1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/array_size.h>
16#include <linux/cleanup.h>
17#include <linux/debugfs.h>
18#include <linux/device.h>
19#include <linux/err.h>
20#include <linux/export.h>
21#include <linux/init.h>
22#include <linux/kref.h>
23#include <linux/list.h>
24#include <linux/seq_file.h>
25#include <linux/slab.h>
26
27#include <linux/gpio.h>
28#include <linux/gpio/driver.h>
29
30#include <linux/pinctrl/consumer.h>
31#include <linux/pinctrl/devinfo.h>
32#include <linux/pinctrl/machine.h>
33#include <linux/pinctrl/pinctrl.h>
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinconf.h"
38#include "pinmux.h"
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71 pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83 return dev_name(dev: pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89 return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(dev: pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(lock: &pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(lock: &pinctrldev_list_mutex);
118
119 return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(dev: pctldev->dev, np)) {
130 mutex_unlock(lock: &pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(lock: &pinctrldev_list_mutex);
135
136 return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146 unsigned int i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160}
161
162/**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168{
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned int num_pins)
186{
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(objp: pindesc->name);
199 }
200 kfree(objp: pindesc);
201 }
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206{
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin: pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(size: sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223
224 /* Copy basic pin info */
225 if (pin->name) {
226 pindesc->name = pin->name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, fmt: "PIN%u", pin->number);
229 if (!pindesc->name) {
230 error = -ENOMEM;
231 goto failed;
232 }
233 pindesc->dynamic_name = true;
234 }
235
236 pindesc->drv_data = pin->drv_data;
237
238 error = radix_tree_insert(&pctldev->pin_desc_tree, index: pin->number, pindesc);
239 if (error)
240 goto failed;
241
242 pr_debug("registered pin %d (%s) on %s\n",
243 pin->number, pindesc->name, pctldev->desc->name);
244 return 0;
245
246failed:
247 kfree(objp: pindesc);
248 return error;
249}
250
251static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252 const struct pinctrl_pin_desc *pins,
253 unsigned int num_descs)
254{
255 unsigned int i;
256 int ret = 0;
257
258 for (i = 0; i < num_descs; i++) {
259 ret = pinctrl_register_one_pin(pctldev, pin: &pins[i]);
260 if (ret)
261 return ret;
262 }
263
264 return 0;
265}
266
267/**
268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
269 * @range: GPIO range used for the translation
270 * @gc: GPIO chip structure from the GPIO subsystem
271 * @offset: hardware offset of the GPIO relative to the controller
272 *
273 * Finds the pin number for a given GPIO using the specified GPIO range
274 * as a base for translation. The distinction between linear GPIO ranges
275 * and pin list based GPIO ranges is managed correctly by this function.
276 *
277 * This function assumes the gpio is part of the specified GPIO range, use
278 * only after making sure this is the case (e.g. by calling it on the
279 * result of successful pinctrl_get_device_gpio_range calls)!
280 */
281static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
282 struct gpio_chip *gc, unsigned int offset)
283{
284 unsigned int pin = gc->base + offset - range->base;
285 if (range->pins)
286 return range->pins[pin];
287 else
288 return range->pin_base + pin;
289}
290
291/**
292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
293 * @pctldev: pin controller device to check
294 * @gc: GPIO chip structure from the GPIO subsystem
295 * @offset: hardware offset of the GPIO relative to the controller
296 *
297 * Tries to match a GPIO pin number to the ranges handled by a certain pin
298 * controller, return the range or NULL
299 */
300static struct pinctrl_gpio_range *
301pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
302 unsigned int offset)
303{
304 struct pinctrl_gpio_range *range;
305
306 mutex_lock(&pctldev->mutex);
307 /* Loop over the ranges */
308 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 /* Check if we're in the valid range */
310 if ((gc->base + offset) >= range->base &&
311 (gc->base + offset) < range->base + range->npins) {
312 mutex_unlock(lock: &pctldev->mutex);
313 return range;
314 }
315 }
316 mutex_unlock(lock: &pctldev->mutex);
317 return NULL;
318}
319
320/**
321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322 * the same GPIO chip are in range
323 * @gc: GPIO chip structure from the GPIO subsystem
324 * @offset: hardware offset of the GPIO relative to the controller
325 *
326 * This function is complement of pinctrl_match_gpio_range(). If the return
327 * value of pinctrl_match_gpio_range() is NULL, this function could be used
328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
329 * of the same GPIO chip don't have back-end pinctrl interface.
330 * If the return value is true, it means that pinctrl device is ready & the
331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
332 * is false, it means that pinctrl device may not be ready.
333 */
334#ifdef CONFIG_GPIOLIB
335static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
336 unsigned int offset)
337{
338 struct pinctrl_dev *pctldev;
339 struct pinctrl_gpio_range *range = NULL;
340
341 mutex_lock(&pinctrldev_list_mutex);
342
343 /* Loop over the pin controllers */
344 list_for_each_entry(pctldev, &pinctrldev_list, node) {
345 /* Loop over the ranges */
346 mutex_lock(&pctldev->mutex);
347 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
348 /* Check if any gpio range overlapped with gpio chip */
349 if (range->base + range->npins - 1 < gc->base ||
350 range->base > gc->base + gc->ngpio - 1)
351 continue;
352 mutex_unlock(lock: &pctldev->mutex);
353 mutex_unlock(lock: &pinctrldev_list_mutex);
354 return true;
355 }
356 mutex_unlock(lock: &pctldev->mutex);
357 }
358
359 mutex_unlock(lock: &pinctrldev_list_mutex);
360
361 return false;
362}
363#else
364static inline bool
365pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
366{
367 return true;
368}
369#endif
370
371/**
372 * pinctrl_get_device_gpio_range() - find device for GPIO range
373 * @gc: GPIO chip structure from the GPIO subsystem
374 * @offset: hardware offset of the GPIO relative to the controller
375 * @outdev: the pin control device if found
376 * @outrange: the GPIO range if found
377 *
378 * Find the pin controller handling a certain GPIO pin from the pinspace of
379 * the GPIO subsystem, return the device and the matching GPIO range. Returns
380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
381 * may still have not been registered.
382 */
383static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
384 unsigned int offset,
385 struct pinctrl_dev **outdev,
386 struct pinctrl_gpio_range **outrange)
387{
388 struct pinctrl_dev *pctldev;
389
390 mutex_lock(&pinctrldev_list_mutex);
391
392 /* Loop over the pin controllers */
393 list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 struct pinctrl_gpio_range *range;
395
396 range = pinctrl_match_gpio_range(pctldev, gc, offset);
397 if (range) {
398 *outdev = pctldev;
399 *outrange = range;
400 mutex_unlock(lock: &pinctrldev_list_mutex);
401 return 0;
402 }
403 }
404
405 mutex_unlock(lock: &pinctrldev_list_mutex);
406
407 return -EPROBE_DEFER;
408}
409
410/**
411 * pinctrl_add_gpio_range() - register a GPIO range for a controller
412 * @pctldev: pin controller device to add the range to
413 * @range: the GPIO range to add
414 *
415 * DEPRECATED: Don't use this function in new code. See section 2 of
416 * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and
417 * gpio drivers.
418 *
419 * This adds a range of GPIOs to be handled by a certain pin controller. Call
420 * this to register handled ranges after registering your pin controller.
421 */
422void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
423 struct pinctrl_gpio_range *range)
424{
425 mutex_lock(&pctldev->mutex);
426 list_add_tail(new: &range->node, head: &pctldev->gpio_ranges);
427 mutex_unlock(lock: &pctldev->mutex);
428}
429EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
430
431void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
432 struct pinctrl_gpio_range *ranges,
433 unsigned int nranges)
434{
435 int i;
436
437 for (i = 0; i < nranges; i++)
438 pinctrl_add_gpio_range(pctldev, &ranges[i]);
439}
440EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
441
442struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
443 struct pinctrl_gpio_range *range)
444{
445 struct pinctrl_dev *pctldev;
446
447 pctldev = get_pinctrl_dev_from_devname(devname);
448
449 /*
450 * If we can't find this device, let's assume that is because
451 * it has not probed yet, so the driver trying to register this
452 * range need to defer probing.
453 */
454 if (!pctldev)
455 return ERR_PTR(error: -EPROBE_DEFER);
456
457 pinctrl_add_gpio_range(pctldev, range);
458
459 return pctldev;
460}
461EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
462
463int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
464 const unsigned int **pins, unsigned int *num_pins)
465{
466 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
467 int gs;
468
469 if (!pctlops->get_group_pins)
470 return -EINVAL;
471
472 gs = pinctrl_get_group_selector(pctldev, pin_group);
473 if (gs < 0)
474 return gs;
475
476 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
477}
478EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
479
480struct pinctrl_gpio_range *
481pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
482 unsigned int pin)
483{
484 struct pinctrl_gpio_range *range;
485
486 /* Loop over the ranges */
487 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
488 /* Check if we're in the valid range */
489 if (range->pins) {
490 int a;
491 for (a = 0; a < range->npins; a++) {
492 if (range->pins[a] == pin)
493 return range;
494 }
495 } else if (pin >= range->pin_base &&
496 pin < range->pin_base + range->npins)
497 return range;
498 }
499
500 return NULL;
501}
502EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
503
504/**
505 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
506 * @pctldev: the pin controller device to look in
507 * @pin: a controller-local number to find the range for
508 */
509struct pinctrl_gpio_range *
510pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
511 unsigned int pin)
512{
513 struct pinctrl_gpio_range *range;
514
515 mutex_lock(&pctldev->mutex);
516 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
517 mutex_unlock(lock: &pctldev->mutex);
518
519 return range;
520}
521EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
522
523/**
524 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
525 * @pctldev: pin controller device to remove the range from
526 * @range: the GPIO range to remove
527 */
528void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
529 struct pinctrl_gpio_range *range)
530{
531 mutex_lock(&pctldev->mutex);
532 list_del(entry: &range->node);
533 mutex_unlock(lock: &pctldev->mutex);
534}
535EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
536
537#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
538
539/**
540 * pinctrl_generic_get_group_count() - returns the number of pin groups
541 * @pctldev: pin controller device
542 */
543int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
544{
545 return pctldev->num_groups;
546}
547EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
548
549/**
550 * pinctrl_generic_get_group_name() - returns the name of a pin group
551 * @pctldev: pin controller device
552 * @selector: group number
553 */
554const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
555 unsigned int selector)
556{
557 struct group_desc *group;
558
559 group = radix_tree_lookup(&pctldev->pin_group_tree,
560 selector);
561 if (!group)
562 return NULL;
563
564 return group->grp.name;
565}
566EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
567
568/**
569 * pinctrl_generic_get_group_pins() - gets the pin group pins
570 * @pctldev: pin controller device
571 * @selector: group number
572 * @pins: pins in the group
573 * @num_pins: number of pins in the group
574 */
575int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
576 unsigned int selector,
577 const unsigned int **pins,
578 unsigned int *num_pins)
579{
580 struct group_desc *group;
581
582 group = radix_tree_lookup(&pctldev->pin_group_tree,
583 selector);
584 if (!group) {
585 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
586 __func__, selector);
587 return -EINVAL;
588 }
589
590 *pins = group->grp.pins;
591 *num_pins = group->grp.npins;
592
593 return 0;
594}
595EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
596
597/**
598 * pinctrl_generic_get_group() - returns a pin group based on the number
599 * @pctldev: pin controller device
600 * @selector: group number
601 */
602struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
603 unsigned int selector)
604{
605 struct group_desc *group;
606
607 group = radix_tree_lookup(&pctldev->pin_group_tree,
608 selector);
609 if (!group)
610 return NULL;
611
612 return group;
613}
614EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
615
616static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
617 const char *function)
618{
619 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
620 int ngroups = ops->get_groups_count(pctldev);
621 int selector = 0;
622
623 /* See if this pctldev has this group */
624 while (selector < ngroups) {
625 const char *gname = ops->get_group_name(pctldev, selector);
626
627 if (gname && !strcmp(function, gname))
628 return selector;
629
630 selector++;
631 }
632
633 return -EINVAL;
634}
635
636/**
637 * pinctrl_generic_add_group() - adds a new pin group
638 * @pctldev: pin controller device
639 * @name: name of the pin group
640 * @pins: pins in the pin group
641 * @num_pins: number of pins in the pin group
642 * @data: pin controller driver specific data
643 *
644 * Note that the caller must take care of locking.
645 */
646int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
647 const unsigned int *pins, int num_pins, void *data)
648{
649 struct group_desc *group;
650 int selector, error;
651
652 if (!name)
653 return -EINVAL;
654
655 selector = pinctrl_generic_group_name_to_selector(pctldev, function: name);
656 if (selector >= 0)
657 return selector;
658
659 selector = pctldev->num_groups;
660
661 group = devm_kzalloc(dev: pctldev->dev, size: sizeof(*group), GFP_KERNEL);
662 if (!group)
663 return -ENOMEM;
664
665 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
666
667 error = radix_tree_insert(&pctldev->pin_group_tree, index: selector, group);
668 if (error)
669 return error;
670
671 pctldev->num_groups++;
672
673 return selector;
674}
675EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
676
677/**
678 * pinctrl_generic_remove_group() - removes a numbered pin group
679 * @pctldev: pin controller device
680 * @selector: group number
681 *
682 * Note that the caller must take care of locking.
683 */
684int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
685 unsigned int selector)
686{
687 struct group_desc *group;
688
689 group = radix_tree_lookup(&pctldev->pin_group_tree,
690 selector);
691 if (!group)
692 return -ENOENT;
693
694 radix_tree_delete(&pctldev->pin_group_tree, selector);
695 devm_kfree(dev: pctldev->dev, p: group);
696
697 pctldev->num_groups--;
698
699 return 0;
700}
701EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
702
703/**
704 * pinctrl_generic_free_groups() - removes all pin groups
705 * @pctldev: pin controller device
706 *
707 * Note that the caller must take care of locking. The pinctrl groups
708 * are allocated with devm_kzalloc() so no need to free them here.
709 */
710static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
711{
712 struct radix_tree_iter iter;
713 void __rcu **slot;
714
715 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
716 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
717
718 pctldev->num_groups = 0;
719}
720
721#else
722static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
723{
724}
725#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
726
727/**
728 * pinctrl_get_group_selector() - returns the group selector for a group
729 * @pctldev: the pin controller handling the group
730 * @pin_group: the pin group to look up
731 */
732int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
733 const char *pin_group)
734{
735 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
736 unsigned int ngroups = pctlops->get_groups_count(pctldev);
737 unsigned int group_selector = 0;
738
739 while (group_selector < ngroups) {
740 const char *gname = pctlops->get_group_name(pctldev,
741 group_selector);
742 if (gname && !strcmp(gname, pin_group)) {
743 dev_dbg(pctldev->dev,
744 "found group selector %u for %s\n",
745 group_selector,
746 pin_group);
747 return group_selector;
748 }
749
750 group_selector++;
751 }
752
753 dev_err(pctldev->dev, "does not have pin group %s\n",
754 pin_group);
755
756 return -EINVAL;
757}
758
759bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
760{
761 struct pinctrl_dev *pctldev;
762 struct pinctrl_gpio_range *range;
763 bool result;
764 int pin;
765
766 /*
767 * Try to obtain GPIO range, if it fails
768 * we're probably dealing with GPIO driver
769 * without a backing pin controller - bail out.
770 */
771 if (pinctrl_get_device_gpio_range(gc, offset, outdev: &pctldev, outrange: &range))
772 return true;
773
774 mutex_lock(&pctldev->mutex);
775
776 /* Convert to the pin controllers number space */
777 pin = gpio_to_pin(range, gc, offset);
778
779 result = pinmux_can_be_used_for_gpio(pctldev, pin);
780
781 mutex_unlock(lock: &pctldev->mutex);
782
783 return result;
784}
785EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
786
787/**
788 * pinctrl_gpio_request() - request a single pin to be used as GPIO
789 * @gc: GPIO chip structure from the GPIO subsystem
790 * @offset: hardware offset of the GPIO relative to the controller
791 *
792 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
793 * as part of their gpio_request() semantics, platforms and individual drivers
794 * shall *NOT* request GPIO pins to be muxed in.
795 */
796int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
797{
798 struct pinctrl_gpio_range *range;
799 struct pinctrl_dev *pctldev;
800 int ret, pin;
801
802 ret = pinctrl_get_device_gpio_range(gc, offset, outdev: &pctldev, outrange: &range);
803 if (ret) {
804 if (pinctrl_ready_for_gpio_range(gc, offset))
805 ret = 0;
806 return ret;
807 }
808
809 mutex_lock(&pctldev->mutex);
810
811 /* Convert to the pin controllers number space */
812 pin = gpio_to_pin(range, gc, offset);
813
814 ret = pinmux_request_gpio(pctldev, range, pin, gpio: gc->base + offset);
815
816 mutex_unlock(lock: &pctldev->mutex);
817
818 return ret;
819}
820EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
821
822/**
823 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
824 * @gc: GPIO chip structure from the GPIO subsystem
825 * @offset: hardware offset of the GPIO relative to the controller
826 *
827 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828 * as part of their gpio_request() semantics, platforms and individual drivers
829 * shall *NOT* request GPIO pins to be muxed in.
830 */
831void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
832{
833 struct pinctrl_gpio_range *range;
834 struct pinctrl_dev *pctldev;
835 int ret, pin;
836
837 ret = pinctrl_get_device_gpio_range(gc, offset, outdev: &pctldev, outrange: &range);
838 if (ret)
839 return;
840
841 mutex_lock(&pctldev->mutex);
842
843 /* Convert to the pin controllers number space */
844 pin = gpio_to_pin(range, gc, offset);
845
846 pinmux_free_gpio(pctldev, pin, range);
847
848 mutex_unlock(lock: &pctldev->mutex);
849}
850EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
851
852static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
853 bool input)
854{
855 struct pinctrl_dev *pctldev;
856 struct pinctrl_gpio_range *range;
857 int ret;
858 int pin;
859
860 ret = pinctrl_get_device_gpio_range(gc, offset, outdev: &pctldev, outrange: &range);
861 if (ret) {
862 return ret;
863 }
864
865 mutex_lock(&pctldev->mutex);
866
867 /* Convert to the pin controllers number space */
868 pin = gpio_to_pin(range, gc, offset);
869 ret = pinmux_gpio_direction(pctldev, range, pin, input);
870
871 mutex_unlock(lock: &pctldev->mutex);
872
873 return ret;
874}
875
876/**
877 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
878 * @gc: GPIO chip structure from the GPIO subsystem
879 * @offset: hardware offset of the GPIO relative to the controller
880 *
881 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
882 * as part of their gpio_direction_input() semantics, platforms and individual
883 * drivers shall *NOT* touch pin control GPIO calls.
884 */
885int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
886{
887 return pinctrl_gpio_direction(gc, offset, input: true);
888}
889EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
890
891/**
892 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
893 * @gc: GPIO chip structure from the GPIO subsystem
894 * @offset: hardware offset of the GPIO relative to the controller
895 *
896 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
897 * as part of their gpio_direction_output() semantics, platforms and individual
898 * drivers shall *NOT* touch pin control GPIO calls.
899 */
900int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
901{
902 return pinctrl_gpio_direction(gc, offset, input: false);
903}
904EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
905
906/**
907 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
908 * @gc: GPIO chip structure from the GPIO subsystem
909 * @offset: hardware offset of the GPIO relative to the controller
910 * @config: the configuration to apply to the GPIO
911 *
912 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
913 * they need to call the underlying pin controller to change GPIO config
914 * (for example set debounce time).
915 */
916int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
917 unsigned long config)
918{
919 unsigned long configs[] = { config };
920 struct pinctrl_gpio_range *range;
921 struct pinctrl_dev *pctldev;
922 int ret, pin;
923
924 ret = pinctrl_get_device_gpio_range(gc, offset, outdev: &pctldev, outrange: &range);
925 if (ret)
926 return ret;
927
928 mutex_lock(&pctldev->mutex);
929 pin = gpio_to_pin(range, gc, offset);
930 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
931 mutex_unlock(lock: &pctldev->mutex);
932
933 return ret;
934}
935EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
936
937static struct pinctrl_state *find_state(struct pinctrl *p,
938 const char *name)
939{
940 struct pinctrl_state *state;
941
942 list_for_each_entry(state, &p->states, node)
943 if (!strcmp(state->name, name))
944 return state;
945
946 return NULL;
947}
948
949static struct pinctrl_state *create_state(struct pinctrl *p,
950 const char *name)
951{
952 struct pinctrl_state *state;
953
954 state = kzalloc(size: sizeof(*state), GFP_KERNEL);
955 if (!state)
956 return ERR_PTR(error: -ENOMEM);
957
958 state->name = name;
959 INIT_LIST_HEAD(list: &state->settings);
960
961 list_add_tail(new: &state->node, head: &p->states);
962
963 return state;
964}
965
966static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
967 const struct pinctrl_map *map)
968{
969 struct pinctrl_state *state;
970 struct pinctrl_setting *setting;
971 int ret;
972
973 state = find_state(p, name: map->name);
974 if (!state)
975 state = create_state(p, name: map->name);
976 if (IS_ERR(ptr: state))
977 return PTR_ERR(ptr: state);
978
979 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
980 return 0;
981
982 setting = kzalloc(size: sizeof(*setting), GFP_KERNEL);
983 if (!setting)
984 return -ENOMEM;
985
986 setting->type = map->type;
987
988 if (pctldev)
989 setting->pctldev = pctldev;
990 else
991 setting->pctldev =
992 get_pinctrl_dev_from_devname(devname: map->ctrl_dev_name);
993 if (!setting->pctldev) {
994 kfree(objp: setting);
995 /* Do not defer probing of hogs (circular loop) */
996 if (!strcmp(map->ctrl_dev_name, map->dev_name))
997 return -ENODEV;
998 /*
999 * OK let us guess that the driver is not there yet, and
1000 * let's defer obtaining this pinctrl handle to later...
1001 */
1002 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1003 map->ctrl_dev_name);
1004 return -EPROBE_DEFER;
1005 }
1006
1007 setting->dev_name = map->dev_name;
1008
1009 switch (map->type) {
1010 case PIN_MAP_TYPE_MUX_GROUP:
1011 ret = pinmux_map_to_setting(map, setting);
1012 break;
1013 case PIN_MAP_TYPE_CONFIGS_PIN:
1014 case PIN_MAP_TYPE_CONFIGS_GROUP:
1015 ret = pinconf_map_to_setting(map, setting);
1016 break;
1017 default:
1018 ret = -EINVAL;
1019 break;
1020 }
1021 if (ret < 0) {
1022 kfree(objp: setting);
1023 return ret;
1024 }
1025
1026 list_add_tail(new: &setting->node, head: &state->settings);
1027
1028 return 0;
1029}
1030
1031static struct pinctrl *find_pinctrl(struct device *dev)
1032{
1033 struct pinctrl *p;
1034
1035 mutex_lock(&pinctrl_list_mutex);
1036 list_for_each_entry(p, &pinctrl_list, node)
1037 if (p->dev == dev) {
1038 mutex_unlock(lock: &pinctrl_list_mutex);
1039 return p;
1040 }
1041
1042 mutex_unlock(lock: &pinctrl_list_mutex);
1043 return NULL;
1044}
1045
1046static void pinctrl_free(struct pinctrl *p, bool inlist);
1047
1048static struct pinctrl *create_pinctrl(struct device *dev,
1049 struct pinctrl_dev *pctldev)
1050{
1051 struct pinctrl *p;
1052 const char *devname;
1053 struct pinctrl_maps *maps_node;
1054 const struct pinctrl_map *map;
1055 int ret;
1056
1057 /*
1058 * create the state cookie holder struct pinctrl for each
1059 * mapping, this is what consumers will get when requesting
1060 * a pin control handle with pinctrl_get()
1061 */
1062 p = kzalloc(size: sizeof(*p), GFP_KERNEL);
1063 if (!p)
1064 return ERR_PTR(error: -ENOMEM);
1065 p->dev = dev;
1066 INIT_LIST_HEAD(list: &p->states);
1067 INIT_LIST_HEAD(list: &p->dt_maps);
1068
1069 ret = pinctrl_dt_to_map(p, pctldev);
1070 if (ret < 0) {
1071 kfree(objp: p);
1072 return ERR_PTR(error: ret);
1073 }
1074
1075 devname = dev_name(dev);
1076
1077 mutex_lock(&pinctrl_maps_mutex);
1078 /* Iterate over the pin control maps to locate the right ones */
1079 for_each_pin_map(maps_node, map) {
1080 /* Map must be for this device */
1081 if (strcmp(map->dev_name, devname))
1082 continue;
1083 /*
1084 * If pctldev is not null, we are claiming hog for it,
1085 * that means, setting that is served by pctldev by itself.
1086 *
1087 * Thus we must skip map that is for this device but is served
1088 * by other device.
1089 */
1090 if (pctldev &&
1091 strcmp(dev_name(dev: pctldev->dev), map->ctrl_dev_name))
1092 continue;
1093
1094 ret = add_setting(p, pctldev, map);
1095 /*
1096 * At this point the adding of a setting may:
1097 *
1098 * - Defer, if the pinctrl device is not yet available
1099 * - Fail, if the pinctrl device is not yet available,
1100 * AND the setting is a hog. We cannot defer that, since
1101 * the hog will kick in immediately after the device
1102 * is registered.
1103 *
1104 * If the error returned was not -EPROBE_DEFER then we
1105 * accumulate the errors to see if we end up with
1106 * an -EPROBE_DEFER later, as that is the worst case.
1107 */
1108 if (ret == -EPROBE_DEFER) {
1109 pinctrl_free(p, inlist: false);
1110 mutex_unlock(lock: &pinctrl_maps_mutex);
1111 return ERR_PTR(error: ret);
1112 }
1113 }
1114 mutex_unlock(lock: &pinctrl_maps_mutex);
1115
1116 if (ret < 0) {
1117 /* If some other error than deferral occurred, return here */
1118 pinctrl_free(p, inlist: false);
1119 return ERR_PTR(error: ret);
1120 }
1121
1122 kref_init(kref: &p->users);
1123
1124 /* Add the pinctrl handle to the global list */
1125 mutex_lock(&pinctrl_list_mutex);
1126 list_add_tail(new: &p->node, head: &pinctrl_list);
1127 mutex_unlock(lock: &pinctrl_list_mutex);
1128
1129 return p;
1130}
1131
1132/**
1133 * pinctrl_get() - retrieves the pinctrl handle for a device
1134 * @dev: the device to obtain the handle for
1135 */
1136struct pinctrl *pinctrl_get(struct device *dev)
1137{
1138 struct pinctrl *p;
1139
1140 if (WARN_ON(!dev))
1141 return ERR_PTR(error: -EINVAL);
1142
1143 /*
1144 * See if somebody else (such as the device core) has already
1145 * obtained a handle to the pinctrl for this device. In that case,
1146 * return another pointer to it.
1147 */
1148 p = find_pinctrl(dev);
1149 if (p) {
1150 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1151 kref_get(kref: &p->users);
1152 return p;
1153 }
1154
1155 return create_pinctrl(dev, NULL);
1156}
1157EXPORT_SYMBOL_GPL(pinctrl_get);
1158
1159static void pinctrl_free_setting(bool disable_setting,
1160 struct pinctrl_setting *setting)
1161{
1162 switch (setting->type) {
1163 case PIN_MAP_TYPE_MUX_GROUP:
1164 if (disable_setting)
1165 pinmux_disable_setting(setting);
1166 pinmux_free_setting(setting);
1167 break;
1168 case PIN_MAP_TYPE_CONFIGS_PIN:
1169 case PIN_MAP_TYPE_CONFIGS_GROUP:
1170 pinconf_free_setting(setting);
1171 break;
1172 default:
1173 break;
1174 }
1175}
1176
1177static void pinctrl_free(struct pinctrl *p, bool inlist)
1178{
1179 struct pinctrl_state *state, *n1;
1180 struct pinctrl_setting *setting, *n2;
1181
1182 mutex_lock(&pinctrl_list_mutex);
1183 list_for_each_entry_safe(state, n1, &p->states, node) {
1184 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1185 pinctrl_free_setting(disable_setting: state == p->state, setting);
1186 list_del(entry: &setting->node);
1187 kfree(objp: setting);
1188 }
1189 list_del(entry: &state->node);
1190 kfree(objp: state);
1191 }
1192
1193 pinctrl_dt_free_maps(p);
1194
1195 if (inlist)
1196 list_del(entry: &p->node);
1197 kfree(objp: p);
1198 mutex_unlock(lock: &pinctrl_list_mutex);
1199}
1200
1201/**
1202 * pinctrl_release() - release the pinctrl handle
1203 * @kref: the kref in the pinctrl being released
1204 */
1205static void pinctrl_release(struct kref *kref)
1206{
1207 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1208
1209 pinctrl_free(p, inlist: true);
1210}
1211
1212/**
1213 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1214 * @p: the pinctrl handle to release
1215 */
1216void pinctrl_put(struct pinctrl *p)
1217{
1218 kref_put(kref: &p->users, release: pinctrl_release);
1219}
1220EXPORT_SYMBOL_GPL(pinctrl_put);
1221
1222/**
1223 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1224 * @p: the pinctrl handle to retrieve the state from
1225 * @name: the state name to retrieve
1226 */
1227struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1228 const char *name)
1229{
1230 struct pinctrl_state *state;
1231
1232 state = find_state(p, name);
1233 if (!state) {
1234 if (pinctrl_dummy_state) {
1235 /* create dummy state */
1236 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1237 name);
1238 state = create_state(p, name);
1239 } else
1240 state = ERR_PTR(error: -ENODEV);
1241 }
1242
1243 return state;
1244}
1245EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1246
1247static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1248 struct device *consumer)
1249{
1250 if (pctldev->desc->link_consumers)
1251 device_link_add(consumer, supplier: pctldev->dev,
1252 DL_FLAG_PM_RUNTIME |
1253 DL_FLAG_AUTOREMOVE_CONSUMER);
1254}
1255
1256/**
1257 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1258 * @p: the pinctrl handle for the device that requests configuration
1259 * @state: the state handle to select/activate/program
1260 */
1261static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1262{
1263 struct pinctrl_setting *setting, *setting2;
1264 struct pinctrl_state *old_state = READ_ONCE(p->state);
1265 int ret;
1266
1267 if (old_state) {
1268 /*
1269 * For each pinmux setting in the old state, forget SW's record
1270 * of mux owner for that pingroup. Any pingroups which are
1271 * still owned by the new state will be re-acquired by the call
1272 * to pinmux_enable_setting() in the loop below.
1273 */
1274 list_for_each_entry(setting, &old_state->settings, node) {
1275 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1276 continue;
1277 pinmux_disable_setting(setting);
1278 }
1279 }
1280
1281 p->state = NULL;
1282
1283 /* Apply all the settings for the new state - pinmux first */
1284 list_for_each_entry(setting, &state->settings, node) {
1285 switch (setting->type) {
1286 case PIN_MAP_TYPE_MUX_GROUP:
1287 ret = pinmux_enable_setting(setting);
1288 break;
1289 case PIN_MAP_TYPE_CONFIGS_PIN:
1290 case PIN_MAP_TYPE_CONFIGS_GROUP:
1291 ret = 0;
1292 break;
1293 default:
1294 ret = -EINVAL;
1295 break;
1296 }
1297
1298 if (ret < 0)
1299 goto unapply_new_state;
1300
1301 /* Do not link hogs (circular dependency) */
1302 if (p != setting->pctldev->p)
1303 pinctrl_link_add(pctldev: setting->pctldev, consumer: p->dev);
1304 }
1305
1306 /* Apply all the settings for the new state - pinconf after */
1307 list_for_each_entry(setting, &state->settings, node) {
1308 switch (setting->type) {
1309 case PIN_MAP_TYPE_MUX_GROUP:
1310 ret = 0;
1311 break;
1312 case PIN_MAP_TYPE_CONFIGS_PIN:
1313 case PIN_MAP_TYPE_CONFIGS_GROUP:
1314 ret = pinconf_apply_setting(setting);
1315 break;
1316 default:
1317 ret = -EINVAL;
1318 break;
1319 }
1320
1321 if (ret < 0) {
1322 goto unapply_new_state;
1323 }
1324
1325 /* Do not link hogs (circular dependency) */
1326 if (p != setting->pctldev->p)
1327 pinctrl_link_add(pctldev: setting->pctldev, consumer: p->dev);
1328 }
1329
1330 p->state = state;
1331
1332 return 0;
1333
1334unapply_new_state:
1335 dev_err(p->dev, "Error applying setting, reverse things back\n");
1336
1337 list_for_each_entry(setting2, &state->settings, node) {
1338 if (&setting2->node == &setting->node)
1339 break;
1340 /*
1341 * All we can do here is pinmux_disable_setting.
1342 * That means that some pins are muxed differently now
1343 * than they were before applying the setting (We can't
1344 * "unmux a pin"!), but it's not a big deal since the pins
1345 * are free to be muxed by another apply_setting.
1346 */
1347 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1348 pinmux_disable_setting(setting: setting2);
1349 }
1350
1351 /* There's no infinite recursive loop here because p->state is NULL */
1352 if (old_state)
1353 pinctrl_select_state(p, s: old_state);
1354
1355 return ret;
1356}
1357
1358/**
1359 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1360 * @p: the pinctrl handle for the device that requests configuration
1361 * @state: the state handle to select/activate/program
1362 */
1363int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1364{
1365 if (p->state == state)
1366 return 0;
1367
1368 return pinctrl_commit_state(p, state);
1369}
1370EXPORT_SYMBOL_GPL(pinctrl_select_state);
1371
1372static void devm_pinctrl_release(struct device *dev, void *res)
1373{
1374 pinctrl_put(*(struct pinctrl **)res);
1375}
1376
1377/**
1378 * devm_pinctrl_get() - Resource managed pinctrl_get()
1379 * @dev: the device to obtain the handle for
1380 *
1381 * If there is a need to explicitly destroy the returned struct pinctrl,
1382 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1383 */
1384struct pinctrl *devm_pinctrl_get(struct device *dev)
1385{
1386 struct pinctrl **ptr, *p;
1387
1388 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1389 if (!ptr)
1390 return ERR_PTR(error: -ENOMEM);
1391
1392 p = pinctrl_get(dev);
1393 if (!IS_ERR(ptr: p)) {
1394 *ptr = p;
1395 devres_add(dev, res: ptr);
1396 } else {
1397 devres_free(res: ptr);
1398 }
1399
1400 return p;
1401}
1402EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1403
1404static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1405{
1406 struct pinctrl **p = res;
1407
1408 return *p == data;
1409}
1410
1411/**
1412 * devm_pinctrl_put() - Resource managed pinctrl_put()
1413 * @p: the pinctrl handle to release
1414 *
1415 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1416 * this function will not need to be called and the resource management
1417 * code will ensure that the resource is freed.
1418 */
1419void devm_pinctrl_put(struct pinctrl *p)
1420{
1421 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1422 devm_pinctrl_match, p));
1423}
1424EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1425
1426/**
1427 * pinctrl_register_mappings() - register a set of pin controller mappings
1428 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1429 * keeps a reference to the passed in maps, so they should _not_ be
1430 * marked with __initdata.
1431 * @num_maps: the number of maps in the mapping table
1432 */
1433int pinctrl_register_mappings(const struct pinctrl_map *maps,
1434 unsigned int num_maps)
1435{
1436 int i, ret;
1437 struct pinctrl_maps *maps_node;
1438
1439 pr_debug("add %u pinctrl maps\n", num_maps);
1440
1441 /* First sanity check the new mapping */
1442 for (i = 0; i < num_maps; i++) {
1443 if (!maps[i].dev_name) {
1444 pr_err("failed to register map %s (%d): no device given\n",
1445 maps[i].name, i);
1446 return -EINVAL;
1447 }
1448
1449 if (!maps[i].name) {
1450 pr_err("failed to register map %d: no map name given\n",
1451 i);
1452 return -EINVAL;
1453 }
1454
1455 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1456 !maps[i].ctrl_dev_name) {
1457 pr_err("failed to register map %s (%d): no pin control device given\n",
1458 maps[i].name, i);
1459 return -EINVAL;
1460 }
1461
1462 switch (maps[i].type) {
1463 case PIN_MAP_TYPE_DUMMY_STATE:
1464 break;
1465 case PIN_MAP_TYPE_MUX_GROUP:
1466 ret = pinmux_validate_map(map: &maps[i], i);
1467 if (ret < 0)
1468 return ret;
1469 break;
1470 case PIN_MAP_TYPE_CONFIGS_PIN:
1471 case PIN_MAP_TYPE_CONFIGS_GROUP:
1472 ret = pinconf_validate_map(map: &maps[i], i);
1473 if (ret < 0)
1474 return ret;
1475 break;
1476 default:
1477 pr_err("failed to register map %s (%d): invalid type given\n",
1478 maps[i].name, i);
1479 return -EINVAL;
1480 }
1481 }
1482
1483 maps_node = kzalloc(size: sizeof(*maps_node), GFP_KERNEL);
1484 if (!maps_node)
1485 return -ENOMEM;
1486
1487 maps_node->maps = maps;
1488 maps_node->num_maps = num_maps;
1489
1490 mutex_lock(&pinctrl_maps_mutex);
1491 list_add_tail(new: &maps_node->node, head: &pinctrl_maps);
1492 mutex_unlock(lock: &pinctrl_maps_mutex);
1493
1494 return 0;
1495}
1496EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1497
1498/**
1499 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1500 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1501 * when registering the mappings.
1502 */
1503void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1504{
1505 struct pinctrl_maps *maps_node;
1506
1507 mutex_lock(&pinctrl_maps_mutex);
1508 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1509 if (maps_node->maps == map) {
1510 list_del(entry: &maps_node->node);
1511 kfree(objp: maps_node);
1512 mutex_unlock(lock: &pinctrl_maps_mutex);
1513 return;
1514 }
1515 }
1516 mutex_unlock(lock: &pinctrl_maps_mutex);
1517}
1518EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1519
1520/**
1521 * pinctrl_force_sleep() - turn a given controller device into sleep state
1522 * @pctldev: pin controller device
1523 */
1524int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1525{
1526 if (!IS_ERR(ptr: pctldev->p) && !IS_ERR(ptr: pctldev->hog_sleep))
1527 return pinctrl_commit_state(p: pctldev->p, state: pctldev->hog_sleep);
1528 return 0;
1529}
1530EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1531
1532/**
1533 * pinctrl_force_default() - turn a given controller device into default state
1534 * @pctldev: pin controller device
1535 */
1536int pinctrl_force_default(struct pinctrl_dev *pctldev)
1537{
1538 if (!IS_ERR(ptr: pctldev->p) && !IS_ERR(ptr: pctldev->hog_default))
1539 return pinctrl_commit_state(p: pctldev->p, state: pctldev->hog_default);
1540 return 0;
1541}
1542EXPORT_SYMBOL_GPL(pinctrl_force_default);
1543
1544/**
1545 * pinctrl_init_done() - tell pinctrl probe is done
1546 *
1547 * We'll use this time to switch the pins from "init" to "default" unless the
1548 * driver selected some other state.
1549 *
1550 * @dev: device to that's done probing
1551 */
1552int pinctrl_init_done(struct device *dev)
1553{
1554 struct dev_pin_info *pins = dev->pins;
1555 int ret;
1556
1557 if (!pins)
1558 return 0;
1559
1560 if (IS_ERR(ptr: pins->init_state))
1561 return 0; /* No such state */
1562
1563 if (pins->p->state != pins->init_state)
1564 return 0; /* Not at init anyway */
1565
1566 if (IS_ERR(ptr: pins->default_state))
1567 return 0; /* No default state */
1568
1569 ret = pinctrl_select_state(pins->p, pins->default_state);
1570 if (ret)
1571 dev_err(dev, "failed to activate default pinctrl state\n");
1572
1573 return ret;
1574}
1575
1576static int pinctrl_select_bound_state(struct device *dev,
1577 struct pinctrl_state *state)
1578{
1579 struct dev_pin_info *pins = dev->pins;
1580 int ret;
1581
1582 if (IS_ERR(ptr: state))
1583 return 0; /* No such state */
1584 ret = pinctrl_select_state(pins->p, state);
1585 if (ret)
1586 dev_err(dev, "failed to activate pinctrl state %s\n",
1587 state->name);
1588 return ret;
1589}
1590
1591/**
1592 * pinctrl_select_default_state() - select default pinctrl state
1593 * @dev: device to select default state for
1594 */
1595int pinctrl_select_default_state(struct device *dev)
1596{
1597 if (!dev->pins)
1598 return 0;
1599
1600 return pinctrl_select_bound_state(dev, state: dev->pins->default_state);
1601}
1602EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1603
1604#ifdef CONFIG_PM
1605
1606/**
1607 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1608 * @dev: device to select default state for
1609 */
1610int pinctrl_pm_select_default_state(struct device *dev)
1611{
1612 return pinctrl_select_default_state(dev);
1613}
1614EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1615
1616/**
1617 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1618 * @dev: device to select sleep state for
1619 */
1620int pinctrl_pm_select_sleep_state(struct device *dev)
1621{
1622 if (!dev->pins)
1623 return 0;
1624
1625 return pinctrl_select_bound_state(dev, state: dev->pins->sleep_state);
1626}
1627EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1628
1629/**
1630 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1631 * @dev: device to select idle state for
1632 */
1633int pinctrl_pm_select_idle_state(struct device *dev)
1634{
1635 if (!dev->pins)
1636 return 0;
1637
1638 return pinctrl_select_bound_state(dev, state: dev->pins->idle_state);
1639}
1640EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1641#endif
1642
1643#ifdef CONFIG_DEBUG_FS
1644
1645static int pinctrl_pins_show(struct seq_file *s, void *what)
1646{
1647 struct pinctrl_dev *pctldev = s->private;
1648 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1649 unsigned int i, pin;
1650#ifdef CONFIG_GPIOLIB
1651 struct gpio_device *gdev = NULL;
1652 struct pinctrl_gpio_range *range;
1653 int gpio_num;
1654#endif
1655
1656 seq_printf(m: s, fmt: "registered pins: %d\n", pctldev->desc->npins);
1657
1658 mutex_lock(&pctldev->mutex);
1659
1660 /* The pin number can be retrived from the pin controller descriptor */
1661 for (i = 0; i < pctldev->desc->npins; i++) {
1662 struct pin_desc *desc;
1663
1664 pin = pctldev->desc->pins[i].number;
1665 desc = pin_desc_get(pctldev, pin);
1666 /* Pin space may be sparse */
1667 if (!desc)
1668 continue;
1669
1670 seq_printf(m: s, fmt: "pin %d (%s) ", pin, desc->name);
1671
1672#ifdef CONFIG_GPIOLIB
1673 gpio_num = -1;
1674 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1675 if ((pin >= range->pin_base) &&
1676 (pin < (range->pin_base + range->npins))) {
1677 gpio_num = range->base + (pin - range->pin_base);
1678 break;
1679 }
1680 }
1681 if (gpio_num >= 0)
1682 /*
1683 * FIXME: gpio_num comes from the global GPIO numberspace.
1684 * we need to get rid of the range->base eventually and
1685 * get the descriptor directly from the gpio_chip.
1686 */
1687 gdev = gpiod_to_gpio_device(desc: gpio_to_desc(gpio: gpio_num));
1688 if (gdev)
1689 seq_printf(m: s, fmt: "%u:%s ",
1690 gpio_num - gpio_device_get_base(gdev),
1691 gpio_device_get_label(gdev));
1692 else
1693 seq_puts(m: s, s: "0:? ");
1694#endif
1695
1696 /* Driver-specific info per pin */
1697 if (ops->pin_dbg_show)
1698 ops->pin_dbg_show(pctldev, s, pin);
1699
1700 seq_puts(m: s, s: "\n");
1701 }
1702
1703 mutex_unlock(lock: &pctldev->mutex);
1704
1705 return 0;
1706}
1707DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1708
1709static int pinctrl_groups_show(struct seq_file *s, void *what)
1710{
1711 struct pinctrl_dev *pctldev = s->private;
1712 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1713 unsigned int ngroups, selector = 0;
1714
1715 mutex_lock(&pctldev->mutex);
1716
1717 ngroups = ops->get_groups_count(pctldev);
1718
1719 seq_puts(m: s, s: "registered pin groups:\n");
1720 while (selector < ngroups) {
1721 const unsigned int *pins = NULL;
1722 unsigned int num_pins = 0;
1723 const char *gname = ops->get_group_name(pctldev, selector);
1724 const char *pname;
1725 int ret = 0;
1726 int i;
1727
1728 if (ops->get_group_pins)
1729 ret = ops->get_group_pins(pctldev, selector,
1730 &pins, &num_pins);
1731 if (ret)
1732 seq_printf(m: s, fmt: "%s [ERROR GETTING PINS]\n",
1733 gname);
1734 else {
1735 seq_printf(m: s, fmt: "group: %s\n", gname);
1736 for (i = 0; i < num_pins; i++) {
1737 pname = pin_get_name(pctldev, pins[i]);
1738 if (WARN_ON(!pname)) {
1739 mutex_unlock(lock: &pctldev->mutex);
1740 return -EINVAL;
1741 }
1742 seq_printf(m: s, fmt: "pin %d (%s)\n", pins[i], pname);
1743 }
1744 seq_puts(m: s, s: "\n");
1745 }
1746 selector++;
1747 }
1748
1749 mutex_unlock(lock: &pctldev->mutex);
1750
1751 return 0;
1752}
1753DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1754
1755static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1756{
1757 struct pinctrl_dev *pctldev = s->private;
1758 struct pinctrl_gpio_range *range;
1759
1760 seq_puts(m: s, s: "GPIO ranges handled:\n");
1761
1762 mutex_lock(&pctldev->mutex);
1763
1764 /* Loop over the ranges */
1765 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1766 if (range->pins) {
1767 int a;
1768 seq_printf(m: s, fmt: "%u: %s GPIOS [%u - %u] PINS {",
1769 range->id, range->name,
1770 range->base, (range->base + range->npins - 1));
1771 for (a = 0; a < range->npins - 1; a++)
1772 seq_printf(m: s, fmt: "%u, ", range->pins[a]);
1773 seq_printf(m: s, fmt: "%u}\n", range->pins[a]);
1774 }
1775 else
1776 seq_printf(m: s, fmt: "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1777 range->id, range->name,
1778 range->base, (range->base + range->npins - 1),
1779 range->pin_base,
1780 (range->pin_base + range->npins - 1));
1781 }
1782
1783 mutex_unlock(lock: &pctldev->mutex);
1784
1785 return 0;
1786}
1787DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1788
1789static int pinctrl_devices_show(struct seq_file *s, void *what)
1790{
1791 struct pinctrl_dev *pctldev;
1792
1793 seq_puts(m: s, s: "name [pinmux] [pinconf]\n");
1794
1795 mutex_lock(&pinctrldev_list_mutex);
1796
1797 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1798 seq_printf(m: s, fmt: "%s ", pctldev->desc->name);
1799 if (pctldev->desc->pmxops)
1800 seq_puts(m: s, s: "yes ");
1801 else
1802 seq_puts(m: s, s: "no ");
1803 if (pctldev->desc->confops)
1804 seq_puts(m: s, s: "yes");
1805 else
1806 seq_puts(m: s, s: "no");
1807 seq_puts(m: s, s: "\n");
1808 }
1809
1810 mutex_unlock(lock: &pinctrldev_list_mutex);
1811
1812 return 0;
1813}
1814DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1815
1816static inline const char *map_type(enum pinctrl_map_type type)
1817{
1818 static const char * const names[] = {
1819 "INVALID",
1820 "DUMMY_STATE",
1821 "MUX_GROUP",
1822 "CONFIGS_PIN",
1823 "CONFIGS_GROUP",
1824 };
1825
1826 if (type >= ARRAY_SIZE(names))
1827 return "UNKNOWN";
1828
1829 return names[type];
1830}
1831
1832static int pinctrl_maps_show(struct seq_file *s, void *what)
1833{
1834 struct pinctrl_maps *maps_node;
1835 const struct pinctrl_map *map;
1836
1837 seq_puts(m: s, s: "Pinctrl maps:\n");
1838
1839 mutex_lock(&pinctrl_maps_mutex);
1840 for_each_pin_map(maps_node, map) {
1841 seq_printf(m: s, fmt: "device %s\nstate %s\ntype %s (%d)\n",
1842 map->dev_name, map->name, map_type(type: map->type),
1843 map->type);
1844
1845 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1846 seq_printf(m: s, fmt: "controlling device %s\n",
1847 map->ctrl_dev_name);
1848
1849 switch (map->type) {
1850 case PIN_MAP_TYPE_MUX_GROUP:
1851 pinmux_show_map(s, map);
1852 break;
1853 case PIN_MAP_TYPE_CONFIGS_PIN:
1854 case PIN_MAP_TYPE_CONFIGS_GROUP:
1855 pinconf_show_map(s, map);
1856 break;
1857 default:
1858 break;
1859 }
1860
1861 seq_putc(m: s, c: '\n');
1862 }
1863 mutex_unlock(lock: &pinctrl_maps_mutex);
1864
1865 return 0;
1866}
1867DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1868
1869static int pinctrl_show(struct seq_file *s, void *what)
1870{
1871 struct pinctrl *p;
1872 struct pinctrl_state *state;
1873 struct pinctrl_setting *setting;
1874
1875 seq_puts(m: s, s: "Requested pin control handlers their pinmux maps:\n");
1876
1877 mutex_lock(&pinctrl_list_mutex);
1878
1879 list_for_each_entry(p, &pinctrl_list, node) {
1880 seq_printf(m: s, fmt: "device: %s current state: %s\n",
1881 dev_name(dev: p->dev),
1882 p->state ? p->state->name : "none");
1883
1884 list_for_each_entry(state, &p->states, node) {
1885 seq_printf(m: s, fmt: " state: %s\n", state->name);
1886
1887 list_for_each_entry(setting, &state->settings, node) {
1888 struct pinctrl_dev *pctldev = setting->pctldev;
1889
1890 seq_printf(m: s, fmt: " type: %s controller %s ",
1891 map_type(type: setting->type),
1892 pinctrl_dev_get_name(pctldev));
1893
1894 switch (setting->type) {
1895 case PIN_MAP_TYPE_MUX_GROUP:
1896 pinmux_show_setting(s, setting);
1897 break;
1898 case PIN_MAP_TYPE_CONFIGS_PIN:
1899 case PIN_MAP_TYPE_CONFIGS_GROUP:
1900 pinconf_show_setting(s, setting);
1901 break;
1902 default:
1903 break;
1904 }
1905 }
1906 }
1907 }
1908
1909 mutex_unlock(lock: &pinctrl_list_mutex);
1910
1911 return 0;
1912}
1913DEFINE_SHOW_ATTRIBUTE(pinctrl);
1914
1915static struct dentry *debugfs_root;
1916
1917static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1918{
1919 struct dentry *device_root;
1920 const char *debugfs_name;
1921
1922 if (pctldev->desc->name &&
1923 strcmp(dev_name(dev: pctldev->dev), pctldev->desc->name)) {
1924 debugfs_name = devm_kasprintf(dev: pctldev->dev, GFP_KERNEL,
1925 fmt: "%s-%s", dev_name(dev: pctldev->dev),
1926 pctldev->desc->name);
1927 if (!debugfs_name) {
1928 pr_warn("failed to determine debugfs dir name for %s\n",
1929 dev_name(pctldev->dev));
1930 return;
1931 }
1932 } else {
1933 debugfs_name = dev_name(dev: pctldev->dev);
1934 }
1935
1936 device_root = debugfs_create_dir(name: debugfs_name, parent: debugfs_root);
1937 pctldev->device_root = device_root;
1938
1939 if (IS_ERR(ptr: device_root) || !device_root) {
1940 pr_warn("failed to create debugfs directory for %s\n",
1941 dev_name(pctldev->dev));
1942 return;
1943 }
1944 debugfs_create_file(name: "pins", mode: 0444,
1945 parent: device_root, data: pctldev, fops: &pinctrl_pins_fops);
1946 debugfs_create_file(name: "pingroups", mode: 0444,
1947 parent: device_root, data: pctldev, fops: &pinctrl_groups_fops);
1948 debugfs_create_file(name: "gpio-ranges", mode: 0444,
1949 parent: device_root, data: pctldev, fops: &pinctrl_gpioranges_fops);
1950 if (pctldev->desc->pmxops)
1951 pinmux_init_device_debugfs(devroot: device_root, pctldev);
1952 if (pctldev->desc->confops)
1953 pinconf_init_device_debugfs(devroot: device_root, pctldev);
1954}
1955
1956static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1957{
1958 debugfs_remove_recursive(dentry: pctldev->device_root);
1959}
1960
1961static void pinctrl_init_debugfs(void)
1962{
1963 debugfs_root = debugfs_create_dir(name: "pinctrl", NULL);
1964 if (IS_ERR(ptr: debugfs_root) || !debugfs_root) {
1965 pr_warn("failed to create debugfs directory\n");
1966 debugfs_root = NULL;
1967 return;
1968 }
1969
1970 debugfs_create_file(name: "pinctrl-devices", mode: 0444,
1971 parent: debugfs_root, NULL, fops: &pinctrl_devices_fops);
1972 debugfs_create_file(name: "pinctrl-maps", mode: 0444,
1973 parent: debugfs_root, NULL, fops: &pinctrl_maps_fops);
1974 debugfs_create_file(name: "pinctrl-handles", mode: 0444,
1975 parent: debugfs_root, NULL, fops: &pinctrl_fops);
1976}
1977
1978#else /* CONFIG_DEBUG_FS */
1979
1980static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1981{
1982}
1983
1984static void pinctrl_init_debugfs(void)
1985{
1986}
1987
1988static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1989{
1990}
1991
1992#endif
1993
1994static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1995{
1996 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1997
1998 if (!ops ||
1999 !ops->get_groups_count ||
2000 !ops->get_group_name)
2001 return -EINVAL;
2002
2003 return 0;
2004}
2005
2006/**
2007 * pinctrl_init_controller() - init a pin controller device
2008 * @pctldesc: descriptor for this pin controller
2009 * @dev: parent device for this pin controller
2010 * @driver_data: private pin controller data for this pin controller
2011 */
2012static struct pinctrl_dev *
2013pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2014 void *driver_data)
2015{
2016 struct pinctrl_dev *pctldev;
2017 int ret;
2018
2019 if (!pctldesc)
2020 return ERR_PTR(error: -EINVAL);
2021 if (!pctldesc->name)
2022 return ERR_PTR(error: -EINVAL);
2023
2024 pctldev = kzalloc(size: sizeof(*pctldev), GFP_KERNEL);
2025 if (!pctldev)
2026 return ERR_PTR(error: -ENOMEM);
2027
2028 /* Initialize pin control device struct */
2029 pctldev->owner = pctldesc->owner;
2030 pctldev->desc = pctldesc;
2031 pctldev->driver_data = driver_data;
2032 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2033#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2034 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2035#endif
2036#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2037 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2038#endif
2039 INIT_LIST_HEAD(list: &pctldev->gpio_ranges);
2040 INIT_LIST_HEAD(list: &pctldev->node);
2041 pctldev->dev = dev;
2042 mutex_init(&pctldev->mutex);
2043
2044 /* check core ops for sanity */
2045 ret = pinctrl_check_ops(pctldev);
2046 if (ret) {
2047 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2048 goto out_err;
2049 }
2050
2051 /* If we're implementing pinmuxing, check the ops for sanity */
2052 if (pctldesc->pmxops) {
2053 ret = pinmux_check_ops(pctldev);
2054 if (ret)
2055 goto out_err;
2056 }
2057
2058 /* If we're implementing pinconfig, check the ops for sanity */
2059 if (pctldesc->confops) {
2060 ret = pinconf_check_ops(pctldev);
2061 if (ret)
2062 goto out_err;
2063 }
2064
2065 /* Register all the pins */
2066 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2067 ret = pinctrl_register_pins(pctldev, pins: pctldesc->pins, num_descs: pctldesc->npins);
2068 if (ret) {
2069 dev_err(dev, "error during pin registration\n");
2070 pinctrl_free_pindescs(pctldev, pins: pctldesc->pins,
2071 num_pins: pctldesc->npins);
2072 goto out_err;
2073 }
2074
2075 return pctldev;
2076
2077out_err:
2078 mutex_destroy(lock: &pctldev->mutex);
2079 kfree(objp: pctldev);
2080 return ERR_PTR(error: ret);
2081}
2082
2083static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2084{
2085 pctldev->p = create_pinctrl(dev: pctldev->dev, pctldev);
2086 if (PTR_ERR(ptr: pctldev->p) == -ENODEV) {
2087 dev_dbg(pctldev->dev, "no hogs found\n");
2088
2089 return 0;
2090 }
2091
2092 if (IS_ERR(ptr: pctldev->p)) {
2093 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2094 PTR_ERR(pctldev->p));
2095
2096 return PTR_ERR(ptr: pctldev->p);
2097 }
2098
2099 pctldev->hog_default =
2100 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2101 if (IS_ERR(ptr: pctldev->hog_default)) {
2102 dev_dbg(pctldev->dev,
2103 "failed to lookup the default state\n");
2104 } else {
2105 if (pinctrl_select_state(pctldev->p,
2106 pctldev->hog_default))
2107 dev_err(pctldev->dev,
2108 "failed to select default state\n");
2109 }
2110
2111 pctldev->hog_sleep =
2112 pinctrl_lookup_state(pctldev->p,
2113 PINCTRL_STATE_SLEEP);
2114 if (IS_ERR(ptr: pctldev->hog_sleep))
2115 dev_dbg(pctldev->dev,
2116 "failed to lookup the sleep state\n");
2117
2118 return 0;
2119}
2120
2121int pinctrl_enable(struct pinctrl_dev *pctldev)
2122{
2123 int error;
2124
2125 error = pinctrl_claim_hogs(pctldev);
2126 if (error) {
2127 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2128 error);
2129 pinctrl_free_pindescs(pctldev, pins: pctldev->desc->pins,
2130 num_pins: pctldev->desc->npins);
2131 mutex_destroy(lock: &pctldev->mutex);
2132 kfree(objp: pctldev);
2133
2134 return error;
2135 }
2136
2137 mutex_lock(&pinctrldev_list_mutex);
2138 list_add_tail(new: &pctldev->node, head: &pinctrldev_list);
2139 mutex_unlock(lock: &pinctrldev_list_mutex);
2140
2141 pinctrl_init_device_debugfs(pctldev);
2142
2143 return 0;
2144}
2145EXPORT_SYMBOL_GPL(pinctrl_enable);
2146
2147/**
2148 * pinctrl_register() - register a pin controller device
2149 * @pctldesc: descriptor for this pin controller
2150 * @dev: parent device for this pin controller
2151 * @driver_data: private pin controller data for this pin controller
2152 *
2153 * Note that pinctrl_register() is known to have problems as the pin
2154 * controller driver functions are called before the driver has a
2155 * struct pinctrl_dev handle. To avoid issues later on, please use the
2156 * new pinctrl_register_and_init() below instead.
2157 */
2158struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2159 struct device *dev, void *driver_data)
2160{
2161 struct pinctrl_dev *pctldev;
2162 int error;
2163
2164 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2165 if (IS_ERR(ptr: pctldev))
2166 return pctldev;
2167
2168 error = pinctrl_enable(pctldev);
2169 if (error)
2170 return ERR_PTR(error);
2171
2172 return pctldev;
2173}
2174EXPORT_SYMBOL_GPL(pinctrl_register);
2175
2176/**
2177 * pinctrl_register_and_init() - register and init pin controller device
2178 * @pctldesc: descriptor for this pin controller
2179 * @dev: parent device for this pin controller
2180 * @driver_data: private pin controller data for this pin controller
2181 * @pctldev: pin controller device
2182 *
2183 * Note that pinctrl_enable() still needs to be manually called after
2184 * this once the driver is ready.
2185 */
2186int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2187 struct device *dev, void *driver_data,
2188 struct pinctrl_dev **pctldev)
2189{
2190 struct pinctrl_dev *p;
2191
2192 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2193 if (IS_ERR(ptr: p))
2194 return PTR_ERR(ptr: p);
2195
2196 /*
2197 * We have pinctrl_start() call functions in the pin controller
2198 * driver with create_pinctrl() for at least dt_node_to_map(). So
2199 * let's make sure pctldev is properly initialized for the
2200 * pin controller driver before we do anything.
2201 */
2202 *pctldev = p;
2203
2204 return 0;
2205}
2206EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2207
2208/**
2209 * pinctrl_unregister() - unregister pinmux
2210 * @pctldev: pin controller to unregister
2211 *
2212 * Called by pinmux drivers to unregister a pinmux.
2213 */
2214void pinctrl_unregister(struct pinctrl_dev *pctldev)
2215{
2216 struct pinctrl_gpio_range *range, *n;
2217
2218 if (!pctldev)
2219 return;
2220
2221 mutex_lock(&pctldev->mutex);
2222 pinctrl_remove_device_debugfs(pctldev);
2223 mutex_unlock(lock: &pctldev->mutex);
2224
2225 if (!IS_ERR_OR_NULL(ptr: pctldev->p))
2226 pinctrl_put(pctldev->p);
2227
2228 mutex_lock(&pinctrldev_list_mutex);
2229 mutex_lock(&pctldev->mutex);
2230 /* TODO: check that no pinmuxes are still active? */
2231 list_del(entry: &pctldev->node);
2232 pinmux_generic_free_functions(pctldev);
2233 pinctrl_generic_free_groups(pctldev);
2234 /* Destroy descriptor tree */
2235 pinctrl_free_pindescs(pctldev, pins: pctldev->desc->pins,
2236 num_pins: pctldev->desc->npins);
2237 /* remove gpio ranges map */
2238 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2239 list_del(entry: &range->node);
2240
2241 mutex_unlock(lock: &pctldev->mutex);
2242 mutex_destroy(lock: &pctldev->mutex);
2243 kfree(objp: pctldev);
2244 mutex_unlock(lock: &pinctrldev_list_mutex);
2245}
2246EXPORT_SYMBOL_GPL(pinctrl_unregister);
2247
2248static void devm_pinctrl_dev_release(struct device *dev, void *res)
2249{
2250 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2251
2252 pinctrl_unregister(pctldev);
2253}
2254
2255static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2256{
2257 struct pctldev **r = res;
2258
2259 if (WARN_ON(!r || !*r))
2260 return 0;
2261
2262 return *r == data;
2263}
2264
2265/**
2266 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2267 * @dev: parent device for this pin controller
2268 * @pctldesc: descriptor for this pin controller
2269 * @driver_data: private pin controller data for this pin controller
2270 *
2271 * Returns an error pointer if pincontrol register failed. Otherwise
2272 * it returns valid pinctrl handle.
2273 *
2274 * The pinctrl device will be automatically released when the device is unbound.
2275 */
2276struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2277 struct pinctrl_desc *pctldesc,
2278 void *driver_data)
2279{
2280 struct pinctrl_dev **ptr, *pctldev;
2281
2282 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2283 if (!ptr)
2284 return ERR_PTR(error: -ENOMEM);
2285
2286 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2287 if (IS_ERR(ptr: pctldev)) {
2288 devres_free(res: ptr);
2289 return pctldev;
2290 }
2291
2292 *ptr = pctldev;
2293 devres_add(dev, res: ptr);
2294
2295 return pctldev;
2296}
2297EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2298
2299/**
2300 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2301 * @dev: parent device for this pin controller
2302 * @pctldesc: descriptor for this pin controller
2303 * @driver_data: private pin controller data for this pin controller
2304 * @pctldev: pin controller device
2305 *
2306 * Returns zero on success or an error number on failure.
2307 *
2308 * The pinctrl device will be automatically released when the device is unbound.
2309 */
2310int devm_pinctrl_register_and_init(struct device *dev,
2311 struct pinctrl_desc *pctldesc,
2312 void *driver_data,
2313 struct pinctrl_dev **pctldev)
2314{
2315 struct pinctrl_dev **ptr;
2316 int error;
2317
2318 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2319 if (!ptr)
2320 return -ENOMEM;
2321
2322 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2323 if (error) {
2324 devres_free(res: ptr);
2325 return error;
2326 }
2327
2328 *ptr = *pctldev;
2329 devres_add(dev, res: ptr);
2330
2331 return 0;
2332}
2333EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2334
2335/**
2336 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2337 * @dev: device for which resource was allocated
2338 * @pctldev: the pinctrl device to unregister.
2339 */
2340void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2341{
2342 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2343 devm_pinctrl_dev_match, pctldev));
2344}
2345EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2346
2347static int __init pinctrl_init(void)
2348{
2349 pr_info("initialized pinctrl subsystem\n");
2350 pinctrl_init_debugfs();
2351 return 0;
2352}
2353
2354/* init early since many drivers really need to initialized pinmux early */
2355core_initcall(pinctrl_init);
2356

source code of linux/drivers/pinctrl/core.c