6004 * pcie_get_speed_cap - query for the PCI device's link speed capability
6005 * @dev: PCI device to query
6006 *
6007 * Query the PCI device speed capability. Return the maximum link speed
6008 * supported by the device.
6009 */
6010enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6011{
6012 u32 lnkcap2, lnkcap;
6013
6014 /*
6015 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6016 * implementation note there recommends using the Supported Link
6017 * Speeds Vector in Link Capabilities 2 when supported.
6018 *
6019 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6020 * should use the Supported Link Speeds field in Link Capabilities,
6021 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6022 */
6023 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, val: &lnkcap2);
6024
6025 /* PCIe r3.0-compliant */
6026 if (lnkcap2)
6027 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6028
6029 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap);
6030 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6031 return PCIE_SPEED_5_0GT;
6032 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6033 return PCIE_SPEED_2_5GT;
6034
6035 return PCI_SPEED_UNKNOWN;
6036}
6037EXPORT_SYMBOL(pcie_get_speed_cap);
6038
6039/**
6040 * pcie_get_width_cap - query for the PCI device's link width capability
6041 * @dev: PCI device to query
6042 *
6043 * Query the PCI device width capability. Return the maximum link width
6044 * supported by the device.
6045 */
6046enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6047{
6048 u32 lnkcap;
6049
6050 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, val: &lnkcap);
6051 if (lnkcap)
6052 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6053
6054 return PCIE_LNK_WIDTH_UNKNOWN;
6055}
6056EXPORT_SYMBOL(pcie_get_width_cap);
6057
6058/**
6059 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6060 * @dev: PCI device
6061 * @speed: storage for link speed
6062 * @width: storage for link width
6063 *
6064 * Calculate a PCI device's link bandwidth by querying for its link speed
6065 * and width, multiplying them, and applying encoding overhead. The result
6066 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6067 */
6068u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6069 enum pcie_link_width *width)
6070{
6071 *speed = pcie_get_speed_cap(dev);
6072 *width = pcie_get_width_cap(dev);
6073
6074 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6075 return 0;
6076
6077 return *width * PCIE_SPEED2MBS_ENC(*speed);
6078}
6079
6080/**
6081 * __pcie_print_link_status - Report the PCI device's link speed and width
6082 * @dev: PCI device to query
6083 * @verbose: Print info even when enough bandwidth is available
6084 *
6085 * If the available bandwidth at the device is less than the device is
6086 * capable of, report the device's maximum possible bandwidth and the
6087 * upstream link that limits its performance. If @verbose, always print
6088 * the available bandwidth, even if the device isn't constrained.
6089 */
6090void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6091{
6092 enum pcie_link_width width, width_cap;
6093 enum pci_bus_speed speed, speed_cap;
6094 struct pci_dev *limiting_dev = NULL;
6095 u32 bw_avail, bw_cap;
6096
6097 bw_cap = pcie_bandwidth_capable(dev, speed: &speed_cap, width: &width_cap);
6098 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6099
6100 if (bw_avail >= bw_cap && verbose)
6101 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6102 bw_cap / 1000, bw_cap % 1000,
6103 pci_speed_string(speed_cap), width_cap);
6104 else if (bw_avail < bw_cap)
6105 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6106 bw_avail / 1000, bw_avail % 1000,
6107 pci_speed_string(speed), width,
6108 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6109 bw_cap / 1000, bw_cap % 1000,
6110 pci_speed_string(speed_cap), width_cap);
6111}
6112
6113/**
6114 * pcie_print_link_status - Report the PCI device's link speed and width
6115 * @dev: PCI device to query
6116 *
6117 * Report the available bandwidth at the device.
6118 */
6119void pcie_print_link_status(struct pci_dev *dev)
6120{
6121 __pcie_print_link_status(dev, verbose: true);
6122}
6123EXPORT_SYMBOL(pcie_print_link_status);
6124
6125/**
6126 * pci_select_bars - Make BAR mask from the type of resource
6127 * @dev: the PCI device for which BAR mask is made
6128 * @flags: resource type mask to be selected
6129 *
6130 * This helper routine makes bar mask from the type of resource.
6131 */
6132int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6133{
6134 int i, bars = 0;
6135 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6136 if (pci_resource_flags(dev, i) & flags)
6137 bars |= (1 << i);
6138 return bars;
6139}
6140EXPORT_SYMBOL(pci_select_bars);
6141
6142/* Some architectures require additional programming to enable VGA */
6143static arch_set_vga_state_t arch_set_vga_state;
6144
6145void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6146{
6147 arch_set_vga_state = func; /* NULL disables */
6148}
6149
6150static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6151 unsigned int command_bits, u32 flags)
6152{
6153 if (arch_set_vga_state)
6154 return arch_set_vga_state(dev, decode, command_bits,
6155 flags);
6156 return 0;
6157}
6158
6159/**
6160 * pci_set_vga_state - set VGA decode state on device and parents if requested
6161 * @dev: the PCI device
6162 * @decode: true = enable decoding, false = disable decoding
6163 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6164 * @flags: traverse ancestors and change bridges
6165 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6166 */
6167int pci_set_vga_state(struct pci_dev *dev, bool decode,
6168 unsigned int command_bits, u32 flags)
6169{
6170 struct pci_bus *bus;
6171 struct pci_dev *bridge;
6172 u16 cmd;
6173 int rc;
6174
6175 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6176
6177 /* ARCH specific VGA enables */
6178 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6179 if (rc)
6180 return rc;
6181
6182 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6183 pci_read_config_word(dev, PCI_COMMAND, val: &cmd);
6184 if (decode)
6185 cmd |= command_bits;
6186 else
6187 cmd &= ~command_bits;
6188 pci_write_config_word(dev, PCI_COMMAND, val: cmd);
6189 }
6190
6191 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6192 return 0;
6193
6194 bus = dev->bus;
6195 while (bus) {
6196 bridge = bus->self;
6197 if (bridge) {
6198 pci_read_config_word(dev: bridge, PCI_BRIDGE_CONTROL,
6199 val: &cmd);
6200 if (decode)
6201 cmd |= PCI_BRIDGE_CTL_VGA;
6202 else
6203 cmd &= ~PCI_BRIDGE_CTL_VGA;
6204 pci_write_config_word(dev: bridge, PCI_BRIDGE_CONTROL,
6205 val: cmd);
6206 }
6207 bus = bus->parent;
6208 }
6209 return 0;
6210}
6211
6212#ifdef CONFIG_ACPI
6213bool pci_pr3_present(struct pci_dev *pdev)
6214{
6215 struct acpi_device *adev;
6216
6217 if (acpi_disabled)
6218 return false;
6219
6220 adev = ACPI_COMPANION(&pdev->dev);
6221 if (!adev)
6222 return false;
6223
6224 return adev->power.flags.power_resources &&
6225 acpi_has_method(handle: adev->handle, name: "_PR3");
6226}
6227EXPORT_SYMBOL_GPL(pci_pr3_present);
6228#endif
6229
6230/**
6231 * pci_add_dma_alias - Add a DMA devfn alias for a device
6232 * @dev: the PCI device for which alias is added
6233 * @devfn_from: alias slot and function
6234 * @nr_devfns: number of subsequent devfns to alias
6235 *
6236 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6237 * which is used to program permissible bus-devfn source addresses for DMA
6238 * requests in an IOMMU. These aliases factor into IOMMU group creation
6239 * and are useful for devices generating DMA requests beyond or different
6240 * from their logical bus-devfn. Examples include device quirks where the
6241 * device simply uses the wrong devfn, as well as non-transparent bridges
6242 * where the alias may be a proxy for devices in another domain.
6243 *
6244 * IOMMU group creation is performed during device discovery or addition,
6245 * prior to any potential DMA mapping and therefore prior to driver probing
6246 * (especially for userspace assigned devices where IOMMU group definition
6247 * cannot be left as a userspace activity). DMA aliases should therefore
6248 * be configured via quirks, such as the PCI fixup header quirk.
6249 */
6250void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6251 unsigned int nr_devfns)
6252{
6253 int devfn_to;
6254
6255 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6256 devfn_to = devfn_from + nr_devfns - 1;
6257
6258 if (!dev->dma_alias_mask)
6259 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6260 if (!dev->dma_alias_mask) {
6261 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6262 return;
6263 }
6264
6265 bitmap_set(map: dev->dma_alias_mask, start: devfn_from, nbits: nr_devfns);
6266
6267 if (nr_devfns == 1)
6268 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6269 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6270 else if (nr_devfns > 1)
6271 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6272 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6273 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6274}
6275
6276bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6277{
6278 return (dev1->dma_alias_mask &&
6279 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6280 (dev2->dma_alias_mask &&
6281 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6282 pci_real_dma_dev(dev: dev1) == dev2 ||
6283 pci_real_dma_dev(dev: dev2) == dev1;
6284}
6285
6286bool pci_device_is_present(struct pci_dev *pdev)
6287{
6288 u32 v;
6289
6290 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6291 pdev = pci_physfn(dev: pdev);
6292 if (pci_dev_is_disconnected(dev: pdev))
6293 return false;
6294 return pci_bus_read_dev_vendor_id(bus: pdev->bus, devfn: pdev->devfn, pl: &v, crs_timeout: 0);
6295}
6296EXPORT_SYMBOL_GPL(pci_device_is_present);
6297
6298void pci_ignore_hotplug(struct pci_dev *dev)
6299{
6300 struct pci_dev *bridge = dev->bus->self;
6301
6302 dev->ignore_hotplug = 1;
6303 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6304 if (bridge)
6305 bridge->ignore_hotplug = 1;
6306}
6307EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6308
6309/**
6310 * pci_real_dma_dev - Get PCI DMA device for PCI device
6311 * @dev: the PCI device that may have a PCI DMA alias
6312 *
6313 * Permits the platform to provide architecture-specific functionality to
6314 * devices needing to alias DMA to another PCI device on another PCI bus. If
6315 * the PCI device is on the same bus, it is recommended to use
6316 * pci_add_dma_alias(). This is the default implementation. Architecture
6317 * implementations can override this.
6318 */
6319struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6320{
6321 return dev;
6322}
6323
6324resource_size_t __weak pcibios_default_alignment(void)
6325{
6326 return 0;
6327}
6328
6329/*
6330 * Arches that don't want to expose struct resource to userland as-is in
6331 * sysfs and /proc can implement their own pci_resource_to_user().
6332 */
6333void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6334 const struct resource *rsrc,
6335 resource_size_t *start, resource_size_t *end)
6336{
6337 *start = rsrc->start;
6338 *end = rsrc->end;
6339}
6340
6341static char *resource_alignment_param;
6342static DEFINE_SPINLOCK(resource_alignment_lock);
6343
6344/**
6345 * pci_specified_resource_alignment - get resource alignment specified by user.
6346 * @dev: the PCI device to get
6347 * @resize: whether or not to change resources' size when reassigning alignment
6348 *
6349 * RETURNS: Resource alignment if it is specified.
6350 * Zero if it is not specified.
6351 */
6352static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6353 bool *resize)
6354{
6355 int align_order, count;
6356 resource_size_t align = pcibios_default_alignment();
6357 const char *p;
6358 int ret;
6359
6360 spin_lock(lock: &resource_alignment_lock);
6361 p = resource_alignment_param;
6362 if (!p || !*p)
6363 goto out;
6364 if (pci_has_flag(flag: PCI_PROBE_ONLY)) {
6365 align = 0;
6366 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6367 goto out;
6368 }
6369
6370 while (*p) {
6371 count = 0;
6372 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6373 p[count] == '@') {
6374 p += count + 1;
6375 if (align_order > 63) {
6376 pr_err("PCI: Invalid requested alignment (order %d)\n",
6377 align_order);
6378 align_order = PAGE_SHIFT;
6379 }
6380 } else {
6381 align_order = PAGE_SHIFT;
6382 }
6383
6384 ret = pci_dev_str_match(dev, p, endptr: &p);
6385 if (ret == 1) {
6386 *resize = true;
6387 align = 1ULL << align_order;
6388 break;
6389 } else if (ret < 0) {
6390 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6391 p);
6392 break;
6393 }
6394
6395 if (*p != ';' && *p != ',') {
6396 /* End of param or invalid format */
6397 break;
6398 }
6399 p++;
6400 }
6401out:
6402 spin_unlock(lock: &resource_alignment_lock);
6403 return align;
6404}
6405
6406static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6407 resource_size_t align, bool resize)
6408{
6409 struct resource *r = &dev->resource[bar];
6410 const char *r_name = pci_resource_name(dev, i: bar);
6411 resource_size_t size;
6412
6413 if (!(r->flags & IORESOURCE_MEM))
6414 return;
6415
6416 if (r->flags & IORESOURCE_PCI_FIXED) {
6417 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6418 r_name, r, (unsigned long long)align);
6419 return;
6420 }
6421
6422 size = resource_size(res: r);
6423 if (size >= align)
6424 return;
6425
6426 /*
6427 * Increase the alignment of the resource. There are two ways we
6428 * can do this:
6429 *
6430 * 1) Increase the size of the resource. BARs are aligned on their
6431 * size, so when we reallocate space for this resource, we'll
6432 * allocate it with the larger alignment. This also prevents
6433 * assignment of any other BARs inside the alignment region, so
6434 * if we're requesting page alignment, this means no other BARs
6435 * will share the page.
6436 *
6437 * The disadvantage is that this makes the resource larger than
6438 * the hardware BAR, which may break drivers that compute things
6439 * based on the resource size, e.g., to find registers at a
6440 * fixed offset before the end of the BAR.
6441 *
6442 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6443 * set r->start to the desired alignment. By itself this
6444 * doesn't prevent other BARs being put inside the alignment
6445 * region, but if we realign *every* resource of every device in
6446 * the system, none of them will share an alignment region.
6447 *
6448 * When the user has requested alignment for only some devices via
6449 * the "pci=resource_alignment" argument, "resize" is true and we
6450 * use the first method. Otherwise we assume we're aligning all
6451 * devices and we use the second.
6452 */
6453
6454 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6455 r_name, r, (unsigned long long)align);
6456
6457 if (resize) {
6458 r->start = 0;
6459 r->end = align - 1;
6460 } else {
6461 r->flags &= ~IORESOURCE_SIZEALIGN;
6462 r->flags |= IORESOURCE_STARTALIGN;
6463 r->start = align;
6464 r->end = r->start + size - 1;
6465 }
6466 r->flags |= IORESOURCE_UNSET;
6467}
6468
6469/*
6470 * This function disables memory decoding and releases memory resources
6471 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6472 * It also rounds up size to specified alignment.
6473 * Later on, the kernel will assign page-aligned memory resource back
6474 * to the device.
6475 */
6476void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6477{
6478 int i;
6479 struct resource *r;
6480 resource_size_t align;
6481 u16 command;
6482 bool resize = false;
6483
6484 /*
6485 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6486 * 3.4.1.11. Their resources are allocated from the space
6487 * described by the VF BARx register in the PF's SR-IOV capability.
6488 * We can't influence their alignment here.
6489 */
6490 if (dev->is_virtfn)
6491 return;
6492
6493 /* check if specified PCI is target device to reassign */
6494 align = pci_specified_resource_alignment(dev, resize: &resize);
6495 if (!align)
6496 return;
6497
6498 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6499 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6500 pci_warn(dev, "Can't reassign resources to host bridge\n");
6501 return;
6502 }
6503
6504 pci_read_config_word(dev, PCI_COMMAND, val: &command);
6505 command &= ~PCI_COMMAND_MEMORY;
6506 pci_write_config_word(dev, PCI_COMMAND, val: command);
6507
6508 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6509 pci_request_resource_alignment(dev, bar: i, align, resize);
6510
6511 /*
6512 * Need to disable bridge's resource window,
6513 * to enable the kernel to reassign new resource
6514 * window later on.
6515 */
6516 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6517 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6518 r = &dev->resource[i];
6519 if (!(r->flags & IORESOURCE_MEM))
6520 continue;
6521 r->flags |= IORESOURCE_UNSET;
6522 r->end = resource_size(res: r) - 1;
6523 r->start = 0;
6524 }
6525 pci_disable_bridge_window(dev);
6526 }
6527}
6528
6529static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6530{
6531 size_t count = 0;
6532
6533 spin_lock(lock: &resource_alignment_lock);
6534 if (resource_alignment_param)
6535 count = sysfs_emit(buf, fmt: "%s\n", resource_alignment_param);
6536 spin_unlock(lock: &resource_alignment_lock);
6537
6538 return count;
6539}
6540
6541static ssize_t resource_alignment_store(const struct bus_type *bus,
6542 const char *buf, size_t count)
6543{
6544 char *param, *old, *end;
6545
6546 if (count >= (PAGE_SIZE - 1))
6547 return -EINVAL;
6548
6549 param = kstrndup(s: buf, len: count, GFP_KERNEL);
6550 if (!param)
6551 return -ENOMEM;
6552
6553 end = strchr(param, '\n');
6554 if (end)
6555 *end = '\0';
6556
6557 spin_lock(lock: &resource_alignment_lock);
6558 old = resource_alignment_param;
6559 if (strlen(param)) {
6560 resource_alignment_param = param;
6561 } else {
6562 kfree(objp: param);
6563 resource_alignment_param = NULL;
6564 }
6565 spin_unlock(lock: &resource_alignment_lock);
6566
6567 kfree(objp: old);
6568
6569 return count;
6570}
6571
6572static BUS_ATTR_RW(resource_alignment);
6573
6574static int __init pci_resource_alignment_sysfs_init(void)
6575{
6576 return bus_create_file(bus: &pci_bus_type,
6577 attr: &bus_attr_resource_alignment);
6578}
6579late_initcall(pci_resource_alignment_sysfs_init);
6580
6581static void pci_no_domains(void)
6582{
6583#ifdef CONFIG_PCI_DOMAINS
6584 pci_domains_supported = 0;
6585#endif
6586}
6587
6588#ifdef CONFIG_PCI_DOMAINS_GENERIC
6589static DEFINE_IDA(pci_domain_nr_static_ida);
6590static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6591
6592static void of_pci_reserve_static_domain_nr(void)
6593{
6594 struct device_node *np;
6595 int domain_nr;
6596
6597 for_each_node_by_type(np, "pci") {
6598 domain_nr = of_get_pci_domain_nr(np);
6599 if (domain_nr < 0)
6600 continue;
6601 /*
6602 * Permanently allocate domain_nr in dynamic_ida
6603 * to prevent it from dynamic allocation.
6604 */
6605 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6606 domain_nr, domain_nr, GFP_KERNEL);
6607 }
6608}
6609
6610static int of_pci_bus_find_domain_nr(struct device *parent)
6611{
6612 static bool static_domains_reserved = false;
6613 int domain_nr;
6614
6615 /* On the first call scan device tree for static allocations. */
6616 if (!static_domains_reserved) {
6617 of_pci_reserve_static_domain_nr();
6618 static_domains_reserved = true;
6619 }
6620
6621 if (parent) {
6622 /*
6623 * If domain is in DT, allocate it in static IDA. This
6624 * prevents duplicate static allocations in case of errors
6625 * in DT.
6626 */
6627 domain_nr = of_get_pci_domain_nr(parent->of_node);
6628 if (domain_nr >= 0)
6629 return ida_alloc_range(&pci_domain_nr_static_ida,
6630 domain_nr, domain_nr,
6631 GFP_KERNEL);
6632 }
6633
6634 /*
6635 * If domain was not specified in DT, choose a free ID from dynamic
6636 * allocations. All domain numbers from DT are permanently in
6637 * dynamic allocations to prevent assigning them to other DT nodes
6638 * without static domain.
6639 */
6640 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6641}
6642
6643static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6644{
6645 if (bus->domain_nr < 0)
6646 return;
6647
6648 /* Release domain from IDA where it was allocated. */
6649 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6650 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6651 else
6652 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6653}
6654
6655int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6656{
6657 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6658 acpi_pci_bus_find_domain_nr(bus);
6659}
6660
6661void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6662{
6663 if (!acpi_disabled)
6664 return;
6665 of_pci_bus_release_domain_nr(bus, parent);
6666}
6667#endif
6668
6669/**
6670 * pci_ext_cfg_avail - can we access extended PCI config space?
6671 *
6672 * Returns 1 if we can access PCI extended config space (offsets
6673 * greater than 0xff). This is the default implementation. Architecture
6674 * implementations can override this.
6675 */
6676int __weak pci_ext_cfg_avail(void)
6677{
6678 return 1;
6679}
6680
6681void __weak pci_fixup_cardbus(struct pci_bus *bus)
6682{
6683}
6684EXPORT_SYMBOL(pci_fixup_cardbus);
6685
6686static int __init pci_setup(char *str)
6687{
6688 while (str) {
6689 char *k = strchr(str, ',');
6690 if (k)
6691 *k++ = 0;
6692 if (*str && (str = pcibios_setup(str)) && *str) {
6693 if (!strcmp(str, "nomsi")) {
6694 pci_no_msi();
6695 } else if (!strncmp(str, "noats", 5)) {
6696 pr_info("PCIe: ATS is disabled\n");
6697 pcie_ats_disabled = true;
6698 } else if (!strcmp(str, "noaer")) {
6699 pci_no_aer();
6700 } else if (!strcmp(str, "earlydump")) {
6701 pci_early_dump = true;
6702 } else if (!strncmp(str, "realloc=", 8)) {
6703 pci_realloc_get_opt(str + 8);
6704 } else if (!strncmp(str, "realloc", 7)) {
6705 pci_realloc_get_opt("on");
6706 } else if (!strcmp(str, "nodomains")) {
6707 pci_no_domains();
6708 } else if (!strncmp(str, "noari", 5)) {
6709 pcie_ari_disabled = true;
6710 } else if (!strncmp(str, "cbiosize=", 9)) {
6711 pci_cardbus_io_size = memparse(ptr: str + 9, retptr: &str);
6712 } else if (!strncmp(str, "cbmemsize=", 10)) {
6713 pci_cardbus_mem_size = memparse(ptr: str + 10, retptr: &str);
6714 } else if (!strncmp(str, "resource_alignment=", 19)) {
6715 resource_alignment_param = str + 19;
6716 } else if (!strncmp(str, "ecrc=", 5)) {
6717 pcie_ecrc_get_policy(str: str + 5);
6718 } else if (!strncmp(str, "hpiosize=", 9)) {
6719 pci_hotplug_io_size = memparse(ptr: str + 9, retptr: &str);
6720 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6721 pci_hotplug_mmio_size = memparse(ptr: str + 11, retptr: &str);
6722 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6723 pci_hotplug_mmio_pref_size = memparse(ptr: str + 15, retptr: &str);
6724 } else if (!strncmp(str, "hpmemsize=", 10)) {
6725 pci_hotplug_mmio_size = memparse(ptr: str + 10, retptr: &str);
6726 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6727 } else if (!strncmp(str, "hpbussize=", 10)) {
6728 pci_hotplug_bus_size =
6729 simple_strtoul(str + 10, &str, 0);
6730 if (pci_hotplug_bus_size > 0xff)
6731 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6732 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6733 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6734 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6735 pcie_bus_config = PCIE_BUS_SAFE;
6736 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6737 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6738 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6739 pcie_bus_config = PCIE_BUS_PEER2PEER;
6740 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6741 pci_add_flags(flags: PCI_SCAN_ALL_PCIE_DEVS);
6742 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6743 disable_acs_redir_param = str + 18;
6744 } else {
6745 pr_err("PCI: Unknown option `%s'\n", str);
6746 }
6747 }
6748 str = k;
6749 }
6750 return 0;
6751}
6752early_param("pci", pci_setup);
6753
6754/*
6755 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6756 * in pci_setup(), above, to point to data in the __initdata section which
6757 * will be freed after the init sequence is complete. We can't allocate memory
6758 * in pci_setup() because some architectures do not have any memory allocation
6759 * service available during an early_param() call. So we allocate memory and
6760 * copy the variable here before the init section is freed.
6761 *
6762 */
6763static int __init pci_realloc_setup_params(void)
6764{
6765 resource_alignment_param = kstrdup(s: resource_alignment_param,
6766 GFP_KERNEL);
6767 disable_acs_redir_param = kstrdup(s: disable_acs_redir_param, GFP_KERNEL);
6768
6769 return 0;
6770}
6771pure_initcall(pci_realloc_setup_params);
6772

source code of linux/drivers/pci/pci.c