1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51#include <linux/fsverity.h>
52#include <linux/sched/isolation.h>
53
54#include "internal.h"
55
56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58 enum rw_hint hint, struct writeback_control *wbc);
59
60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62inline void touch_buffer(struct buffer_head *bh)
63{
64 trace_block_touch_buffer(bh);
65 folio_mark_accessed(bh->b_folio);
66}
67EXPORT_SYMBOL(touch_buffer);
68
69void __lock_buffer(struct buffer_head *bh)
70{
71 wait_on_bit_lock_io(word: &bh->b_state, bit: BH_Lock, TASK_UNINTERRUPTIBLE);
72}
73EXPORT_SYMBOL(__lock_buffer);
74
75void unlock_buffer(struct buffer_head *bh)
76{
77 clear_bit_unlock(nr: BH_Lock, addr: &bh->b_state);
78 smp_mb__after_atomic();
79 wake_up_bit(word: &bh->b_state, bit: BH_Lock);
80}
81EXPORT_SYMBOL(unlock_buffer);
82
83/*
84 * Returns if the folio has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the folio_test_dirty information is stale. If
86 * any of the buffers are locked, it is assumed they are locked for IO.
87 */
88void buffer_check_dirty_writeback(struct folio *folio,
89 bool *dirty, bool *writeback)
90{
91 struct buffer_head *head, *bh;
92 *dirty = false;
93 *writeback = false;
94
95 BUG_ON(!folio_test_locked(folio));
96
97 head = folio_buffers(folio);
98 if (!head)
99 return;
100
101 if (folio_test_writeback(folio))
102 *writeback = true;
103
104 bh = head;
105 do {
106 if (buffer_locked(bh))
107 *writeback = true;
108
109 if (buffer_dirty(bh))
110 *dirty = true;
111
112 bh = bh->b_this_page;
113 } while (bh != head);
114}
115
116/*
117 * Block until a buffer comes unlocked. This doesn't stop it
118 * from becoming locked again - you have to lock it yourself
119 * if you want to preserve its state.
120 */
121void __wait_on_buffer(struct buffer_head * bh)
122{
123 wait_on_bit_io(word: &bh->b_state, bit: BH_Lock, TASK_UNINTERRUPTIBLE);
124}
125EXPORT_SYMBOL(__wait_on_buffer);
126
127static void buffer_io_error(struct buffer_head *bh, char *msg)
128{
129 if (!test_bit(BH_Quiet, &bh->b_state))
130 printk_ratelimited(KERN_ERR
131 "Buffer I/O error on dev %pg, logical block %llu%s\n",
132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133}
134
135/*
136 * End-of-IO handler helper function which does not touch the bh after
137 * unlocking it.
138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139 * a race there is benign: unlock_buffer() only use the bh's address for
140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
141 * itself.
142 */
143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144{
145 if (uptodate) {
146 set_buffer_uptodate(bh);
147 } else {
148 /* This happens, due to failed read-ahead attempts. */
149 clear_buffer_uptodate(bh);
150 }
151 unlock_buffer(bh);
152}
153
154/*
155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
156 * unlock the buffer.
157 */
158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159{
160 __end_buffer_read_notouch(bh, uptodate);
161 put_bh(bh);
162}
163EXPORT_SYMBOL(end_buffer_read_sync);
164
165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166{
167 if (uptodate) {
168 set_buffer_uptodate(bh);
169 } else {
170 buffer_io_error(bh, msg: ", lost sync page write");
171 mark_buffer_write_io_error(bh);
172 clear_buffer_uptodate(bh);
173 }
174 unlock_buffer(bh);
175 put_bh(bh);
176}
177EXPORT_SYMBOL(end_buffer_write_sync);
178
179/*
180 * Various filesystems appear to want __find_get_block to be non-blocking.
181 * But it's the page lock which protects the buffers. To get around this,
182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
183 * i_private_lock.
184 *
185 * Hack idea: for the blockdev mapping, i_private_lock contention
186 * may be quite high. This code could TryLock the page, and if that
187 * succeeds, there is no need to take i_private_lock.
188 */
189static struct buffer_head *
190__find_get_block_slow(struct block_device *bdev, sector_t block)
191{
192 struct inode *bd_inode = bdev->bd_inode;
193 struct address_space *bd_mapping = bd_inode->i_mapping;
194 struct buffer_head *ret = NULL;
195 pgoff_t index;
196 struct buffer_head *bh;
197 struct buffer_head *head;
198 struct folio *folio;
199 int all_mapped = 1;
200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202 index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
203 folio = __filemap_get_folio(mapping: bd_mapping, index, FGP_ACCESSED, gfp: 0);
204 if (IS_ERR(ptr: folio))
205 goto out;
206
207 spin_lock(lock: &bd_mapping->i_private_lock);
208 head = folio_buffers(folio);
209 if (!head)
210 goto out_unlock;
211 bh = head;
212 do {
213 if (!buffer_mapped(bh))
214 all_mapped = 0;
215 else if (bh->b_blocknr == block) {
216 ret = bh;
217 get_bh(bh);
218 goto out_unlock;
219 }
220 bh = bh->b_this_page;
221 } while (bh != head);
222
223 /* we might be here because some of the buffers on this page are
224 * not mapped. This is due to various races between
225 * file io on the block device and getblk. It gets dealt with
226 * elsewhere, don't buffer_error if we had some unmapped buffers
227 */
228 ratelimit_set_flags(rs: &last_warned, RATELIMIT_MSG_ON_RELEASE);
229 if (all_mapped && __ratelimit(&last_warned)) {
230 printk("__find_get_block_slow() failed. block=%llu, "
231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232 "device %pg blocksize: %d\n",
233 (unsigned long long)block,
234 (unsigned long long)bh->b_blocknr,
235 bh->b_state, bh->b_size, bdev,
236 1 << bd_inode->i_blkbits);
237 }
238out_unlock:
239 spin_unlock(lock: &bd_mapping->i_private_lock);
240 folio_put(folio);
241out:
242 return ret;
243}
244
245static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246{
247 unsigned long flags;
248 struct buffer_head *first;
249 struct buffer_head *tmp;
250 struct folio *folio;
251 int folio_uptodate = 1;
252
253 BUG_ON(!buffer_async_read(bh));
254
255 folio = bh->b_folio;
256 if (uptodate) {
257 set_buffer_uptodate(bh);
258 } else {
259 clear_buffer_uptodate(bh);
260 buffer_io_error(bh, msg: ", async page read");
261 folio_set_error(folio);
262 }
263
264 /*
265 * Be _very_ careful from here on. Bad things can happen if
266 * two buffer heads end IO at almost the same time and both
267 * decide that the page is now completely done.
268 */
269 first = folio_buffers(folio);
270 spin_lock_irqsave(&first->b_uptodate_lock, flags);
271 clear_buffer_async_read(bh);
272 unlock_buffer(bh);
273 tmp = bh;
274 do {
275 if (!buffer_uptodate(bh: tmp))
276 folio_uptodate = 0;
277 if (buffer_async_read(bh: tmp)) {
278 BUG_ON(!buffer_locked(tmp));
279 goto still_busy;
280 }
281 tmp = tmp->b_this_page;
282 } while (tmp != bh);
283 spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags);
284
285 folio_end_read(folio, success: folio_uptodate);
286 return;
287
288still_busy:
289 spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags);
290 return;
291}
292
293struct postprocess_bh_ctx {
294 struct work_struct work;
295 struct buffer_head *bh;
296};
297
298static void verify_bh(struct work_struct *work)
299{
300 struct postprocess_bh_ctx *ctx =
301 container_of(work, struct postprocess_bh_ctx, work);
302 struct buffer_head *bh = ctx->bh;
303 bool valid;
304
305 valid = fsverity_verify_blocks(folio: bh->b_folio, len: bh->b_size, offset: bh_offset(bh));
306 end_buffer_async_read(bh, uptodate: valid);
307 kfree(objp: ctx);
308}
309
310static bool need_fsverity(struct buffer_head *bh)
311{
312 struct folio *folio = bh->b_folio;
313 struct inode *inode = folio->mapping->host;
314
315 return fsverity_active(inode) &&
316 /* needed by ext4 */
317 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318}
319
320static void decrypt_bh(struct work_struct *work)
321{
322 struct postprocess_bh_ctx *ctx =
323 container_of(work, struct postprocess_bh_ctx, work);
324 struct buffer_head *bh = ctx->bh;
325 int err;
326
327 err = fscrypt_decrypt_pagecache_blocks(folio: bh->b_folio, len: bh->b_size,
328 offs: bh_offset(bh));
329 if (err == 0 && need_fsverity(bh)) {
330 /*
331 * We use different work queues for decryption and for verity
332 * because verity may require reading metadata pages that need
333 * decryption, and we shouldn't recurse to the same workqueue.
334 */
335 INIT_WORK(&ctx->work, verify_bh);
336 fsverity_enqueue_verify_work(work: &ctx->work);
337 return;
338 }
339 end_buffer_async_read(bh, uptodate: err == 0);
340 kfree(objp: ctx);
341}
342
343/*
344 * I/O completion handler for block_read_full_folio() - pages
345 * which come unlocked at the end of I/O.
346 */
347static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348{
349 struct inode *inode = bh->b_folio->mapping->host;
350 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351 bool verify = need_fsverity(bh);
352
353 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354 if (uptodate && (decrypt || verify)) {
355 struct postprocess_bh_ctx *ctx =
356 kmalloc(size: sizeof(*ctx), GFP_ATOMIC);
357
358 if (ctx) {
359 ctx->bh = bh;
360 if (decrypt) {
361 INIT_WORK(&ctx->work, decrypt_bh);
362 fscrypt_enqueue_decrypt_work(&ctx->work);
363 } else {
364 INIT_WORK(&ctx->work, verify_bh);
365 fsverity_enqueue_verify_work(work: &ctx->work);
366 }
367 return;
368 }
369 uptodate = 0;
370 }
371 end_buffer_async_read(bh, uptodate);
372}
373
374/*
375 * Completion handler for block_write_full_folio() - folios which are unlocked
376 * during I/O, and which have the writeback flag cleared upon I/O completion.
377 */
378static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379{
380 unsigned long flags;
381 struct buffer_head *first;
382 struct buffer_head *tmp;
383 struct folio *folio;
384
385 BUG_ON(!buffer_async_write(bh));
386
387 folio = bh->b_folio;
388 if (uptodate) {
389 set_buffer_uptodate(bh);
390 } else {
391 buffer_io_error(bh, msg: ", lost async page write");
392 mark_buffer_write_io_error(bh);
393 clear_buffer_uptodate(bh);
394 folio_set_error(folio);
395 }
396
397 first = folio_buffers(folio);
398 spin_lock_irqsave(&first->b_uptodate_lock, flags);
399
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(bh: tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
410 spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags);
411 folio_end_writeback(folio);
412 return;
413
414still_busy:
415 spin_unlock_irqrestore(lock: &first->b_uptodate_lock, flags);
416 return;
417}
418
419/*
420 * If a page's buffers are under async readin (end_buffer_async_read
421 * completion) then there is a possibility that another thread of
422 * control could lock one of the buffers after it has completed
423 * but while some of the other buffers have not completed. This
424 * locked buffer would confuse end_buffer_async_read() into not unlocking
425 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
426 * that this buffer is not under async I/O.
427 *
428 * The page comes unlocked when it has no locked buffer_async buffers
429 * left.
430 *
431 * PageLocked prevents anyone starting new async I/O reads any of
432 * the buffers.
433 *
434 * PageWriteback is used to prevent simultaneous writeout of the same
435 * page.
436 *
437 * PageLocked prevents anyone from starting writeback of a page which is
438 * under read I/O (PageWriteback is only ever set against a locked page).
439 */
440static void mark_buffer_async_read(struct buffer_head *bh)
441{
442 bh->b_end_io = end_buffer_async_read_io;
443 set_buffer_async_read(bh);
444}
445
446static void mark_buffer_async_write_endio(struct buffer_head *bh,
447 bh_end_io_t *handler)
448{
449 bh->b_end_io = handler;
450 set_buffer_async_write(bh);
451}
452
453void mark_buffer_async_write(struct buffer_head *bh)
454{
455 mark_buffer_async_write_endio(bh, handler: end_buffer_async_write);
456}
457EXPORT_SYMBOL(mark_buffer_async_write);
458
459
460/*
461 * fs/buffer.c contains helper functions for buffer-backed address space's
462 * fsync functions. A common requirement for buffer-based filesystems is
463 * that certain data from the backing blockdev needs to be written out for
464 * a successful fsync(). For example, ext2 indirect blocks need to be
465 * written back and waited upon before fsync() returns.
466 *
467 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
469 * management of a list of dependent buffers at ->i_mapping->i_private_list.
470 *
471 * Locking is a little subtle: try_to_free_buffers() will remove buffers
472 * from their controlling inode's queue when they are being freed. But
473 * try_to_free_buffers() will be operating against the *blockdev* mapping
474 * at the time, not against the S_ISREG file which depends on those buffers.
475 * So the locking for i_private_list is via the i_private_lock in the address_space
476 * which backs the buffers. Which is different from the address_space
477 * against which the buffers are listed. So for a particular address_space,
478 * mapping->i_private_lock does *not* protect mapping->i_private_list! In fact,
479 * mapping->i_private_list will always be protected by the backing blockdev's
480 * ->i_private_lock.
481 *
482 * Which introduces a requirement: all buffers on an address_space's
483 * ->i_private_list must be from the same address_space: the blockdev's.
484 *
485 * address_spaces which do not place buffers at ->i_private_list via these
486 * utility functions are free to use i_private_lock and i_private_list for
487 * whatever they want. The only requirement is that list_empty(i_private_list)
488 * be true at clear_inode() time.
489 *
490 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
491 * filesystems should do that. invalidate_inode_buffers() should just go
492 * BUG_ON(!list_empty).
493 *
494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
495 * take an address_space, not an inode. And it should be called
496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
497 * queued up.
498 *
499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
500 * list if it is already on a list. Because if the buffer is on a list,
501 * it *must* already be on the right one. If not, the filesystem is being
502 * silly. This will save a ton of locking. But first we have to ensure
503 * that buffers are taken *off* the old inode's list when they are freed
504 * (presumably in truncate). That requires careful auditing of all
505 * filesystems (do it inside bforget()). It could also be done by bringing
506 * b_inode back.
507 */
508
509/*
510 * The buffer's backing address_space's i_private_lock must be held
511 */
512static void __remove_assoc_queue(struct buffer_head *bh)
513{
514 list_del_init(entry: &bh->b_assoc_buffers);
515 WARN_ON(!bh->b_assoc_map);
516 bh->b_assoc_map = NULL;
517}
518
519int inode_has_buffers(struct inode *inode)
520{
521 return !list_empty(head: &inode->i_data.i_private_list);
522}
523
524/*
525 * osync is designed to support O_SYNC io. It waits synchronously for
526 * all already-submitted IO to complete, but does not queue any new
527 * writes to the disk.
528 *
529 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
530 * as you dirty the buffers, and then use osync_inode_buffers to wait for
531 * completion. Any other dirty buffers which are not yet queued for
532 * write will not be flushed to disk by the osync.
533 */
534static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
535{
536 struct buffer_head *bh;
537 struct list_head *p;
538 int err = 0;
539
540 spin_lock(lock);
541repeat:
542 list_for_each_prev(p, list) {
543 bh = BH_ENTRY(p);
544 if (buffer_locked(bh)) {
545 get_bh(bh);
546 spin_unlock(lock);
547 wait_on_buffer(bh);
548 if (!buffer_uptodate(bh))
549 err = -EIO;
550 brelse(bh);
551 spin_lock(lock);
552 goto repeat;
553 }
554 }
555 spin_unlock(lock);
556 return err;
557}
558
559/**
560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
561 * @mapping: the mapping which wants those buffers written
562 *
563 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
564 * that I/O.
565 *
566 * Basically, this is a convenience function for fsync().
567 * @mapping is a file or directory which needs those buffers to be written for
568 * a successful fsync().
569 */
570int sync_mapping_buffers(struct address_space *mapping)
571{
572 struct address_space *buffer_mapping = mapping->i_private_data;
573
574 if (buffer_mapping == NULL || list_empty(head: &mapping->i_private_list))
575 return 0;
576
577 return fsync_buffers_list(lock: &buffer_mapping->i_private_lock,
578 list: &mapping->i_private_list);
579}
580EXPORT_SYMBOL(sync_mapping_buffers);
581
582/**
583 * generic_buffers_fsync_noflush - generic buffer fsync implementation
584 * for simple filesystems with no inode lock
585 *
586 * @file: file to synchronize
587 * @start: start offset in bytes
588 * @end: end offset in bytes (inclusive)
589 * @datasync: only synchronize essential metadata if true
590 *
591 * This is a generic implementation of the fsync method for simple
592 * filesystems which track all non-inode metadata in the buffers list
593 * hanging off the address_space structure.
594 */
595int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
596 bool datasync)
597{
598 struct inode *inode = file->f_mapping->host;
599 int err;
600 int ret;
601
602 err = file_write_and_wait_range(file, start, end);
603 if (err)
604 return err;
605
606 ret = sync_mapping_buffers(inode->i_mapping);
607 if (!(inode->i_state & I_DIRTY_ALL))
608 goto out;
609 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
610 goto out;
611
612 err = sync_inode_metadata(inode, wait: 1);
613 if (ret == 0)
614 ret = err;
615
616out:
617 /* check and advance again to catch errors after syncing out buffers */
618 err = file_check_and_advance_wb_err(file);
619 if (ret == 0)
620 ret = err;
621 return ret;
622}
623EXPORT_SYMBOL(generic_buffers_fsync_noflush);
624
625/**
626 * generic_buffers_fsync - generic buffer fsync implementation
627 * for simple filesystems with no inode lock
628 *
629 * @file: file to synchronize
630 * @start: start offset in bytes
631 * @end: end offset in bytes (inclusive)
632 * @datasync: only synchronize essential metadata if true
633 *
634 * This is a generic implementation of the fsync method for simple
635 * filesystems which track all non-inode metadata in the buffers list
636 * hanging off the address_space structure. This also makes sure that
637 * a device cache flush operation is called at the end.
638 */
639int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
640 bool datasync)
641{
642 struct inode *inode = file->f_mapping->host;
643 int ret;
644
645 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
646 if (!ret)
647 ret = blkdev_issue_flush(bdev: inode->i_sb->s_bdev);
648 return ret;
649}
650EXPORT_SYMBOL(generic_buffers_fsync);
651
652/*
653 * Called when we've recently written block `bblock', and it is known that
654 * `bblock' was for a buffer_boundary() buffer. This means that the block at
655 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
656 * dirty, schedule it for IO. So that indirects merge nicely with their data.
657 */
658void write_boundary_block(struct block_device *bdev,
659 sector_t bblock, unsigned blocksize)
660{
661 struct buffer_head *bh = __find_get_block(bdev, block: bblock + 1, size: blocksize);
662 if (bh) {
663 if (buffer_dirty(bh))
664 write_dirty_buffer(bh, op_flags: 0);
665 put_bh(bh);
666 }
667}
668
669void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
670{
671 struct address_space *mapping = inode->i_mapping;
672 struct address_space *buffer_mapping = bh->b_folio->mapping;
673
674 mark_buffer_dirty(bh);
675 if (!mapping->i_private_data) {
676 mapping->i_private_data = buffer_mapping;
677 } else {
678 BUG_ON(mapping->i_private_data != buffer_mapping);
679 }
680 if (!bh->b_assoc_map) {
681 spin_lock(lock: &buffer_mapping->i_private_lock);
682 list_move_tail(list: &bh->b_assoc_buffers,
683 head: &mapping->i_private_list);
684 bh->b_assoc_map = mapping;
685 spin_unlock(lock: &buffer_mapping->i_private_lock);
686 }
687}
688EXPORT_SYMBOL(mark_buffer_dirty_inode);
689
690/*
691 * Add a page to the dirty page list.
692 *
693 * It is a sad fact of life that this function is called from several places
694 * deeply under spinlocking. It may not sleep.
695 *
696 * If the page has buffers, the uptodate buffers are set dirty, to preserve
697 * dirty-state coherency between the page and the buffers. It the page does
698 * not have buffers then when they are later attached they will all be set
699 * dirty.
700 *
701 * The buffers are dirtied before the page is dirtied. There's a small race
702 * window in which a writepage caller may see the page cleanness but not the
703 * buffer dirtiness. That's fine. If this code were to set the page dirty
704 * before the buffers, a concurrent writepage caller could clear the page dirty
705 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
706 * page on the dirty page list.
707 *
708 * We use i_private_lock to lock against try_to_free_buffers while using the
709 * page's buffer list. Also use this to protect against clean buffers being
710 * added to the page after it was set dirty.
711 *
712 * FIXME: may need to call ->reservepage here as well. That's rather up to the
713 * address_space though.
714 */
715bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
716{
717 struct buffer_head *head;
718 bool newly_dirty;
719
720 spin_lock(lock: &mapping->i_private_lock);
721 head = folio_buffers(folio);
722 if (head) {
723 struct buffer_head *bh = head;
724
725 do {
726 set_buffer_dirty(bh);
727 bh = bh->b_this_page;
728 } while (bh != head);
729 }
730 /*
731 * Lock out page's memcg migration to keep PageDirty
732 * synchronized with per-memcg dirty page counters.
733 */
734 folio_memcg_lock(folio);
735 newly_dirty = !folio_test_set_dirty(folio);
736 spin_unlock(lock: &mapping->i_private_lock);
737
738 if (newly_dirty)
739 __folio_mark_dirty(folio, mapping, warn: 1);
740
741 folio_memcg_unlock(folio);
742
743 if (newly_dirty)
744 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
745
746 return newly_dirty;
747}
748EXPORT_SYMBOL(block_dirty_folio);
749
750/*
751 * Write out and wait upon a list of buffers.
752 *
753 * We have conflicting pressures: we want to make sure that all
754 * initially dirty buffers get waited on, but that any subsequently
755 * dirtied buffers don't. After all, we don't want fsync to last
756 * forever if somebody is actively writing to the file.
757 *
758 * Do this in two main stages: first we copy dirty buffers to a
759 * temporary inode list, queueing the writes as we go. Then we clean
760 * up, waiting for those writes to complete.
761 *
762 * During this second stage, any subsequent updates to the file may end
763 * up refiling the buffer on the original inode's dirty list again, so
764 * there is a chance we will end up with a buffer queued for write but
765 * not yet completed on that list. So, as a final cleanup we go through
766 * the osync code to catch these locked, dirty buffers without requeuing
767 * any newly dirty buffers for write.
768 */
769static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
770{
771 struct buffer_head *bh;
772 struct list_head tmp;
773 struct address_space *mapping;
774 int err = 0, err2;
775 struct blk_plug plug;
776
777 INIT_LIST_HEAD(list: &tmp);
778 blk_start_plug(&plug);
779
780 spin_lock(lock);
781 while (!list_empty(head: list)) {
782 bh = BH_ENTRY(list->next);
783 mapping = bh->b_assoc_map;
784 __remove_assoc_queue(bh);
785 /* Avoid race with mark_buffer_dirty_inode() which does
786 * a lockless check and we rely on seeing the dirty bit */
787 smp_mb();
788 if (buffer_dirty(bh) || buffer_locked(bh)) {
789 list_add(new: &bh->b_assoc_buffers, head: &tmp);
790 bh->b_assoc_map = mapping;
791 if (buffer_dirty(bh)) {
792 get_bh(bh);
793 spin_unlock(lock);
794 /*
795 * Ensure any pending I/O completes so that
796 * write_dirty_buffer() actually writes the
797 * current contents - it is a noop if I/O is
798 * still in flight on potentially older
799 * contents.
800 */
801 write_dirty_buffer(bh, REQ_SYNC);
802
803 /*
804 * Kick off IO for the previous mapping. Note
805 * that we will not run the very last mapping,
806 * wait_on_buffer() will do that for us
807 * through sync_buffer().
808 */
809 brelse(bh);
810 spin_lock(lock);
811 }
812 }
813 }
814
815 spin_unlock(lock);
816 blk_finish_plug(&plug);
817 spin_lock(lock);
818
819 while (!list_empty(head: &tmp)) {
820 bh = BH_ENTRY(tmp.prev);
821 get_bh(bh);
822 mapping = bh->b_assoc_map;
823 __remove_assoc_queue(bh);
824 /* Avoid race with mark_buffer_dirty_inode() which does
825 * a lockless check and we rely on seeing the dirty bit */
826 smp_mb();
827 if (buffer_dirty(bh)) {
828 list_add(new: &bh->b_assoc_buffers,
829 head: &mapping->i_private_list);
830 bh->b_assoc_map = mapping;
831 }
832 spin_unlock(lock);
833 wait_on_buffer(bh);
834 if (!buffer_uptodate(bh))
835 err = -EIO;
836 brelse(bh);
837 spin_lock(lock);
838 }
839
840 spin_unlock(lock);
841 err2 = osync_buffers_list(lock, list);
842 if (err)
843 return err;
844 else
845 return err2;
846}
847
848/*
849 * Invalidate any and all dirty buffers on a given inode. We are
850 * probably unmounting the fs, but that doesn't mean we have already
851 * done a sync(). Just drop the buffers from the inode list.
852 *
853 * NOTE: we take the inode's blockdev's mapping's i_private_lock. Which
854 * assumes that all the buffers are against the blockdev. Not true
855 * for reiserfs.
856 */
857void invalidate_inode_buffers(struct inode *inode)
858{
859 if (inode_has_buffers(inode)) {
860 struct address_space *mapping = &inode->i_data;
861 struct list_head *list = &mapping->i_private_list;
862 struct address_space *buffer_mapping = mapping->i_private_data;
863
864 spin_lock(lock: &buffer_mapping->i_private_lock);
865 while (!list_empty(head: list))
866 __remove_assoc_queue(BH_ENTRY(list->next));
867 spin_unlock(lock: &buffer_mapping->i_private_lock);
868 }
869}
870EXPORT_SYMBOL(invalidate_inode_buffers);
871
872/*
873 * Remove any clean buffers from the inode's buffer list. This is called
874 * when we're trying to free the inode itself. Those buffers can pin it.
875 *
876 * Returns true if all buffers were removed.
877 */
878int remove_inode_buffers(struct inode *inode)
879{
880 int ret = 1;
881
882 if (inode_has_buffers(inode)) {
883 struct address_space *mapping = &inode->i_data;
884 struct list_head *list = &mapping->i_private_list;
885 struct address_space *buffer_mapping = mapping->i_private_data;
886
887 spin_lock(lock: &buffer_mapping->i_private_lock);
888 while (!list_empty(head: list)) {
889 struct buffer_head *bh = BH_ENTRY(list->next);
890 if (buffer_dirty(bh)) {
891 ret = 0;
892 break;
893 }
894 __remove_assoc_queue(bh);
895 }
896 spin_unlock(lock: &buffer_mapping->i_private_lock);
897 }
898 return ret;
899}
900
901/*
902 * Create the appropriate buffers when given a folio for data area and
903 * the size of each buffer.. Use the bh->b_this_page linked list to
904 * follow the buffers created. Return NULL if unable to create more
905 * buffers.
906 *
907 * The retry flag is used to differentiate async IO (paging, swapping)
908 * which may not fail from ordinary buffer allocations.
909 */
910struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
911 gfp_t gfp)
912{
913 struct buffer_head *bh, *head;
914 long offset;
915 struct mem_cgroup *memcg, *old_memcg;
916
917 /* The folio lock pins the memcg */
918 memcg = folio_memcg(folio);
919 old_memcg = set_active_memcg(memcg);
920
921 head = NULL;
922 offset = folio_size(folio);
923 while ((offset -= size) >= 0) {
924 bh = alloc_buffer_head(gfp_flags: gfp);
925 if (!bh)
926 goto no_grow;
927
928 bh->b_this_page = head;
929 bh->b_blocknr = -1;
930 head = bh;
931
932 bh->b_size = size;
933
934 /* Link the buffer to its folio */
935 folio_set_bh(bh, folio, offset);
936 }
937out:
938 set_active_memcg(old_memcg);
939 return head;
940/*
941 * In case anything failed, we just free everything we got.
942 */
943no_grow:
944 if (head) {
945 do {
946 bh = head;
947 head = head->b_this_page;
948 free_buffer_head(bh);
949 } while (head);
950 }
951
952 goto out;
953}
954EXPORT_SYMBOL_GPL(folio_alloc_buffers);
955
956struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
957 bool retry)
958{
959 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
960 if (retry)
961 gfp |= __GFP_NOFAIL;
962
963 return folio_alloc_buffers(page_folio(page), size, gfp);
964}
965EXPORT_SYMBOL_GPL(alloc_page_buffers);
966
967static inline void link_dev_buffers(struct folio *folio,
968 struct buffer_head *head)
969{
970 struct buffer_head *bh, *tail;
971
972 bh = head;
973 do {
974 tail = bh;
975 bh = bh->b_this_page;
976 } while (bh);
977 tail->b_this_page = head;
978 folio_attach_private(folio, data: head);
979}
980
981static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
982{
983 sector_t retval = ~((sector_t)0);
984 loff_t sz = bdev_nr_bytes(bdev);
985
986 if (sz) {
987 unsigned int sizebits = blksize_bits(size);
988 retval = (sz >> sizebits);
989 }
990 return retval;
991}
992
993/*
994 * Initialise the state of a blockdev folio's buffers.
995 */
996static sector_t folio_init_buffers(struct folio *folio,
997 struct block_device *bdev, unsigned size)
998{
999 struct buffer_head *head = folio_buffers(folio);
1000 struct buffer_head *bh = head;
1001 bool uptodate = folio_test_uptodate(folio);
1002 sector_t block = div_u64(dividend: folio_pos(folio), divisor: size);
1003 sector_t end_block = blkdev_max_block(bdev, size);
1004
1005 do {
1006 if (!buffer_mapped(bh)) {
1007 bh->b_end_io = NULL;
1008 bh->b_private = NULL;
1009 bh->b_bdev = bdev;
1010 bh->b_blocknr = block;
1011 if (uptodate)
1012 set_buffer_uptodate(bh);
1013 if (block < end_block)
1014 set_buffer_mapped(bh);
1015 }
1016 block++;
1017 bh = bh->b_this_page;
1018 } while (bh != head);
1019
1020 /*
1021 * Caller needs to validate requested block against end of device.
1022 */
1023 return end_block;
1024}
1025
1026/*
1027 * Create the page-cache folio that contains the requested block.
1028 *
1029 * This is used purely for blockdev mappings.
1030 *
1031 * Returns false if we have a failure which cannot be cured by retrying
1032 * without sleeping. Returns true if we succeeded, or the caller should retry.
1033 */
1034static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1035 pgoff_t index, unsigned size, gfp_t gfp)
1036{
1037 struct inode *inode = bdev->bd_inode;
1038 struct folio *folio;
1039 struct buffer_head *bh;
1040 sector_t end_block = 0;
1041
1042 folio = __filemap_get_folio(mapping: inode->i_mapping, index,
1043 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1044 if (IS_ERR(ptr: folio))
1045 return false;
1046
1047 bh = folio_buffers(folio);
1048 if (bh) {
1049 if (bh->b_size == size) {
1050 end_block = folio_init_buffers(folio, bdev, size);
1051 goto unlock;
1052 }
1053
1054 /*
1055 * Retrying may succeed; for example the folio may finish
1056 * writeback, or buffers may be cleaned. This should not
1057 * happen very often; maybe we have old buffers attached to
1058 * this blockdev's page cache and we're trying to change
1059 * the block size?
1060 */
1061 if (!try_to_free_buffers(folio)) {
1062 end_block = ~0ULL;
1063 goto unlock;
1064 }
1065 }
1066
1067 bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1068 if (!bh)
1069 goto unlock;
1070
1071 /*
1072 * Link the folio to the buffers and initialise them. Take the
1073 * lock to be atomic wrt __find_get_block(), which does not
1074 * run under the folio lock.
1075 */
1076 spin_lock(lock: &inode->i_mapping->i_private_lock);
1077 link_dev_buffers(folio, head: bh);
1078 end_block = folio_init_buffers(folio, bdev, size);
1079 spin_unlock(lock: &inode->i_mapping->i_private_lock);
1080unlock:
1081 folio_unlock(folio);
1082 folio_put(folio);
1083 return block < end_block;
1084}
1085
1086/*
1087 * Create buffers for the specified block device block's folio. If
1088 * that folio was dirty, the buffers are set dirty also. Returns false
1089 * if we've hit a permanent error.
1090 */
1091static bool grow_buffers(struct block_device *bdev, sector_t block,
1092 unsigned size, gfp_t gfp)
1093{
1094 loff_t pos;
1095
1096 /*
1097 * Check for a block which lies outside our maximum possible
1098 * pagecache index.
1099 */
1100 if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1101 printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
1102 __func__, (unsigned long long)block,
1103 bdev);
1104 return false;
1105 }
1106
1107 /* Create a folio with the proper size buffers */
1108 return grow_dev_folio(bdev, block, index: pos / PAGE_SIZE, size, gfp);
1109}
1110
1111static struct buffer_head *
1112__getblk_slow(struct block_device *bdev, sector_t block,
1113 unsigned size, gfp_t gfp)
1114{
1115 /* Size must be multiple of hard sectorsize */
1116 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1117 (size < 512 || size > PAGE_SIZE))) {
1118 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1119 size);
1120 printk(KERN_ERR "logical block size: %d\n",
1121 bdev_logical_block_size(bdev));
1122
1123 dump_stack();
1124 return NULL;
1125 }
1126
1127 for (;;) {
1128 struct buffer_head *bh;
1129
1130 bh = __find_get_block(bdev, block, size);
1131 if (bh)
1132 return bh;
1133
1134 if (!grow_buffers(bdev, block, size, gfp))
1135 return NULL;
1136 }
1137}
1138
1139/*
1140 * The relationship between dirty buffers and dirty pages:
1141 *
1142 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143 * the page is tagged dirty in the page cache.
1144 *
1145 * At all times, the dirtiness of the buffers represents the dirtiness of
1146 * subsections of the page. If the page has buffers, the page dirty bit is
1147 * merely a hint about the true dirty state.
1148 *
1149 * When a page is set dirty in its entirety, all its buffers are marked dirty
1150 * (if the page has buffers).
1151 *
1152 * When a buffer is marked dirty, its page is dirtied, but the page's other
1153 * buffers are not.
1154 *
1155 * Also. When blockdev buffers are explicitly read with bread(), they
1156 * individually become uptodate. But their backing page remains not
1157 * uptodate - even if all of its buffers are uptodate. A subsequent
1158 * block_read_full_folio() against that folio will discover all the uptodate
1159 * buffers, will set the folio uptodate and will perform no I/O.
1160 */
1161
1162/**
1163 * mark_buffer_dirty - mark a buffer_head as needing writeout
1164 * @bh: the buffer_head to mark dirty
1165 *
1166 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167 * its backing page dirty, then tag the page as dirty in the page cache
1168 * and then attach the address_space's inode to its superblock's dirty
1169 * inode list.
1170 *
1171 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->i_private_lock,
1172 * i_pages lock and mapping->host->i_lock.
1173 */
1174void mark_buffer_dirty(struct buffer_head *bh)
1175{
1176 WARN_ON_ONCE(!buffer_uptodate(bh));
1177
1178 trace_block_dirty_buffer(bh);
1179
1180 /*
1181 * Very *carefully* optimize the it-is-already-dirty case.
1182 *
1183 * Don't let the final "is it dirty" escape to before we
1184 * perhaps modified the buffer.
1185 */
1186 if (buffer_dirty(bh)) {
1187 smp_mb();
1188 if (buffer_dirty(bh))
1189 return;
1190 }
1191
1192 if (!test_set_buffer_dirty(bh)) {
1193 struct folio *folio = bh->b_folio;
1194 struct address_space *mapping = NULL;
1195
1196 folio_memcg_lock(folio);
1197 if (!folio_test_set_dirty(folio)) {
1198 mapping = folio->mapping;
1199 if (mapping)
1200 __folio_mark_dirty(folio, mapping, warn: 0);
1201 }
1202 folio_memcg_unlock(folio);
1203 if (mapping)
1204 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205 }
1206}
1207EXPORT_SYMBOL(mark_buffer_dirty);
1208
1209void mark_buffer_write_io_error(struct buffer_head *bh)
1210{
1211 set_buffer_write_io_error(bh);
1212 /* FIXME: do we need to set this in both places? */
1213 if (bh->b_folio && bh->b_folio->mapping)
1214 mapping_set_error(mapping: bh->b_folio->mapping, error: -EIO);
1215 if (bh->b_assoc_map) {
1216 mapping_set_error(mapping: bh->b_assoc_map, error: -EIO);
1217 errseq_set(eseq: &bh->b_assoc_map->host->i_sb->s_wb_err, err: -EIO);
1218 }
1219}
1220EXPORT_SYMBOL(mark_buffer_write_io_error);
1221
1222/*
1223 * Decrement a buffer_head's reference count. If all buffers against a page
1224 * have zero reference count, are clean and unlocked, and if the page is clean
1225 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1226 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1227 * a page but it ends up not being freed, and buffers may later be reattached).
1228 */
1229void __brelse(struct buffer_head * buf)
1230{
1231 if (atomic_read(v: &buf->b_count)) {
1232 put_bh(bh: buf);
1233 return;
1234 }
1235 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236}
1237EXPORT_SYMBOL(__brelse);
1238
1239/*
1240 * bforget() is like brelse(), except it discards any
1241 * potentially dirty data.
1242 */
1243void __bforget(struct buffer_head *bh)
1244{
1245 clear_buffer_dirty(bh);
1246 if (bh->b_assoc_map) {
1247 struct address_space *buffer_mapping = bh->b_folio->mapping;
1248
1249 spin_lock(lock: &buffer_mapping->i_private_lock);
1250 list_del_init(entry: &bh->b_assoc_buffers);
1251 bh->b_assoc_map = NULL;
1252 spin_unlock(lock: &buffer_mapping->i_private_lock);
1253 }
1254 __brelse(bh);
1255}
1256EXPORT_SYMBOL(__bforget);
1257
1258static struct buffer_head *__bread_slow(struct buffer_head *bh)
1259{
1260 lock_buffer(bh);
1261 if (buffer_uptodate(bh)) {
1262 unlock_buffer(bh);
1263 return bh;
1264 } else {
1265 get_bh(bh);
1266 bh->b_end_io = end_buffer_read_sync;
1267 submit_bh(REQ_OP_READ, bh);
1268 wait_on_buffer(bh);
1269 if (buffer_uptodate(bh))
1270 return bh;
1271 }
1272 brelse(bh);
1273 return NULL;
1274}
1275
1276/*
1277 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1278 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1279 * refcount elevated by one when they're in an LRU. A buffer can only appear
1280 * once in a particular CPU's LRU. A single buffer can be present in multiple
1281 * CPU's LRUs at the same time.
1282 *
1283 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1284 * sb_find_get_block().
1285 *
1286 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1287 * a local interrupt disable for that.
1288 */
1289
1290#define BH_LRU_SIZE 16
1291
1292struct bh_lru {
1293 struct buffer_head *bhs[BH_LRU_SIZE];
1294};
1295
1296static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1297
1298#ifdef CONFIG_SMP
1299#define bh_lru_lock() local_irq_disable()
1300#define bh_lru_unlock() local_irq_enable()
1301#else
1302#define bh_lru_lock() preempt_disable()
1303#define bh_lru_unlock() preempt_enable()
1304#endif
1305
1306static inline void check_irqs_on(void)
1307{
1308#ifdef irqs_disabled
1309 BUG_ON(irqs_disabled());
1310#endif
1311}
1312
1313/*
1314 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1315 * inserted at the front, and the buffer_head at the back if any is evicted.
1316 * Or, if already in the LRU it is moved to the front.
1317 */
1318static void bh_lru_install(struct buffer_head *bh)
1319{
1320 struct buffer_head *evictee = bh;
1321 struct bh_lru *b;
1322 int i;
1323
1324 check_irqs_on();
1325 bh_lru_lock();
1326
1327 /*
1328 * the refcount of buffer_head in bh_lru prevents dropping the
1329 * attached page(i.e., try_to_free_buffers) so it could cause
1330 * failing page migration.
1331 * Skip putting upcoming bh into bh_lru until migration is done.
1332 */
1333 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1334 bh_lru_unlock();
1335 return;
1336 }
1337
1338 b = this_cpu_ptr(&bh_lrus);
1339 for (i = 0; i < BH_LRU_SIZE; i++) {
1340 swap(evictee, b->bhs[i]);
1341 if (evictee == bh) {
1342 bh_lru_unlock();
1343 return;
1344 }
1345 }
1346
1347 get_bh(bh);
1348 bh_lru_unlock();
1349 brelse(bh: evictee);
1350}
1351
1352/*
1353 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1354 */
1355static struct buffer_head *
1356lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1357{
1358 struct buffer_head *ret = NULL;
1359 unsigned int i;
1360
1361 check_irqs_on();
1362 bh_lru_lock();
1363 if (cpu_is_isolated(smp_processor_id())) {
1364 bh_lru_unlock();
1365 return NULL;
1366 }
1367 for (i = 0; i < BH_LRU_SIZE; i++) {
1368 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1369
1370 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1371 bh->b_size == size) {
1372 if (i) {
1373 while (i) {
1374 __this_cpu_write(bh_lrus.bhs[i],
1375 __this_cpu_read(bh_lrus.bhs[i - 1]));
1376 i--;
1377 }
1378 __this_cpu_write(bh_lrus.bhs[0], bh);
1379 }
1380 get_bh(bh);
1381 ret = bh;
1382 break;
1383 }
1384 }
1385 bh_lru_unlock();
1386 return ret;
1387}
1388
1389/*
1390 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1391 * it in the LRU and mark it as accessed. If it is not present then return
1392 * NULL
1393 */
1394struct buffer_head *
1395__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1398
1399 if (bh == NULL) {
1400 /* __find_get_block_slow will mark the page accessed */
1401 bh = __find_get_block_slow(bdev, block);
1402 if (bh)
1403 bh_lru_install(bh);
1404 } else
1405 touch_buffer(bh);
1406
1407 return bh;
1408}
1409EXPORT_SYMBOL(__find_get_block);
1410
1411/**
1412 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1413 * @bdev: The block device.
1414 * @block: The block number.
1415 * @size: The size of buffer_heads for this @bdev.
1416 * @gfp: The memory allocation flags to use.
1417 *
1418 * Return: The buffer head, or NULL if memory could not be allocated.
1419 */
1420struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1421 unsigned size, gfp_t gfp)
1422{
1423 struct buffer_head *bh = __find_get_block(bdev, block, size);
1424
1425 might_alloc(gfp_mask: gfp);
1426 if (bh)
1427 return bh;
1428
1429 return __getblk_slow(bdev, block, size, gfp);
1430}
1431EXPORT_SYMBOL(bdev_getblk);
1432
1433/*
1434 * Do async read-ahead on a buffer..
1435 */
1436void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1437{
1438 struct buffer_head *bh = bdev_getblk(bdev, block, size,
1439 GFP_NOWAIT | __GFP_MOVABLE);
1440
1441 if (likely(bh)) {
1442 bh_readahead(bh, REQ_RAHEAD);
1443 brelse(bh);
1444 }
1445}
1446EXPORT_SYMBOL(__breadahead);
1447
1448/**
1449 * __bread_gfp() - reads a specified block and returns the bh
1450 * @bdev: the block_device to read from
1451 * @block: number of block
1452 * @size: size (in bytes) to read
1453 * @gfp: page allocation flag
1454 *
1455 * Reads a specified block, and returns buffer head that contains it.
1456 * The page cache can be allocated from non-movable area
1457 * not to prevent page migration if you set gfp to zero.
1458 * It returns NULL if the block was unreadable.
1459 */
1460struct buffer_head *
1461__bread_gfp(struct block_device *bdev, sector_t block,
1462 unsigned size, gfp_t gfp)
1463{
1464 struct buffer_head *bh;
1465
1466 gfp |= mapping_gfp_constraint(mapping: bdev->bd_inode->i_mapping, gfp_mask: ~__GFP_FS);
1467
1468 /*
1469 * Prefer looping in the allocator rather than here, at least that
1470 * code knows what it's doing.
1471 */
1472 gfp |= __GFP_NOFAIL;
1473
1474 bh = bdev_getblk(bdev, block, size, gfp);
1475
1476 if (likely(bh) && !buffer_uptodate(bh))
1477 bh = __bread_slow(bh);
1478 return bh;
1479}
1480EXPORT_SYMBOL(__bread_gfp);
1481
1482static void __invalidate_bh_lrus(struct bh_lru *b)
1483{
1484 int i;
1485
1486 for (i = 0; i < BH_LRU_SIZE; i++) {
1487 brelse(bh: b->bhs[i]);
1488 b->bhs[i] = NULL;
1489 }
1490}
1491/*
1492 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493 * This doesn't race because it runs in each cpu either in irq
1494 * or with preempt disabled.
1495 */
1496static void invalidate_bh_lru(void *arg)
1497{
1498 struct bh_lru *b = &get_cpu_var(bh_lrus);
1499
1500 __invalidate_bh_lrus(b);
1501 put_cpu_var(bh_lrus);
1502}
1503
1504bool has_bh_in_lru(int cpu, void *dummy)
1505{
1506 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507 int i;
1508
1509 for (i = 0; i < BH_LRU_SIZE; i++) {
1510 if (b->bhs[i])
1511 return true;
1512 }
1513
1514 return false;
1515}
1516
1517void invalidate_bh_lrus(void)
1518{
1519 on_each_cpu_cond(cond_func: has_bh_in_lru, func: invalidate_bh_lru, NULL, wait: 1);
1520}
1521EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522
1523/*
1524 * It's called from workqueue context so we need a bh_lru_lock to close
1525 * the race with preemption/irq.
1526 */
1527void invalidate_bh_lrus_cpu(void)
1528{
1529 struct bh_lru *b;
1530
1531 bh_lru_lock();
1532 b = this_cpu_ptr(&bh_lrus);
1533 __invalidate_bh_lrus(b);
1534 bh_lru_unlock();
1535}
1536
1537void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1538 unsigned long offset)
1539{
1540 bh->b_folio = folio;
1541 BUG_ON(offset >= folio_size(folio));
1542 if (folio_test_highmem(folio))
1543 /*
1544 * This catches illegal uses and preserves the offset:
1545 */
1546 bh->b_data = (char *)(0 + offset);
1547 else
1548 bh->b_data = folio_address(folio) + offset;
1549}
1550EXPORT_SYMBOL(folio_set_bh);
1551
1552/*
1553 * Called when truncating a buffer on a page completely.
1554 */
1555
1556/* Bits that are cleared during an invalidate */
1557#define BUFFER_FLAGS_DISCARD \
1558 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1559 1 << BH_Delay | 1 << BH_Unwritten)
1560
1561static void discard_buffer(struct buffer_head * bh)
1562{
1563 unsigned long b_state;
1564
1565 lock_buffer(bh);
1566 clear_buffer_dirty(bh);
1567 bh->b_bdev = NULL;
1568 b_state = READ_ONCE(bh->b_state);
1569 do {
1570 } while (!try_cmpxchg(&bh->b_state, &b_state,
1571 b_state & ~BUFFER_FLAGS_DISCARD));
1572 unlock_buffer(bh);
1573}
1574
1575/**
1576 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1577 * @folio: The folio which is affected.
1578 * @offset: start of the range to invalidate
1579 * @length: length of the range to invalidate
1580 *
1581 * block_invalidate_folio() is called when all or part of the folio has been
1582 * invalidated by a truncate operation.
1583 *
1584 * block_invalidate_folio() does not have to release all buffers, but it must
1585 * ensure that no dirty buffer is left outside @offset and that no I/O
1586 * is underway against any of the blocks which are outside the truncation
1587 * point. Because the caller is about to free (and possibly reuse) those
1588 * blocks on-disk.
1589 */
1590void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1591{
1592 struct buffer_head *head, *bh, *next;
1593 size_t curr_off = 0;
1594 size_t stop = length + offset;
1595
1596 BUG_ON(!folio_test_locked(folio));
1597
1598 /*
1599 * Check for overflow
1600 */
1601 BUG_ON(stop > folio_size(folio) || stop < length);
1602
1603 head = folio_buffers(folio);
1604 if (!head)
1605 return;
1606
1607 bh = head;
1608 do {
1609 size_t next_off = curr_off + bh->b_size;
1610 next = bh->b_this_page;
1611
1612 /*
1613 * Are we still fully in range ?
1614 */
1615 if (next_off > stop)
1616 goto out;
1617
1618 /*
1619 * is this block fully invalidated?
1620 */
1621 if (offset <= curr_off)
1622 discard_buffer(bh);
1623 curr_off = next_off;
1624 bh = next;
1625 } while (bh != head);
1626
1627 /*
1628 * We release buffers only if the entire folio is being invalidated.
1629 * The get_block cached value has been unconditionally invalidated,
1630 * so real IO is not possible anymore.
1631 */
1632 if (length == folio_size(folio))
1633 filemap_release_folio(folio, gfp: 0);
1634out:
1635 return;
1636}
1637EXPORT_SYMBOL(block_invalidate_folio);
1638
1639/*
1640 * We attach and possibly dirty the buffers atomically wrt
1641 * block_dirty_folio() via i_private_lock. try_to_free_buffers
1642 * is already excluded via the folio lock.
1643 */
1644struct buffer_head *create_empty_buffers(struct folio *folio,
1645 unsigned long blocksize, unsigned long b_state)
1646{
1647 struct buffer_head *bh, *head, *tail;
1648 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1649
1650 head = folio_alloc_buffers(folio, blocksize, gfp);
1651 bh = head;
1652 do {
1653 bh->b_state |= b_state;
1654 tail = bh;
1655 bh = bh->b_this_page;
1656 } while (bh);
1657 tail->b_this_page = head;
1658
1659 spin_lock(lock: &folio->mapping->i_private_lock);
1660 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1661 bh = head;
1662 do {
1663 if (folio_test_dirty(folio))
1664 set_buffer_dirty(bh);
1665 if (folio_test_uptodate(folio))
1666 set_buffer_uptodate(bh);
1667 bh = bh->b_this_page;
1668 } while (bh != head);
1669 }
1670 folio_attach_private(folio, data: head);
1671 spin_unlock(lock: &folio->mapping->i_private_lock);
1672
1673 return head;
1674}
1675EXPORT_SYMBOL(create_empty_buffers);
1676
1677/**
1678 * clean_bdev_aliases: clean a range of buffers in block device
1679 * @bdev: Block device to clean buffers in
1680 * @block: Start of a range of blocks to clean
1681 * @len: Number of blocks to clean
1682 *
1683 * We are taking a range of blocks for data and we don't want writeback of any
1684 * buffer-cache aliases starting from return from this function and until the
1685 * moment when something will explicitly mark the buffer dirty (hopefully that
1686 * will not happen until we will free that block ;-) We don't even need to mark
1687 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1688 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1689 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1690 * would confuse anyone who might pick it with bread() afterwards...
1691 *
1692 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1693 * writeout I/O going on against recently-freed buffers. We don't wait on that
1694 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1695 * need to. That happens here.
1696 */
1697void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1698{
1699 struct inode *bd_inode = bdev->bd_inode;
1700 struct address_space *bd_mapping = bd_inode->i_mapping;
1701 struct folio_batch fbatch;
1702 pgoff_t index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
1703 pgoff_t end;
1704 int i, count;
1705 struct buffer_head *bh;
1706 struct buffer_head *head;
1707
1708 end = ((loff_t)(block + len - 1) << bd_inode->i_blkbits) / PAGE_SIZE;
1709 folio_batch_init(fbatch: &fbatch);
1710 while (filemap_get_folios(mapping: bd_mapping, start: &index, end, fbatch: &fbatch)) {
1711 count = folio_batch_count(fbatch: &fbatch);
1712 for (i = 0; i < count; i++) {
1713 struct folio *folio = fbatch.folios[i];
1714
1715 if (!folio_buffers(folio))
1716 continue;
1717 /*
1718 * We use folio lock instead of bd_mapping->i_private_lock
1719 * to pin buffers here since we can afford to sleep and
1720 * it scales better than a global spinlock lock.
1721 */
1722 folio_lock(folio);
1723 /* Recheck when the folio is locked which pins bhs */
1724 head = folio_buffers(folio);
1725 if (!head)
1726 goto unlock_page;
1727 bh = head;
1728 do {
1729 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1730 goto next;
1731 if (bh->b_blocknr >= block + len)
1732 break;
1733 clear_buffer_dirty(bh);
1734 wait_on_buffer(bh);
1735 clear_buffer_req(bh);
1736next:
1737 bh = bh->b_this_page;
1738 } while (bh != head);
1739unlock_page:
1740 folio_unlock(folio);
1741 }
1742 folio_batch_release(fbatch: &fbatch);
1743 cond_resched();
1744 /* End of range already reached? */
1745 if (index > end || !index)
1746 break;
1747 }
1748}
1749EXPORT_SYMBOL(clean_bdev_aliases);
1750
1751static struct buffer_head *folio_create_buffers(struct folio *folio,
1752 struct inode *inode,
1753 unsigned int b_state)
1754{
1755 struct buffer_head *bh;
1756
1757 BUG_ON(!folio_test_locked(folio));
1758
1759 bh = folio_buffers(folio);
1760 if (!bh)
1761 bh = create_empty_buffers(folio,
1762 1 << READ_ONCE(inode->i_blkbits), b_state);
1763 return bh;
1764}
1765
1766/*
1767 * NOTE! All mapped/uptodate combinations are valid:
1768 *
1769 * Mapped Uptodate Meaning
1770 *
1771 * No No "unknown" - must do get_block()
1772 * No Yes "hole" - zero-filled
1773 * Yes No "allocated" - allocated on disk, not read in
1774 * Yes Yes "valid" - allocated and up-to-date in memory.
1775 *
1776 * "Dirty" is valid only with the last case (mapped+uptodate).
1777 */
1778
1779/*
1780 * While block_write_full_folio is writing back the dirty buffers under
1781 * the page lock, whoever dirtied the buffers may decide to clean them
1782 * again at any time. We handle that by only looking at the buffer
1783 * state inside lock_buffer().
1784 *
1785 * If block_write_full_folio() is called for regular writeback
1786 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1787 * locked buffer. This only can happen if someone has written the buffer
1788 * directly, with submit_bh(). At the address_space level PageWriteback
1789 * prevents this contention from occurring.
1790 *
1791 * If block_write_full_folio() is called with wbc->sync_mode ==
1792 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1793 * causes the writes to be flagged as synchronous writes.
1794 */
1795int __block_write_full_folio(struct inode *inode, struct folio *folio,
1796 get_block_t *get_block, struct writeback_control *wbc)
1797{
1798 int err;
1799 sector_t block;
1800 sector_t last_block;
1801 struct buffer_head *bh, *head;
1802 size_t blocksize;
1803 int nr_underway = 0;
1804 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1805
1806 head = folio_create_buffers(folio, inode,
1807 b_state: (1 << BH_Dirty) | (1 << BH_Uptodate));
1808
1809 /*
1810 * Be very careful. We have no exclusion from block_dirty_folio
1811 * here, and the (potentially unmapped) buffers may become dirty at
1812 * any time. If a buffer becomes dirty here after we've inspected it
1813 * then we just miss that fact, and the folio stays dirty.
1814 *
1815 * Buffers outside i_size may be dirtied by block_dirty_folio;
1816 * handle that here by just cleaning them.
1817 */
1818
1819 bh = head;
1820 blocksize = bh->b_size;
1821
1822 block = div_u64(dividend: folio_pos(folio), divisor: blocksize);
1823 last_block = div_u64(dividend: i_size_read(inode) - 1, divisor: blocksize);
1824
1825 /*
1826 * Get all the dirty buffers mapped to disk addresses and
1827 * handle any aliases from the underlying blockdev's mapping.
1828 */
1829 do {
1830 if (block > last_block) {
1831 /*
1832 * mapped buffers outside i_size will occur, because
1833 * this folio can be outside i_size when there is a
1834 * truncate in progress.
1835 */
1836 /*
1837 * The buffer was zeroed by block_write_full_folio()
1838 */
1839 clear_buffer_dirty(bh);
1840 set_buffer_uptodate(bh);
1841 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1842 buffer_dirty(bh)) {
1843 WARN_ON(bh->b_size != blocksize);
1844 err = get_block(inode, block, bh, 1);
1845 if (err)
1846 goto recover;
1847 clear_buffer_delay(bh);
1848 if (buffer_new(bh)) {
1849 /* blockdev mappings never come here */
1850 clear_buffer_new(bh);
1851 clean_bdev_bh_alias(bh);
1852 }
1853 }
1854 bh = bh->b_this_page;
1855 block++;
1856 } while (bh != head);
1857
1858 do {
1859 if (!buffer_mapped(bh))
1860 continue;
1861 /*
1862 * If it's a fully non-blocking write attempt and we cannot
1863 * lock the buffer then redirty the folio. Note that this can
1864 * potentially cause a busy-wait loop from writeback threads
1865 * and kswapd activity, but those code paths have their own
1866 * higher-level throttling.
1867 */
1868 if (wbc->sync_mode != WB_SYNC_NONE) {
1869 lock_buffer(bh);
1870 } else if (!trylock_buffer(bh)) {
1871 folio_redirty_for_writepage(wbc, folio);
1872 continue;
1873 }
1874 if (test_clear_buffer_dirty(bh)) {
1875 mark_buffer_async_write_endio(bh,
1876 handler: end_buffer_async_write);
1877 } else {
1878 unlock_buffer(bh);
1879 }
1880 } while ((bh = bh->b_this_page) != head);
1881
1882 /*
1883 * The folio and its buffers are protected by the writeback flag,
1884 * so we can drop the bh refcounts early.
1885 */
1886 BUG_ON(folio_test_writeback(folio));
1887 folio_start_writeback(folio);
1888
1889 do {
1890 struct buffer_head *next = bh->b_this_page;
1891 if (buffer_async_write(bh)) {
1892 submit_bh_wbc(opf: REQ_OP_WRITE | write_flags, bh,
1893 hint: inode->i_write_hint, wbc);
1894 nr_underway++;
1895 }
1896 bh = next;
1897 } while (bh != head);
1898 folio_unlock(folio);
1899
1900 err = 0;
1901done:
1902 if (nr_underway == 0) {
1903 /*
1904 * The folio was marked dirty, but the buffers were
1905 * clean. Someone wrote them back by hand with
1906 * write_dirty_buffer/submit_bh. A rare case.
1907 */
1908 folio_end_writeback(folio);
1909
1910 /*
1911 * The folio and buffer_heads can be released at any time from
1912 * here on.
1913 */
1914 }
1915 return err;
1916
1917recover:
1918 /*
1919 * ENOSPC, or some other error. We may already have added some
1920 * blocks to the file, so we need to write these out to avoid
1921 * exposing stale data.
1922 * The folio is currently locked and not marked for writeback
1923 */
1924 bh = head;
1925 /* Recovery: lock and submit the mapped buffers */
1926 do {
1927 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1928 !buffer_delay(bh)) {
1929 lock_buffer(bh);
1930 mark_buffer_async_write_endio(bh,
1931 handler: end_buffer_async_write);
1932 } else {
1933 /*
1934 * The buffer may have been set dirty during
1935 * attachment to a dirty folio.
1936 */
1937 clear_buffer_dirty(bh);
1938 }
1939 } while ((bh = bh->b_this_page) != head);
1940 folio_set_error(folio);
1941 BUG_ON(folio_test_writeback(folio));
1942 mapping_set_error(mapping: folio->mapping, error: err);
1943 folio_start_writeback(folio);
1944 do {
1945 struct buffer_head *next = bh->b_this_page;
1946 if (buffer_async_write(bh)) {
1947 clear_buffer_dirty(bh);
1948 submit_bh_wbc(opf: REQ_OP_WRITE | write_flags, bh,
1949 hint: inode->i_write_hint, wbc);
1950 nr_underway++;
1951 }
1952 bh = next;
1953 } while (bh != head);
1954 folio_unlock(folio);
1955 goto done;
1956}
1957EXPORT_SYMBOL(__block_write_full_folio);
1958
1959/*
1960 * If a folio has any new buffers, zero them out here, and mark them uptodate
1961 * and dirty so they'll be written out (in order to prevent uninitialised
1962 * block data from leaking). And clear the new bit.
1963 */
1964void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1965{
1966 size_t block_start, block_end;
1967 struct buffer_head *head, *bh;
1968
1969 BUG_ON(!folio_test_locked(folio));
1970 head = folio_buffers(folio);
1971 if (!head)
1972 return;
1973
1974 bh = head;
1975 block_start = 0;
1976 do {
1977 block_end = block_start + bh->b_size;
1978
1979 if (buffer_new(bh)) {
1980 if (block_end > from && block_start < to) {
1981 if (!folio_test_uptodate(folio)) {
1982 size_t start, xend;
1983
1984 start = max(from, block_start);
1985 xend = min(to, block_end);
1986
1987 folio_zero_segment(folio, start, xend);
1988 set_buffer_uptodate(bh);
1989 }
1990
1991 clear_buffer_new(bh);
1992 mark_buffer_dirty(bh);
1993 }
1994 }
1995
1996 block_start = block_end;
1997 bh = bh->b_this_page;
1998 } while (bh != head);
1999}
2000EXPORT_SYMBOL(folio_zero_new_buffers);
2001
2002static int
2003iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2004 const struct iomap *iomap)
2005{
2006 loff_t offset = (loff_t)block << inode->i_blkbits;
2007
2008 bh->b_bdev = iomap->bdev;
2009
2010 /*
2011 * Block points to offset in file we need to map, iomap contains
2012 * the offset at which the map starts. If the map ends before the
2013 * current block, then do not map the buffer and let the caller
2014 * handle it.
2015 */
2016 if (offset >= iomap->offset + iomap->length)
2017 return -EIO;
2018
2019 switch (iomap->type) {
2020 case IOMAP_HOLE:
2021 /*
2022 * If the buffer is not up to date or beyond the current EOF,
2023 * we need to mark it as new to ensure sub-block zeroing is
2024 * executed if necessary.
2025 */
2026 if (!buffer_uptodate(bh) ||
2027 (offset >= i_size_read(inode)))
2028 set_buffer_new(bh);
2029 return 0;
2030 case IOMAP_DELALLOC:
2031 if (!buffer_uptodate(bh) ||
2032 (offset >= i_size_read(inode)))
2033 set_buffer_new(bh);
2034 set_buffer_uptodate(bh);
2035 set_buffer_mapped(bh);
2036 set_buffer_delay(bh);
2037 return 0;
2038 case IOMAP_UNWRITTEN:
2039 /*
2040 * For unwritten regions, we always need to ensure that regions
2041 * in the block we are not writing to are zeroed. Mark the
2042 * buffer as new to ensure this.
2043 */
2044 set_buffer_new(bh);
2045 set_buffer_unwritten(bh);
2046 fallthrough;
2047 case IOMAP_MAPPED:
2048 if ((iomap->flags & IOMAP_F_NEW) ||
2049 offset >= i_size_read(inode)) {
2050 /*
2051 * This can happen if truncating the block device races
2052 * with the check in the caller as i_size updates on
2053 * block devices aren't synchronized by i_rwsem for
2054 * block devices.
2055 */
2056 if (S_ISBLK(inode->i_mode))
2057 return -EIO;
2058 set_buffer_new(bh);
2059 }
2060 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2061 inode->i_blkbits;
2062 set_buffer_mapped(bh);
2063 return 0;
2064 default:
2065 WARN_ON_ONCE(1);
2066 return -EIO;
2067 }
2068}
2069
2070int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2071 get_block_t *get_block, const struct iomap *iomap)
2072{
2073 size_t from = offset_in_folio(folio, pos);
2074 size_t to = from + len;
2075 struct inode *inode = folio->mapping->host;
2076 size_t block_start, block_end;
2077 sector_t block;
2078 int err = 0;
2079 size_t blocksize;
2080 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2081
2082 BUG_ON(!folio_test_locked(folio));
2083 BUG_ON(to > folio_size(folio));
2084 BUG_ON(from > to);
2085
2086 head = folio_create_buffers(folio, inode, b_state: 0);
2087 blocksize = head->b_size;
2088 block = div_u64(dividend: folio_pos(folio), divisor: blocksize);
2089
2090 for (bh = head, block_start = 0; bh != head || !block_start;
2091 block++, block_start=block_end, bh = bh->b_this_page) {
2092 block_end = block_start + blocksize;
2093 if (block_end <= from || block_start >= to) {
2094 if (folio_test_uptodate(folio)) {
2095 if (!buffer_uptodate(bh))
2096 set_buffer_uptodate(bh);
2097 }
2098 continue;
2099 }
2100 if (buffer_new(bh))
2101 clear_buffer_new(bh);
2102 if (!buffer_mapped(bh)) {
2103 WARN_ON(bh->b_size != blocksize);
2104 if (get_block)
2105 err = get_block(inode, block, bh, 1);
2106 else
2107 err = iomap_to_bh(inode, block, bh, iomap);
2108 if (err)
2109 break;
2110
2111 if (buffer_new(bh)) {
2112 clean_bdev_bh_alias(bh);
2113 if (folio_test_uptodate(folio)) {
2114 clear_buffer_new(bh);
2115 set_buffer_uptodate(bh);
2116 mark_buffer_dirty(bh);
2117 continue;
2118 }
2119 if (block_end > to || block_start < from)
2120 folio_zero_segments(folio,
2121 start1: to, xend1: block_end,
2122 start2: block_start, xend2: from);
2123 continue;
2124 }
2125 }
2126 if (folio_test_uptodate(folio)) {
2127 if (!buffer_uptodate(bh))
2128 set_buffer_uptodate(bh);
2129 continue;
2130 }
2131 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2132 !buffer_unwritten(bh) &&
2133 (block_start < from || block_end > to)) {
2134 bh_read_nowait(bh, op_flags: 0);
2135 *wait_bh++=bh;
2136 }
2137 }
2138 /*
2139 * If we issued read requests - let them complete.
2140 */
2141 while(wait_bh > wait) {
2142 wait_on_buffer(bh: *--wait_bh);
2143 if (!buffer_uptodate(bh: *wait_bh))
2144 err = -EIO;
2145 }
2146 if (unlikely(err))
2147 folio_zero_new_buffers(folio, from, to);
2148 return err;
2149}
2150
2151int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2152 get_block_t *get_block)
2153{
2154 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2155 NULL);
2156}
2157EXPORT_SYMBOL(__block_write_begin);
2158
2159static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2160{
2161 size_t block_start, block_end;
2162 bool partial = false;
2163 unsigned blocksize;
2164 struct buffer_head *bh, *head;
2165
2166 bh = head = folio_buffers(folio);
2167 blocksize = bh->b_size;
2168
2169 block_start = 0;
2170 do {
2171 block_end = block_start + blocksize;
2172 if (block_end <= from || block_start >= to) {
2173 if (!buffer_uptodate(bh))
2174 partial = true;
2175 } else {
2176 set_buffer_uptodate(bh);
2177 mark_buffer_dirty(bh);
2178 }
2179 if (buffer_new(bh))
2180 clear_buffer_new(bh);
2181
2182 block_start = block_end;
2183 bh = bh->b_this_page;
2184 } while (bh != head);
2185
2186 /*
2187 * If this is a partial write which happened to make all buffers
2188 * uptodate then we can optimize away a bogus read_folio() for
2189 * the next read(). Here we 'discover' whether the folio went
2190 * uptodate as a result of this (potentially partial) write.
2191 */
2192 if (!partial)
2193 folio_mark_uptodate(folio);
2194}
2195
2196/*
2197 * block_write_begin takes care of the basic task of block allocation and
2198 * bringing partial write blocks uptodate first.
2199 *
2200 * The filesystem needs to handle block truncation upon failure.
2201 */
2202int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2203 struct page **pagep, get_block_t *get_block)
2204{
2205 pgoff_t index = pos >> PAGE_SHIFT;
2206 struct page *page;
2207 int status;
2208
2209 page = grab_cache_page_write_begin(mapping, index);
2210 if (!page)
2211 return -ENOMEM;
2212
2213 status = __block_write_begin(page, pos, len, get_block);
2214 if (unlikely(status)) {
2215 unlock_page(page);
2216 put_page(page);
2217 page = NULL;
2218 }
2219
2220 *pagep = page;
2221 return status;
2222}
2223EXPORT_SYMBOL(block_write_begin);
2224
2225int block_write_end(struct file *file, struct address_space *mapping,
2226 loff_t pos, unsigned len, unsigned copied,
2227 struct page *page, void *fsdata)
2228{
2229 struct folio *folio = page_folio(page);
2230 size_t start = pos - folio_pos(folio);
2231
2232 if (unlikely(copied < len)) {
2233 /*
2234 * The buffers that were written will now be uptodate, so
2235 * we don't have to worry about a read_folio reading them
2236 * and overwriting a partial write. However if we have
2237 * encountered a short write and only partially written
2238 * into a buffer, it will not be marked uptodate, so a
2239 * read_folio might come in and destroy our partial write.
2240 *
2241 * Do the simplest thing, and just treat any short write to a
2242 * non uptodate folio as a zero-length write, and force the
2243 * caller to redo the whole thing.
2244 */
2245 if (!folio_test_uptodate(folio))
2246 copied = 0;
2247
2248 folio_zero_new_buffers(folio, start+copied, start+len);
2249 }
2250 flush_dcache_folio(folio);
2251
2252 /* This could be a short (even 0-length) commit */
2253 __block_commit_write(folio, from: start, to: start + copied);
2254
2255 return copied;
2256}
2257EXPORT_SYMBOL(block_write_end);
2258
2259int generic_write_end(struct file *file, struct address_space *mapping,
2260 loff_t pos, unsigned len, unsigned copied,
2261 struct page *page, void *fsdata)
2262{
2263 struct inode *inode = mapping->host;
2264 loff_t old_size = inode->i_size;
2265 bool i_size_changed = false;
2266
2267 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2268
2269 /*
2270 * No need to use i_size_read() here, the i_size cannot change under us
2271 * because we hold i_rwsem.
2272 *
2273 * But it's important to update i_size while still holding page lock:
2274 * page writeout could otherwise come in and zero beyond i_size.
2275 */
2276 if (pos + copied > inode->i_size) {
2277 i_size_write(inode, i_size: pos + copied);
2278 i_size_changed = true;
2279 }
2280
2281 unlock_page(page);
2282 put_page(page);
2283
2284 if (old_size < pos)
2285 pagecache_isize_extended(inode, from: old_size, to: pos);
2286 /*
2287 * Don't mark the inode dirty under page lock. First, it unnecessarily
2288 * makes the holding time of page lock longer. Second, it forces lock
2289 * ordering of page lock and transaction start for journaling
2290 * filesystems.
2291 */
2292 if (i_size_changed)
2293 mark_inode_dirty(inode);
2294 return copied;
2295}
2296EXPORT_SYMBOL(generic_write_end);
2297
2298/*
2299 * block_is_partially_uptodate checks whether buffers within a folio are
2300 * uptodate or not.
2301 *
2302 * Returns true if all buffers which correspond to the specified part
2303 * of the folio are uptodate.
2304 */
2305bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2306{
2307 unsigned block_start, block_end, blocksize;
2308 unsigned to;
2309 struct buffer_head *bh, *head;
2310 bool ret = true;
2311
2312 head = folio_buffers(folio);
2313 if (!head)
2314 return false;
2315 blocksize = head->b_size;
2316 to = min_t(unsigned, folio_size(folio) - from, count);
2317 to = from + to;
2318 if (from < blocksize && to > folio_size(folio) - blocksize)
2319 return false;
2320
2321 bh = head;
2322 block_start = 0;
2323 do {
2324 block_end = block_start + blocksize;
2325 if (block_end > from && block_start < to) {
2326 if (!buffer_uptodate(bh)) {
2327 ret = false;
2328 break;
2329 }
2330 if (block_end >= to)
2331 break;
2332 }
2333 block_start = block_end;
2334 bh = bh->b_this_page;
2335 } while (bh != head);
2336
2337 return ret;
2338}
2339EXPORT_SYMBOL(block_is_partially_uptodate);
2340
2341/*
2342 * Generic "read_folio" function for block devices that have the normal
2343 * get_block functionality. This is most of the block device filesystems.
2344 * Reads the folio asynchronously --- the unlock_buffer() and
2345 * set/clear_buffer_uptodate() functions propagate buffer state into the
2346 * folio once IO has completed.
2347 */
2348int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2349{
2350 struct inode *inode = folio->mapping->host;
2351 sector_t iblock, lblock;
2352 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2353 size_t blocksize;
2354 int nr, i;
2355 int fully_mapped = 1;
2356 bool page_error = false;
2357 loff_t limit = i_size_read(inode);
2358
2359 /* This is needed for ext4. */
2360 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2361 limit = inode->i_sb->s_maxbytes;
2362
2363 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2364
2365 head = folio_create_buffers(folio, inode, b_state: 0);
2366 blocksize = head->b_size;
2367
2368 iblock = div_u64(dividend: folio_pos(folio), divisor: blocksize);
2369 lblock = div_u64(dividend: limit + blocksize - 1, divisor: blocksize);
2370 bh = head;
2371 nr = 0;
2372 i = 0;
2373
2374 do {
2375 if (buffer_uptodate(bh))
2376 continue;
2377
2378 if (!buffer_mapped(bh)) {
2379 int err = 0;
2380
2381 fully_mapped = 0;
2382 if (iblock < lblock) {
2383 WARN_ON(bh->b_size != blocksize);
2384 err = get_block(inode, iblock, bh, 0);
2385 if (err) {
2386 folio_set_error(folio);
2387 page_error = true;
2388 }
2389 }
2390 if (!buffer_mapped(bh)) {
2391 folio_zero_range(folio, start: i * blocksize,
2392 length: blocksize);
2393 if (!err)
2394 set_buffer_uptodate(bh);
2395 continue;
2396 }
2397 /*
2398 * get_block() might have updated the buffer
2399 * synchronously
2400 */
2401 if (buffer_uptodate(bh))
2402 continue;
2403 }
2404 arr[nr++] = bh;
2405 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2406
2407 if (fully_mapped)
2408 folio_set_mappedtodisk(folio);
2409
2410 if (!nr) {
2411 /*
2412 * All buffers are uptodate or get_block() returned an
2413 * error when trying to map them - we can finish the read.
2414 */
2415 folio_end_read(folio, success: !page_error);
2416 return 0;
2417 }
2418
2419 /* Stage two: lock the buffers */
2420 for (i = 0; i < nr; i++) {
2421 bh = arr[i];
2422 lock_buffer(bh);
2423 mark_buffer_async_read(bh);
2424 }
2425
2426 /*
2427 * Stage 3: start the IO. Check for uptodateness
2428 * inside the buffer lock in case another process reading
2429 * the underlying blockdev brought it uptodate (the sct fix).
2430 */
2431 for (i = 0; i < nr; i++) {
2432 bh = arr[i];
2433 if (buffer_uptodate(bh))
2434 end_buffer_async_read(bh, uptodate: 1);
2435 else
2436 submit_bh(REQ_OP_READ, bh);
2437 }
2438 return 0;
2439}
2440EXPORT_SYMBOL(block_read_full_folio);
2441
2442/* utility function for filesystems that need to do work on expanding
2443 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2444 * deal with the hole.
2445 */
2446int generic_cont_expand_simple(struct inode *inode, loff_t size)
2447{
2448 struct address_space *mapping = inode->i_mapping;
2449 const struct address_space_operations *aops = mapping->a_ops;
2450 struct page *page;
2451 void *fsdata = NULL;
2452 int err;
2453
2454 err = inode_newsize_ok(inode, offset: size);
2455 if (err)
2456 goto out;
2457
2458 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2459 if (err)
2460 goto out;
2461
2462 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2463 BUG_ON(err > 0);
2464
2465out:
2466 return err;
2467}
2468EXPORT_SYMBOL(generic_cont_expand_simple);
2469
2470static int cont_expand_zero(struct file *file, struct address_space *mapping,
2471 loff_t pos, loff_t *bytes)
2472{
2473 struct inode *inode = mapping->host;
2474 const struct address_space_operations *aops = mapping->a_ops;
2475 unsigned int blocksize = i_blocksize(node: inode);
2476 struct page *page;
2477 void *fsdata = NULL;
2478 pgoff_t index, curidx;
2479 loff_t curpos;
2480 unsigned zerofrom, offset, len;
2481 int err = 0;
2482
2483 index = pos >> PAGE_SHIFT;
2484 offset = pos & ~PAGE_MASK;
2485
2486 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2487 zerofrom = curpos & ~PAGE_MASK;
2488 if (zerofrom & (blocksize-1)) {
2489 *bytes |= (blocksize-1);
2490 (*bytes)++;
2491 }
2492 len = PAGE_SIZE - zerofrom;
2493
2494 err = aops->write_begin(file, mapping, curpos, len,
2495 &page, &fsdata);
2496 if (err)
2497 goto out;
2498 zero_user(page, start: zerofrom, size: len);
2499 err = aops->write_end(file, mapping, curpos, len, len,
2500 page, fsdata);
2501 if (err < 0)
2502 goto out;
2503 BUG_ON(err != len);
2504 err = 0;
2505
2506 balance_dirty_pages_ratelimited(mapping);
2507
2508 if (fatal_signal_pending(current)) {
2509 err = -EINTR;
2510 goto out;
2511 }
2512 }
2513
2514 /* page covers the boundary, find the boundary offset */
2515 if (index == curidx) {
2516 zerofrom = curpos & ~PAGE_MASK;
2517 /* if we will expand the thing last block will be filled */
2518 if (offset <= zerofrom) {
2519 goto out;
2520 }
2521 if (zerofrom & (blocksize-1)) {
2522 *bytes |= (blocksize-1);
2523 (*bytes)++;
2524 }
2525 len = offset - zerofrom;
2526
2527 err = aops->write_begin(file, mapping, curpos, len,
2528 &page, &fsdata);
2529 if (err)
2530 goto out;
2531 zero_user(page, start: zerofrom, size: len);
2532 err = aops->write_end(file, mapping, curpos, len, len,
2533 page, fsdata);
2534 if (err < 0)
2535 goto out;
2536 BUG_ON(err != len);
2537 err = 0;
2538 }
2539out:
2540 return err;
2541}
2542
2543/*
2544 * For moronic filesystems that do not allow holes in file.
2545 * We may have to extend the file.
2546 */
2547int cont_write_begin(struct file *file, struct address_space *mapping,
2548 loff_t pos, unsigned len,
2549 struct page **pagep, void **fsdata,
2550 get_block_t *get_block, loff_t *bytes)
2551{
2552 struct inode *inode = mapping->host;
2553 unsigned int blocksize = i_blocksize(node: inode);
2554 unsigned int zerofrom;
2555 int err;
2556
2557 err = cont_expand_zero(file, mapping, pos, bytes);
2558 if (err)
2559 return err;
2560
2561 zerofrom = *bytes & ~PAGE_MASK;
2562 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2563 *bytes |= (blocksize-1);
2564 (*bytes)++;
2565 }
2566
2567 return block_write_begin(mapping, pos, len, pagep, get_block);
2568}
2569EXPORT_SYMBOL(cont_write_begin);
2570
2571void block_commit_write(struct page *page, unsigned from, unsigned to)
2572{
2573 struct folio *folio = page_folio(page);
2574 __block_commit_write(folio, from, to);
2575}
2576EXPORT_SYMBOL(block_commit_write);
2577
2578/*
2579 * block_page_mkwrite() is not allowed to change the file size as it gets
2580 * called from a page fault handler when a page is first dirtied. Hence we must
2581 * be careful to check for EOF conditions here. We set the page up correctly
2582 * for a written page which means we get ENOSPC checking when writing into
2583 * holes and correct delalloc and unwritten extent mapping on filesystems that
2584 * support these features.
2585 *
2586 * We are not allowed to take the i_mutex here so we have to play games to
2587 * protect against truncate races as the page could now be beyond EOF. Because
2588 * truncate writes the inode size before removing pages, once we have the
2589 * page lock we can determine safely if the page is beyond EOF. If it is not
2590 * beyond EOF, then the page is guaranteed safe against truncation until we
2591 * unlock the page.
2592 *
2593 * Direct callers of this function should protect against filesystem freezing
2594 * using sb_start_pagefault() - sb_end_pagefault() functions.
2595 */
2596int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2597 get_block_t get_block)
2598{
2599 struct folio *folio = page_folio(vmf->page);
2600 struct inode *inode = file_inode(f: vma->vm_file);
2601 unsigned long end;
2602 loff_t size;
2603 int ret;
2604
2605 folio_lock(folio);
2606 size = i_size_read(inode);
2607 if ((folio->mapping != inode->i_mapping) ||
2608 (folio_pos(folio) >= size)) {
2609 /* We overload EFAULT to mean page got truncated */
2610 ret = -EFAULT;
2611 goto out_unlock;
2612 }
2613
2614 end = folio_size(folio);
2615 /* folio is wholly or partially inside EOF */
2616 if (folio_pos(folio) + end > size)
2617 end = size - folio_pos(folio);
2618
2619 ret = __block_write_begin_int(folio, pos: 0, len: end, get_block, NULL);
2620 if (unlikely(ret))
2621 goto out_unlock;
2622
2623 __block_commit_write(folio, from: 0, to: end);
2624
2625 folio_mark_dirty(folio);
2626 folio_wait_stable(folio);
2627 return 0;
2628out_unlock:
2629 folio_unlock(folio);
2630 return ret;
2631}
2632EXPORT_SYMBOL(block_page_mkwrite);
2633
2634int block_truncate_page(struct address_space *mapping,
2635 loff_t from, get_block_t *get_block)
2636{
2637 pgoff_t index = from >> PAGE_SHIFT;
2638 unsigned blocksize;
2639 sector_t iblock;
2640 size_t offset, length, pos;
2641 struct inode *inode = mapping->host;
2642 struct folio *folio;
2643 struct buffer_head *bh;
2644 int err = 0;
2645
2646 blocksize = i_blocksize(node: inode);
2647 length = from & (blocksize - 1);
2648
2649 /* Block boundary? Nothing to do */
2650 if (!length)
2651 return 0;
2652
2653 length = blocksize - length;
2654 iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
2655
2656 folio = filemap_grab_folio(mapping, index);
2657 if (IS_ERR(ptr: folio))
2658 return PTR_ERR(ptr: folio);
2659
2660 bh = folio_buffers(folio);
2661 if (!bh)
2662 bh = create_empty_buffers(folio, blocksize, 0);
2663
2664 /* Find the buffer that contains "offset" */
2665 offset = offset_in_folio(folio, from);
2666 pos = blocksize;
2667 while (offset >= pos) {
2668 bh = bh->b_this_page;
2669 iblock++;
2670 pos += blocksize;
2671 }
2672
2673 if (!buffer_mapped(bh)) {
2674 WARN_ON(bh->b_size != blocksize);
2675 err = get_block(inode, iblock, bh, 0);
2676 if (err)
2677 goto unlock;
2678 /* unmapped? It's a hole - nothing to do */
2679 if (!buffer_mapped(bh))
2680 goto unlock;
2681 }
2682
2683 /* Ok, it's mapped. Make sure it's up-to-date */
2684 if (folio_test_uptodate(folio))
2685 set_buffer_uptodate(bh);
2686
2687 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2688 err = bh_read(bh, op_flags: 0);
2689 /* Uhhuh. Read error. Complain and punt. */
2690 if (err < 0)
2691 goto unlock;
2692 }
2693
2694 folio_zero_range(folio, start: offset, length);
2695 mark_buffer_dirty(bh);
2696
2697unlock:
2698 folio_unlock(folio);
2699 folio_put(folio);
2700
2701 return err;
2702}
2703EXPORT_SYMBOL(block_truncate_page);
2704
2705/*
2706 * The generic ->writepage function for buffer-backed address_spaces
2707 */
2708int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2709 void *get_block)
2710{
2711 struct inode * const inode = folio->mapping->host;
2712 loff_t i_size = i_size_read(inode);
2713
2714 /* Is the folio fully inside i_size? */
2715 if (folio_pos(folio) + folio_size(folio) <= i_size)
2716 return __block_write_full_folio(inode, folio, get_block, wbc);
2717
2718 /* Is the folio fully outside i_size? (truncate in progress) */
2719 if (folio_pos(folio) >= i_size) {
2720 folio_unlock(folio);
2721 return 0; /* don't care */
2722 }
2723
2724 /*
2725 * The folio straddles i_size. It must be zeroed out on each and every
2726 * writepage invocation because it may be mmapped. "A file is mapped
2727 * in multiples of the page size. For a file that is not a multiple of
2728 * the page size, the remaining memory is zeroed when mapped, and
2729 * writes to that region are not written out to the file."
2730 */
2731 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2732 xend: folio_size(folio));
2733 return __block_write_full_folio(inode, folio, get_block, wbc);
2734}
2735
2736sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2737 get_block_t *get_block)
2738{
2739 struct inode *inode = mapping->host;
2740 struct buffer_head tmp = {
2741 .b_size = i_blocksize(node: inode),
2742 };
2743
2744 get_block(inode, block, &tmp, 0);
2745 return tmp.b_blocknr;
2746}
2747EXPORT_SYMBOL(generic_block_bmap);
2748
2749static void end_bio_bh_io_sync(struct bio *bio)
2750{
2751 struct buffer_head *bh = bio->bi_private;
2752
2753 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2754 set_bit(nr: BH_Quiet, addr: &bh->b_state);
2755
2756 bh->b_end_io(bh, !bio->bi_status);
2757 bio_put(bio);
2758}
2759
2760static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2761 enum rw_hint write_hint,
2762 struct writeback_control *wbc)
2763{
2764 const enum req_op op = opf & REQ_OP_MASK;
2765 struct bio *bio;
2766
2767 BUG_ON(!buffer_locked(bh));
2768 BUG_ON(!buffer_mapped(bh));
2769 BUG_ON(!bh->b_end_io);
2770 BUG_ON(buffer_delay(bh));
2771 BUG_ON(buffer_unwritten(bh));
2772
2773 /*
2774 * Only clear out a write error when rewriting
2775 */
2776 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2777 clear_buffer_write_io_error(bh);
2778
2779 if (buffer_meta(bh))
2780 opf |= REQ_META;
2781 if (buffer_prio(bh))
2782 opf |= REQ_PRIO;
2783
2784 bio = bio_alloc(bdev: bh->b_bdev, nr_vecs: 1, opf, GFP_NOIO);
2785
2786 fscrypt_set_bio_crypt_ctx_bh(bio, first_bh: bh, GFP_NOIO);
2787
2788 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2789 bio->bi_write_hint = write_hint;
2790
2791 __bio_add_page(bio, page: bh->b_page, len: bh->b_size, off: bh_offset(bh));
2792
2793 bio->bi_end_io = end_bio_bh_io_sync;
2794 bio->bi_private = bh;
2795
2796 /* Take care of bh's that straddle the end of the device */
2797 guard_bio_eod(bio);
2798
2799 if (wbc) {
2800 wbc_init_bio(wbc, bio);
2801 wbc_account_cgroup_owner(wbc, page: bh->b_page, bytes: bh->b_size);
2802 }
2803
2804 submit_bio(bio);
2805}
2806
2807void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2808{
2809 submit_bh_wbc(opf, bh, write_hint: WRITE_LIFE_NOT_SET, NULL);
2810}
2811EXPORT_SYMBOL(submit_bh);
2812
2813void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2814{
2815 lock_buffer(bh);
2816 if (!test_clear_buffer_dirty(bh)) {
2817 unlock_buffer(bh);
2818 return;
2819 }
2820 bh->b_end_io = end_buffer_write_sync;
2821 get_bh(bh);
2822 submit_bh(REQ_OP_WRITE | op_flags, bh);
2823}
2824EXPORT_SYMBOL(write_dirty_buffer);
2825
2826/*
2827 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2828 * and then start new I/O and then wait upon it. The caller must have a ref on
2829 * the buffer_head.
2830 */
2831int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2832{
2833 WARN_ON(atomic_read(&bh->b_count) < 1);
2834 lock_buffer(bh);
2835 if (test_clear_buffer_dirty(bh)) {
2836 /*
2837 * The bh should be mapped, but it might not be if the
2838 * device was hot-removed. Not much we can do but fail the I/O.
2839 */
2840 if (!buffer_mapped(bh)) {
2841 unlock_buffer(bh);
2842 return -EIO;
2843 }
2844
2845 get_bh(bh);
2846 bh->b_end_io = end_buffer_write_sync;
2847 submit_bh(REQ_OP_WRITE | op_flags, bh);
2848 wait_on_buffer(bh);
2849 if (!buffer_uptodate(bh))
2850 return -EIO;
2851 } else {
2852 unlock_buffer(bh);
2853 }
2854 return 0;
2855}
2856EXPORT_SYMBOL(__sync_dirty_buffer);
2857
2858int sync_dirty_buffer(struct buffer_head *bh)
2859{
2860 return __sync_dirty_buffer(bh, REQ_SYNC);
2861}
2862EXPORT_SYMBOL(sync_dirty_buffer);
2863
2864/*
2865 * try_to_free_buffers() checks if all the buffers on this particular folio
2866 * are unused, and releases them if so.
2867 *
2868 * Exclusion against try_to_free_buffers may be obtained by either
2869 * locking the folio or by holding its mapping's i_private_lock.
2870 *
2871 * If the folio is dirty but all the buffers are clean then we need to
2872 * be sure to mark the folio clean as well. This is because the folio
2873 * may be against a block device, and a later reattachment of buffers
2874 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2875 * filesystem data on the same device.
2876 *
2877 * The same applies to regular filesystem folios: if all the buffers are
2878 * clean then we set the folio clean and proceed. To do that, we require
2879 * total exclusion from block_dirty_folio(). That is obtained with
2880 * i_private_lock.
2881 *
2882 * try_to_free_buffers() is non-blocking.
2883 */
2884static inline int buffer_busy(struct buffer_head *bh)
2885{
2886 return atomic_read(v: &bh->b_count) |
2887 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888}
2889
2890static bool
2891drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892{
2893 struct buffer_head *head = folio_buffers(folio);
2894 struct buffer_head *bh;
2895
2896 bh = head;
2897 do {
2898 if (buffer_busy(bh))
2899 goto failed;
2900 bh = bh->b_this_page;
2901 } while (bh != head);
2902
2903 do {
2904 struct buffer_head *next = bh->b_this_page;
2905
2906 if (bh->b_assoc_map)
2907 __remove_assoc_queue(bh);
2908 bh = next;
2909 } while (bh != head);
2910 *buffers_to_free = head;
2911 folio_detach_private(folio);
2912 return true;
2913failed:
2914 return false;
2915}
2916
2917bool try_to_free_buffers(struct folio *folio)
2918{
2919 struct address_space * const mapping = folio->mapping;
2920 struct buffer_head *buffers_to_free = NULL;
2921 bool ret = 0;
2922
2923 BUG_ON(!folio_test_locked(folio));
2924 if (folio_test_writeback(folio))
2925 return false;
2926
2927 if (mapping == NULL) { /* can this still happen? */
2928 ret = drop_buffers(folio, buffers_to_free: &buffers_to_free);
2929 goto out;
2930 }
2931
2932 spin_lock(lock: &mapping->i_private_lock);
2933 ret = drop_buffers(folio, buffers_to_free: &buffers_to_free);
2934
2935 /*
2936 * If the filesystem writes its buffers by hand (eg ext3)
2937 * then we can have clean buffers against a dirty folio. We
2938 * clean the folio here; otherwise the VM will never notice
2939 * that the filesystem did any IO at all.
2940 *
2941 * Also, during truncate, discard_buffer will have marked all
2942 * the folio's buffers clean. We discover that here and clean
2943 * the folio also.
2944 *
2945 * i_private_lock must be held over this entire operation in order
2946 * to synchronise against block_dirty_folio and prevent the
2947 * dirty bit from being lost.
2948 */
2949 if (ret)
2950 folio_cancel_dirty(folio);
2951 spin_unlock(lock: &mapping->i_private_lock);
2952out:
2953 if (buffers_to_free) {
2954 struct buffer_head *bh = buffers_to_free;
2955
2956 do {
2957 struct buffer_head *next = bh->b_this_page;
2958 free_buffer_head(bh);
2959 bh = next;
2960 } while (bh != buffers_to_free);
2961 }
2962 return ret;
2963}
2964EXPORT_SYMBOL(try_to_free_buffers);
2965
2966/*
2967 * Buffer-head allocation
2968 */
2969static struct kmem_cache *bh_cachep __ro_after_init;
2970
2971/*
2972 * Once the number of bh's in the machine exceeds this level, we start
2973 * stripping them in writeback.
2974 */
2975static unsigned long max_buffer_heads __ro_after_init;
2976
2977int buffer_heads_over_limit;
2978
2979struct bh_accounting {
2980 int nr; /* Number of live bh's */
2981 int ratelimit; /* Limit cacheline bouncing */
2982};
2983
2984static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2985
2986static void recalc_bh_state(void)
2987{
2988 int i;
2989 int tot = 0;
2990
2991 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2992 return;
2993 __this_cpu_write(bh_accounting.ratelimit, 0);
2994 for_each_online_cpu(i)
2995 tot += per_cpu(bh_accounting, i).nr;
2996 buffer_heads_over_limit = (tot > max_buffer_heads);
2997}
2998
2999struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3000{
3001 struct buffer_head *ret = kmem_cache_zalloc(k: bh_cachep, flags: gfp_flags);
3002 if (ret) {
3003 INIT_LIST_HEAD(list: &ret->b_assoc_buffers);
3004 spin_lock_init(&ret->b_uptodate_lock);
3005 preempt_disable();
3006 __this_cpu_inc(bh_accounting.nr);
3007 recalc_bh_state();
3008 preempt_enable();
3009 }
3010 return ret;
3011}
3012EXPORT_SYMBOL(alloc_buffer_head);
3013
3014void free_buffer_head(struct buffer_head *bh)
3015{
3016 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3017 kmem_cache_free(s: bh_cachep, objp: bh);
3018 preempt_disable();
3019 __this_cpu_dec(bh_accounting.nr);
3020 recalc_bh_state();
3021 preempt_enable();
3022}
3023EXPORT_SYMBOL(free_buffer_head);
3024
3025static int buffer_exit_cpu_dead(unsigned int cpu)
3026{
3027 int i;
3028 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3029
3030 for (i = 0; i < BH_LRU_SIZE; i++) {
3031 brelse(bh: b->bhs[i]);
3032 b->bhs[i] = NULL;
3033 }
3034 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3035 per_cpu(bh_accounting, cpu).nr = 0;
3036 return 0;
3037}
3038
3039/**
3040 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3041 * @bh: struct buffer_head
3042 *
3043 * Return true if the buffer is up-to-date and false,
3044 * with the buffer locked, if not.
3045 */
3046int bh_uptodate_or_lock(struct buffer_head *bh)
3047{
3048 if (!buffer_uptodate(bh)) {
3049 lock_buffer(bh);
3050 if (!buffer_uptodate(bh))
3051 return 0;
3052 unlock_buffer(bh);
3053 }
3054 return 1;
3055}
3056EXPORT_SYMBOL(bh_uptodate_or_lock);
3057
3058/**
3059 * __bh_read - Submit read for a locked buffer
3060 * @bh: struct buffer_head
3061 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062 * @wait: wait until reading finish
3063 *
3064 * Returns zero on success or don't wait, and -EIO on error.
3065 */
3066int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3067{
3068 int ret = 0;
3069
3070 BUG_ON(!buffer_locked(bh));
3071
3072 get_bh(bh);
3073 bh->b_end_io = end_buffer_read_sync;
3074 submit_bh(REQ_OP_READ | op_flags, bh);
3075 if (wait) {
3076 wait_on_buffer(bh);
3077 if (!buffer_uptodate(bh))
3078 ret = -EIO;
3079 }
3080 return ret;
3081}
3082EXPORT_SYMBOL(__bh_read);
3083
3084/**
3085 * __bh_read_batch - Submit read for a batch of unlocked buffers
3086 * @nr: entry number of the buffer batch
3087 * @bhs: a batch of struct buffer_head
3088 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3090 * buffer that cannot lock.
3091 *
3092 * Returns zero on success or don't wait, and -EIO on error.
3093 */
3094void __bh_read_batch(int nr, struct buffer_head *bhs[],
3095 blk_opf_t op_flags, bool force_lock)
3096{
3097 int i;
3098
3099 for (i = 0; i < nr; i++) {
3100 struct buffer_head *bh = bhs[i];
3101
3102 if (buffer_uptodate(bh))
3103 continue;
3104
3105 if (force_lock)
3106 lock_buffer(bh);
3107 else
3108 if (!trylock_buffer(bh))
3109 continue;
3110
3111 if (buffer_uptodate(bh)) {
3112 unlock_buffer(bh);
3113 continue;
3114 }
3115
3116 bh->b_end_io = end_buffer_read_sync;
3117 get_bh(bh);
3118 submit_bh(REQ_OP_READ | op_flags, bh);
3119 }
3120}
3121EXPORT_SYMBOL(__bh_read_batch);
3122
3123void __init buffer_init(void)
3124{
3125 unsigned long nrpages;
3126 int ret;
3127
3128 bh_cachep = KMEM_CACHE(buffer_head,
3129 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
3130 /*
3131 * Limit the bh occupancy to 10% of ZONE_NORMAL
3132 */
3133 nrpages = (nr_free_buffer_pages() * 10) / 100;
3134 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3135 ret = cpuhp_setup_state_nocalls(state: CPUHP_FS_BUFF_DEAD, name: "fs/buffer:dead",
3136 NULL, teardown: buffer_exit_cpu_dead);
3137 WARN_ON(ret < 0);
3138}
3139

source code of linux/fs/buffer.c