1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright 2016 IBM Corporation
4 *
5 * Joel Stanley <joel@jms.id.au>
6 */
7
8#include <linux/bits.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/io.h>
12#include <linux/kernel.h>
13#include <linux/kstrtox.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_irq.h>
17#include <linux/platform_device.h>
18#include <linux/watchdog.h>
19
20static bool nowayout = WATCHDOG_NOWAYOUT;
21module_param(nowayout, bool, 0);
22MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
23 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
24
25struct aspeed_wdt_config {
26 u32 ext_pulse_width_mask;
27 u32 irq_shift;
28 u32 irq_mask;
29};
30
31struct aspeed_wdt {
32 struct watchdog_device wdd;
33 void __iomem *base;
34 u32 ctrl;
35 const struct aspeed_wdt_config *cfg;
36};
37
38static const struct aspeed_wdt_config ast2400_config = {
39 .ext_pulse_width_mask = 0xff,
40 .irq_shift = 0,
41 .irq_mask = 0,
42};
43
44static const struct aspeed_wdt_config ast2500_config = {
45 .ext_pulse_width_mask = 0xfffff,
46 .irq_shift = 12,
47 .irq_mask = GENMASK(31, 12),
48};
49
50static const struct aspeed_wdt_config ast2600_config = {
51 .ext_pulse_width_mask = 0xfffff,
52 .irq_shift = 0,
53 .irq_mask = GENMASK(31, 10),
54};
55
56static const struct of_device_id aspeed_wdt_of_table[] = {
57 { .compatible = "aspeed,ast2400-wdt", .data = &ast2400_config },
58 { .compatible = "aspeed,ast2500-wdt", .data = &ast2500_config },
59 { .compatible = "aspeed,ast2600-wdt", .data = &ast2600_config },
60 { },
61};
62MODULE_DEVICE_TABLE(of, aspeed_wdt_of_table);
63
64#define WDT_STATUS 0x00
65#define WDT_RELOAD_VALUE 0x04
66#define WDT_RESTART 0x08
67#define WDT_CTRL 0x0C
68#define WDT_CTRL_BOOT_SECONDARY BIT(7)
69#define WDT_CTRL_RESET_MODE_SOC (0x00 << 5)
70#define WDT_CTRL_RESET_MODE_FULL_CHIP (0x01 << 5)
71#define WDT_CTRL_RESET_MODE_ARM_CPU (0x10 << 5)
72#define WDT_CTRL_1MHZ_CLK BIT(4)
73#define WDT_CTRL_WDT_EXT BIT(3)
74#define WDT_CTRL_WDT_INTR BIT(2)
75#define WDT_CTRL_RESET_SYSTEM BIT(1)
76#define WDT_CTRL_ENABLE BIT(0)
77#define WDT_TIMEOUT_STATUS 0x10
78#define WDT_TIMEOUT_STATUS_IRQ BIT(2)
79#define WDT_TIMEOUT_STATUS_BOOT_SECONDARY BIT(1)
80#define WDT_CLEAR_TIMEOUT_STATUS 0x14
81#define WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION BIT(0)
82#define WDT_RESET_MASK1 0x1c
83#define WDT_RESET_MASK2 0x20
84
85/*
86 * WDT_RESET_WIDTH controls the characteristics of the external pulse (if
87 * enabled), specifically:
88 *
89 * * Pulse duration
90 * * Drive mode: push-pull vs open-drain
91 * * Polarity: Active high or active low
92 *
93 * Pulse duration configuration is available on both the AST2400 and AST2500,
94 * though the field changes between SoCs:
95 *
96 * AST2400: Bits 7:0
97 * AST2500: Bits 19:0
98 *
99 * This difference is captured in struct aspeed_wdt_config.
100 *
101 * The AST2500 exposes the drive mode and polarity options, but not in a
102 * regular fashion. For read purposes, bit 31 represents active high or low,
103 * and bit 30 represents push-pull or open-drain. With respect to write, magic
104 * values need to be written to the top byte to change the state of the drive
105 * mode and polarity bits. Any other value written to the top byte has no
106 * effect on the state of the drive mode or polarity bits. However, the pulse
107 * width value must be preserved (as desired) if written.
108 */
109#define WDT_RESET_WIDTH 0x18
110#define WDT_RESET_WIDTH_ACTIVE_HIGH BIT(31)
111#define WDT_ACTIVE_HIGH_MAGIC (0xA5 << 24)
112#define WDT_ACTIVE_LOW_MAGIC (0x5A << 24)
113#define WDT_RESET_WIDTH_PUSH_PULL BIT(30)
114#define WDT_PUSH_PULL_MAGIC (0xA8 << 24)
115#define WDT_OPEN_DRAIN_MAGIC (0x8A << 24)
116
117#define WDT_RESTART_MAGIC 0x4755
118
119/* 32 bits at 1MHz, in milliseconds */
120#define WDT_MAX_TIMEOUT_MS 4294967
121#define WDT_DEFAULT_TIMEOUT 30
122#define WDT_RATE_1MHZ 1000000
123
124static struct aspeed_wdt *to_aspeed_wdt(struct watchdog_device *wdd)
125{
126 return container_of(wdd, struct aspeed_wdt, wdd);
127}
128
129static void aspeed_wdt_enable(struct aspeed_wdt *wdt, int count)
130{
131 wdt->ctrl |= WDT_CTRL_ENABLE;
132
133 writel(val: 0, addr: wdt->base + WDT_CTRL);
134 writel(val: count, addr: wdt->base + WDT_RELOAD_VALUE);
135 writel(WDT_RESTART_MAGIC, addr: wdt->base + WDT_RESTART);
136 writel(val: wdt->ctrl, addr: wdt->base + WDT_CTRL);
137}
138
139static int aspeed_wdt_start(struct watchdog_device *wdd)
140{
141 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
142
143 aspeed_wdt_enable(wdt, count: wdd->timeout * WDT_RATE_1MHZ);
144
145 return 0;
146}
147
148static int aspeed_wdt_stop(struct watchdog_device *wdd)
149{
150 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
151
152 wdt->ctrl &= ~WDT_CTRL_ENABLE;
153 writel(val: wdt->ctrl, addr: wdt->base + WDT_CTRL);
154
155 return 0;
156}
157
158static int aspeed_wdt_ping(struct watchdog_device *wdd)
159{
160 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
161
162 writel(WDT_RESTART_MAGIC, addr: wdt->base + WDT_RESTART);
163
164 return 0;
165}
166
167static int aspeed_wdt_set_timeout(struct watchdog_device *wdd,
168 unsigned int timeout)
169{
170 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
171 u32 actual;
172
173 wdd->timeout = timeout;
174
175 actual = min(timeout, wdd->max_hw_heartbeat_ms / 1000);
176
177 writel(val: actual * WDT_RATE_1MHZ, addr: wdt->base + WDT_RELOAD_VALUE);
178 writel(WDT_RESTART_MAGIC, addr: wdt->base + WDT_RESTART);
179
180 return 0;
181}
182
183static int aspeed_wdt_set_pretimeout(struct watchdog_device *wdd,
184 unsigned int pretimeout)
185{
186 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
187 u32 actual = pretimeout * WDT_RATE_1MHZ;
188 u32 s = wdt->cfg->irq_shift;
189 u32 m = wdt->cfg->irq_mask;
190
191 wdd->pretimeout = pretimeout;
192 wdt->ctrl &= ~m;
193 if (pretimeout)
194 wdt->ctrl |= ((actual << s) & m) | WDT_CTRL_WDT_INTR;
195 else
196 wdt->ctrl &= ~WDT_CTRL_WDT_INTR;
197
198 writel(val: wdt->ctrl, addr: wdt->base + WDT_CTRL);
199
200 return 0;
201}
202
203static int aspeed_wdt_restart(struct watchdog_device *wdd,
204 unsigned long action, void *data)
205{
206 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
207
208 wdt->ctrl &= ~WDT_CTRL_BOOT_SECONDARY;
209 aspeed_wdt_enable(wdt, count: 128 * WDT_RATE_1MHZ / 1000);
210
211 mdelay(1000);
212
213 return 0;
214}
215
216/* access_cs0 shows if cs0 is accessible, hence the reverted bit */
217static ssize_t access_cs0_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219{
220 struct aspeed_wdt *wdt = dev_get_drvdata(dev);
221 u32 status = readl(addr: wdt->base + WDT_TIMEOUT_STATUS);
222
223 return sysfs_emit(buf, fmt: "%u\n",
224 !(status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY));
225}
226
227static ssize_t access_cs0_store(struct device *dev,
228 struct device_attribute *attr, const char *buf,
229 size_t size)
230{
231 struct aspeed_wdt *wdt = dev_get_drvdata(dev);
232 unsigned long val;
233
234 if (kstrtoul(s: buf, base: 10, res: &val))
235 return -EINVAL;
236
237 if (val)
238 writel(WDT_CLEAR_TIMEOUT_AND_BOOT_CODE_SELECTION,
239 addr: wdt->base + WDT_CLEAR_TIMEOUT_STATUS);
240
241 return size;
242}
243
244/*
245 * This attribute exists only if the system has booted from the alternate
246 * flash with 'alt-boot' option.
247 *
248 * At alternate flash the 'access_cs0' sysfs node provides:
249 * ast2400: a way to get access to the primary SPI flash chip at CS0
250 * after booting from the alternate chip at CS1.
251 * ast2500: a way to restore the normal address mapping from
252 * (CS0->CS1, CS1->CS0) to (CS0->CS0, CS1->CS1).
253 *
254 * Clearing the boot code selection and timeout counter also resets to the
255 * initial state the chip select line mapping. When the SoC is in normal
256 * mapping state (i.e. booted from CS0), clearing those bits does nothing for
257 * both versions of the SoC. For alternate boot mode (booted from CS1 due to
258 * wdt2 expiration) the behavior differs as described above.
259 *
260 * This option can be used with wdt2 (watchdog1) only.
261 */
262static DEVICE_ATTR_RW(access_cs0);
263
264static struct attribute *bswitch_attrs[] = {
265 &dev_attr_access_cs0.attr,
266 NULL
267};
268ATTRIBUTE_GROUPS(bswitch);
269
270static const struct watchdog_ops aspeed_wdt_ops = {
271 .start = aspeed_wdt_start,
272 .stop = aspeed_wdt_stop,
273 .ping = aspeed_wdt_ping,
274 .set_timeout = aspeed_wdt_set_timeout,
275 .set_pretimeout = aspeed_wdt_set_pretimeout,
276 .restart = aspeed_wdt_restart,
277 .owner = THIS_MODULE,
278};
279
280static const struct watchdog_info aspeed_wdt_info = {
281 .options = WDIOF_KEEPALIVEPING
282 | WDIOF_MAGICCLOSE
283 | WDIOF_SETTIMEOUT,
284 .identity = KBUILD_MODNAME,
285};
286
287static const struct watchdog_info aspeed_wdt_pretimeout_info = {
288 .options = WDIOF_KEEPALIVEPING
289 | WDIOF_PRETIMEOUT
290 | WDIOF_MAGICCLOSE
291 | WDIOF_SETTIMEOUT,
292 .identity = KBUILD_MODNAME,
293};
294
295static irqreturn_t aspeed_wdt_irq(int irq, void *arg)
296{
297 struct watchdog_device *wdd = arg;
298 struct aspeed_wdt *wdt = to_aspeed_wdt(wdd);
299 u32 status = readl(addr: wdt->base + WDT_TIMEOUT_STATUS);
300
301 if (status & WDT_TIMEOUT_STATUS_IRQ)
302 watchdog_notify_pretimeout(wdd);
303
304 return IRQ_HANDLED;
305}
306
307static int aspeed_wdt_probe(struct platform_device *pdev)
308{
309 struct device *dev = &pdev->dev;
310 const struct of_device_id *ofdid;
311 struct aspeed_wdt *wdt;
312 struct device_node *np;
313 const char *reset_type;
314 u32 duration;
315 u32 status;
316 int ret;
317
318 wdt = devm_kzalloc(dev, size: sizeof(*wdt), GFP_KERNEL);
319 if (!wdt)
320 return -ENOMEM;
321
322 np = dev->of_node;
323
324 ofdid = of_match_node(matches: aspeed_wdt_of_table, node: np);
325 if (!ofdid)
326 return -EINVAL;
327 wdt->cfg = ofdid->data;
328
329 wdt->base = devm_platform_ioremap_resource(pdev, index: 0);
330 if (IS_ERR(ptr: wdt->base))
331 return PTR_ERR(ptr: wdt->base);
332
333 wdt->wdd.info = &aspeed_wdt_info;
334
335 if (wdt->cfg->irq_mask) {
336 int irq = platform_get_irq_optional(pdev, 0);
337
338 if (irq > 0) {
339 ret = devm_request_irq(dev, irq, handler: aspeed_wdt_irq,
340 IRQF_SHARED, devname: dev_name(dev),
341 dev_id: wdt);
342 if (ret)
343 return ret;
344
345 wdt->wdd.info = &aspeed_wdt_pretimeout_info;
346 }
347 }
348
349 wdt->wdd.ops = &aspeed_wdt_ops;
350 wdt->wdd.max_hw_heartbeat_ms = WDT_MAX_TIMEOUT_MS;
351 wdt->wdd.parent = dev;
352
353 wdt->wdd.timeout = WDT_DEFAULT_TIMEOUT;
354 watchdog_init_timeout(wdd: &wdt->wdd, timeout_parm: 0, dev);
355
356 watchdog_set_nowayout(wdd: &wdt->wdd, nowayout);
357
358 /*
359 * On clock rates:
360 * - ast2400 wdt can run at PCLK, or 1MHz
361 * - ast2500 only runs at 1MHz, hard coding bit 4 to 1
362 * - ast2600 always runs at 1MHz
363 *
364 * Set the ast2400 to run at 1MHz as it simplifies the driver.
365 */
366 if (of_device_is_compatible(device: np, "aspeed,ast2400-wdt"))
367 wdt->ctrl = WDT_CTRL_1MHZ_CLK;
368
369 /*
370 * Control reset on a per-device basis to ensure the
371 * host is not affected by a BMC reboot
372 */
373 ret = of_property_read_string(np, propname: "aspeed,reset-type", out_string: &reset_type);
374 if (ret) {
375 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC | WDT_CTRL_RESET_SYSTEM;
376 } else {
377 if (!strcmp(reset_type, "cpu"))
378 wdt->ctrl |= WDT_CTRL_RESET_MODE_ARM_CPU |
379 WDT_CTRL_RESET_SYSTEM;
380 else if (!strcmp(reset_type, "soc"))
381 wdt->ctrl |= WDT_CTRL_RESET_MODE_SOC |
382 WDT_CTRL_RESET_SYSTEM;
383 else if (!strcmp(reset_type, "system"))
384 wdt->ctrl |= WDT_CTRL_RESET_MODE_FULL_CHIP |
385 WDT_CTRL_RESET_SYSTEM;
386 else if (strcmp(reset_type, "none"))
387 return -EINVAL;
388 }
389 if (of_property_read_bool(np, propname: "aspeed,external-signal"))
390 wdt->ctrl |= WDT_CTRL_WDT_EXT;
391 if (of_property_read_bool(np, propname: "aspeed,alt-boot"))
392 wdt->ctrl |= WDT_CTRL_BOOT_SECONDARY;
393
394 if (readl(addr: wdt->base + WDT_CTRL) & WDT_CTRL_ENABLE) {
395 /*
396 * The watchdog is running, but invoke aspeed_wdt_start() to
397 * write wdt->ctrl to WDT_CTRL to ensure the watchdog's
398 * configuration conforms to the driver's expectations.
399 * Primarily, ensure we're using the 1MHz clock source.
400 */
401 aspeed_wdt_start(wdd: &wdt->wdd);
402 set_bit(WDOG_HW_RUNNING, addr: &wdt->wdd.status);
403 }
404
405 if ((of_device_is_compatible(device: np, "aspeed,ast2500-wdt")) ||
406 (of_device_is_compatible(device: np, "aspeed,ast2600-wdt"))) {
407 u32 reset_mask[2];
408 size_t nrstmask = of_device_is_compatible(device: np, "aspeed,ast2600-wdt") ? 2 : 1;
409 u32 reg = readl(addr: wdt->base + WDT_RESET_WIDTH);
410
411 reg &= wdt->cfg->ext_pulse_width_mask;
412 if (of_property_read_bool(np, propname: "aspeed,ext-active-high"))
413 reg |= WDT_ACTIVE_HIGH_MAGIC;
414 else
415 reg |= WDT_ACTIVE_LOW_MAGIC;
416
417 writel(val: reg, addr: wdt->base + WDT_RESET_WIDTH);
418
419 reg &= wdt->cfg->ext_pulse_width_mask;
420 if (of_property_read_bool(np, propname: "aspeed,ext-push-pull"))
421 reg |= WDT_PUSH_PULL_MAGIC;
422 else
423 reg |= WDT_OPEN_DRAIN_MAGIC;
424
425 writel(val: reg, addr: wdt->base + WDT_RESET_WIDTH);
426
427 ret = of_property_read_u32_array(np, propname: "aspeed,reset-mask", out_values: reset_mask, sz: nrstmask);
428 if (!ret) {
429 writel(val: reset_mask[0], addr: wdt->base + WDT_RESET_MASK1);
430 if (nrstmask > 1)
431 writel(val: reset_mask[1], addr: wdt->base + WDT_RESET_MASK2);
432 }
433 }
434
435 if (!of_property_read_u32(np, propname: "aspeed,ext-pulse-duration", out_value: &duration)) {
436 u32 max_duration = wdt->cfg->ext_pulse_width_mask + 1;
437
438 if (duration == 0 || duration > max_duration) {
439 dev_err(dev, "Invalid pulse duration: %uus\n",
440 duration);
441 duration = max(1U, min(max_duration, duration));
442 dev_info(dev, "Pulse duration set to %uus\n",
443 duration);
444 }
445
446 /*
447 * The watchdog is always configured with a 1MHz source, so
448 * there is no need to scale the microsecond value. However we
449 * need to offset it - from the datasheet:
450 *
451 * "This register decides the asserting duration of wdt_ext and
452 * wdt_rstarm signal. The default value is 0xFF. It means the
453 * default asserting duration of wdt_ext and wdt_rstarm is
454 * 256us."
455 *
456 * This implies a value of 0 gives a 1us pulse.
457 */
458 writel(val: duration - 1, addr: wdt->base + WDT_RESET_WIDTH);
459 }
460
461 status = readl(addr: wdt->base + WDT_TIMEOUT_STATUS);
462 if (status & WDT_TIMEOUT_STATUS_BOOT_SECONDARY) {
463 wdt->wdd.bootstatus = WDIOF_CARDRESET;
464
465 if (of_device_is_compatible(device: np, "aspeed,ast2400-wdt") ||
466 of_device_is_compatible(device: np, "aspeed,ast2500-wdt"))
467 wdt->wdd.groups = bswitch_groups;
468 }
469
470 dev_set_drvdata(dev, data: wdt);
471
472 return devm_watchdog_register_device(dev, &wdt->wdd);
473}
474
475static struct platform_driver aspeed_watchdog_driver = {
476 .probe = aspeed_wdt_probe,
477 .driver = {
478 .name = KBUILD_MODNAME,
479 .of_match_table = aspeed_wdt_of_table,
480 },
481};
482
483static int __init aspeed_wdt_init(void)
484{
485 return platform_driver_register(&aspeed_watchdog_driver);
486}
487arch_initcall(aspeed_wdt_init);
488
489static void __exit aspeed_wdt_exit(void)
490{
491 platform_driver_unregister(&aspeed_watchdog_driver);
492}
493module_exit(aspeed_wdt_exit);
494
495MODULE_DESCRIPTION("Aspeed Watchdog Driver");
496MODULE_LICENSE("GPL");
497

source code of linux/drivers/watchdog/aspeed_wdt.c