1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
4 *
5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
6 * Copyright (C) 2006 David Brownell (convert to new framework)
7 */
8
9/*
10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
11 * That defined the register interface now provided by all PCs, some
12 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
13 * integrate an MC146818 clone in their southbridge, and boards use
14 * that instead of discrete clones like the DS12887 or M48T86. There
15 * are also clones that connect using the LPC bus.
16 *
17 * That register API is also used directly by various other drivers
18 * (notably for integrated NVRAM), infrastructure (x86 has code to
19 * bypass the RTC framework, directly reading the RTC during boot
20 * and updating minutes/seconds for systems using NTP synch) and
21 * utilities (like userspace 'hwclock', if no /dev node exists).
22 *
23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
24 * interrupts disabled, holding the global rtc_lock, to exclude those
25 * other drivers and utilities on correctly configured systems.
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/spinlock.h>
35#include <linux/platform_device.h>
36#include <linux/log2.h>
37#include <linux/pm.h>
38#include <linux/of.h>
39#include <linux/of_platform.h>
40#ifdef CONFIG_X86
41#include <asm/i8259.h>
42#include <asm/processor.h>
43#include <linux/dmi.h>
44#endif
45
46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
47#include <linux/mc146818rtc.h>
48
49#ifdef CONFIG_ACPI
50/*
51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
52 *
53 * If cleared, ACPI SCI is only used to wake up the system from suspend
54 *
55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
56 */
57
58static bool use_acpi_alarm;
59module_param(use_acpi_alarm, bool, 0444);
60
61static inline int cmos_use_acpi_alarm(void)
62{
63 return use_acpi_alarm;
64}
65#else /* !CONFIG_ACPI */
66
67static inline int cmos_use_acpi_alarm(void)
68{
69 return 0;
70}
71#endif
72
73struct cmos_rtc {
74 struct rtc_device *rtc;
75 struct device *dev;
76 int irq;
77 struct resource *iomem;
78 time64_t alarm_expires;
79
80 void (*wake_on)(struct device *);
81 void (*wake_off)(struct device *);
82
83 u8 enabled_wake;
84 u8 suspend_ctrl;
85
86 /* newer hardware extends the original register set */
87 u8 day_alrm;
88 u8 mon_alrm;
89 u8 century;
90
91 struct rtc_wkalrm saved_wkalrm;
92};
93
94/* both platform and pnp busses use negative numbers for invalid irqs */
95#define is_valid_irq(n) ((n) > 0)
96
97static const char driver_name[] = "rtc_cmos";
98
99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
100 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
102 */
103#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
104
105static inline int is_intr(u8 rtc_intr)
106{
107 if (!(rtc_intr & RTC_IRQF))
108 return 0;
109 return rtc_intr & RTC_IRQMASK;
110}
111
112/*----------------------------------------------------------------*/
113
114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
116 * used in a broken "legacy replacement" mode. The breakage includes
117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
118 * other (better) use.
119 *
120 * When that broken mode is in use, platform glue provides a partial
121 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
122 * want to use HPET for anything except those IRQs though...
123 */
124#ifdef CONFIG_HPET_EMULATE_RTC
125#include <asm/hpet.h>
126#else
127
128static inline int is_hpet_enabled(void)
129{
130 return 0;
131}
132
133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
134{
135 return 0;
136}
137
138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
139{
140 return 0;
141}
142
143static inline int
144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
145{
146 return 0;
147}
148
149static inline int hpet_set_periodic_freq(unsigned long freq)
150{
151 return 0;
152}
153
154static inline int hpet_rtc_dropped_irq(void)
155{
156 return 0;
157}
158
159static inline int hpet_rtc_timer_init(void)
160{
161 return 0;
162}
163
164extern irq_handler_t hpet_rtc_interrupt;
165
166static inline int hpet_register_irq_handler(irq_handler_t handler)
167{
168 return 0;
169}
170
171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
172{
173 return 0;
174}
175
176#endif
177
178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
179static inline int use_hpet_alarm(void)
180{
181 return is_hpet_enabled() && !cmos_use_acpi_alarm();
182}
183
184/*----------------------------------------------------------------*/
185
186#ifdef RTC_PORT
187
188/* Most newer x86 systems have two register banks, the first used
189 * for RTC and NVRAM and the second only for NVRAM. Caller must
190 * own rtc_lock ... and we won't worry about access during NMI.
191 */
192#define can_bank2 true
193
194static inline unsigned char cmos_read_bank2(unsigned char addr)
195{
196 outb(value: addr, RTC_PORT(2));
197 return inb(RTC_PORT(3));
198}
199
200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
201{
202 outb(value: addr, RTC_PORT(2));
203 outb(value: val, RTC_PORT(3));
204}
205
206#else
207
208#define can_bank2 false
209
210static inline unsigned char cmos_read_bank2(unsigned char addr)
211{
212 return 0;
213}
214
215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
216{
217}
218
219#endif
220
221/*----------------------------------------------------------------*/
222
223static int cmos_read_time(struct device *dev, struct rtc_time *t)
224{
225 int ret;
226
227 /*
228 * If pm_trace abused the RTC for storage, set the timespec to 0,
229 * which tells the caller that this RTC value is unusable.
230 */
231 if (!pm_trace_rtc_valid())
232 return -EIO;
233
234 ret = mc146818_get_time(time: t, timeout: 1000);
235 if (ret < 0) {
236 dev_err_ratelimited(dev, "unable to read current time\n");
237 return ret;
238 }
239
240 return 0;
241}
242
243static int cmos_set_time(struct device *dev, struct rtc_time *t)
244{
245 /* NOTE: this ignores the issue whereby updating the seconds
246 * takes effect exactly 500ms after we write the register.
247 * (Also queueing and other delays before we get this far.)
248 */
249 return mc146818_set_time(time: t);
250}
251
252struct cmos_read_alarm_callback_param {
253 struct cmos_rtc *cmos;
254 struct rtc_time *time;
255 unsigned char rtc_control;
256};
257
258static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
259 void *param_in)
260{
261 struct cmos_read_alarm_callback_param *p =
262 (struct cmos_read_alarm_callback_param *)param_in;
263 struct rtc_time *time = p->time;
264
265 time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
266 time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
267 time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
268
269 if (p->cmos->day_alrm) {
270 /* ignore upper bits on readback per ACPI spec */
271 time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
272 if (!time->tm_mday)
273 time->tm_mday = -1;
274
275 if (p->cmos->mon_alrm) {
276 time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
277 if (!time->tm_mon)
278 time->tm_mon = -1;
279 }
280 }
281
282 p->rtc_control = CMOS_READ(RTC_CONTROL);
283}
284
285static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
286{
287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
288 struct cmos_read_alarm_callback_param p = {
289 .cmos = cmos,
290 .time = &t->time,
291 };
292
293 /* This not only a rtc_op, but also called directly */
294 if (!is_valid_irq(cmos->irq))
295 return -ETIMEDOUT;
296
297 /* Basic alarms only support hour, minute, and seconds fields.
298 * Some also support day and month, for alarms up to a year in
299 * the future.
300 */
301
302 /* Some Intel chipsets disconnect the alarm registers when the clock
303 * update is in progress - during this time reads return bogus values
304 * and writes may fail silently. See for example "7th Generation IntelĀ®
305 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
306 * 27.7.1
307 *
308 * Use the mc146818_avoid_UIP() function to avoid this.
309 */
310 if (!mc146818_avoid_UIP(callback: cmos_read_alarm_callback, timeout: 10, param: &p))
311 return -EIO;
312
313 if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
314 if (((unsigned)t->time.tm_sec) < 0x60)
315 t->time.tm_sec = bcd2bin(t->time.tm_sec);
316 else
317 t->time.tm_sec = -1;
318 if (((unsigned)t->time.tm_min) < 0x60)
319 t->time.tm_min = bcd2bin(t->time.tm_min);
320 else
321 t->time.tm_min = -1;
322 if (((unsigned)t->time.tm_hour) < 0x24)
323 t->time.tm_hour = bcd2bin(t->time.tm_hour);
324 else
325 t->time.tm_hour = -1;
326
327 if (cmos->day_alrm) {
328 if (((unsigned)t->time.tm_mday) <= 0x31)
329 t->time.tm_mday = bcd2bin(t->time.tm_mday);
330 else
331 t->time.tm_mday = -1;
332
333 if (cmos->mon_alrm) {
334 if (((unsigned)t->time.tm_mon) <= 0x12)
335 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
336 else
337 t->time.tm_mon = -1;
338 }
339 }
340 }
341
342 t->enabled = !!(p.rtc_control & RTC_AIE);
343 t->pending = 0;
344
345 return 0;
346}
347
348static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
349{
350 unsigned char rtc_intr;
351
352 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
353 * allegedly some older rtcs need that to handle irqs properly
354 */
355 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
356
357 if (use_hpet_alarm())
358 return;
359
360 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
361 if (is_intr(rtc_intr))
362 rtc_update_irq(rtc: cmos->rtc, num: 1, events: rtc_intr);
363}
364
365static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
366{
367 unsigned char rtc_control;
368
369 /* flush any pending IRQ status, notably for update irqs,
370 * before we enable new IRQs
371 */
372 rtc_control = CMOS_READ(RTC_CONTROL);
373 cmos_checkintr(cmos, rtc_control);
374
375 rtc_control |= mask;
376 CMOS_WRITE(rtc_control, RTC_CONTROL);
377 if (use_hpet_alarm())
378 hpet_set_rtc_irq_bit(bit_mask: mask);
379
380 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
381 if (cmos->wake_on)
382 cmos->wake_on(cmos->dev);
383 }
384
385 cmos_checkintr(cmos, rtc_control);
386}
387
388static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
389{
390 unsigned char rtc_control;
391
392 rtc_control = CMOS_READ(RTC_CONTROL);
393 rtc_control &= ~mask;
394 CMOS_WRITE(rtc_control, RTC_CONTROL);
395 if (use_hpet_alarm())
396 hpet_mask_rtc_irq_bit(bit_mask: mask);
397
398 if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
399 if (cmos->wake_off)
400 cmos->wake_off(cmos->dev);
401 }
402
403 cmos_checkintr(cmos, rtc_control);
404}
405
406static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
407{
408 struct cmos_rtc *cmos = dev_get_drvdata(dev);
409 struct rtc_time now;
410
411 cmos_read_time(dev, t: &now);
412
413 if (!cmos->day_alrm) {
414 time64_t t_max_date;
415 time64_t t_alrm;
416
417 t_max_date = rtc_tm_to_time64(tm: &now);
418 t_max_date += 24 * 60 * 60 - 1;
419 t_alrm = rtc_tm_to_time64(tm: &t->time);
420 if (t_alrm > t_max_date) {
421 dev_err(dev,
422 "Alarms can be up to one day in the future\n");
423 return -EINVAL;
424 }
425 } else if (!cmos->mon_alrm) {
426 struct rtc_time max_date = now;
427 time64_t t_max_date;
428 time64_t t_alrm;
429 int max_mday;
430
431 if (max_date.tm_mon == 11) {
432 max_date.tm_mon = 0;
433 max_date.tm_year += 1;
434 } else {
435 max_date.tm_mon += 1;
436 }
437 max_mday = rtc_month_days(month: max_date.tm_mon, year: max_date.tm_year);
438 if (max_date.tm_mday > max_mday)
439 max_date.tm_mday = max_mday;
440
441 t_max_date = rtc_tm_to_time64(tm: &max_date);
442 t_max_date -= 1;
443 t_alrm = rtc_tm_to_time64(tm: &t->time);
444 if (t_alrm > t_max_date) {
445 dev_err(dev,
446 "Alarms can be up to one month in the future\n");
447 return -EINVAL;
448 }
449 } else {
450 struct rtc_time max_date = now;
451 time64_t t_max_date;
452 time64_t t_alrm;
453 int max_mday;
454
455 max_date.tm_year += 1;
456 max_mday = rtc_month_days(month: max_date.tm_mon, year: max_date.tm_year);
457 if (max_date.tm_mday > max_mday)
458 max_date.tm_mday = max_mday;
459
460 t_max_date = rtc_tm_to_time64(tm: &max_date);
461 t_max_date -= 1;
462 t_alrm = rtc_tm_to_time64(tm: &t->time);
463 if (t_alrm > t_max_date) {
464 dev_err(dev,
465 "Alarms can be up to one year in the future\n");
466 return -EINVAL;
467 }
468 }
469
470 return 0;
471}
472
473struct cmos_set_alarm_callback_param {
474 struct cmos_rtc *cmos;
475 unsigned char mon, mday, hrs, min, sec;
476 struct rtc_wkalrm *t;
477};
478
479/* Note: this function may be executed by mc146818_avoid_UIP() more then
480 * once
481 */
482static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
483 void *param_in)
484{
485 struct cmos_set_alarm_callback_param *p =
486 (struct cmos_set_alarm_callback_param *)param_in;
487
488 /* next rtc irq must not be from previous alarm setting */
489 cmos_irq_disable(cmos: p->cmos, RTC_AIE);
490
491 /* update alarm */
492 CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
493 CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
494 CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
495
496 /* the system may support an "enhanced" alarm */
497 if (p->cmos->day_alrm) {
498 CMOS_WRITE(p->mday, p->cmos->day_alrm);
499 if (p->cmos->mon_alrm)
500 CMOS_WRITE(p->mon, p->cmos->mon_alrm);
501 }
502
503 if (use_hpet_alarm()) {
504 /*
505 * FIXME the HPET alarm glue currently ignores day_alrm
506 * and mon_alrm ...
507 */
508 hpet_set_alarm_time(hrs: p->t->time.tm_hour, min: p->t->time.tm_min,
509 sec: p->t->time.tm_sec);
510 }
511
512 if (p->t->enabled)
513 cmos_irq_enable(cmos: p->cmos, RTC_AIE);
514}
515
516static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
517{
518 struct cmos_rtc *cmos = dev_get_drvdata(dev);
519 struct cmos_set_alarm_callback_param p = {
520 .cmos = cmos,
521 .t = t
522 };
523 unsigned char rtc_control;
524 int ret;
525
526 /* This not only a rtc_op, but also called directly */
527 if (!is_valid_irq(cmos->irq))
528 return -EIO;
529
530 ret = cmos_validate_alarm(dev, t);
531 if (ret < 0)
532 return ret;
533
534 p.mon = t->time.tm_mon + 1;
535 p.mday = t->time.tm_mday;
536 p.hrs = t->time.tm_hour;
537 p.min = t->time.tm_min;
538 p.sec = t->time.tm_sec;
539
540 spin_lock_irq(lock: &rtc_lock);
541 rtc_control = CMOS_READ(RTC_CONTROL);
542 spin_unlock_irq(lock: &rtc_lock);
543
544 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
545 /* Writing 0xff means "don't care" or "match all". */
546 p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
547 p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
548 p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
549 p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
550 p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
551 }
552
553 /*
554 * Some Intel chipsets disconnect the alarm registers when the clock
555 * update is in progress - during this time writes fail silently.
556 *
557 * Use mc146818_avoid_UIP() to avoid this.
558 */
559 if (!mc146818_avoid_UIP(callback: cmos_set_alarm_callback, timeout: 10, param: &p))
560 return -ETIMEDOUT;
561
562 cmos->alarm_expires = rtc_tm_to_time64(tm: &t->time);
563
564 return 0;
565}
566
567static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
568{
569 struct cmos_rtc *cmos = dev_get_drvdata(dev);
570 unsigned long flags;
571
572 spin_lock_irqsave(&rtc_lock, flags);
573
574 if (enabled)
575 cmos_irq_enable(cmos, RTC_AIE);
576 else
577 cmos_irq_disable(cmos, RTC_AIE);
578
579 spin_unlock_irqrestore(lock: &rtc_lock, flags);
580 return 0;
581}
582
583#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
584
585static int cmos_procfs(struct device *dev, struct seq_file *seq)
586{
587 struct cmos_rtc *cmos = dev_get_drvdata(dev);
588 unsigned char rtc_control, valid;
589
590 spin_lock_irq(lock: &rtc_lock);
591 rtc_control = CMOS_READ(RTC_CONTROL);
592 valid = CMOS_READ(RTC_VALID);
593 spin_unlock_irq(lock: &rtc_lock);
594
595 /* NOTE: at least ICH6 reports battery status using a different
596 * (non-RTC) bit; and SQWE is ignored on many current systems.
597 */
598 seq_printf(m: seq,
599 fmt: "periodic_IRQ\t: %s\n"
600 "update_IRQ\t: %s\n"
601 "HPET_emulated\t: %s\n"
602 // "square_wave\t: %s\n"
603 "BCD\t\t: %s\n"
604 "DST_enable\t: %s\n"
605 "periodic_freq\t: %d\n"
606 "batt_status\t: %s\n",
607 (rtc_control & RTC_PIE) ? "yes" : "no",
608 (rtc_control & RTC_UIE) ? "yes" : "no",
609 use_hpet_alarm() ? "yes" : "no",
610 // (rtc_control & RTC_SQWE) ? "yes" : "no",
611 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
612 (rtc_control & RTC_DST_EN) ? "yes" : "no",
613 cmos->rtc->irq_freq,
614 (valid & RTC_VRT) ? "okay" : "dead");
615
616 return 0;
617}
618
619#else
620#define cmos_procfs NULL
621#endif
622
623static const struct rtc_class_ops cmos_rtc_ops = {
624 .read_time = cmos_read_time,
625 .set_time = cmos_set_time,
626 .read_alarm = cmos_read_alarm,
627 .set_alarm = cmos_set_alarm,
628 .proc = cmos_procfs,
629 .alarm_irq_enable = cmos_alarm_irq_enable,
630};
631
632/*----------------------------------------------------------------*/
633
634/*
635 * All these chips have at least 64 bytes of address space, shared by
636 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
637 * by boot firmware. Modern chips have 128 or 256 bytes.
638 */
639
640#define NVRAM_OFFSET (RTC_REG_D + 1)
641
642static int cmos_nvram_read(void *priv, unsigned int off, void *val,
643 size_t count)
644{
645 unsigned char *buf = val;
646 int retval;
647
648 off += NVRAM_OFFSET;
649 spin_lock_irq(lock: &rtc_lock);
650 for (retval = 0; count; count--, off++, retval++) {
651 if (off < 128)
652 *buf++ = CMOS_READ(off);
653 else if (can_bank2)
654 *buf++ = cmos_read_bank2(addr: off);
655 else
656 break;
657 }
658 spin_unlock_irq(lock: &rtc_lock);
659
660 return retval;
661}
662
663static int cmos_nvram_write(void *priv, unsigned int off, void *val,
664 size_t count)
665{
666 struct cmos_rtc *cmos = priv;
667 unsigned char *buf = val;
668 int retval;
669
670 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
671 * checksum on part of the NVRAM data. That's currently ignored
672 * here. If userspace is smart enough to know what fields of
673 * NVRAM to update, updating checksums is also part of its job.
674 */
675 off += NVRAM_OFFSET;
676 spin_lock_irq(lock: &rtc_lock);
677 for (retval = 0; count; count--, off++, retval++) {
678 /* don't trash RTC registers */
679 if (off == cmos->day_alrm
680 || off == cmos->mon_alrm
681 || off == cmos->century)
682 buf++;
683 else if (off < 128)
684 CMOS_WRITE(*buf++, off);
685 else if (can_bank2)
686 cmos_write_bank2(val: *buf++, addr: off);
687 else
688 break;
689 }
690 spin_unlock_irq(lock: &rtc_lock);
691
692 return retval;
693}
694
695/*----------------------------------------------------------------*/
696
697static struct cmos_rtc cmos_rtc;
698
699static irqreturn_t cmos_interrupt(int irq, void *p)
700{
701 u8 irqstat;
702 u8 rtc_control;
703
704 spin_lock(lock: &rtc_lock);
705
706 /* When the HPET interrupt handler calls us, the interrupt
707 * status is passed as arg1 instead of the irq number. But
708 * always clear irq status, even when HPET is in the way.
709 *
710 * Note that HPET and RTC are almost certainly out of phase,
711 * giving different IRQ status ...
712 */
713 irqstat = CMOS_READ(RTC_INTR_FLAGS);
714 rtc_control = CMOS_READ(RTC_CONTROL);
715 if (use_hpet_alarm())
716 irqstat = (unsigned long)irq & 0xF0;
717
718 /* If we were suspended, RTC_CONTROL may not be accurate since the
719 * bios may have cleared it.
720 */
721 if (!cmos_rtc.suspend_ctrl)
722 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
723 else
724 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
725
726 /* All Linux RTC alarms should be treated as if they were oneshot.
727 * Similar code may be needed in system wakeup paths, in case the
728 * alarm woke the system.
729 */
730 if (irqstat & RTC_AIE) {
731 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
732 rtc_control &= ~RTC_AIE;
733 CMOS_WRITE(rtc_control, RTC_CONTROL);
734 if (use_hpet_alarm())
735 hpet_mask_rtc_irq_bit(RTC_AIE);
736 CMOS_READ(RTC_INTR_FLAGS);
737 }
738 spin_unlock(lock: &rtc_lock);
739
740 if (is_intr(rtc_intr: irqstat)) {
741 rtc_update_irq(rtc: p, num: 1, events: irqstat);
742 return IRQ_HANDLED;
743 } else
744 return IRQ_NONE;
745}
746
747#ifdef CONFIG_ACPI
748
749#include <linux/acpi.h>
750
751static u32 rtc_handler(void *context)
752{
753 struct device *dev = context;
754 struct cmos_rtc *cmos = dev_get_drvdata(dev);
755 unsigned char rtc_control = 0;
756 unsigned char rtc_intr;
757 unsigned long flags;
758
759
760 /*
761 * Always update rtc irq when ACPI is used as RTC Alarm.
762 * Or else, ACPI SCI is enabled during suspend/resume only,
763 * update rtc irq in that case.
764 */
765 if (cmos_use_acpi_alarm())
766 cmos_interrupt(irq: 0, p: (void *)cmos->rtc);
767 else {
768 /* Fix me: can we use cmos_interrupt() here as well? */
769 spin_lock_irqsave(&rtc_lock, flags);
770 if (cmos_rtc.suspend_ctrl)
771 rtc_control = CMOS_READ(RTC_CONTROL);
772 if (rtc_control & RTC_AIE) {
773 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
774 CMOS_WRITE(rtc_control, RTC_CONTROL);
775 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
776 rtc_update_irq(rtc: cmos->rtc, num: 1, events: rtc_intr);
777 }
778 spin_unlock_irqrestore(lock: &rtc_lock, flags);
779 }
780
781 pm_wakeup_hard_event(dev);
782 acpi_clear_event(ACPI_EVENT_RTC);
783 acpi_disable_event(ACPI_EVENT_RTC, flags: 0);
784 return ACPI_INTERRUPT_HANDLED;
785}
786
787static void acpi_rtc_event_setup(struct device *dev)
788{
789 if (acpi_disabled)
790 return;
791
792 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, handler: rtc_handler, context: dev);
793 /*
794 * After the RTC handler is installed, the Fixed_RTC event should
795 * be disabled. Only when the RTC alarm is set will it be enabled.
796 */
797 acpi_clear_event(ACPI_EVENT_RTC);
798 acpi_disable_event(ACPI_EVENT_RTC, flags: 0);
799}
800
801static void acpi_rtc_event_cleanup(void)
802{
803 if (acpi_disabled)
804 return;
805
806 acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, handler: rtc_handler);
807}
808
809static void rtc_wake_on(struct device *dev)
810{
811 acpi_clear_event(ACPI_EVENT_RTC);
812 acpi_enable_event(ACPI_EVENT_RTC, flags: 0);
813}
814
815static void rtc_wake_off(struct device *dev)
816{
817 acpi_disable_event(ACPI_EVENT_RTC, flags: 0);
818}
819
820#ifdef CONFIG_X86
821static void use_acpi_alarm_quirks(void)
822{
823 switch (boot_cpu_data.x86_vendor) {
824 case X86_VENDOR_INTEL:
825 if (dmi_get_bios_year() < 2015)
826 return;
827 break;
828 case X86_VENDOR_AMD:
829 case X86_VENDOR_HYGON:
830 if (dmi_get_bios_year() < 2021)
831 return;
832 break;
833 default:
834 return;
835 }
836 if (!is_hpet_enabled())
837 return;
838
839 use_acpi_alarm = true;
840}
841#else
842static inline void use_acpi_alarm_quirks(void) { }
843#endif
844
845static void acpi_cmos_wake_setup(struct device *dev)
846{
847 if (acpi_disabled)
848 return;
849
850 use_acpi_alarm_quirks();
851
852 cmos_rtc.wake_on = rtc_wake_on;
853 cmos_rtc.wake_off = rtc_wake_off;
854
855 /* ACPI tables bug workaround. */
856 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
857 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
858 acpi_gbl_FADT.month_alarm);
859 acpi_gbl_FADT.month_alarm = 0;
860 }
861
862 cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
863 cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
864 cmos_rtc.century = acpi_gbl_FADT.century;
865
866 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
867 dev_info(dev, "RTC can wake from S4\n");
868
869 /* RTC always wakes from S1/S2/S3, and often S4/STD */
870 device_init_wakeup(dev, enable: 1);
871}
872
873static void cmos_check_acpi_rtc_status(struct device *dev,
874 unsigned char *rtc_control)
875{
876 struct cmos_rtc *cmos = dev_get_drvdata(dev);
877 acpi_event_status rtc_status;
878 acpi_status status;
879
880 if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
881 return;
882
883 status = acpi_get_event_status(ACPI_EVENT_RTC, event_status: &rtc_status);
884 if (ACPI_FAILURE(status)) {
885 dev_err(dev, "Could not get RTC status\n");
886 } else if (rtc_status & ACPI_EVENT_FLAG_SET) {
887 unsigned char mask;
888 *rtc_control &= ~RTC_AIE;
889 CMOS_WRITE(*rtc_control, RTC_CONTROL);
890 mask = CMOS_READ(RTC_INTR_FLAGS);
891 rtc_update_irq(rtc: cmos->rtc, num: 1, events: mask);
892 }
893}
894
895#else /* !CONFIG_ACPI */
896
897static inline void acpi_rtc_event_setup(struct device *dev)
898{
899}
900
901static inline void acpi_rtc_event_cleanup(void)
902{
903}
904
905static inline void acpi_cmos_wake_setup(struct device *dev)
906{
907}
908
909static inline void cmos_check_acpi_rtc_status(struct device *dev,
910 unsigned char *rtc_control)
911{
912}
913#endif /* CONFIG_ACPI */
914
915#ifdef CONFIG_PNP
916#define INITSECTION
917
918#else
919#define INITSECTION __init
920#endif
921
922#define SECS_PER_DAY (24 * 60 * 60)
923#define SECS_PER_MONTH (28 * SECS_PER_DAY)
924#define SECS_PER_YEAR (365 * SECS_PER_DAY)
925
926static int INITSECTION
927cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
928{
929 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
930 int retval = 0;
931 unsigned char rtc_control;
932 unsigned address_space;
933 u32 flags = 0;
934 struct nvmem_config nvmem_cfg = {
935 .name = "cmos_nvram",
936 .word_size = 1,
937 .stride = 1,
938 .reg_read = cmos_nvram_read,
939 .reg_write = cmos_nvram_write,
940 .priv = &cmos_rtc,
941 };
942
943 /* there can be only one ... */
944 if (cmos_rtc.dev)
945 return -EBUSY;
946
947 if (!ports)
948 return -ENODEV;
949
950 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
951 *
952 * REVISIT non-x86 systems may instead use memory space resources
953 * (needing ioremap etc), not i/o space resources like this ...
954 */
955 if (RTC_IOMAPPED)
956 ports = request_region(ports->start, resource_size(ports),
957 driver_name);
958 else
959 ports = request_mem_region(ports->start, resource_size(ports),
960 driver_name);
961 if (!ports) {
962 dev_dbg(dev, "i/o registers already in use\n");
963 return -EBUSY;
964 }
965
966 cmos_rtc.irq = rtc_irq;
967 cmos_rtc.iomem = ports;
968
969 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
970 * driver did, but don't reject unknown configs. Old hardware
971 * won't address 128 bytes. Newer chips have multiple banks,
972 * though they may not be listed in one I/O resource.
973 */
974#if defined(CONFIG_ATARI)
975 address_space = 64;
976#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
977 || defined(__sparc__) || defined(__mips__) \
978 || defined(__powerpc__)
979 address_space = 128;
980#else
981#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
982 address_space = 128;
983#endif
984 if (can_bank2 && ports->end > (ports->start + 1))
985 address_space = 256;
986
987 /* For ACPI systems extension info comes from the FADT. On others,
988 * board specific setup provides it as appropriate. Systems where
989 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
990 * some almost-clones) can provide hooks to make that behave.
991 *
992 * Note that ACPI doesn't preclude putting these registers into
993 * "extended" areas of the chip, including some that we won't yet
994 * expect CMOS_READ and friends to handle.
995 */
996 if (info) {
997 if (info->flags)
998 flags = info->flags;
999 if (info->address_space)
1000 address_space = info->address_space;
1001
1002 cmos_rtc.day_alrm = info->rtc_day_alarm;
1003 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
1004 cmos_rtc.century = info->rtc_century;
1005
1006 if (info->wake_on && info->wake_off) {
1007 cmos_rtc.wake_on = info->wake_on;
1008 cmos_rtc.wake_off = info->wake_off;
1009 }
1010 } else {
1011 acpi_cmos_wake_setup(dev);
1012 }
1013
1014 if (cmos_rtc.day_alrm >= 128)
1015 cmos_rtc.day_alrm = 0;
1016
1017 if (cmos_rtc.mon_alrm >= 128)
1018 cmos_rtc.mon_alrm = 0;
1019
1020 if (cmos_rtc.century >= 128)
1021 cmos_rtc.century = 0;
1022
1023 cmos_rtc.dev = dev;
1024 dev_set_drvdata(dev, data: &cmos_rtc);
1025
1026 cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1027 if (IS_ERR(ptr: cmos_rtc.rtc)) {
1028 retval = PTR_ERR(ptr: cmos_rtc.rtc);
1029 goto cleanup0;
1030 }
1031
1032 if (cmos_rtc.mon_alrm)
1033 cmos_rtc.rtc->alarm_offset_max = SECS_PER_YEAR - 1;
1034 else if (cmos_rtc.day_alrm)
1035 cmos_rtc.rtc->alarm_offset_max = SECS_PER_MONTH - 1;
1036 else
1037 cmos_rtc.rtc->alarm_offset_max = SECS_PER_DAY - 1;
1038
1039 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1040
1041 if (!mc146818_does_rtc_work()) {
1042 dev_warn(dev, "broken or not accessible\n");
1043 retval = -ENXIO;
1044 goto cleanup1;
1045 }
1046
1047 spin_lock_irq(lock: &rtc_lock);
1048
1049 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1050 /* force periodic irq to CMOS reset default of 1024Hz;
1051 *
1052 * REVISIT it's been reported that at least one x86_64 ALI
1053 * mobo doesn't use 32KHz here ... for portability we might
1054 * need to do something about other clock frequencies.
1055 */
1056 cmos_rtc.rtc->irq_freq = 1024;
1057 if (use_hpet_alarm())
1058 hpet_set_periodic_freq(freq: cmos_rtc.rtc->irq_freq);
1059 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1060 }
1061
1062 /* disable irqs */
1063 if (is_valid_irq(rtc_irq))
1064 cmos_irq_disable(cmos: &cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1065
1066 rtc_control = CMOS_READ(RTC_CONTROL);
1067
1068 spin_unlock_irq(lock: &rtc_lock);
1069
1070 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1071 dev_warn(dev, "only 24-hr supported\n");
1072 retval = -ENXIO;
1073 goto cleanup1;
1074 }
1075
1076 if (use_hpet_alarm())
1077 hpet_rtc_timer_init();
1078
1079 if (is_valid_irq(rtc_irq)) {
1080 irq_handler_t rtc_cmos_int_handler;
1081
1082 if (use_hpet_alarm()) {
1083 rtc_cmos_int_handler = hpet_rtc_interrupt;
1084 retval = hpet_register_irq_handler(handler: cmos_interrupt);
1085 if (retval) {
1086 hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1087 dev_warn(dev, "hpet_register_irq_handler "
1088 " failed in rtc_init().");
1089 goto cleanup1;
1090 }
1091 } else
1092 rtc_cmos_int_handler = cmos_interrupt;
1093
1094 retval = request_irq(irq: rtc_irq, handler: rtc_cmos_int_handler,
1095 flags: 0, name: dev_name(dev: &cmos_rtc.rtc->dev),
1096 dev: cmos_rtc.rtc);
1097 if (retval < 0) {
1098 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1099 goto cleanup1;
1100 }
1101 } else {
1102 clear_bit(RTC_FEATURE_ALARM, addr: cmos_rtc.rtc->features);
1103 }
1104
1105 cmos_rtc.rtc->ops = &cmos_rtc_ops;
1106
1107 retval = devm_rtc_register_device(cmos_rtc.rtc);
1108 if (retval)
1109 goto cleanup2;
1110
1111 /* Set the sync offset for the periodic 11min update correct */
1112 cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1113
1114 /* export at least the first block of NVRAM */
1115 nvmem_cfg.size = address_space - NVRAM_OFFSET;
1116 devm_rtc_nvmem_register(rtc: cmos_rtc.rtc, nvmem_config: &nvmem_cfg);
1117
1118 /*
1119 * Everything has gone well so far, so by default register a handler for
1120 * the ACPI RTC fixed event.
1121 */
1122 if (!info)
1123 acpi_rtc_event_setup(dev);
1124
1125 dev_info(dev, "%s%s, %d bytes nvram%s\n",
1126 !is_valid_irq(rtc_irq) ? "no alarms" :
1127 cmos_rtc.mon_alrm ? "alarms up to one year" :
1128 cmos_rtc.day_alrm ? "alarms up to one month" :
1129 "alarms up to one day",
1130 cmos_rtc.century ? ", y3k" : "",
1131 nvmem_cfg.size,
1132 use_hpet_alarm() ? ", hpet irqs" : "");
1133
1134 return 0;
1135
1136cleanup2:
1137 if (is_valid_irq(rtc_irq))
1138 free_irq(rtc_irq, cmos_rtc.rtc);
1139cleanup1:
1140 cmos_rtc.dev = NULL;
1141cleanup0:
1142 if (RTC_IOMAPPED)
1143 release_region(ports->start, resource_size(ports));
1144 else
1145 release_mem_region(ports->start, resource_size(ports));
1146 return retval;
1147}
1148
1149static void cmos_do_shutdown(int rtc_irq)
1150{
1151 spin_lock_irq(lock: &rtc_lock);
1152 if (is_valid_irq(rtc_irq))
1153 cmos_irq_disable(cmos: &cmos_rtc, RTC_IRQMASK);
1154 spin_unlock_irq(lock: &rtc_lock);
1155}
1156
1157static void cmos_do_remove(struct device *dev)
1158{
1159 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1160 struct resource *ports;
1161
1162 cmos_do_shutdown(rtc_irq: cmos->irq);
1163
1164 if (is_valid_irq(cmos->irq)) {
1165 free_irq(cmos->irq, cmos->rtc);
1166 if (use_hpet_alarm())
1167 hpet_unregister_irq_handler(handler: cmos_interrupt);
1168 }
1169
1170 if (!dev_get_platdata(dev))
1171 acpi_rtc_event_cleanup();
1172
1173 cmos->rtc = NULL;
1174
1175 ports = cmos->iomem;
1176 if (RTC_IOMAPPED)
1177 release_region(ports->start, resource_size(ports));
1178 else
1179 release_mem_region(ports->start, resource_size(ports));
1180 cmos->iomem = NULL;
1181
1182 cmos->dev = NULL;
1183}
1184
1185static int cmos_aie_poweroff(struct device *dev)
1186{
1187 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1188 struct rtc_time now;
1189 time64_t t_now;
1190 int retval = 0;
1191 unsigned char rtc_control;
1192
1193 if (!cmos->alarm_expires)
1194 return -EINVAL;
1195
1196 spin_lock_irq(lock: &rtc_lock);
1197 rtc_control = CMOS_READ(RTC_CONTROL);
1198 spin_unlock_irq(lock: &rtc_lock);
1199
1200 /* We only care about the situation where AIE is disabled. */
1201 if (rtc_control & RTC_AIE)
1202 return -EBUSY;
1203
1204 cmos_read_time(dev, t: &now);
1205 t_now = rtc_tm_to_time64(tm: &now);
1206
1207 /*
1208 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1209 * automatically right after shutdown on some buggy boxes.
1210 * This automatic rebooting issue won't happen when the alarm
1211 * time is larger than now+1 seconds.
1212 *
1213 * If the alarm time is equal to now+1 seconds, the issue can be
1214 * prevented by cancelling the alarm.
1215 */
1216 if (cmos->alarm_expires == t_now + 1) {
1217 struct rtc_wkalrm alarm;
1218
1219 /* Cancel the AIE timer by configuring the past time. */
1220 rtc_time64_to_tm(time: t_now - 1, tm: &alarm.time);
1221 alarm.enabled = 0;
1222 retval = cmos_set_alarm(dev, t: &alarm);
1223 } else if (cmos->alarm_expires > t_now + 1) {
1224 retval = -EBUSY;
1225 }
1226
1227 return retval;
1228}
1229
1230static int cmos_suspend(struct device *dev)
1231{
1232 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1233 unsigned char tmp;
1234
1235 /* only the alarm might be a wakeup event source */
1236 spin_lock_irq(lock: &rtc_lock);
1237 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1238 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1239 unsigned char mask;
1240
1241 if (device_may_wakeup(dev))
1242 mask = RTC_IRQMASK & ~RTC_AIE;
1243 else
1244 mask = RTC_IRQMASK;
1245 tmp &= ~mask;
1246 CMOS_WRITE(tmp, RTC_CONTROL);
1247 if (use_hpet_alarm())
1248 hpet_mask_rtc_irq_bit(bit_mask: mask);
1249 cmos_checkintr(cmos, rtc_control: tmp);
1250 }
1251 spin_unlock_irq(lock: &rtc_lock);
1252
1253 if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1254 cmos->enabled_wake = 1;
1255 if (cmos->wake_on)
1256 cmos->wake_on(dev);
1257 else
1258 enable_irq_wake(irq: cmos->irq);
1259 }
1260
1261 memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1262 cmos_read_alarm(dev, t: &cmos->saved_wkalrm);
1263
1264 dev_dbg(dev, "suspend%s, ctrl %02x\n",
1265 (tmp & RTC_AIE) ? ", alarm may wake" : "",
1266 tmp);
1267
1268 return 0;
1269}
1270
1271/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1272 * after a detour through G3 "mechanical off", although the ACPI spec
1273 * says wakeup should only work from G1/S4 "hibernate". To most users,
1274 * distinctions between S4 and S5 are pointless. So when the hardware
1275 * allows, don't draw that distinction.
1276 */
1277static inline int cmos_poweroff(struct device *dev)
1278{
1279 if (!IS_ENABLED(CONFIG_PM))
1280 return -ENOSYS;
1281
1282 return cmos_suspend(dev);
1283}
1284
1285static void cmos_check_wkalrm(struct device *dev)
1286{
1287 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1288 struct rtc_wkalrm current_alarm;
1289 time64_t t_now;
1290 time64_t t_current_expires;
1291 time64_t t_saved_expires;
1292 struct rtc_time now;
1293
1294 /* Check if we have RTC Alarm armed */
1295 if (!(cmos->suspend_ctrl & RTC_AIE))
1296 return;
1297
1298 cmos_read_time(dev, t: &now);
1299 t_now = rtc_tm_to_time64(tm: &now);
1300
1301 /*
1302 * ACPI RTC wake event is cleared after resume from STR,
1303 * ACK the rtc irq here
1304 */
1305 if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1306 local_irq_disable();
1307 cmos_interrupt(irq: 0, p: (void *)cmos->rtc);
1308 local_irq_enable();
1309 return;
1310 }
1311
1312 memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1313 cmos_read_alarm(dev, t: &current_alarm);
1314 t_current_expires = rtc_tm_to_time64(tm: &current_alarm.time);
1315 t_saved_expires = rtc_tm_to_time64(tm: &cmos->saved_wkalrm.time);
1316 if (t_current_expires != t_saved_expires ||
1317 cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1318 cmos_set_alarm(dev, t: &cmos->saved_wkalrm);
1319 }
1320}
1321
1322static int __maybe_unused cmos_resume(struct device *dev)
1323{
1324 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1325 unsigned char tmp;
1326
1327 if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1328 if (cmos->wake_off)
1329 cmos->wake_off(dev);
1330 else
1331 disable_irq_wake(irq: cmos->irq);
1332 cmos->enabled_wake = 0;
1333 }
1334
1335 /* The BIOS might have changed the alarm, restore it */
1336 cmos_check_wkalrm(dev);
1337
1338 spin_lock_irq(lock: &rtc_lock);
1339 tmp = cmos->suspend_ctrl;
1340 cmos->suspend_ctrl = 0;
1341 /* re-enable any irqs previously active */
1342 if (tmp & RTC_IRQMASK) {
1343 unsigned char mask;
1344
1345 if (device_may_wakeup(dev) && use_hpet_alarm())
1346 hpet_rtc_timer_init();
1347
1348 do {
1349 CMOS_WRITE(tmp, RTC_CONTROL);
1350 if (use_hpet_alarm())
1351 hpet_set_rtc_irq_bit(bit_mask: tmp & RTC_IRQMASK);
1352
1353 mask = CMOS_READ(RTC_INTR_FLAGS);
1354 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1355 if (!use_hpet_alarm() || !is_intr(rtc_intr: mask))
1356 break;
1357
1358 /* force one-shot behavior if HPET blocked
1359 * the wake alarm's irq
1360 */
1361 rtc_update_irq(rtc: cmos->rtc, num: 1, events: mask);
1362 tmp &= ~RTC_AIE;
1363 hpet_mask_rtc_irq_bit(RTC_AIE);
1364 } while (mask & RTC_AIE);
1365
1366 if (tmp & RTC_AIE)
1367 cmos_check_acpi_rtc_status(dev, rtc_control: &tmp);
1368 }
1369 spin_unlock_irq(lock: &rtc_lock);
1370
1371 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1372
1373 return 0;
1374}
1375
1376static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1377
1378/*----------------------------------------------------------------*/
1379
1380/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1381 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1382 * probably list them in similar PNPBIOS tables; so PNP is more common.
1383 *
1384 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
1385 * predate even PNPBIOS should set up platform_bus devices.
1386 */
1387
1388#ifdef CONFIG_PNP
1389
1390#include <linux/pnp.h>
1391
1392static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1393{
1394 int irq;
1395
1396 if (pnp_port_start(dev: pnp, bar: 0) == 0x70 && !pnp_irq_valid(dev: pnp, bar: 0)) {
1397 irq = 0;
1398#ifdef CONFIG_X86
1399 /* Some machines contain a PNP entry for the RTC, but
1400 * don't define the IRQ. It should always be safe to
1401 * hardcode it on systems with a legacy PIC.
1402 */
1403 if (nr_legacy_irqs())
1404 irq = RTC_IRQ;
1405#endif
1406 } else {
1407 irq = pnp_irq(dev: pnp, bar: 0);
1408 }
1409
1410 return cmos_do_probe(dev: &pnp->dev, ports: pnp_get_resource(dev: pnp, IORESOURCE_IO, num: 0), rtc_irq: irq);
1411}
1412
1413static void cmos_pnp_remove(struct pnp_dev *pnp)
1414{
1415 cmos_do_remove(dev: &pnp->dev);
1416}
1417
1418static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1419{
1420 struct device *dev = &pnp->dev;
1421 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1422
1423 if (system_state == SYSTEM_POWER_OFF) {
1424 int retval = cmos_poweroff(dev);
1425
1426 if (cmos_aie_poweroff(dev) < 0 && !retval)
1427 return;
1428 }
1429
1430 cmos_do_shutdown(rtc_irq: cmos->irq);
1431}
1432
1433static const struct pnp_device_id rtc_ids[] = {
1434 { .id = "PNP0b00", },
1435 { .id = "PNP0b01", },
1436 { .id = "PNP0b02", },
1437 { },
1438};
1439MODULE_DEVICE_TABLE(pnp, rtc_ids);
1440
1441static struct pnp_driver cmos_pnp_driver = {
1442 .name = driver_name,
1443 .id_table = rtc_ids,
1444 .probe = cmos_pnp_probe,
1445 .remove = cmos_pnp_remove,
1446 .shutdown = cmos_pnp_shutdown,
1447
1448 /* flag ensures resume() gets called, and stops syslog spam */
1449 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1450 .driver = {
1451 .pm = &cmos_pm_ops,
1452 },
1453};
1454
1455#endif /* CONFIG_PNP */
1456
1457#ifdef CONFIG_OF
1458static const struct of_device_id of_cmos_match[] = {
1459 {
1460 .compatible = "motorola,mc146818",
1461 },
1462 { },
1463};
1464MODULE_DEVICE_TABLE(of, of_cmos_match);
1465
1466static __init void cmos_of_init(struct platform_device *pdev)
1467{
1468 struct device_node *node = pdev->dev.of_node;
1469 const __be32 *val;
1470
1471 if (!node)
1472 return;
1473
1474 val = of_get_property(node, name: "ctrl-reg", NULL);
1475 if (val)
1476 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1477
1478 val = of_get_property(node, name: "freq-reg", NULL);
1479 if (val)
1480 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1481}
1482#else
1483static inline void cmos_of_init(struct platform_device *pdev) {}
1484#endif
1485/*----------------------------------------------------------------*/
1486
1487/* Platform setup should have set up an RTC device, when PNP is
1488 * unavailable ... this could happen even on (older) PCs.
1489 */
1490
1491static int __init cmos_platform_probe(struct platform_device *pdev)
1492{
1493 struct resource *resource;
1494 int irq;
1495
1496 cmos_of_init(pdev);
1497
1498 if (RTC_IOMAPPED)
1499 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1500 else
1501 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502 irq = platform_get_irq(pdev, 0);
1503 if (irq < 0)
1504 irq = -1;
1505
1506 return cmos_do_probe(dev: &pdev->dev, ports: resource, rtc_irq: irq);
1507}
1508
1509static void cmos_platform_remove(struct platform_device *pdev)
1510{
1511 cmos_do_remove(dev: &pdev->dev);
1512}
1513
1514static void cmos_platform_shutdown(struct platform_device *pdev)
1515{
1516 struct device *dev = &pdev->dev;
1517 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1518
1519 if (system_state == SYSTEM_POWER_OFF) {
1520 int retval = cmos_poweroff(dev);
1521
1522 if (cmos_aie_poweroff(dev) < 0 && !retval)
1523 return;
1524 }
1525
1526 cmos_do_shutdown(rtc_irq: cmos->irq);
1527}
1528
1529/* work with hotplug and coldplug */
1530MODULE_ALIAS("platform:rtc_cmos");
1531
1532static struct platform_driver cmos_platform_driver = {
1533 .remove_new = cmos_platform_remove,
1534 .shutdown = cmos_platform_shutdown,
1535 .driver = {
1536 .name = driver_name,
1537 .pm = &cmos_pm_ops,
1538 .of_match_table = of_match_ptr(of_cmos_match),
1539 }
1540};
1541
1542#ifdef CONFIG_PNP
1543static bool pnp_driver_registered;
1544#endif
1545static bool platform_driver_registered;
1546
1547static int __init cmos_init(void)
1548{
1549 int retval = 0;
1550
1551#ifdef CONFIG_PNP
1552 retval = pnp_register_driver(drv: &cmos_pnp_driver);
1553 if (retval == 0)
1554 pnp_driver_registered = true;
1555#endif
1556
1557 if (!cmos_rtc.dev) {
1558 retval = platform_driver_probe(&cmos_platform_driver,
1559 cmos_platform_probe);
1560 if (retval == 0)
1561 platform_driver_registered = true;
1562 }
1563
1564 if (retval == 0)
1565 return 0;
1566
1567#ifdef CONFIG_PNP
1568 if (pnp_driver_registered)
1569 pnp_unregister_driver(drv: &cmos_pnp_driver);
1570#endif
1571 return retval;
1572}
1573module_init(cmos_init);
1574
1575static void __exit cmos_exit(void)
1576{
1577#ifdef CONFIG_PNP
1578 if (pnp_driver_registered)
1579 pnp_unregister_driver(drv: &cmos_pnp_driver);
1580#endif
1581 if (platform_driver_registered)
1582 platform_driver_unregister(&cmos_platform_driver);
1583}
1584module_exit(cmos_exit);
1585
1586
1587MODULE_AUTHOR("David Brownell");
1588MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1589MODULE_LICENSE("GPL");
1590

source code of linux/drivers/rtc/rtc-cmos.c