1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS 128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, flags: BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48 bioset_exit(&f2fs_bioset);
49}
50
51bool f2fs_is_cp_guaranteed(struct page *page)
52{
53 struct address_space *mapping = page->mapping;
54 struct inode *inode;
55 struct f2fs_sb_info *sbi;
56
57 if (!mapping)
58 return false;
59
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
66 return true;
67
68 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
69 page_private_gcing(page))
70 return true;
71 return false;
72}
73
74static enum count_type __read_io_type(struct page *page)
75{
76 struct address_space *mapping = page_file_mapping(page);
77
78 if (mapping) {
79 struct inode *inode = mapping->host;
80 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
81
82 if (inode->i_ino == F2FS_META_INO(sbi))
83 return F2FS_RD_META;
84
85 if (inode->i_ino == F2FS_NODE_INO(sbi))
86 return F2FS_RD_NODE;
87 }
88 return F2FS_RD_DATA;
89}
90
91/* postprocessing steps for read bios */
92enum bio_post_read_step {
93#ifdef CONFIG_FS_ENCRYPTION
94 STEP_DECRYPT = BIT(0),
95#else
96 STEP_DECRYPT = 0, /* compile out the decryption-related code */
97#endif
98#ifdef CONFIG_F2FS_FS_COMPRESSION
99 STEP_DECOMPRESS = BIT(1),
100#else
101 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
102#endif
103#ifdef CONFIG_FS_VERITY
104 STEP_VERITY = BIT(2),
105#else
106 STEP_VERITY = 0, /* compile out the verity-related code */
107#endif
108};
109
110struct bio_post_read_ctx {
111 struct bio *bio;
112 struct f2fs_sb_info *sbi;
113 struct work_struct work;
114 unsigned int enabled_steps;
115 /*
116 * decompression_attempted keeps track of whether
117 * f2fs_end_read_compressed_page() has been called on the pages in the
118 * bio that belong to a compressed cluster yet.
119 */
120 bool decompression_attempted;
121 block_t fs_blkaddr;
122};
123
124/*
125 * Update and unlock a bio's pages, and free the bio.
126 *
127 * This marks pages up-to-date only if there was no error in the bio (I/O error,
128 * decryption error, or verity error), as indicated by bio->bi_status.
129 *
130 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
131 * aren't marked up-to-date here, as decompression is done on a per-compression-
132 * cluster basis rather than a per-bio basis. Instead, we only must do two
133 * things for each compressed page here: call f2fs_end_read_compressed_page()
134 * with failed=true if an error occurred before it would have normally gotten
135 * called (i.e., I/O error or decryption error, but *not* verity error), and
136 * release the bio's reference to the decompress_io_ctx of the page's cluster.
137 */
138static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
139{
140 struct bio_vec *bv;
141 struct bvec_iter_all iter_all;
142 struct bio_post_read_ctx *ctx = bio->bi_private;
143
144 bio_for_each_segment_all(bv, bio, iter_all) {
145 struct page *page = bv->bv_page;
146
147 if (f2fs_is_compressed_page(page)) {
148 if (ctx && !ctx->decompression_attempted)
149 f2fs_end_read_compressed_page(page, failed: true, blkaddr: 0,
150 in_task);
151 f2fs_put_page_dic(page, in_task);
152 continue;
153 }
154
155 if (bio->bi_status)
156 ClearPageUptodate(page);
157 else
158 SetPageUptodate(page);
159 dec_page_count(sbi: F2FS_P_SB(page), count_type: __read_io_type(page));
160 unlock_page(page);
161 }
162
163 if (ctx)
164 mempool_free(element: ctx, pool: bio_post_read_ctx_pool);
165 bio_put(bio);
166}
167
168static void f2fs_verify_bio(struct work_struct *work)
169{
170 struct bio_post_read_ctx *ctx =
171 container_of(work, struct bio_post_read_ctx, work);
172 struct bio *bio = ctx->bio;
173 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
174
175 /*
176 * fsverity_verify_bio() may call readahead() again, and while verity
177 * will be disabled for this, decryption and/or decompression may still
178 * be needed, resulting in another bio_post_read_ctx being allocated.
179 * So to prevent deadlocks we need to release the current ctx to the
180 * mempool first. This assumes that verity is the last post-read step.
181 */
182 mempool_free(element: ctx, pool: bio_post_read_ctx_pool);
183 bio->bi_private = NULL;
184
185 /*
186 * Verify the bio's pages with fs-verity. Exclude compressed pages,
187 * as those were handled separately by f2fs_end_read_compressed_page().
188 */
189 if (may_have_compressed_pages) {
190 struct bio_vec *bv;
191 struct bvec_iter_all iter_all;
192
193 bio_for_each_segment_all(bv, bio, iter_all) {
194 struct page *page = bv->bv_page;
195
196 if (!f2fs_is_compressed_page(page) &&
197 !fsverity_verify_page(page)) {
198 bio->bi_status = BLK_STS_IOERR;
199 break;
200 }
201 }
202 } else {
203 fsverity_verify_bio(bio);
204 }
205
206 f2fs_finish_read_bio(bio, in_task: true);
207}
208
209/*
210 * If the bio's data needs to be verified with fs-verity, then enqueue the
211 * verity work for the bio. Otherwise finish the bio now.
212 *
213 * Note that to avoid deadlocks, the verity work can't be done on the
214 * decryption/decompression workqueue. This is because verifying the data pages
215 * can involve reading verity metadata pages from the file, and these verity
216 * metadata pages may be encrypted and/or compressed.
217 */
218static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
219{
220 struct bio_post_read_ctx *ctx = bio->bi_private;
221
222 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
223 INIT_WORK(&ctx->work, f2fs_verify_bio);
224 fsverity_enqueue_verify_work(work: &ctx->work);
225 } else {
226 f2fs_finish_read_bio(bio, in_task);
227 }
228}
229
230/*
231 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
232 * remaining page was read by @ctx->bio.
233 *
234 * Note that a bio may span clusters (even a mix of compressed and uncompressed
235 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
236 * that the bio includes at least one compressed page. The actual decompression
237 * is done on a per-cluster basis, not a per-bio basis.
238 */
239static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
240 bool in_task)
241{
242 struct bio_vec *bv;
243 struct bvec_iter_all iter_all;
244 bool all_compressed = true;
245 block_t blkaddr = ctx->fs_blkaddr;
246
247 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
248 struct page *page = bv->bv_page;
249
250 if (f2fs_is_compressed_page(page))
251 f2fs_end_read_compressed_page(page, failed: false, blkaddr,
252 in_task);
253 else
254 all_compressed = false;
255
256 blkaddr++;
257 }
258
259 ctx->decompression_attempted = true;
260
261 /*
262 * Optimization: if all the bio's pages are compressed, then scheduling
263 * the per-bio verity work is unnecessary, as verity will be fully
264 * handled at the compression cluster level.
265 */
266 if (all_compressed)
267 ctx->enabled_steps &= ~STEP_VERITY;
268}
269
270static void f2fs_post_read_work(struct work_struct *work)
271{
272 struct bio_post_read_ctx *ctx =
273 container_of(work, struct bio_post_read_ctx, work);
274 struct bio *bio = ctx->bio;
275
276 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
277 f2fs_finish_read_bio(bio, in_task: true);
278 return;
279 }
280
281 if (ctx->enabled_steps & STEP_DECOMPRESS)
282 f2fs_handle_step_decompress(ctx, in_task: true);
283
284 f2fs_verify_and_finish_bio(bio, in_task: true);
285}
286
287static void f2fs_read_end_io(struct bio *bio)
288{
289 struct f2fs_sb_info *sbi = F2FS_P_SB(page: bio_first_page_all(bio));
290 struct bio_post_read_ctx *ctx;
291 bool intask = in_task();
292
293 iostat_update_and_unbind_ctx(bio);
294 ctx = bio->bi_private;
295
296 if (time_to_inject(sbi, FAULT_READ_IO))
297 bio->bi_status = BLK_STS_IOERR;
298
299 if (bio->bi_status) {
300 f2fs_finish_read_bio(bio, in_task: intask);
301 return;
302 }
303
304 if (ctx) {
305 unsigned int enabled_steps = ctx->enabled_steps &
306 (STEP_DECRYPT | STEP_DECOMPRESS);
307
308 /*
309 * If we have only decompression step between decompression and
310 * decrypt, we don't need post processing for this.
311 */
312 if (enabled_steps == STEP_DECOMPRESS &&
313 !f2fs_low_mem_mode(sbi)) {
314 f2fs_handle_step_decompress(ctx, in_task: intask);
315 } else if (enabled_steps) {
316 INIT_WORK(&ctx->work, f2fs_post_read_work);
317 queue_work(wq: ctx->sbi->post_read_wq, work: &ctx->work);
318 return;
319 }
320 }
321
322 f2fs_verify_and_finish_bio(bio, in_task: intask);
323}
324
325static void f2fs_write_end_io(struct bio *bio)
326{
327 struct f2fs_sb_info *sbi;
328 struct bio_vec *bvec;
329 struct bvec_iter_all iter_all;
330
331 iostat_update_and_unbind_ctx(bio);
332 sbi = bio->bi_private;
333
334 if (time_to_inject(sbi, FAULT_WRITE_IO))
335 bio->bi_status = BLK_STS_IOERR;
336
337 bio_for_each_segment_all(bvec, bio, iter_all) {
338 struct page *page = bvec->bv_page;
339 enum count_type type = WB_DATA_TYPE(page, false);
340
341 fscrypt_finalize_bounce_page(pagep: &page);
342
343#ifdef CONFIG_F2FS_FS_COMPRESSION
344 if (f2fs_is_compressed_page(page)) {
345 f2fs_compress_write_end_io(bio, page);
346 continue;
347 }
348#endif
349
350 if (unlikely(bio->bi_status)) {
351 mapping_set_error(mapping: page->mapping, error: -EIO);
352 if (type == F2FS_WB_CP_DATA)
353 f2fs_stop_checkpoint(sbi, end_io: true,
354 reason: STOP_CP_REASON_WRITE_FAIL);
355 }
356
357 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
358 page->index != nid_of_node(page));
359
360 dec_page_count(sbi, count_type: type);
361 if (f2fs_in_warm_node_list(sbi, page))
362 f2fs_del_fsync_node_entry(sbi, page);
363 clear_page_private_gcing(page);
364 end_page_writeback(page);
365 }
366 if (!get_pages(sbi, count_type: F2FS_WB_CP_DATA) &&
367 wq_has_sleeper(wq_head: &sbi->cp_wait))
368 wake_up(&sbi->cp_wait);
369
370 bio_put(bio);
371}
372
373#ifdef CONFIG_BLK_DEV_ZONED
374static void f2fs_zone_write_end_io(struct bio *bio)
375{
376 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
377
378 bio->bi_private = io->bi_private;
379 complete(&io->zone_wait);
380 f2fs_write_end_io(bio);
381}
382#endif
383
384struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
385 block_t blk_addr, sector_t *sector)
386{
387 struct block_device *bdev = sbi->sb->s_bdev;
388 int i;
389
390 if (f2fs_is_multi_device(sbi)) {
391 for (i = 0; i < sbi->s_ndevs; i++) {
392 if (FDEV(i).start_blk <= blk_addr &&
393 FDEV(i).end_blk >= blk_addr) {
394 blk_addr -= FDEV(i).start_blk;
395 bdev = FDEV(i).bdev;
396 break;
397 }
398 }
399 }
400
401 if (sector)
402 *sector = SECTOR_FROM_BLOCK(blk_addr);
403 return bdev;
404}
405
406int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
407{
408 int i;
409
410 if (!f2fs_is_multi_device(sbi))
411 return 0;
412
413 for (i = 0; i < sbi->s_ndevs; i++)
414 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
415 return i;
416 return 0;
417}
418
419static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
420{
421 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
422 unsigned int fua_flag, meta_flag, io_flag;
423 blk_opf_t op_flags = 0;
424
425 if (fio->op != REQ_OP_WRITE)
426 return 0;
427 if (fio->type == DATA)
428 io_flag = fio->sbi->data_io_flag;
429 else if (fio->type == NODE)
430 io_flag = fio->sbi->node_io_flag;
431 else
432 return 0;
433
434 fua_flag = io_flag & temp_mask;
435 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
436
437 /*
438 * data/node io flag bits per temp:
439 * REQ_META | REQ_FUA |
440 * 5 | 4 | 3 | 2 | 1 | 0 |
441 * Cold | Warm | Hot | Cold | Warm | Hot |
442 */
443 if (BIT(fio->temp) & meta_flag)
444 op_flags |= REQ_META;
445 if (BIT(fio->temp) & fua_flag)
446 op_flags |= REQ_FUA;
447 return op_flags;
448}
449
450static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
451{
452 struct f2fs_sb_info *sbi = fio->sbi;
453 struct block_device *bdev;
454 sector_t sector;
455 struct bio *bio;
456
457 bdev = f2fs_target_device(sbi, blk_addr: fio->new_blkaddr, sector: &sector);
458 bio = bio_alloc_bioset(bdev, nr_vecs: npages,
459 opf: fio->op | fio->op_flags | f2fs_io_flags(fio),
460 GFP_NOIO, bs: &f2fs_bioset);
461 bio->bi_iter.bi_sector = sector;
462 if (is_read_io(fio->op)) {
463 bio->bi_end_io = f2fs_read_end_io;
464 bio->bi_private = NULL;
465 } else {
466 bio->bi_end_io = f2fs_write_end_io;
467 bio->bi_private = sbi;
468 }
469 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
470
471 if (fio->io_wbc)
472 wbc_init_bio(wbc: fio->io_wbc, bio);
473
474 return bio;
475}
476
477static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
478 pgoff_t first_idx,
479 const struct f2fs_io_info *fio,
480 gfp_t gfp_mask)
481{
482 /*
483 * The f2fs garbage collector sets ->encrypted_page when it wants to
484 * read/write raw data without encryption.
485 */
486 if (!fio || !fio->encrypted_page)
487 fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk: first_idx, gfp_mask);
488}
489
490static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
491 pgoff_t next_idx,
492 const struct f2fs_io_info *fio)
493{
494 /*
495 * The f2fs garbage collector sets ->encrypted_page when it wants to
496 * read/write raw data without encryption.
497 */
498 if (fio && fio->encrypted_page)
499 return !bio_has_crypt_ctx(bio);
500
501 return fscrypt_mergeable_bio(bio, inode, next_lblk: next_idx);
502}
503
504void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
505 enum page_type type)
506{
507 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
508 trace_f2fs_submit_read_bio(sb: sbi->sb, type, bio);
509
510 iostat_update_submit_ctx(bio, type);
511 submit_bio(bio);
512}
513
514static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
515 enum page_type type)
516{
517 WARN_ON_ONCE(is_read_io(bio_op(bio)));
518
519 if (f2fs_lfs_mode(sbi) && current->plug && PAGE_TYPE_ON_MAIN(type))
520 blk_finish_plug(current->plug);
521
522 trace_f2fs_submit_write_bio(sb: sbi->sb, type, bio);
523 iostat_update_submit_ctx(bio, type);
524 submit_bio(bio);
525}
526
527static void __submit_merged_bio(struct f2fs_bio_info *io)
528{
529 struct f2fs_io_info *fio = &io->fio;
530
531 if (!io->bio)
532 return;
533
534 if (is_read_io(fio->op)) {
535 trace_f2fs_prepare_read_bio(sb: io->sbi->sb, type: fio->type, bio: io->bio);
536 f2fs_submit_read_bio(sbi: io->sbi, bio: io->bio, type: fio->type);
537 } else {
538 trace_f2fs_prepare_write_bio(sb: io->sbi->sb, type: fio->type, bio: io->bio);
539 f2fs_submit_write_bio(sbi: io->sbi, bio: io->bio, type: fio->type);
540 }
541 io->bio = NULL;
542}
543
544static bool __has_merged_page(struct bio *bio, struct inode *inode,
545 struct page *page, nid_t ino)
546{
547 struct bio_vec *bvec;
548 struct bvec_iter_all iter_all;
549
550 if (!bio)
551 return false;
552
553 if (!inode && !page && !ino)
554 return true;
555
556 bio_for_each_segment_all(bvec, bio, iter_all) {
557 struct page *target = bvec->bv_page;
558
559 if (fscrypt_is_bounce_page(page: target)) {
560 target = fscrypt_pagecache_page(bounce_page: target);
561 if (IS_ERR(ptr: target))
562 continue;
563 }
564 if (f2fs_is_compressed_page(page: target)) {
565 target = f2fs_compress_control_page(page: target);
566 if (IS_ERR(ptr: target))
567 continue;
568 }
569
570 if (inode && inode == target->mapping->host)
571 return true;
572 if (page && page == target)
573 return true;
574 if (ino && ino == ino_of_node(node_page: target))
575 return true;
576 }
577
578 return false;
579}
580
581int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
582{
583 int i;
584
585 for (i = 0; i < NR_PAGE_TYPE; i++) {
586 int n = (i == META) ? 1 : NR_TEMP_TYPE;
587 int j;
588
589 sbi->write_io[i] = f2fs_kmalloc(sbi,
590 array_size(n, sizeof(struct f2fs_bio_info)),
591 GFP_KERNEL);
592 if (!sbi->write_io[i])
593 return -ENOMEM;
594
595 for (j = HOT; j < n; j++) {
596 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
597 sbi->write_io[i][j].sbi = sbi;
598 sbi->write_io[i][j].bio = NULL;
599 spin_lock_init(&sbi->write_io[i][j].io_lock);
600 INIT_LIST_HEAD(list: &sbi->write_io[i][j].io_list);
601 INIT_LIST_HEAD(list: &sbi->write_io[i][j].bio_list);
602 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
603#ifdef CONFIG_BLK_DEV_ZONED
604 init_completion(x: &sbi->write_io[i][j].zone_wait);
605 sbi->write_io[i][j].zone_pending_bio = NULL;
606 sbi->write_io[i][j].bi_private = NULL;
607#endif
608 }
609 }
610
611 return 0;
612}
613
614static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
615 enum page_type type, enum temp_type temp)
616{
617 enum page_type btype = PAGE_TYPE_OF_BIO(type);
618 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
619
620 f2fs_down_write(sem: &io->io_rwsem);
621
622 if (!io->bio)
623 goto unlock_out;
624
625 /* change META to META_FLUSH in the checkpoint procedure */
626 if (type >= META_FLUSH) {
627 io->fio.type = META_FLUSH;
628 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
629 if (!test_opt(sbi, NOBARRIER))
630 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
631 }
632 __submit_merged_bio(io);
633unlock_out:
634 f2fs_up_write(sem: &io->io_rwsem);
635}
636
637static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
638 struct inode *inode, struct page *page,
639 nid_t ino, enum page_type type, bool force)
640{
641 enum temp_type temp;
642 bool ret = true;
643
644 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
645 if (!force) {
646 enum page_type btype = PAGE_TYPE_OF_BIO(type);
647 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
648
649 f2fs_down_read(sem: &io->io_rwsem);
650 ret = __has_merged_page(bio: io->bio, inode, page, ino);
651 f2fs_up_read(sem: &io->io_rwsem);
652 }
653 if (ret)
654 __f2fs_submit_merged_write(sbi, type, temp);
655
656 /* TODO: use HOT temp only for meta pages now. */
657 if (type >= META)
658 break;
659 }
660}
661
662void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
663{
664 __submit_merged_write_cond(sbi, NULL, NULL, ino: 0, type, force: true);
665}
666
667void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
668 struct inode *inode, struct page *page,
669 nid_t ino, enum page_type type)
670{
671 __submit_merged_write_cond(sbi, inode, page, ino, type, force: false);
672}
673
674void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
675{
676 f2fs_submit_merged_write(sbi, type: DATA);
677 f2fs_submit_merged_write(sbi, type: NODE);
678 f2fs_submit_merged_write(sbi, type: META);
679}
680
681/*
682 * Fill the locked page with data located in the block address.
683 * A caller needs to unlock the page on failure.
684 */
685int f2fs_submit_page_bio(struct f2fs_io_info *fio)
686{
687 struct bio *bio;
688 struct page *page = fio->encrypted_page ?
689 fio->encrypted_page : fio->page;
690
691 if (!f2fs_is_valid_blkaddr(sbi: fio->sbi, blkaddr: fio->new_blkaddr,
692 type: fio->is_por ? META_POR : (__is_meta_io(fio) ?
693 META_GENERIC : DATA_GENERIC_ENHANCE)))
694 return -EFSCORRUPTED;
695
696 trace_f2fs_submit_page_bio(page, fio);
697
698 /* Allocate a new bio */
699 bio = __bio_alloc(fio, npages: 1);
700
701 f2fs_set_bio_crypt_ctx(bio, inode: fio->page->mapping->host,
702 first_idx: fio->page->index, fio, GFP_NOIO);
703
704 if (bio_add_page(bio, page, PAGE_SIZE, off: 0) < PAGE_SIZE) {
705 bio_put(bio);
706 return -EFAULT;
707 }
708
709 if (fio->io_wbc && !is_read_io(fio->op))
710 wbc_account_cgroup_owner(wbc: fio->io_wbc, page: fio->page, PAGE_SIZE);
711
712 inc_page_count(sbi: fio->sbi, is_read_io(fio->op) ?
713 __read_io_type(page) : WB_DATA_TYPE(fio->page, false));
714
715 if (is_read_io(bio_op(bio)))
716 f2fs_submit_read_bio(sbi: fio->sbi, bio, type: fio->type);
717 else
718 f2fs_submit_write_bio(sbi: fio->sbi, bio, type: fio->type);
719 return 0;
720}
721
722static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
723 block_t last_blkaddr, block_t cur_blkaddr)
724{
725 if (unlikely(sbi->max_io_bytes &&
726 bio->bi_iter.bi_size >= sbi->max_io_bytes))
727 return false;
728 if (last_blkaddr + 1 != cur_blkaddr)
729 return false;
730 return bio->bi_bdev == f2fs_target_device(sbi, blk_addr: cur_blkaddr, NULL);
731}
732
733static bool io_type_is_mergeable(struct f2fs_bio_info *io,
734 struct f2fs_io_info *fio)
735{
736 if (io->fio.op != fio->op)
737 return false;
738 return io->fio.op_flags == fio->op_flags;
739}
740
741static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
742 struct f2fs_bio_info *io,
743 struct f2fs_io_info *fio,
744 block_t last_blkaddr,
745 block_t cur_blkaddr)
746{
747 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
748 return false;
749 return io_type_is_mergeable(io, fio);
750}
751
752static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
753 struct page *page, enum temp_type temp)
754{
755 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
756 struct bio_entry *be;
757
758 be = f2fs_kmem_cache_alloc(cachep: bio_entry_slab, GFP_NOFS, nofail: true, NULL);
759 be->bio = bio;
760 bio_get(bio);
761
762 if (bio_add_page(bio, page, PAGE_SIZE, off: 0) != PAGE_SIZE)
763 f2fs_bug_on(sbi, 1);
764
765 f2fs_down_write(sem: &io->bio_list_lock);
766 list_add_tail(new: &be->list, head: &io->bio_list);
767 f2fs_up_write(sem: &io->bio_list_lock);
768}
769
770static void del_bio_entry(struct bio_entry *be)
771{
772 list_del(entry: &be->list);
773 kmem_cache_free(s: bio_entry_slab, objp: be);
774}
775
776static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
777 struct page *page)
778{
779 struct f2fs_sb_info *sbi = fio->sbi;
780 enum temp_type temp;
781 bool found = false;
782 int ret = -EAGAIN;
783
784 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
785 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
786 struct list_head *head = &io->bio_list;
787 struct bio_entry *be;
788
789 f2fs_down_write(sem: &io->bio_list_lock);
790 list_for_each_entry(be, head, list) {
791 if (be->bio != *bio)
792 continue;
793
794 found = true;
795
796 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
797 *fio->last_block,
798 fio->new_blkaddr));
799 if (f2fs_crypt_mergeable_bio(bio: *bio,
800 inode: fio->page->mapping->host,
801 next_idx: fio->page->index, fio) &&
802 bio_add_page(bio: *bio, page, PAGE_SIZE, off: 0) ==
803 PAGE_SIZE) {
804 ret = 0;
805 break;
806 }
807
808 /* page can't be merged into bio; submit the bio */
809 del_bio_entry(be);
810 f2fs_submit_write_bio(sbi, bio: *bio, type: DATA);
811 break;
812 }
813 f2fs_up_write(sem: &io->bio_list_lock);
814 }
815
816 if (ret) {
817 bio_put(*bio);
818 *bio = NULL;
819 }
820
821 return ret;
822}
823
824void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
825 struct bio **bio, struct page *page)
826{
827 enum temp_type temp;
828 bool found = false;
829 struct bio *target = bio ? *bio : NULL;
830
831 f2fs_bug_on(sbi, !target && !page);
832
833 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
834 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
835 struct list_head *head = &io->bio_list;
836 struct bio_entry *be;
837
838 if (list_empty(head))
839 continue;
840
841 f2fs_down_read(sem: &io->bio_list_lock);
842 list_for_each_entry(be, head, list) {
843 if (target)
844 found = (target == be->bio);
845 else
846 found = __has_merged_page(bio: be->bio, NULL,
847 page, ino: 0);
848 if (found)
849 break;
850 }
851 f2fs_up_read(sem: &io->bio_list_lock);
852
853 if (!found)
854 continue;
855
856 found = false;
857
858 f2fs_down_write(sem: &io->bio_list_lock);
859 list_for_each_entry(be, head, list) {
860 if (target)
861 found = (target == be->bio);
862 else
863 found = __has_merged_page(bio: be->bio, NULL,
864 page, ino: 0);
865 if (found) {
866 target = be->bio;
867 del_bio_entry(be);
868 break;
869 }
870 }
871 f2fs_up_write(sem: &io->bio_list_lock);
872 }
873
874 if (found)
875 f2fs_submit_write_bio(sbi, bio: target, type: DATA);
876 if (bio && *bio) {
877 bio_put(*bio);
878 *bio = NULL;
879 }
880}
881
882int f2fs_merge_page_bio(struct f2fs_io_info *fio)
883{
884 struct bio *bio = *fio->bio;
885 struct page *page = fio->encrypted_page ?
886 fio->encrypted_page : fio->page;
887
888 if (!f2fs_is_valid_blkaddr(sbi: fio->sbi, blkaddr: fio->new_blkaddr,
889 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
890 return -EFSCORRUPTED;
891
892 trace_f2fs_submit_page_bio(page, fio);
893
894 if (bio && !page_is_mergeable(sbi: fio->sbi, bio, last_blkaddr: *fio->last_block,
895 cur_blkaddr: fio->new_blkaddr))
896 f2fs_submit_merged_ipu_write(sbi: fio->sbi, bio: &bio, NULL);
897alloc_new:
898 if (!bio) {
899 bio = __bio_alloc(fio, BIO_MAX_VECS);
900 f2fs_set_bio_crypt_ctx(bio, inode: fio->page->mapping->host,
901 first_idx: fio->page->index, fio, GFP_NOIO);
902
903 add_bio_entry(sbi: fio->sbi, bio, page, temp: fio->temp);
904 } else {
905 if (add_ipu_page(fio, bio: &bio, page))
906 goto alloc_new;
907 }
908
909 if (fio->io_wbc)
910 wbc_account_cgroup_owner(wbc: fio->io_wbc, page: fio->page, PAGE_SIZE);
911
912 inc_page_count(sbi: fio->sbi, WB_DATA_TYPE(page, false));
913
914 *fio->last_block = fio->new_blkaddr;
915 *fio->bio = bio;
916
917 return 0;
918}
919
920#ifdef CONFIG_BLK_DEV_ZONED
921static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
922{
923 int devi = 0;
924
925 if (f2fs_is_multi_device(sbi)) {
926 devi = f2fs_target_device_index(sbi, blkaddr);
927 if (blkaddr < FDEV(devi).start_blk ||
928 blkaddr > FDEV(devi).end_blk) {
929 f2fs_err(sbi, "Invalid block %x", blkaddr);
930 return false;
931 }
932 blkaddr -= FDEV(devi).start_blk;
933 }
934 return bdev_is_zoned(FDEV(devi).bdev) &&
935 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
936 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
937}
938#endif
939
940void f2fs_submit_page_write(struct f2fs_io_info *fio)
941{
942 struct f2fs_sb_info *sbi = fio->sbi;
943 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
944 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
945 struct page *bio_page;
946 enum count_type type;
947
948 f2fs_bug_on(sbi, is_read_io(fio->op));
949
950 f2fs_down_write(sem: &io->io_rwsem);
951next:
952#ifdef CONFIG_BLK_DEV_ZONED
953 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
954 wait_for_completion_io(&io->zone_wait);
955 bio_put(io->zone_pending_bio);
956 io->zone_pending_bio = NULL;
957 io->bi_private = NULL;
958 }
959#endif
960
961 if (fio->in_list) {
962 spin_lock(lock: &io->io_lock);
963 if (list_empty(head: &io->io_list)) {
964 spin_unlock(lock: &io->io_lock);
965 goto out;
966 }
967 fio = list_first_entry(&io->io_list,
968 struct f2fs_io_info, list);
969 list_del(entry: &fio->list);
970 spin_unlock(lock: &io->io_lock);
971 }
972
973 verify_fio_blkaddr(fio);
974
975 if (fio->encrypted_page)
976 bio_page = fio->encrypted_page;
977 else if (fio->compressed_page)
978 bio_page = fio->compressed_page;
979 else
980 bio_page = fio->page;
981
982 /* set submitted = true as a return value */
983 fio->submitted = 1;
984
985 type = WB_DATA_TYPE(bio_page, fio->compressed_page);
986 inc_page_count(sbi, count_type: type);
987
988 if (io->bio &&
989 (!io_is_mergeable(sbi, bio: io->bio, io, fio, last_blkaddr: io->last_block_in_bio,
990 cur_blkaddr: fio->new_blkaddr) ||
991 !f2fs_crypt_mergeable_bio(bio: io->bio, inode: fio->page->mapping->host,
992 next_idx: bio_page->index, fio)))
993 __submit_merged_bio(io);
994alloc_new:
995 if (io->bio == NULL) {
996 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
997 f2fs_set_bio_crypt_ctx(bio: io->bio, inode: fio->page->mapping->host,
998 first_idx: bio_page->index, fio, GFP_NOIO);
999 io->fio = *fio;
1000 }
1001
1002 if (bio_add_page(bio: io->bio, page: bio_page, PAGE_SIZE, off: 0) < PAGE_SIZE) {
1003 __submit_merged_bio(io);
1004 goto alloc_new;
1005 }
1006
1007 if (fio->io_wbc)
1008 wbc_account_cgroup_owner(wbc: fio->io_wbc, page: fio->page, PAGE_SIZE);
1009
1010 io->last_block_in_bio = fio->new_blkaddr;
1011
1012 trace_f2fs_submit_page_write(page: fio->page, fio);
1013#ifdef CONFIG_BLK_DEV_ZONED
1014 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1015 is_end_zone_blkaddr(sbi, blkaddr: fio->new_blkaddr)) {
1016 bio_get(bio: io->bio);
1017 reinit_completion(x: &io->zone_wait);
1018 io->bi_private = io->bio->bi_private;
1019 io->bio->bi_private = io;
1020 io->bio->bi_end_io = f2fs_zone_write_end_io;
1021 io->zone_pending_bio = io->bio;
1022 __submit_merged_bio(io);
1023 }
1024#endif
1025 if (fio->in_list)
1026 goto next;
1027out:
1028 if (is_sbi_flag_set(sbi, type: SBI_IS_SHUTDOWN) ||
1029 !f2fs_is_checkpoint_ready(sbi))
1030 __submit_merged_bio(io);
1031 f2fs_up_write(sem: &io->io_rwsem);
1032}
1033
1034static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1035 unsigned nr_pages, blk_opf_t op_flag,
1036 pgoff_t first_idx, bool for_write)
1037{
1038 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1039 struct bio *bio;
1040 struct bio_post_read_ctx *ctx = NULL;
1041 unsigned int post_read_steps = 0;
1042 sector_t sector;
1043 struct block_device *bdev = f2fs_target_device(sbi, blk_addr: blkaddr, sector: &sector);
1044
1045 bio = bio_alloc_bioset(bdev, nr_vecs: bio_max_segs(nr_segs: nr_pages),
1046 opf: REQ_OP_READ | op_flag,
1047 gfp_mask: for_write ? GFP_NOIO : GFP_KERNEL, bs: &f2fs_bioset);
1048 if (!bio)
1049 return ERR_PTR(error: -ENOMEM);
1050 bio->bi_iter.bi_sector = sector;
1051 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1052 bio->bi_end_io = f2fs_read_end_io;
1053
1054 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1055 post_read_steps |= STEP_DECRYPT;
1056
1057 if (f2fs_need_verity(inode, idx: first_idx))
1058 post_read_steps |= STEP_VERITY;
1059
1060 /*
1061 * STEP_DECOMPRESS is handled specially, since a compressed file might
1062 * contain both compressed and uncompressed clusters. We'll allocate a
1063 * bio_post_read_ctx if the file is compressed, but the caller is
1064 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1065 */
1066
1067 if (post_read_steps || f2fs_compressed_file(inode)) {
1068 /* Due to the mempool, this never fails. */
1069 ctx = mempool_alloc(pool: bio_post_read_ctx_pool, GFP_NOFS);
1070 ctx->bio = bio;
1071 ctx->sbi = sbi;
1072 ctx->enabled_steps = post_read_steps;
1073 ctx->fs_blkaddr = blkaddr;
1074 ctx->decompression_attempted = false;
1075 bio->bi_private = ctx;
1076 }
1077 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1078
1079 return bio;
1080}
1081
1082/* This can handle encryption stuffs */
1083static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1084 block_t blkaddr, blk_opf_t op_flags,
1085 bool for_write)
1086{
1087 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1088 struct bio *bio;
1089
1090 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages: 1, op_flag: op_flags,
1091 first_idx: page->index, for_write);
1092 if (IS_ERR(ptr: bio))
1093 return PTR_ERR(ptr: bio);
1094
1095 /* wait for GCed page writeback via META_MAPPING */
1096 f2fs_wait_on_block_writeback(inode, blkaddr);
1097
1098 if (bio_add_page(bio, page, PAGE_SIZE, off: 0) < PAGE_SIZE) {
1099 iostat_update_and_unbind_ctx(bio);
1100 if (bio->bi_private)
1101 mempool_free(element: bio->bi_private, pool: bio_post_read_ctx_pool);
1102 bio_put(bio);
1103 return -EFAULT;
1104 }
1105 inc_page_count(sbi, count_type: F2FS_RD_DATA);
1106 f2fs_update_iostat(sbi, NULL, type: FS_DATA_READ_IO, F2FS_BLKSIZE);
1107 f2fs_submit_read_bio(sbi, bio, type: DATA);
1108 return 0;
1109}
1110
1111static void __set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1112{
1113 __le32 *addr = get_dnode_addr(inode: dn->inode, node_page: dn->node_page);
1114
1115 dn->data_blkaddr = blkaddr;
1116 addr[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1117}
1118
1119/*
1120 * Lock ordering for the change of data block address:
1121 * ->data_page
1122 * ->node_page
1123 * update block addresses in the node page
1124 */
1125void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1126{
1127 f2fs_wait_on_page_writeback(page: dn->node_page, type: NODE, ordered: true, locked: true);
1128 __set_data_blkaddr(dn, blkaddr);
1129 if (set_page_dirty(dn->node_page))
1130 dn->node_changed = true;
1131}
1132
1133void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1134{
1135 f2fs_set_data_blkaddr(dn, blkaddr);
1136 f2fs_update_read_extent_cache(dn);
1137}
1138
1139/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1140int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1141{
1142 struct f2fs_sb_info *sbi = F2FS_I_SB(inode: dn->inode);
1143 int err;
1144
1145 if (!count)
1146 return 0;
1147
1148 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1149 return -EPERM;
1150 err = inc_valid_block_count(sbi, inode: dn->inode, count: &count, partial: true);
1151 if (unlikely(err))
1152 return err;
1153
1154 trace_f2fs_reserve_new_blocks(inode: dn->inode, nid: dn->nid,
1155 ofs_in_node: dn->ofs_in_node, count);
1156
1157 f2fs_wait_on_page_writeback(page: dn->node_page, type: NODE, ordered: true, locked: true);
1158
1159 for (; count > 0; dn->ofs_in_node++) {
1160 block_t blkaddr = f2fs_data_blkaddr(dn);
1161
1162 if (blkaddr == NULL_ADDR) {
1163 __set_data_blkaddr(dn, NEW_ADDR);
1164 count--;
1165 }
1166 }
1167
1168 if (set_page_dirty(dn->node_page))
1169 dn->node_changed = true;
1170 return 0;
1171}
1172
1173/* Should keep dn->ofs_in_node unchanged */
1174int f2fs_reserve_new_block(struct dnode_of_data *dn)
1175{
1176 unsigned int ofs_in_node = dn->ofs_in_node;
1177 int ret;
1178
1179 ret = f2fs_reserve_new_blocks(dn, count: 1);
1180 dn->ofs_in_node = ofs_in_node;
1181 return ret;
1182}
1183
1184int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1185{
1186 bool need_put = dn->inode_page ? false : true;
1187 int err;
1188
1189 err = f2fs_get_dnode_of_data(dn, index, mode: ALLOC_NODE);
1190 if (err)
1191 return err;
1192
1193 if (dn->data_blkaddr == NULL_ADDR)
1194 err = f2fs_reserve_new_block(dn);
1195 if (err || need_put)
1196 f2fs_put_dnode(dn);
1197 return err;
1198}
1199
1200struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1201 blk_opf_t op_flags, bool for_write,
1202 pgoff_t *next_pgofs)
1203{
1204 struct address_space *mapping = inode->i_mapping;
1205 struct dnode_of_data dn;
1206 struct page *page;
1207 int err;
1208
1209 page = f2fs_grab_cache_page(mapping, index, for_write);
1210 if (!page)
1211 return ERR_PTR(error: -ENOMEM);
1212
1213 if (f2fs_lookup_read_extent_cache_block(inode, index,
1214 blkaddr: &dn.data_blkaddr)) {
1215 if (!f2fs_is_valid_blkaddr(sbi: F2FS_I_SB(inode), blkaddr: dn.data_blkaddr,
1216 type: DATA_GENERIC_ENHANCE_READ)) {
1217 err = -EFSCORRUPTED;
1218 goto put_err;
1219 }
1220 goto got_it;
1221 }
1222
1223 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
1224 err = f2fs_get_dnode_of_data(dn: &dn, index, mode: LOOKUP_NODE);
1225 if (err) {
1226 if (err == -ENOENT && next_pgofs)
1227 *next_pgofs = f2fs_get_next_page_offset(dn: &dn, pgofs: index);
1228 goto put_err;
1229 }
1230 f2fs_put_dnode(dn: &dn);
1231
1232 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1233 err = -ENOENT;
1234 if (next_pgofs)
1235 *next_pgofs = index + 1;
1236 goto put_err;
1237 }
1238 if (dn.data_blkaddr != NEW_ADDR &&
1239 !f2fs_is_valid_blkaddr(sbi: F2FS_I_SB(inode),
1240 blkaddr: dn.data_blkaddr,
1241 type: DATA_GENERIC_ENHANCE)) {
1242 err = -EFSCORRUPTED;
1243 goto put_err;
1244 }
1245got_it:
1246 if (PageUptodate(page)) {
1247 unlock_page(page);
1248 return page;
1249 }
1250
1251 /*
1252 * A new dentry page is allocated but not able to be written, since its
1253 * new inode page couldn't be allocated due to -ENOSPC.
1254 * In such the case, its blkaddr can be remained as NEW_ADDR.
1255 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1256 * f2fs_init_inode_metadata.
1257 */
1258 if (dn.data_blkaddr == NEW_ADDR) {
1259 zero_user_segment(page, start: 0, PAGE_SIZE);
1260 if (!PageUptodate(page))
1261 SetPageUptodate(page);
1262 unlock_page(page);
1263 return page;
1264 }
1265
1266 err = f2fs_submit_page_read(inode, page, blkaddr: dn.data_blkaddr,
1267 op_flags, for_write);
1268 if (err)
1269 goto put_err;
1270 return page;
1271
1272put_err:
1273 f2fs_put_page(page, unlock: 1);
1274 return ERR_PTR(error: err);
1275}
1276
1277struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1278 pgoff_t *next_pgofs)
1279{
1280 struct address_space *mapping = inode->i_mapping;
1281 struct page *page;
1282
1283 page = find_get_page(mapping, offset: index);
1284 if (page && PageUptodate(page))
1285 return page;
1286 f2fs_put_page(page, unlock: 0);
1287
1288 page = f2fs_get_read_data_page(inode, index, op_flags: 0, for_write: false, next_pgofs);
1289 if (IS_ERR(ptr: page))
1290 return page;
1291
1292 if (PageUptodate(page))
1293 return page;
1294
1295 wait_on_page_locked(page);
1296 if (unlikely(!PageUptodate(page))) {
1297 f2fs_put_page(page, unlock: 0);
1298 return ERR_PTR(error: -EIO);
1299 }
1300 return page;
1301}
1302
1303/*
1304 * If it tries to access a hole, return an error.
1305 * Because, the callers, functions in dir.c and GC, should be able to know
1306 * whether this page exists or not.
1307 */
1308struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1309 bool for_write)
1310{
1311 struct address_space *mapping = inode->i_mapping;
1312 struct page *page;
1313
1314 page = f2fs_get_read_data_page(inode, index, op_flags: 0, for_write, NULL);
1315 if (IS_ERR(ptr: page))
1316 return page;
1317
1318 /* wait for read completion */
1319 lock_page(page);
1320 if (unlikely(page->mapping != mapping || !PageUptodate(page))) {
1321 f2fs_put_page(page, unlock: 1);
1322 return ERR_PTR(error: -EIO);
1323 }
1324 return page;
1325}
1326
1327/*
1328 * Caller ensures that this data page is never allocated.
1329 * A new zero-filled data page is allocated in the page cache.
1330 *
1331 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1332 * f2fs_unlock_op().
1333 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1334 * ipage should be released by this function.
1335 */
1336struct page *f2fs_get_new_data_page(struct inode *inode,
1337 struct page *ipage, pgoff_t index, bool new_i_size)
1338{
1339 struct address_space *mapping = inode->i_mapping;
1340 struct page *page;
1341 struct dnode_of_data dn;
1342 int err;
1343
1344 page = f2fs_grab_cache_page(mapping, index, for_write: true);
1345 if (!page) {
1346 /*
1347 * before exiting, we should make sure ipage will be released
1348 * if any error occur.
1349 */
1350 f2fs_put_page(page: ipage, unlock: 1);
1351 return ERR_PTR(error: -ENOMEM);
1352 }
1353
1354 set_new_dnode(dn: &dn, inode, ipage, NULL, nid: 0);
1355 err = f2fs_reserve_block(dn: &dn, index);
1356 if (err) {
1357 f2fs_put_page(page, unlock: 1);
1358 return ERR_PTR(error: err);
1359 }
1360 if (!ipage)
1361 f2fs_put_dnode(dn: &dn);
1362
1363 if (PageUptodate(page))
1364 goto got_it;
1365
1366 if (dn.data_blkaddr == NEW_ADDR) {
1367 zero_user_segment(page, start: 0, PAGE_SIZE);
1368 if (!PageUptodate(page))
1369 SetPageUptodate(page);
1370 } else {
1371 f2fs_put_page(page, unlock: 1);
1372
1373 /* if ipage exists, blkaddr should be NEW_ADDR */
1374 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1375 page = f2fs_get_lock_data_page(inode, index, for_write: true);
1376 if (IS_ERR(ptr: page))
1377 return page;
1378 }
1379got_it:
1380 if (new_i_size && i_size_read(inode) <
1381 ((loff_t)(index + 1) << PAGE_SHIFT))
1382 f2fs_i_size_write(inode, i_size: ((loff_t)(index + 1) << PAGE_SHIFT));
1383 return page;
1384}
1385
1386static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1387{
1388 struct f2fs_sb_info *sbi = F2FS_I_SB(inode: dn->inode);
1389 struct f2fs_summary sum;
1390 struct node_info ni;
1391 block_t old_blkaddr;
1392 blkcnt_t count = 1;
1393 int err;
1394
1395 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1396 return -EPERM;
1397
1398 err = f2fs_get_node_info(sbi, nid: dn->nid, ni: &ni, checkpoint_context: false);
1399 if (err)
1400 return err;
1401
1402 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1403 if (dn->data_blkaddr == NULL_ADDR) {
1404 err = inc_valid_block_count(sbi, inode: dn->inode, count: &count, partial: true);
1405 if (unlikely(err))
1406 return err;
1407 }
1408
1409 set_summary(sum: &sum, nid: dn->nid, ofs_in_node: dn->ofs_in_node, version: ni.version);
1410 old_blkaddr = dn->data_blkaddr;
1411 err = f2fs_allocate_data_block(sbi, NULL, old_blkaddr,
1412 new_blkaddr: &dn->data_blkaddr, sum: &sum, type: seg_type, NULL);
1413 if (err)
1414 return err;
1415
1416 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1417 f2fs_invalidate_internal_cache(sbi, blkaddr: old_blkaddr);
1418
1419 f2fs_update_data_blkaddr(dn, blkaddr: dn->data_blkaddr);
1420 return 0;
1421}
1422
1423static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1424{
1425 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1426 f2fs_down_read(sem: &sbi->node_change);
1427 else
1428 f2fs_lock_op(sbi);
1429}
1430
1431static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1432{
1433 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1434 f2fs_up_read(sem: &sbi->node_change);
1435 else
1436 f2fs_unlock_op(sbi);
1437}
1438
1439int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1440{
1441 struct f2fs_sb_info *sbi = F2FS_I_SB(inode: dn->inode);
1442 int err = 0;
1443
1444 f2fs_map_lock(sbi, flag: F2FS_GET_BLOCK_PRE_AIO);
1445 if (!f2fs_lookup_read_extent_cache_block(inode: dn->inode, index,
1446 blkaddr: &dn->data_blkaddr))
1447 err = f2fs_reserve_block(dn, index);
1448 f2fs_map_unlock(sbi, flag: F2FS_GET_BLOCK_PRE_AIO);
1449
1450 return err;
1451}
1452
1453static int f2fs_map_no_dnode(struct inode *inode,
1454 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1455 pgoff_t pgoff)
1456{
1457 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1458
1459 /*
1460 * There is one exceptional case that read_node_page() may return
1461 * -ENOENT due to filesystem has been shutdown or cp_error, return
1462 * -EIO in that case.
1463 */
1464 if (map->m_may_create &&
1465 (is_sbi_flag_set(sbi, type: SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1466 return -EIO;
1467
1468 if (map->m_next_pgofs)
1469 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgofs: pgoff);
1470 if (map->m_next_extent)
1471 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgofs: pgoff);
1472 return 0;
1473}
1474
1475static bool f2fs_map_blocks_cached(struct inode *inode,
1476 struct f2fs_map_blocks *map, int flag)
1477{
1478 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1479 unsigned int maxblocks = map->m_len;
1480 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1481 struct extent_info ei = {};
1482
1483 if (!f2fs_lookup_read_extent_cache(inode, pgofs: pgoff, ei: &ei))
1484 return false;
1485
1486 map->m_pblk = ei.blk + pgoff - ei.fofs;
1487 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1488 map->m_flags = F2FS_MAP_MAPPED;
1489 if (map->m_next_extent)
1490 *map->m_next_extent = pgoff + map->m_len;
1491
1492 /* for hardware encryption, but to avoid potential issue in future */
1493 if (flag == F2FS_GET_BLOCK_DIO)
1494 f2fs_wait_on_block_writeback_range(inode,
1495 blkaddr: map->m_pblk, len: map->m_len);
1496
1497 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1498 int bidx = f2fs_target_device_index(sbi, blkaddr: map->m_pblk);
1499 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1500
1501 map->m_bdev = dev->bdev;
1502 map->m_pblk -= dev->start_blk;
1503 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1504 } else {
1505 map->m_bdev = inode->i_sb->s_bdev;
1506 }
1507 return true;
1508}
1509
1510/*
1511 * f2fs_map_blocks() tries to find or build mapping relationship which
1512 * maps continuous logical blocks to physical blocks, and return such
1513 * info via f2fs_map_blocks structure.
1514 */
1515int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1516{
1517 unsigned int maxblocks = map->m_len;
1518 struct dnode_of_data dn;
1519 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1520 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1521 pgoff_t pgofs, end_offset, end;
1522 int err = 0, ofs = 1;
1523 unsigned int ofs_in_node, last_ofs_in_node;
1524 blkcnt_t prealloc;
1525 block_t blkaddr;
1526 unsigned int start_pgofs;
1527 int bidx = 0;
1528 bool is_hole;
1529
1530 if (!maxblocks)
1531 return 0;
1532
1533 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1534 goto out;
1535
1536 map->m_bdev = inode->i_sb->s_bdev;
1537 map->m_multidev_dio =
1538 f2fs_allow_multi_device_dio(sbi: F2FS_I_SB(inode), flag);
1539
1540 map->m_len = 0;
1541 map->m_flags = 0;
1542
1543 /* it only supports block size == page size */
1544 pgofs = (pgoff_t)map->m_lblk;
1545 end = pgofs + maxblocks;
1546
1547next_dnode:
1548 if (map->m_may_create)
1549 f2fs_map_lock(sbi, flag);
1550
1551 /* When reading holes, we need its node page */
1552 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
1553 err = f2fs_get_dnode_of_data(dn: &dn, index: pgofs, mode);
1554 if (err) {
1555 if (flag == F2FS_GET_BLOCK_BMAP)
1556 map->m_pblk = 0;
1557 if (err == -ENOENT)
1558 err = f2fs_map_no_dnode(inode, map, dn: &dn, pgoff: pgofs);
1559 goto unlock_out;
1560 }
1561
1562 start_pgofs = pgofs;
1563 prealloc = 0;
1564 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1565 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1566
1567next_block:
1568 blkaddr = f2fs_data_blkaddr(dn: &dn);
1569 is_hole = !__is_valid_data_blkaddr(blkaddr);
1570 if (!is_hole &&
1571 !f2fs_is_valid_blkaddr(sbi, blkaddr, type: DATA_GENERIC_ENHANCE)) {
1572 err = -EFSCORRUPTED;
1573 goto sync_out;
1574 }
1575
1576 /* use out-place-update for direct IO under LFS mode */
1577 if (map->m_may_create &&
1578 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1579 if (unlikely(f2fs_cp_error(sbi))) {
1580 err = -EIO;
1581 goto sync_out;
1582 }
1583
1584 switch (flag) {
1585 case F2FS_GET_BLOCK_PRE_AIO:
1586 if (blkaddr == NULL_ADDR) {
1587 prealloc++;
1588 last_ofs_in_node = dn.ofs_in_node;
1589 }
1590 break;
1591 case F2FS_GET_BLOCK_PRE_DIO:
1592 case F2FS_GET_BLOCK_DIO:
1593 err = __allocate_data_block(dn: &dn, seg_type: map->m_seg_type);
1594 if (err)
1595 goto sync_out;
1596 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1597 file_need_truncate(inode);
1598 set_inode_flag(inode, flag: FI_APPEND_WRITE);
1599 break;
1600 default:
1601 WARN_ON_ONCE(1);
1602 err = -EIO;
1603 goto sync_out;
1604 }
1605
1606 blkaddr = dn.data_blkaddr;
1607 if (is_hole)
1608 map->m_flags |= F2FS_MAP_NEW;
1609 } else if (is_hole) {
1610 if (f2fs_compressed_file(inode) &&
1611 f2fs_sanity_check_cluster(dn: &dn)) {
1612 err = -EFSCORRUPTED;
1613 f2fs_handle_error(sbi,
1614 error: ERROR_CORRUPTED_CLUSTER);
1615 goto sync_out;
1616 }
1617
1618 switch (flag) {
1619 case F2FS_GET_BLOCK_PRECACHE:
1620 goto sync_out;
1621 case F2FS_GET_BLOCK_BMAP:
1622 map->m_pblk = 0;
1623 goto sync_out;
1624 case F2FS_GET_BLOCK_FIEMAP:
1625 if (blkaddr == NULL_ADDR) {
1626 if (map->m_next_pgofs)
1627 *map->m_next_pgofs = pgofs + 1;
1628 goto sync_out;
1629 }
1630 break;
1631 default:
1632 /* for defragment case */
1633 if (map->m_next_pgofs)
1634 *map->m_next_pgofs = pgofs + 1;
1635 goto sync_out;
1636 }
1637 }
1638
1639 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1640 goto skip;
1641
1642 if (map->m_multidev_dio)
1643 bidx = f2fs_target_device_index(sbi, blkaddr);
1644
1645 if (map->m_len == 0) {
1646 /* reserved delalloc block should be mapped for fiemap. */
1647 if (blkaddr == NEW_ADDR)
1648 map->m_flags |= F2FS_MAP_DELALLOC;
1649 map->m_flags |= F2FS_MAP_MAPPED;
1650
1651 map->m_pblk = blkaddr;
1652 map->m_len = 1;
1653
1654 if (map->m_multidev_dio)
1655 map->m_bdev = FDEV(bidx).bdev;
1656 } else if ((map->m_pblk != NEW_ADDR &&
1657 blkaddr == (map->m_pblk + ofs)) ||
1658 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1659 flag == F2FS_GET_BLOCK_PRE_DIO) {
1660 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1661 goto sync_out;
1662 ofs++;
1663 map->m_len++;
1664 } else {
1665 goto sync_out;
1666 }
1667
1668skip:
1669 dn.ofs_in_node++;
1670 pgofs++;
1671
1672 /* preallocate blocks in batch for one dnode page */
1673 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1674 (pgofs == end || dn.ofs_in_node == end_offset)) {
1675
1676 dn.ofs_in_node = ofs_in_node;
1677 err = f2fs_reserve_new_blocks(dn: &dn, count: prealloc);
1678 if (err)
1679 goto sync_out;
1680
1681 map->m_len += dn.ofs_in_node - ofs_in_node;
1682 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1683 err = -ENOSPC;
1684 goto sync_out;
1685 }
1686 dn.ofs_in_node = end_offset;
1687 }
1688
1689 if (pgofs >= end)
1690 goto sync_out;
1691 else if (dn.ofs_in_node < end_offset)
1692 goto next_block;
1693
1694 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1695 if (map->m_flags & F2FS_MAP_MAPPED) {
1696 unsigned int ofs = start_pgofs - map->m_lblk;
1697
1698 f2fs_update_read_extent_cache_range(dn: &dn,
1699 fofs: start_pgofs, blkaddr: map->m_pblk + ofs,
1700 len: map->m_len - ofs);
1701 }
1702 }
1703
1704 f2fs_put_dnode(dn: &dn);
1705
1706 if (map->m_may_create) {
1707 f2fs_map_unlock(sbi, flag);
1708 f2fs_balance_fs(sbi, need: dn.node_changed);
1709 }
1710 goto next_dnode;
1711
1712sync_out:
1713
1714 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1715 /*
1716 * for hardware encryption, but to avoid potential issue
1717 * in future
1718 */
1719 f2fs_wait_on_block_writeback_range(inode,
1720 blkaddr: map->m_pblk, len: map->m_len);
1721
1722 if (map->m_multidev_dio) {
1723 block_t blk_addr = map->m_pblk;
1724
1725 bidx = f2fs_target_device_index(sbi, blkaddr: map->m_pblk);
1726
1727 map->m_bdev = FDEV(bidx).bdev;
1728 map->m_pblk -= FDEV(bidx).start_blk;
1729
1730 if (map->m_may_create)
1731 f2fs_update_device_state(sbi, ino: inode->i_ino,
1732 blkaddr: blk_addr, blkcnt: map->m_len);
1733
1734 f2fs_bug_on(sbi, blk_addr + map->m_len >
1735 FDEV(bidx).end_blk + 1);
1736 }
1737 }
1738
1739 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1740 if (map->m_flags & F2FS_MAP_MAPPED) {
1741 unsigned int ofs = start_pgofs - map->m_lblk;
1742
1743 f2fs_update_read_extent_cache_range(dn: &dn,
1744 fofs: start_pgofs, blkaddr: map->m_pblk + ofs,
1745 len: map->m_len - ofs);
1746 }
1747 if (map->m_next_extent)
1748 *map->m_next_extent = pgofs + 1;
1749 }
1750 f2fs_put_dnode(dn: &dn);
1751unlock_out:
1752 if (map->m_may_create) {
1753 f2fs_map_unlock(sbi, flag);
1754 f2fs_balance_fs(sbi, need: dn.node_changed);
1755 }
1756out:
1757 trace_f2fs_map_blocks(inode, map, flag, ret: err);
1758 return err;
1759}
1760
1761bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1762{
1763 struct f2fs_map_blocks map;
1764 block_t last_lblk;
1765 int err;
1766
1767 if (pos + len > i_size_read(inode))
1768 return false;
1769
1770 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1771 map.m_next_pgofs = NULL;
1772 map.m_next_extent = NULL;
1773 map.m_seg_type = NO_CHECK_TYPE;
1774 map.m_may_create = false;
1775 last_lblk = F2FS_BLK_ALIGN(pos + len);
1776
1777 while (map.m_lblk < last_lblk) {
1778 map.m_len = last_lblk - map.m_lblk;
1779 err = f2fs_map_blocks(inode, map: &map, flag: F2FS_GET_BLOCK_DEFAULT);
1780 if (err || map.m_len == 0)
1781 return false;
1782 map.m_lblk += map.m_len;
1783 }
1784 return true;
1785}
1786
1787static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1788{
1789 return (bytes >> inode->i_blkbits);
1790}
1791
1792static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1793{
1794 return (blks << inode->i_blkbits);
1795}
1796
1797static int f2fs_xattr_fiemap(struct inode *inode,
1798 struct fiemap_extent_info *fieinfo)
1799{
1800 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1801 struct page *page;
1802 struct node_info ni;
1803 __u64 phys = 0, len;
1804 __u32 flags;
1805 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1806 int err = 0;
1807
1808 if (f2fs_has_inline_xattr(inode)) {
1809 int offset;
1810
1811 page = f2fs_grab_cache_page(mapping: NODE_MAPPING(sbi),
1812 index: inode->i_ino, for_write: false);
1813 if (!page)
1814 return -ENOMEM;
1815
1816 err = f2fs_get_node_info(sbi, nid: inode->i_ino, ni: &ni, checkpoint_context: false);
1817 if (err) {
1818 f2fs_put_page(page, unlock: 1);
1819 return err;
1820 }
1821
1822 phys = blks_to_bytes(inode, blks: ni.blk_addr);
1823 offset = offsetof(struct f2fs_inode, i_addr) +
1824 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1825 get_inline_xattr_addrs(inode));
1826
1827 phys += offset;
1828 len = inline_xattr_size(inode);
1829
1830 f2fs_put_page(page, unlock: 1);
1831
1832 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1833
1834 if (!xnid)
1835 flags |= FIEMAP_EXTENT_LAST;
1836
1837 err = fiemap_fill_next_extent(info: fieinfo, logical: 0, phys, len, flags);
1838 trace_f2fs_fiemap(inode, lblock: 0, pblock: phys, len, flags, ret: err);
1839 if (err)
1840 return err;
1841 }
1842
1843 if (xnid) {
1844 page = f2fs_grab_cache_page(mapping: NODE_MAPPING(sbi), index: xnid, for_write: false);
1845 if (!page)
1846 return -ENOMEM;
1847
1848 err = f2fs_get_node_info(sbi, nid: xnid, ni: &ni, checkpoint_context: false);
1849 if (err) {
1850 f2fs_put_page(page, unlock: 1);
1851 return err;
1852 }
1853
1854 phys = blks_to_bytes(inode, blks: ni.blk_addr);
1855 len = inode->i_sb->s_blocksize;
1856
1857 f2fs_put_page(page, unlock: 1);
1858
1859 flags = FIEMAP_EXTENT_LAST;
1860 }
1861
1862 if (phys) {
1863 err = fiemap_fill_next_extent(info: fieinfo, logical: 0, phys, len, flags);
1864 trace_f2fs_fiemap(inode, lblock: 0, pblock: phys, len, flags, ret: err);
1865 }
1866
1867 return (err < 0 ? err : 0);
1868}
1869
1870static loff_t max_inode_blocks(struct inode *inode)
1871{
1872 loff_t result = ADDRS_PER_INODE(inode);
1873 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1874
1875 /* two direct node blocks */
1876 result += (leaf_count * 2);
1877
1878 /* two indirect node blocks */
1879 leaf_count *= NIDS_PER_BLOCK;
1880 result += (leaf_count * 2);
1881
1882 /* one double indirect node block */
1883 leaf_count *= NIDS_PER_BLOCK;
1884 result += leaf_count;
1885
1886 return result;
1887}
1888
1889int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1890 u64 start, u64 len)
1891{
1892 struct f2fs_map_blocks map;
1893 sector_t start_blk, last_blk;
1894 pgoff_t next_pgofs;
1895 u64 logical = 0, phys = 0, size = 0;
1896 u32 flags = 0;
1897 int ret = 0;
1898 bool compr_cluster = false, compr_appended;
1899 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1900 unsigned int count_in_cluster = 0;
1901 loff_t maxbytes;
1902
1903 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1904 ret = f2fs_precache_extents(inode);
1905 if (ret)
1906 return ret;
1907 }
1908
1909 ret = fiemap_prep(inode, fieinfo, start, len: &len, FIEMAP_FLAG_XATTR);
1910 if (ret)
1911 return ret;
1912
1913 inode_lock_shared(inode);
1914
1915 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1916 if (start > maxbytes) {
1917 ret = -EFBIG;
1918 goto out;
1919 }
1920
1921 if (len > maxbytes || (maxbytes - len) < start)
1922 len = maxbytes - start;
1923
1924 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1925 ret = f2fs_xattr_fiemap(inode, fieinfo);
1926 goto out;
1927 }
1928
1929 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1930 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1931 if (ret != -EAGAIN)
1932 goto out;
1933 }
1934
1935 if (bytes_to_blks(inode, bytes: len) == 0)
1936 len = blks_to_bytes(inode, blks: 1);
1937
1938 start_blk = bytes_to_blks(inode, bytes: start);
1939 last_blk = bytes_to_blks(inode, bytes: start + len - 1);
1940
1941next:
1942 memset(&map, 0, sizeof(map));
1943 map.m_lblk = start_blk;
1944 map.m_len = bytes_to_blks(inode, bytes: len);
1945 map.m_next_pgofs = &next_pgofs;
1946 map.m_seg_type = NO_CHECK_TYPE;
1947
1948 if (compr_cluster) {
1949 map.m_lblk += 1;
1950 map.m_len = cluster_size - count_in_cluster;
1951 }
1952
1953 ret = f2fs_map_blocks(inode, map: &map, flag: F2FS_GET_BLOCK_FIEMAP);
1954 if (ret)
1955 goto out;
1956
1957 /* HOLE */
1958 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1959 start_blk = next_pgofs;
1960
1961 if (blks_to_bytes(inode, blks: start_blk) < blks_to_bytes(inode,
1962 blks: max_inode_blocks(inode)))
1963 goto prep_next;
1964
1965 flags |= FIEMAP_EXTENT_LAST;
1966 }
1967
1968 compr_appended = false;
1969 /* In a case of compressed cluster, append this to the last extent */
1970 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1971 !(map.m_flags & F2FS_MAP_FLAGS))) {
1972 compr_appended = true;
1973 goto skip_fill;
1974 }
1975
1976 if (size) {
1977 flags |= FIEMAP_EXTENT_MERGED;
1978 if (IS_ENCRYPTED(inode))
1979 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1980
1981 ret = fiemap_fill_next_extent(info: fieinfo, logical,
1982 phys, len: size, flags);
1983 trace_f2fs_fiemap(inode, lblock: logical, pblock: phys, len: size, flags, ret);
1984 if (ret)
1985 goto out;
1986 size = 0;
1987 }
1988
1989 if (start_blk > last_blk)
1990 goto out;
1991
1992skip_fill:
1993 if (map.m_pblk == COMPRESS_ADDR) {
1994 compr_cluster = true;
1995 count_in_cluster = 1;
1996 } else if (compr_appended) {
1997 unsigned int appended_blks = cluster_size -
1998 count_in_cluster + 1;
1999 size += blks_to_bytes(inode, blks: appended_blks);
2000 start_blk += appended_blks;
2001 compr_cluster = false;
2002 } else {
2003 logical = blks_to_bytes(inode, blks: start_blk);
2004 phys = __is_valid_data_blkaddr(blkaddr: map.m_pblk) ?
2005 blks_to_bytes(inode, blks: map.m_pblk) : 0;
2006 size = blks_to_bytes(inode, blks: map.m_len);
2007 flags = 0;
2008
2009 if (compr_cluster) {
2010 flags = FIEMAP_EXTENT_ENCODED;
2011 count_in_cluster += map.m_len;
2012 if (count_in_cluster == cluster_size) {
2013 compr_cluster = false;
2014 size += blks_to_bytes(inode, blks: 1);
2015 }
2016 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2017 flags = FIEMAP_EXTENT_UNWRITTEN;
2018 }
2019
2020 start_blk += bytes_to_blks(inode, bytes: size);
2021 }
2022
2023prep_next:
2024 cond_resched();
2025 if (fatal_signal_pending(current))
2026 ret = -EINTR;
2027 else
2028 goto next;
2029out:
2030 if (ret == 1)
2031 ret = 0;
2032
2033 inode_unlock_shared(inode);
2034 return ret;
2035}
2036
2037static inline loff_t f2fs_readpage_limit(struct inode *inode)
2038{
2039 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2040 return inode->i_sb->s_maxbytes;
2041
2042 return i_size_read(inode);
2043}
2044
2045static int f2fs_read_single_page(struct inode *inode, struct page *page,
2046 unsigned nr_pages,
2047 struct f2fs_map_blocks *map,
2048 struct bio **bio_ret,
2049 sector_t *last_block_in_bio,
2050 bool is_readahead)
2051{
2052 struct bio *bio = *bio_ret;
2053 const unsigned blocksize = blks_to_bytes(inode, blks: 1);
2054 sector_t block_in_file;
2055 sector_t last_block;
2056 sector_t last_block_in_file;
2057 sector_t block_nr;
2058 int ret = 0;
2059
2060 block_in_file = (sector_t)page_index(page);
2061 last_block = block_in_file + nr_pages;
2062 last_block_in_file = bytes_to_blks(inode,
2063 bytes: f2fs_readpage_limit(inode) + blocksize - 1);
2064 if (last_block > last_block_in_file)
2065 last_block = last_block_in_file;
2066
2067 /* just zeroing out page which is beyond EOF */
2068 if (block_in_file >= last_block)
2069 goto zero_out;
2070 /*
2071 * Map blocks using the previous result first.
2072 */
2073 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2074 block_in_file > map->m_lblk &&
2075 block_in_file < (map->m_lblk + map->m_len))
2076 goto got_it;
2077
2078 /*
2079 * Then do more f2fs_map_blocks() calls until we are
2080 * done with this page.
2081 */
2082 map->m_lblk = block_in_file;
2083 map->m_len = last_block - block_in_file;
2084
2085 ret = f2fs_map_blocks(inode, map, flag: F2FS_GET_BLOCK_DEFAULT);
2086 if (ret)
2087 goto out;
2088got_it:
2089 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2090 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2091 SetPageMappedToDisk(page);
2092
2093 if (!f2fs_is_valid_blkaddr(sbi: F2FS_I_SB(inode), blkaddr: block_nr,
2094 type: DATA_GENERIC_ENHANCE_READ)) {
2095 ret = -EFSCORRUPTED;
2096 goto out;
2097 }
2098 } else {
2099zero_out:
2100 zero_user_segment(page, start: 0, PAGE_SIZE);
2101 if (f2fs_need_verity(inode, idx: page->index) &&
2102 !fsverity_verify_page(page)) {
2103 ret = -EIO;
2104 goto out;
2105 }
2106 if (!PageUptodate(page))
2107 SetPageUptodate(page);
2108 unlock_page(page);
2109 goto out;
2110 }
2111
2112 /*
2113 * This page will go to BIO. Do we need to send this
2114 * BIO off first?
2115 */
2116 if (bio && (!page_is_mergeable(sbi: F2FS_I_SB(inode), bio,
2117 last_blkaddr: *last_block_in_bio, cur_blkaddr: block_nr) ||
2118 !f2fs_crypt_mergeable_bio(bio, inode, next_idx: page->index, NULL))) {
2119submit_and_realloc:
2120 f2fs_submit_read_bio(sbi: F2FS_I_SB(inode), bio, type: DATA);
2121 bio = NULL;
2122 }
2123 if (bio == NULL) {
2124 bio = f2fs_grab_read_bio(inode, blkaddr: block_nr, nr_pages,
2125 op_flag: is_readahead ? REQ_RAHEAD : 0, first_idx: page->index,
2126 for_write: false);
2127 if (IS_ERR(ptr: bio)) {
2128 ret = PTR_ERR(ptr: bio);
2129 bio = NULL;
2130 goto out;
2131 }
2132 }
2133
2134 /*
2135 * If the page is under writeback, we need to wait for
2136 * its completion to see the correct decrypted data.
2137 */
2138 f2fs_wait_on_block_writeback(inode, blkaddr: block_nr);
2139
2140 if (bio_add_page(bio, page, len: blocksize, off: 0) < blocksize)
2141 goto submit_and_realloc;
2142
2143 inc_page_count(sbi: F2FS_I_SB(inode), count_type: F2FS_RD_DATA);
2144 f2fs_update_iostat(sbi: F2FS_I_SB(inode), NULL, type: FS_DATA_READ_IO,
2145 F2FS_BLKSIZE);
2146 *last_block_in_bio = block_nr;
2147out:
2148 *bio_ret = bio;
2149 return ret;
2150}
2151
2152#ifdef CONFIG_F2FS_FS_COMPRESSION
2153int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2154 unsigned nr_pages, sector_t *last_block_in_bio,
2155 bool is_readahead, bool for_write)
2156{
2157 struct dnode_of_data dn;
2158 struct inode *inode = cc->inode;
2159 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2160 struct bio *bio = *bio_ret;
2161 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2162 sector_t last_block_in_file;
2163 const unsigned blocksize = blks_to_bytes(inode, blks: 1);
2164 struct decompress_io_ctx *dic = NULL;
2165 struct extent_info ei = {};
2166 bool from_dnode = true;
2167 int i;
2168 int ret = 0;
2169
2170 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2171
2172 last_block_in_file = bytes_to_blks(inode,
2173 bytes: f2fs_readpage_limit(inode) + blocksize - 1);
2174
2175 /* get rid of pages beyond EOF */
2176 for (i = 0; i < cc->cluster_size; i++) {
2177 struct page *page = cc->rpages[i];
2178
2179 if (!page)
2180 continue;
2181 if ((sector_t)page->index >= last_block_in_file) {
2182 zero_user_segment(page, start: 0, PAGE_SIZE);
2183 if (!PageUptodate(page))
2184 SetPageUptodate(page);
2185 } else if (!PageUptodate(page)) {
2186 continue;
2187 }
2188 unlock_page(page);
2189 if (for_write)
2190 put_page(page);
2191 cc->rpages[i] = NULL;
2192 cc->nr_rpages--;
2193 }
2194
2195 /* we are done since all pages are beyond EOF */
2196 if (f2fs_cluster_is_empty(cc))
2197 goto out;
2198
2199 if (f2fs_lookup_read_extent_cache(inode, pgofs: start_idx, ei: &ei))
2200 from_dnode = false;
2201
2202 if (!from_dnode)
2203 goto skip_reading_dnode;
2204
2205 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
2206 ret = f2fs_get_dnode_of_data(dn: &dn, index: start_idx, mode: LOOKUP_NODE);
2207 if (ret)
2208 goto out;
2209
2210 if (unlikely(f2fs_cp_error(sbi))) {
2211 ret = -EIO;
2212 goto out_put_dnode;
2213 }
2214 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2215
2216skip_reading_dnode:
2217 for (i = 1; i < cc->cluster_size; i++) {
2218 block_t blkaddr;
2219
2220 blkaddr = from_dnode ? data_blkaddr(inode: dn.inode, node_page: dn.node_page,
2221 offset: dn.ofs_in_node + i) :
2222 ei.blk + i - 1;
2223
2224 if (!__is_valid_data_blkaddr(blkaddr))
2225 break;
2226
2227 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type: DATA_GENERIC)) {
2228 ret = -EFAULT;
2229 goto out_put_dnode;
2230 }
2231 cc->nr_cpages++;
2232
2233 if (!from_dnode && i >= ei.c_len)
2234 break;
2235 }
2236
2237 /* nothing to decompress */
2238 if (cc->nr_cpages == 0) {
2239 ret = 0;
2240 goto out_put_dnode;
2241 }
2242
2243 dic = f2fs_alloc_dic(cc);
2244 if (IS_ERR(ptr: dic)) {
2245 ret = PTR_ERR(ptr: dic);
2246 goto out_put_dnode;
2247 }
2248
2249 for (i = 0; i < cc->nr_cpages; i++) {
2250 struct page *page = dic->cpages[i];
2251 block_t blkaddr;
2252 struct bio_post_read_ctx *ctx;
2253
2254 blkaddr = from_dnode ? data_blkaddr(inode: dn.inode, node_page: dn.node_page,
2255 offset: dn.ofs_in_node + i + 1) :
2256 ei.blk + i;
2257
2258 f2fs_wait_on_block_writeback(inode, blkaddr);
2259
2260 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2261 if (atomic_dec_and_test(v: &dic->remaining_pages)) {
2262 f2fs_decompress_cluster(dic, in_task: true);
2263 break;
2264 }
2265 continue;
2266 }
2267
2268 if (bio && (!page_is_mergeable(sbi, bio,
2269 last_blkaddr: *last_block_in_bio, cur_blkaddr: blkaddr) ||
2270 !f2fs_crypt_mergeable_bio(bio, inode, next_idx: page->index, NULL))) {
2271submit_and_realloc:
2272 f2fs_submit_read_bio(sbi, bio, type: DATA);
2273 bio = NULL;
2274 }
2275
2276 if (!bio) {
2277 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2278 op_flag: is_readahead ? REQ_RAHEAD : 0,
2279 first_idx: page->index, for_write);
2280 if (IS_ERR(ptr: bio)) {
2281 ret = PTR_ERR(ptr: bio);
2282 f2fs_decompress_end_io(dic, failed: ret, in_task: true);
2283 f2fs_put_dnode(dn: &dn);
2284 *bio_ret = NULL;
2285 return ret;
2286 }
2287 }
2288
2289 if (bio_add_page(bio, page, len: blocksize, off: 0) < blocksize)
2290 goto submit_and_realloc;
2291
2292 ctx = get_post_read_ctx(bio);
2293 ctx->enabled_steps |= STEP_DECOMPRESS;
2294 refcount_inc(r: &dic->refcnt);
2295
2296 inc_page_count(sbi, count_type: F2FS_RD_DATA);
2297 f2fs_update_iostat(sbi, inode, type: FS_DATA_READ_IO, F2FS_BLKSIZE);
2298 *last_block_in_bio = blkaddr;
2299 }
2300
2301 if (from_dnode)
2302 f2fs_put_dnode(dn: &dn);
2303
2304 *bio_ret = bio;
2305 return 0;
2306
2307out_put_dnode:
2308 if (from_dnode)
2309 f2fs_put_dnode(dn: &dn);
2310out:
2311 for (i = 0; i < cc->cluster_size; i++) {
2312 if (cc->rpages[i]) {
2313 ClearPageUptodate(page: cc->rpages[i]);
2314 unlock_page(page: cc->rpages[i]);
2315 }
2316 }
2317 *bio_ret = bio;
2318 return ret;
2319}
2320#endif
2321
2322/*
2323 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2324 * Major change was from block_size == page_size in f2fs by default.
2325 */
2326static int f2fs_mpage_readpages(struct inode *inode,
2327 struct readahead_control *rac, struct page *page)
2328{
2329 struct bio *bio = NULL;
2330 sector_t last_block_in_bio = 0;
2331 struct f2fs_map_blocks map;
2332#ifdef CONFIG_F2FS_FS_COMPRESSION
2333 struct compress_ctx cc = {
2334 .inode = inode,
2335 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2336 .cluster_size = F2FS_I(inode)->i_cluster_size,
2337 .cluster_idx = NULL_CLUSTER,
2338 .rpages = NULL,
2339 .cpages = NULL,
2340 .nr_rpages = 0,
2341 .nr_cpages = 0,
2342 };
2343 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2344#endif
2345 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2346 unsigned max_nr_pages = nr_pages;
2347 int ret = 0;
2348
2349 map.m_pblk = 0;
2350 map.m_lblk = 0;
2351 map.m_len = 0;
2352 map.m_flags = 0;
2353 map.m_next_pgofs = NULL;
2354 map.m_next_extent = NULL;
2355 map.m_seg_type = NO_CHECK_TYPE;
2356 map.m_may_create = false;
2357
2358 for (; nr_pages; nr_pages--) {
2359 if (rac) {
2360 page = readahead_page(ractl: rac);
2361 prefetchw(x: &page->flags);
2362 }
2363
2364#ifdef CONFIG_F2FS_FS_COMPRESSION
2365 if (f2fs_compressed_file(inode)) {
2366 /* there are remained compressed pages, submit them */
2367 if (!f2fs_cluster_can_merge_page(cc: &cc, index: page->index)) {
2368 ret = f2fs_read_multi_pages(cc: &cc, bio_ret: &bio,
2369 nr_pages: max_nr_pages,
2370 last_block_in_bio: &last_block_in_bio,
2371 is_readahead: rac != NULL, for_write: false);
2372 f2fs_destroy_compress_ctx(cc: &cc, reuse: false);
2373 if (ret)
2374 goto set_error_page;
2375 }
2376 if (cc.cluster_idx == NULL_CLUSTER) {
2377 if (nc_cluster_idx ==
2378 page->index >> cc.log_cluster_size) {
2379 goto read_single_page;
2380 }
2381
2382 ret = f2fs_is_compressed_cluster(inode, index: page->index);
2383 if (ret < 0)
2384 goto set_error_page;
2385 else if (!ret) {
2386 nc_cluster_idx =
2387 page->index >> cc.log_cluster_size;
2388 goto read_single_page;
2389 }
2390
2391 nc_cluster_idx = NULL_CLUSTER;
2392 }
2393 ret = f2fs_init_compress_ctx(cc: &cc);
2394 if (ret)
2395 goto set_error_page;
2396
2397 f2fs_compress_ctx_add_page(cc: &cc, page);
2398
2399 goto next_page;
2400 }
2401read_single_page:
2402#endif
2403
2404 ret = f2fs_read_single_page(inode, page, nr_pages: max_nr_pages, map: &map,
2405 bio_ret: &bio, last_block_in_bio: &last_block_in_bio, is_readahead: rac);
2406 if (ret) {
2407#ifdef CONFIG_F2FS_FS_COMPRESSION
2408set_error_page:
2409#endif
2410 zero_user_segment(page, start: 0, PAGE_SIZE);
2411 unlock_page(page);
2412 }
2413#ifdef CONFIG_F2FS_FS_COMPRESSION
2414next_page:
2415#endif
2416 if (rac)
2417 put_page(page);
2418
2419#ifdef CONFIG_F2FS_FS_COMPRESSION
2420 if (f2fs_compressed_file(inode)) {
2421 /* last page */
2422 if (nr_pages == 1 && !f2fs_cluster_is_empty(cc: &cc)) {
2423 ret = f2fs_read_multi_pages(cc: &cc, bio_ret: &bio,
2424 nr_pages: max_nr_pages,
2425 last_block_in_bio: &last_block_in_bio,
2426 is_readahead: rac != NULL, for_write: false);
2427 f2fs_destroy_compress_ctx(cc: &cc, reuse: false);
2428 }
2429 }
2430#endif
2431 }
2432 if (bio)
2433 f2fs_submit_read_bio(sbi: F2FS_I_SB(inode), bio, type: DATA);
2434 return ret;
2435}
2436
2437static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2438{
2439 struct page *page = &folio->page;
2440 struct inode *inode = page_file_mapping(page)->host;
2441 int ret = -EAGAIN;
2442
2443 trace_f2fs_readpage(page, type: DATA);
2444
2445 if (!f2fs_is_compress_backend_ready(inode)) {
2446 unlock_page(page);
2447 return -EOPNOTSUPP;
2448 }
2449
2450 /* If the file has inline data, try to read it directly */
2451 if (f2fs_has_inline_data(inode))
2452 ret = f2fs_read_inline_data(inode, page);
2453 if (ret == -EAGAIN)
2454 ret = f2fs_mpage_readpages(inode, NULL, page);
2455 return ret;
2456}
2457
2458static void f2fs_readahead(struct readahead_control *rac)
2459{
2460 struct inode *inode = rac->mapping->host;
2461
2462 trace_f2fs_readpages(inode, start: readahead_index(rac), nrpage: readahead_count(rac));
2463
2464 if (!f2fs_is_compress_backend_ready(inode))
2465 return;
2466
2467 /* If the file has inline data, skip readahead */
2468 if (f2fs_has_inline_data(inode))
2469 return;
2470
2471 f2fs_mpage_readpages(inode, rac, NULL);
2472}
2473
2474int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2475{
2476 struct inode *inode = fio->page->mapping->host;
2477 struct page *mpage, *page;
2478 gfp_t gfp_flags = GFP_NOFS;
2479
2480 if (!f2fs_encrypted_file(inode))
2481 return 0;
2482
2483 page = fio->compressed_page ? fio->compressed_page : fio->page;
2484
2485 if (fscrypt_inode_uses_inline_crypto(inode))
2486 return 0;
2487
2488retry_encrypt:
2489 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2490 PAGE_SIZE, offs: 0, gfp_flags);
2491 if (IS_ERR(ptr: fio->encrypted_page)) {
2492 /* flush pending IOs and wait for a while in the ENOMEM case */
2493 if (PTR_ERR(ptr: fio->encrypted_page) == -ENOMEM) {
2494 f2fs_flush_merged_writes(sbi: fio->sbi);
2495 memalloc_retry_wait(GFP_NOFS);
2496 gfp_flags |= __GFP_NOFAIL;
2497 goto retry_encrypt;
2498 }
2499 return PTR_ERR(ptr: fio->encrypted_page);
2500 }
2501
2502 mpage = find_lock_page(mapping: META_MAPPING(sbi: fio->sbi), index: fio->old_blkaddr);
2503 if (mpage) {
2504 if (PageUptodate(page: mpage))
2505 memcpy(page_address(mpage),
2506 page_address(fio->encrypted_page), PAGE_SIZE);
2507 f2fs_put_page(page: mpage, unlock: 1);
2508 }
2509 return 0;
2510}
2511
2512static inline bool check_inplace_update_policy(struct inode *inode,
2513 struct f2fs_io_info *fio)
2514{
2515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2516
2517 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2518 is_inode_flag_set(inode, flag: FI_OPU_WRITE))
2519 return false;
2520 if (IS_F2FS_IPU_FORCE(sbi))
2521 return true;
2522 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2523 return true;
2524 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2525 return true;
2526 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2527 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2528 return true;
2529
2530 /*
2531 * IPU for rewrite async pages
2532 */
2533 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2534 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2535 return true;
2536
2537 /* this is only set during fdatasync */
2538 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, flag: FI_NEED_IPU))
2539 return true;
2540
2541 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2542 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2543 return true;
2544
2545 return false;
2546}
2547
2548bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2549{
2550 /* swap file is migrating in aligned write mode */
2551 if (is_inode_flag_set(inode, flag: FI_ALIGNED_WRITE))
2552 return false;
2553
2554 if (f2fs_is_pinned_file(inode))
2555 return true;
2556
2557 /* if this is cold file, we should overwrite to avoid fragmentation */
2558 if (file_is_cold(inode) && !is_inode_flag_set(inode, flag: FI_OPU_WRITE))
2559 return true;
2560
2561 return check_inplace_update_policy(inode, fio);
2562}
2563
2564bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2565{
2566 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2567
2568 /* The below cases were checked when setting it. */
2569 if (f2fs_is_pinned_file(inode))
2570 return false;
2571 if (fio && is_sbi_flag_set(sbi, type: SBI_NEED_FSCK))
2572 return true;
2573 if (f2fs_lfs_mode(sbi))
2574 return true;
2575 if (S_ISDIR(inode->i_mode))
2576 return true;
2577 if (IS_NOQUOTA(inode))
2578 return true;
2579 if (f2fs_is_atomic_file(inode))
2580 return true;
2581 /* rewrite low ratio compress data w/ OPU mode to avoid fragmentation */
2582 if (f2fs_compressed_file(inode) &&
2583 F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER &&
2584 is_inode_flag_set(inode, flag: FI_ENABLE_COMPRESS))
2585 return true;
2586
2587 /* swap file is migrating in aligned write mode */
2588 if (is_inode_flag_set(inode, flag: FI_ALIGNED_WRITE))
2589 return true;
2590
2591 if (is_inode_flag_set(inode, flag: FI_OPU_WRITE))
2592 return true;
2593
2594 if (fio) {
2595 if (page_private_gcing(page: fio->page))
2596 return true;
2597 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2598 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2599 return true;
2600 }
2601 return false;
2602}
2603
2604static inline bool need_inplace_update(struct f2fs_io_info *fio)
2605{
2606 struct inode *inode = fio->page->mapping->host;
2607
2608 if (f2fs_should_update_outplace(inode, fio))
2609 return false;
2610
2611 return f2fs_should_update_inplace(inode, fio);
2612}
2613
2614int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2615{
2616 struct page *page = fio->page;
2617 struct inode *inode = page->mapping->host;
2618 struct dnode_of_data dn;
2619 struct node_info ni;
2620 bool ipu_force = false;
2621 int err = 0;
2622
2623 /* Use COW inode to make dnode_of_data for atomic write */
2624 if (f2fs_is_atomic_file(inode))
2625 set_new_dnode(dn: &dn, inode: F2FS_I(inode)->cow_inode, NULL, NULL, nid: 0);
2626 else
2627 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
2628
2629 if (need_inplace_update(fio) &&
2630 f2fs_lookup_read_extent_cache_block(inode, index: page->index,
2631 blkaddr: &fio->old_blkaddr)) {
2632 if (!f2fs_is_valid_blkaddr(sbi: fio->sbi, blkaddr: fio->old_blkaddr,
2633 type: DATA_GENERIC_ENHANCE))
2634 return -EFSCORRUPTED;
2635
2636 ipu_force = true;
2637 fio->need_lock = LOCK_DONE;
2638 goto got_it;
2639 }
2640
2641 /* Deadlock due to between page->lock and f2fs_lock_op */
2642 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(sbi: fio->sbi))
2643 return -EAGAIN;
2644
2645 err = f2fs_get_dnode_of_data(dn: &dn, index: page->index, mode: LOOKUP_NODE);
2646 if (err)
2647 goto out;
2648
2649 fio->old_blkaddr = dn.data_blkaddr;
2650
2651 /* This page is already truncated */
2652 if (fio->old_blkaddr == NULL_ADDR) {
2653 ClearPageUptodate(page);
2654 clear_page_private_gcing(page);
2655 goto out_writepage;
2656 }
2657got_it:
2658 if (__is_valid_data_blkaddr(blkaddr: fio->old_blkaddr) &&
2659 !f2fs_is_valid_blkaddr(sbi: fio->sbi, blkaddr: fio->old_blkaddr,
2660 type: DATA_GENERIC_ENHANCE)) {
2661 err = -EFSCORRUPTED;
2662 goto out_writepage;
2663 }
2664
2665 /* wait for GCed page writeback via META_MAPPING */
2666 if (fio->post_read)
2667 f2fs_wait_on_block_writeback(inode, blkaddr: fio->old_blkaddr);
2668
2669 /*
2670 * If current allocation needs SSR,
2671 * it had better in-place writes for updated data.
2672 */
2673 if (ipu_force ||
2674 (__is_valid_data_blkaddr(blkaddr: fio->old_blkaddr) &&
2675 need_inplace_update(fio))) {
2676 err = f2fs_encrypt_one_page(fio);
2677 if (err)
2678 goto out_writepage;
2679
2680 set_page_writeback(page);
2681 f2fs_put_dnode(dn: &dn);
2682 if (fio->need_lock == LOCK_REQ)
2683 f2fs_unlock_op(sbi: fio->sbi);
2684 err = f2fs_inplace_write_data(fio);
2685 if (err) {
2686 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2687 fscrypt_finalize_bounce_page(pagep: &fio->encrypted_page);
2688 if (PageWriteback(page))
2689 end_page_writeback(page);
2690 } else {
2691 set_inode_flag(inode, flag: FI_UPDATE_WRITE);
2692 }
2693 trace_f2fs_do_write_data_page(page: fio->page, type: IPU);
2694 return err;
2695 }
2696
2697 if (fio->need_lock == LOCK_RETRY) {
2698 if (!f2fs_trylock_op(sbi: fio->sbi)) {
2699 err = -EAGAIN;
2700 goto out_writepage;
2701 }
2702 fio->need_lock = LOCK_REQ;
2703 }
2704
2705 err = f2fs_get_node_info(sbi: fio->sbi, nid: dn.nid, ni: &ni, checkpoint_context: false);
2706 if (err)
2707 goto out_writepage;
2708
2709 fio->version = ni.version;
2710
2711 err = f2fs_encrypt_one_page(fio);
2712 if (err)
2713 goto out_writepage;
2714
2715 set_page_writeback(page);
2716
2717 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2718 f2fs_i_compr_blocks_update(inode, blocks: fio->compr_blocks - 1, add: false);
2719
2720 /* LFS mode write path */
2721 f2fs_outplace_write_data(dn: &dn, fio);
2722 trace_f2fs_do_write_data_page(page, type: OPU);
2723 set_inode_flag(inode, flag: FI_APPEND_WRITE);
2724out_writepage:
2725 f2fs_put_dnode(dn: &dn);
2726out:
2727 if (fio->need_lock == LOCK_REQ)
2728 f2fs_unlock_op(sbi: fio->sbi);
2729 return err;
2730}
2731
2732int f2fs_write_single_data_page(struct page *page, int *submitted,
2733 struct bio **bio,
2734 sector_t *last_block,
2735 struct writeback_control *wbc,
2736 enum iostat_type io_type,
2737 int compr_blocks,
2738 bool allow_balance)
2739{
2740 struct inode *inode = page->mapping->host;
2741 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2742 loff_t i_size = i_size_read(inode);
2743 const pgoff_t end_index = ((unsigned long long)i_size)
2744 >> PAGE_SHIFT;
2745 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2746 unsigned offset = 0;
2747 bool need_balance_fs = false;
2748 bool quota_inode = IS_NOQUOTA(inode);
2749 int err = 0;
2750 struct f2fs_io_info fio = {
2751 .sbi = sbi,
2752 .ino = inode->i_ino,
2753 .type = DATA,
2754 .op = REQ_OP_WRITE,
2755 .op_flags = wbc_to_write_flags(wbc),
2756 .old_blkaddr = NULL_ADDR,
2757 .page = page,
2758 .encrypted_page = NULL,
2759 .submitted = 0,
2760 .compr_blocks = compr_blocks,
2761 .need_lock = compr_blocks ? LOCK_DONE : LOCK_RETRY,
2762 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2763 .io_type = io_type,
2764 .io_wbc = wbc,
2765 .bio = bio,
2766 .last_block = last_block,
2767 };
2768
2769 trace_f2fs_writepage(page, type: DATA);
2770
2771 /* we should bypass data pages to proceed the kworker jobs */
2772 if (unlikely(f2fs_cp_error(sbi))) {
2773 mapping_set_error(mapping: page->mapping, error: -EIO);
2774 /*
2775 * don't drop any dirty dentry pages for keeping lastest
2776 * directory structure.
2777 */
2778 if (S_ISDIR(inode->i_mode) &&
2779 !is_sbi_flag_set(sbi, type: SBI_IS_CLOSE))
2780 goto redirty_out;
2781
2782 /* keep data pages in remount-ro mode */
2783 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2784 goto redirty_out;
2785 goto out;
2786 }
2787
2788 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2789 goto redirty_out;
2790
2791 if (page->index < end_index ||
2792 f2fs_verity_in_progress(inode) ||
2793 compr_blocks)
2794 goto write;
2795
2796 /*
2797 * If the offset is out-of-range of file size,
2798 * this page does not have to be written to disk.
2799 */
2800 offset = i_size & (PAGE_SIZE - 1);
2801 if ((page->index >= end_index + 1) || !offset)
2802 goto out;
2803
2804 zero_user_segment(page, start: offset, PAGE_SIZE);
2805write:
2806 /* Dentry/quota blocks are controlled by checkpoint */
2807 if (S_ISDIR(inode->i_mode) || quota_inode) {
2808 /*
2809 * We need to wait for node_write to avoid block allocation during
2810 * checkpoint. This can only happen to quota writes which can cause
2811 * the below discard race condition.
2812 */
2813 if (quota_inode)
2814 f2fs_down_read(sem: &sbi->node_write);
2815
2816 fio.need_lock = LOCK_DONE;
2817 err = f2fs_do_write_data_page(fio: &fio);
2818
2819 if (quota_inode)
2820 f2fs_up_read(sem: &sbi->node_write);
2821
2822 goto done;
2823 }
2824
2825 if (!wbc->for_reclaim)
2826 need_balance_fs = true;
2827 else if (has_not_enough_free_secs(sbi, freed: 0, needed: 0))
2828 goto redirty_out;
2829 else
2830 set_inode_flag(inode, flag: FI_HOT_DATA);
2831
2832 err = -EAGAIN;
2833 if (f2fs_has_inline_data(inode)) {
2834 err = f2fs_write_inline_data(inode, page);
2835 if (!err)
2836 goto out;
2837 }
2838
2839 if (err == -EAGAIN) {
2840 err = f2fs_do_write_data_page(fio: &fio);
2841 if (err == -EAGAIN) {
2842 f2fs_bug_on(sbi, compr_blocks);
2843 fio.need_lock = LOCK_REQ;
2844 err = f2fs_do_write_data_page(fio: &fio);
2845 }
2846 }
2847
2848 if (err) {
2849 file_set_keep_isize(inode);
2850 } else {
2851 spin_lock(lock: &F2FS_I(inode)->i_size_lock);
2852 if (F2FS_I(inode)->last_disk_size < psize)
2853 F2FS_I(inode)->last_disk_size = psize;
2854 spin_unlock(lock: &F2FS_I(inode)->i_size_lock);
2855 }
2856
2857done:
2858 if (err && err != -ENOENT)
2859 goto redirty_out;
2860
2861out:
2862 inode_dec_dirty_pages(inode);
2863 if (err) {
2864 ClearPageUptodate(page);
2865 clear_page_private_gcing(page);
2866 }
2867
2868 if (wbc->for_reclaim) {
2869 f2fs_submit_merged_write_cond(sbi, NULL, page, ino: 0, type: DATA);
2870 clear_inode_flag(inode, flag: FI_HOT_DATA);
2871 f2fs_remove_dirty_inode(inode);
2872 submitted = NULL;
2873 }
2874 unlock_page(page);
2875 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2876 !F2FS_I(inode)->wb_task && allow_balance)
2877 f2fs_balance_fs(sbi, need: need_balance_fs);
2878
2879 if (unlikely(f2fs_cp_error(sbi))) {
2880 f2fs_submit_merged_write(sbi, type: DATA);
2881 if (bio && *bio)
2882 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2883 submitted = NULL;
2884 }
2885
2886 if (submitted)
2887 *submitted = fio.submitted;
2888
2889 return 0;
2890
2891redirty_out:
2892 redirty_page_for_writepage(wbc, page);
2893 /*
2894 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2895 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2896 * file_write_and_wait_range() will see EIO error, which is critical
2897 * to return value of fsync() followed by atomic_write failure to user.
2898 */
2899 if (!err || wbc->for_reclaim)
2900 return AOP_WRITEPAGE_ACTIVATE;
2901 unlock_page(page);
2902 return err;
2903}
2904
2905static int f2fs_write_data_page(struct page *page,
2906 struct writeback_control *wbc)
2907{
2908#ifdef CONFIG_F2FS_FS_COMPRESSION
2909 struct inode *inode = page->mapping->host;
2910
2911 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2912 goto out;
2913
2914 if (f2fs_compressed_file(inode)) {
2915 if (f2fs_is_compressed_cluster(inode, index: page->index)) {
2916 redirty_page_for_writepage(wbc, page);
2917 return AOP_WRITEPAGE_ACTIVATE;
2918 }
2919 }
2920out:
2921#endif
2922
2923 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2924 wbc, io_type: FS_DATA_IO, compr_blocks: 0, allow_balance: true);
2925}
2926
2927/*
2928 * This function was copied from write_cache_pages from mm/page-writeback.c.
2929 * The major change is making write step of cold data page separately from
2930 * warm/hot data page.
2931 */
2932static int f2fs_write_cache_pages(struct address_space *mapping,
2933 struct writeback_control *wbc,
2934 enum iostat_type io_type)
2935{
2936 int ret = 0;
2937 int done = 0, retry = 0;
2938 struct page *pages_local[F2FS_ONSTACK_PAGES];
2939 struct page **pages = pages_local;
2940 struct folio_batch fbatch;
2941 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2942 struct bio *bio = NULL;
2943 sector_t last_block;
2944#ifdef CONFIG_F2FS_FS_COMPRESSION
2945 struct inode *inode = mapping->host;
2946 struct compress_ctx cc = {
2947 .inode = inode,
2948 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2949 .cluster_size = F2FS_I(inode)->i_cluster_size,
2950 .cluster_idx = NULL_CLUSTER,
2951 .rpages = NULL,
2952 .nr_rpages = 0,
2953 .cpages = NULL,
2954 .valid_nr_cpages = 0,
2955 .rbuf = NULL,
2956 .cbuf = NULL,
2957 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2958 .private = NULL,
2959 };
2960#endif
2961 int nr_folios, p, idx;
2962 int nr_pages;
2963 unsigned int max_pages = F2FS_ONSTACK_PAGES;
2964 pgoff_t index;
2965 pgoff_t end; /* Inclusive */
2966 pgoff_t done_index;
2967 int range_whole = 0;
2968 xa_mark_t tag;
2969 int nwritten = 0;
2970 int submitted = 0;
2971 int i;
2972
2973#ifdef CONFIG_F2FS_FS_COMPRESSION
2974 if (f2fs_compressed_file(inode) &&
2975 1 << cc.log_cluster_size > F2FS_ONSTACK_PAGES) {
2976 pages = f2fs_kzalloc(sbi, size: sizeof(struct page *) <<
2977 cc.log_cluster_size, GFP_NOFS | __GFP_NOFAIL);
2978 max_pages = 1 << cc.log_cluster_size;
2979 }
2980#endif
2981
2982 folio_batch_init(fbatch: &fbatch);
2983
2984 if (get_dirty_pages(inode: mapping->host) <=
2985 SM_I(sbi: F2FS_M_SB(mapping))->min_hot_blocks)
2986 set_inode_flag(inode: mapping->host, flag: FI_HOT_DATA);
2987 else
2988 clear_inode_flag(inode: mapping->host, flag: FI_HOT_DATA);
2989
2990 if (wbc->range_cyclic) {
2991 index = mapping->writeback_index; /* prev offset */
2992 end = -1;
2993 } else {
2994 index = wbc->range_start >> PAGE_SHIFT;
2995 end = wbc->range_end >> PAGE_SHIFT;
2996 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2997 range_whole = 1;
2998 }
2999 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3000 tag = PAGECACHE_TAG_TOWRITE;
3001 else
3002 tag = PAGECACHE_TAG_DIRTY;
3003retry:
3004 retry = 0;
3005 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3006 tag_pages_for_writeback(mapping, start: index, end);
3007 done_index = index;
3008 while (!done && !retry && (index <= end)) {
3009 nr_pages = 0;
3010again:
3011 nr_folios = filemap_get_folios_tag(mapping, start: &index, end,
3012 tag, fbatch: &fbatch);
3013 if (nr_folios == 0) {
3014 if (nr_pages)
3015 goto write;
3016 break;
3017 }
3018
3019 for (i = 0; i < nr_folios; i++) {
3020 struct folio *folio = fbatch.folios[i];
3021
3022 idx = 0;
3023 p = folio_nr_pages(folio);
3024add_more:
3025 pages[nr_pages] = folio_page(folio, idx);
3026 folio_get(folio);
3027 if (++nr_pages == max_pages) {
3028 index = folio->index + idx + 1;
3029 folio_batch_release(fbatch: &fbatch);
3030 goto write;
3031 }
3032 if (++idx < p)
3033 goto add_more;
3034 }
3035 folio_batch_release(fbatch: &fbatch);
3036 goto again;
3037write:
3038 for (i = 0; i < nr_pages; i++) {
3039 struct page *page = pages[i];
3040 struct folio *folio = page_folio(page);
3041 bool need_readd;
3042readd:
3043 need_readd = false;
3044#ifdef CONFIG_F2FS_FS_COMPRESSION
3045 if (f2fs_compressed_file(inode)) {
3046 void *fsdata = NULL;
3047 struct page *pagep;
3048 int ret2;
3049
3050 ret = f2fs_init_compress_ctx(cc: &cc);
3051 if (ret) {
3052 done = 1;
3053 break;
3054 }
3055
3056 if (!f2fs_cluster_can_merge_page(cc: &cc,
3057 index: folio->index)) {
3058 ret = f2fs_write_multi_pages(cc: &cc,
3059 submitted: &submitted, wbc, io_type);
3060 if (!ret)
3061 need_readd = true;
3062 goto result;
3063 }
3064
3065 if (unlikely(f2fs_cp_error(sbi)))
3066 goto lock_folio;
3067
3068 if (!f2fs_cluster_is_empty(cc: &cc))
3069 goto lock_folio;
3070
3071 if (f2fs_all_cluster_page_ready(cc: &cc,
3072 pages, index: i, nr_pages, uptodate: true))
3073 goto lock_folio;
3074
3075 ret2 = f2fs_prepare_compress_overwrite(
3076 inode, pagep: &pagep,
3077 index: folio->index, fsdata: &fsdata);
3078 if (ret2 < 0) {
3079 ret = ret2;
3080 done = 1;
3081 break;
3082 } else if (ret2 &&
3083 (!f2fs_compress_write_end(inode,
3084 fsdata, index: folio->index, copied: 1) ||
3085 !f2fs_all_cluster_page_ready(cc: &cc,
3086 pages, index: i, nr_pages,
3087 uptodate: false))) {
3088 retry = 1;
3089 break;
3090 }
3091 }
3092#endif
3093 /* give a priority to WB_SYNC threads */
3094 if (atomic_read(v: &sbi->wb_sync_req[DATA]) &&
3095 wbc->sync_mode == WB_SYNC_NONE) {
3096 done = 1;
3097 break;
3098 }
3099#ifdef CONFIG_F2FS_FS_COMPRESSION
3100lock_folio:
3101#endif
3102 done_index = folio->index;
3103retry_write:
3104 folio_lock(folio);
3105
3106 if (unlikely(folio->mapping != mapping)) {
3107continue_unlock:
3108 folio_unlock(folio);
3109 continue;
3110 }
3111
3112 if (!folio_test_dirty(folio)) {
3113 /* someone wrote it for us */
3114 goto continue_unlock;
3115 }
3116
3117 if (folio_test_writeback(folio)) {
3118 if (wbc->sync_mode == WB_SYNC_NONE)
3119 goto continue_unlock;
3120 f2fs_wait_on_page_writeback(page: &folio->page, type: DATA, ordered: true, locked: true);
3121 }
3122
3123 if (!folio_clear_dirty_for_io(folio))
3124 goto continue_unlock;
3125
3126#ifdef CONFIG_F2FS_FS_COMPRESSION
3127 if (f2fs_compressed_file(inode)) {
3128 folio_get(folio);
3129 f2fs_compress_ctx_add_page(cc: &cc, page: &folio->page);
3130 continue;
3131 }
3132#endif
3133 ret = f2fs_write_single_data_page(page: &folio->page,
3134 submitted: &submitted, bio: &bio, last_block: &last_block,
3135 wbc, io_type, compr_blocks: 0, allow_balance: true);
3136 if (ret == AOP_WRITEPAGE_ACTIVATE)
3137 folio_unlock(folio);
3138#ifdef CONFIG_F2FS_FS_COMPRESSION
3139result:
3140#endif
3141 nwritten += submitted;
3142 wbc->nr_to_write -= submitted;
3143
3144 if (unlikely(ret)) {
3145 /*
3146 * keep nr_to_write, since vfs uses this to
3147 * get # of written pages.
3148 */
3149 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3150 ret = 0;
3151 goto next;
3152 } else if (ret == -EAGAIN) {
3153 ret = 0;
3154 if (wbc->sync_mode == WB_SYNC_ALL) {
3155 f2fs_io_schedule_timeout(
3156 DEFAULT_IO_TIMEOUT);
3157 goto retry_write;
3158 }
3159 goto next;
3160 }
3161 done_index = folio_next_index(folio);
3162 done = 1;
3163 break;
3164 }
3165
3166 if (wbc->nr_to_write <= 0 &&
3167 wbc->sync_mode == WB_SYNC_NONE) {
3168 done = 1;
3169 break;
3170 }
3171next:
3172 if (need_readd)
3173 goto readd;
3174 }
3175 release_pages(pages, nr: nr_pages);
3176 cond_resched();
3177 }
3178#ifdef CONFIG_F2FS_FS_COMPRESSION
3179 /* flush remained pages in compress cluster */
3180 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(cc: &cc)) {
3181 ret = f2fs_write_multi_pages(cc: &cc, submitted: &submitted, wbc, io_type);
3182 nwritten += submitted;
3183 wbc->nr_to_write -= submitted;
3184 if (ret) {
3185 done = 1;
3186 retry = 0;
3187 }
3188 }
3189 if (f2fs_compressed_file(inode))
3190 f2fs_destroy_compress_ctx(cc: &cc, reuse: false);
3191#endif
3192 if (retry) {
3193 index = 0;
3194 end = -1;
3195 goto retry;
3196 }
3197 if (wbc->range_cyclic && !done)
3198 done_index = 0;
3199 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3200 mapping->writeback_index = done_index;
3201
3202 if (nwritten)
3203 f2fs_submit_merged_write_cond(sbi: F2FS_M_SB(mapping), inode: mapping->host,
3204 NULL, ino: 0, type: DATA);
3205 /* submit cached bio of IPU write */
3206 if (bio)
3207 f2fs_submit_merged_ipu_write(sbi, bio: &bio, NULL);
3208
3209#ifdef CONFIG_F2FS_FS_COMPRESSION
3210 if (pages != pages_local)
3211 kfree(objp: pages);
3212#endif
3213
3214 return ret;
3215}
3216
3217static inline bool __should_serialize_io(struct inode *inode,
3218 struct writeback_control *wbc)
3219{
3220 /* to avoid deadlock in path of data flush */
3221 if (F2FS_I(inode)->wb_task)
3222 return false;
3223
3224 if (!S_ISREG(inode->i_mode))
3225 return false;
3226 if (IS_NOQUOTA(inode))
3227 return false;
3228
3229 if (f2fs_need_compress_data(inode))
3230 return true;
3231 if (wbc->sync_mode != WB_SYNC_ALL)
3232 return true;
3233 if (get_dirty_pages(inode) >= SM_I(sbi: F2FS_I_SB(inode))->min_seq_blocks)
3234 return true;
3235 return false;
3236}
3237
3238static int __f2fs_write_data_pages(struct address_space *mapping,
3239 struct writeback_control *wbc,
3240 enum iostat_type io_type)
3241{
3242 struct inode *inode = mapping->host;
3243 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3244 struct blk_plug plug;
3245 int ret;
3246 bool locked = false;
3247
3248 /* deal with chardevs and other special file */
3249 if (!mapping->a_ops->writepage)
3250 return 0;
3251
3252 /* skip writing if there is no dirty page in this inode */
3253 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3254 return 0;
3255
3256 /* during POR, we don't need to trigger writepage at all. */
3257 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3258 goto skip_write;
3259
3260 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3261 wbc->sync_mode == WB_SYNC_NONE &&
3262 get_dirty_pages(inode) < nr_pages_to_skip(sbi, type: DATA) &&
3263 f2fs_available_free_memory(sbi, type: DIRTY_DENTS))
3264 goto skip_write;
3265
3266 /* skip writing in file defragment preparing stage */
3267 if (is_inode_flag_set(inode, flag: FI_SKIP_WRITES))
3268 goto skip_write;
3269
3270 trace_f2fs_writepages(inode: mapping->host, wbc, type: DATA);
3271
3272 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3273 if (wbc->sync_mode == WB_SYNC_ALL)
3274 atomic_inc(v: &sbi->wb_sync_req[DATA]);
3275 else if (atomic_read(v: &sbi->wb_sync_req[DATA])) {
3276 /* to avoid potential deadlock */
3277 if (current->plug)
3278 blk_finish_plug(current->plug);
3279 goto skip_write;
3280 }
3281
3282 if (__should_serialize_io(inode, wbc)) {
3283 mutex_lock(&sbi->writepages);
3284 locked = true;
3285 }
3286
3287 blk_start_plug(&plug);
3288 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3289 blk_finish_plug(&plug);
3290
3291 if (locked)
3292 mutex_unlock(lock: &sbi->writepages);
3293
3294 if (wbc->sync_mode == WB_SYNC_ALL)
3295 atomic_dec(v: &sbi->wb_sync_req[DATA]);
3296 /*
3297 * if some pages were truncated, we cannot guarantee its mapping->host
3298 * to detect pending bios.
3299 */
3300
3301 f2fs_remove_dirty_inode(inode);
3302 return ret;
3303
3304skip_write:
3305 wbc->pages_skipped += get_dirty_pages(inode);
3306 trace_f2fs_writepages(inode: mapping->host, wbc, type: DATA);
3307 return 0;
3308}
3309
3310static int f2fs_write_data_pages(struct address_space *mapping,
3311 struct writeback_control *wbc)
3312{
3313 struct inode *inode = mapping->host;
3314
3315 return __f2fs_write_data_pages(mapping, wbc,
3316 io_type: F2FS_I(inode)->cp_task == current ?
3317 FS_CP_DATA_IO : FS_DATA_IO);
3318}
3319
3320void f2fs_write_failed(struct inode *inode, loff_t to)
3321{
3322 loff_t i_size = i_size_read(inode);
3323
3324 if (IS_NOQUOTA(inode))
3325 return;
3326
3327 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3328 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3329 f2fs_down_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
3330 filemap_invalidate_lock(mapping: inode->i_mapping);
3331
3332 truncate_pagecache(inode, new: i_size);
3333 f2fs_truncate_blocks(inode, from: i_size, lock: true);
3334
3335 filemap_invalidate_unlock(mapping: inode->i_mapping);
3336 f2fs_up_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
3337 }
3338}
3339
3340static int prepare_write_begin(struct f2fs_sb_info *sbi,
3341 struct page *page, loff_t pos, unsigned len,
3342 block_t *blk_addr, bool *node_changed)
3343{
3344 struct inode *inode = page->mapping->host;
3345 pgoff_t index = page->index;
3346 struct dnode_of_data dn;
3347 struct page *ipage;
3348 bool locked = false;
3349 int flag = F2FS_GET_BLOCK_PRE_AIO;
3350 int err = 0;
3351
3352 /*
3353 * If a whole page is being written and we already preallocated all the
3354 * blocks, then there is no need to get a block address now.
3355 */
3356 if (len == PAGE_SIZE && is_inode_flag_set(inode, flag: FI_PREALLOCATED_ALL))
3357 return 0;
3358
3359 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3360 if (f2fs_has_inline_data(inode)) {
3361 if (pos + len > MAX_INLINE_DATA(inode))
3362 flag = F2FS_GET_BLOCK_DEFAULT;
3363 f2fs_map_lock(sbi, flag);
3364 locked = true;
3365 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3366 f2fs_map_lock(sbi, flag);
3367 locked = true;
3368 }
3369
3370restart:
3371 /* check inline_data */
3372 ipage = f2fs_get_node_page(sbi, nid: inode->i_ino);
3373 if (IS_ERR(ptr: ipage)) {
3374 err = PTR_ERR(ptr: ipage);
3375 goto unlock_out;
3376 }
3377
3378 set_new_dnode(dn: &dn, inode, ipage, npage: ipage, nid: 0);
3379
3380 if (f2fs_has_inline_data(inode)) {
3381 if (pos + len <= MAX_INLINE_DATA(inode)) {
3382 f2fs_do_read_inline_data(page, ipage);
3383 set_inode_flag(inode, flag: FI_DATA_EXIST);
3384 if (inode->i_nlink)
3385 set_page_private_inline(ipage);
3386 goto out;
3387 }
3388 err = f2fs_convert_inline_page(dn: &dn, page);
3389 if (err || dn.data_blkaddr != NULL_ADDR)
3390 goto out;
3391 }
3392
3393 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3394 blkaddr: &dn.data_blkaddr)) {
3395 if (locked) {
3396 err = f2fs_reserve_block(dn: &dn, index);
3397 goto out;
3398 }
3399
3400 /* hole case */
3401 err = f2fs_get_dnode_of_data(dn: &dn, index, mode: LOOKUP_NODE);
3402 if (!err && dn.data_blkaddr != NULL_ADDR)
3403 goto out;
3404 f2fs_put_dnode(dn: &dn);
3405 f2fs_map_lock(sbi, flag: F2FS_GET_BLOCK_PRE_AIO);
3406 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3407 locked = true;
3408 goto restart;
3409 }
3410out:
3411 if (!err) {
3412 /* convert_inline_page can make node_changed */
3413 *blk_addr = dn.data_blkaddr;
3414 *node_changed = dn.node_changed;
3415 }
3416 f2fs_put_dnode(dn: &dn);
3417unlock_out:
3418 if (locked)
3419 f2fs_map_unlock(sbi, flag);
3420 return err;
3421}
3422
3423static int __find_data_block(struct inode *inode, pgoff_t index,
3424 block_t *blk_addr)
3425{
3426 struct dnode_of_data dn;
3427 struct page *ipage;
3428 int err = 0;
3429
3430 ipage = f2fs_get_node_page(sbi: F2FS_I_SB(inode), nid: inode->i_ino);
3431 if (IS_ERR(ptr: ipage))
3432 return PTR_ERR(ptr: ipage);
3433
3434 set_new_dnode(dn: &dn, inode, ipage, npage: ipage, nid: 0);
3435
3436 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3437 blkaddr: &dn.data_blkaddr)) {
3438 /* hole case */
3439 err = f2fs_get_dnode_of_data(dn: &dn, index, mode: LOOKUP_NODE);
3440 if (err) {
3441 dn.data_blkaddr = NULL_ADDR;
3442 err = 0;
3443 }
3444 }
3445 *blk_addr = dn.data_blkaddr;
3446 f2fs_put_dnode(dn: &dn);
3447 return err;
3448}
3449
3450static int __reserve_data_block(struct inode *inode, pgoff_t index,
3451 block_t *blk_addr, bool *node_changed)
3452{
3453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3454 struct dnode_of_data dn;
3455 struct page *ipage;
3456 int err = 0;
3457
3458 f2fs_map_lock(sbi, flag: F2FS_GET_BLOCK_PRE_AIO);
3459
3460 ipage = f2fs_get_node_page(sbi, nid: inode->i_ino);
3461 if (IS_ERR(ptr: ipage)) {
3462 err = PTR_ERR(ptr: ipage);
3463 goto unlock_out;
3464 }
3465 set_new_dnode(dn: &dn, inode, ipage, npage: ipage, nid: 0);
3466
3467 if (!f2fs_lookup_read_extent_cache_block(inode: dn.inode, index,
3468 blkaddr: &dn.data_blkaddr))
3469 err = f2fs_reserve_block(dn: &dn, index);
3470
3471 *blk_addr = dn.data_blkaddr;
3472 *node_changed = dn.node_changed;
3473 f2fs_put_dnode(dn: &dn);
3474
3475unlock_out:
3476 f2fs_map_unlock(sbi, flag: F2FS_GET_BLOCK_PRE_AIO);
3477 return err;
3478}
3479
3480static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3481 struct page *page, loff_t pos, unsigned int len,
3482 block_t *blk_addr, bool *node_changed, bool *use_cow)
3483{
3484 struct inode *inode = page->mapping->host;
3485 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3486 pgoff_t index = page->index;
3487 int err = 0;
3488 block_t ori_blk_addr = NULL_ADDR;
3489
3490 /* If pos is beyond the end of file, reserve a new block in COW inode */
3491 if ((pos & PAGE_MASK) >= i_size_read(inode))
3492 goto reserve_block;
3493
3494 /* Look for the block in COW inode first */
3495 err = __find_data_block(inode: cow_inode, index, blk_addr);
3496 if (err) {
3497 return err;
3498 } else if (*blk_addr != NULL_ADDR) {
3499 *use_cow = true;
3500 return 0;
3501 }
3502
3503 if (is_inode_flag_set(inode, flag: FI_ATOMIC_REPLACE))
3504 goto reserve_block;
3505
3506 /* Look for the block in the original inode */
3507 err = __find_data_block(inode, index, blk_addr: &ori_blk_addr);
3508 if (err)
3509 return err;
3510
3511reserve_block:
3512 /* Finally, we should reserve a new block in COW inode for the update */
3513 err = __reserve_data_block(inode: cow_inode, index, blk_addr, node_changed);
3514 if (err)
3515 return err;
3516 inc_atomic_write_cnt(inode);
3517
3518 if (ori_blk_addr != NULL_ADDR)
3519 *blk_addr = ori_blk_addr;
3520 return 0;
3521}
3522
3523static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3524 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3525{
3526 struct inode *inode = mapping->host;
3527 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3528 struct page *page = NULL;
3529 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3530 bool need_balance = false;
3531 bool use_cow = false;
3532 block_t blkaddr = NULL_ADDR;
3533 int err = 0;
3534
3535 trace_f2fs_write_begin(inode, pos, len);
3536
3537 if (!f2fs_is_checkpoint_ready(sbi)) {
3538 err = -ENOSPC;
3539 goto fail;
3540 }
3541
3542 /*
3543 * We should check this at this moment to avoid deadlock on inode page
3544 * and #0 page. The locking rule for inline_data conversion should be:
3545 * lock_page(page #0) -> lock_page(inode_page)
3546 */
3547 if (index != 0) {
3548 err = f2fs_convert_inline_inode(inode);
3549 if (err)
3550 goto fail;
3551 }
3552
3553#ifdef CONFIG_F2FS_FS_COMPRESSION
3554 if (f2fs_compressed_file(inode)) {
3555 int ret;
3556
3557 *fsdata = NULL;
3558
3559 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3560 goto repeat;
3561
3562 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3563 index, fsdata);
3564 if (ret < 0) {
3565 err = ret;
3566 goto fail;
3567 } else if (ret) {
3568 return 0;
3569 }
3570 }
3571#endif
3572
3573repeat:
3574 /*
3575 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3576 * wait_for_stable_page. Will wait that below with our IO control.
3577 */
3578 page = f2fs_pagecache_get_page(mapping, index,
3579 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3580 if (!page) {
3581 err = -ENOMEM;
3582 goto fail;
3583 }
3584
3585 /* TODO: cluster can be compressed due to race with .writepage */
3586
3587 *pagep = page;
3588
3589 if (f2fs_is_atomic_file(inode))
3590 err = prepare_atomic_write_begin(sbi, page, pos, len,
3591 blk_addr: &blkaddr, node_changed: &need_balance, use_cow: &use_cow);
3592 else
3593 err = prepare_write_begin(sbi, page, pos, len,
3594 blk_addr: &blkaddr, node_changed: &need_balance);
3595 if (err)
3596 goto fail;
3597
3598 if (need_balance && !IS_NOQUOTA(inode) &&
3599 has_not_enough_free_secs(sbi, freed: 0, needed: 0)) {
3600 unlock_page(page);
3601 f2fs_balance_fs(sbi, need: true);
3602 lock_page(page);
3603 if (page->mapping != mapping) {
3604 /* The page got truncated from under us */
3605 f2fs_put_page(page, unlock: 1);
3606 goto repeat;
3607 }
3608 }
3609
3610 f2fs_wait_on_page_writeback(page, type: DATA, ordered: false, locked: true);
3611
3612 if (len == PAGE_SIZE || PageUptodate(page))
3613 return 0;
3614
3615 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3616 !f2fs_verity_in_progress(inode)) {
3617 zero_user_segment(page, start: len, PAGE_SIZE);
3618 return 0;
3619 }
3620
3621 if (blkaddr == NEW_ADDR) {
3622 zero_user_segment(page, start: 0, PAGE_SIZE);
3623 SetPageUptodate(page);
3624 } else {
3625 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3626 type: DATA_GENERIC_ENHANCE_READ)) {
3627 err = -EFSCORRUPTED;
3628 goto fail;
3629 }
3630 err = f2fs_submit_page_read(inode: use_cow ?
3631 F2FS_I(inode)->cow_inode : inode, page,
3632 blkaddr, op_flags: 0, for_write: true);
3633 if (err)
3634 goto fail;
3635
3636 lock_page(page);
3637 if (unlikely(page->mapping != mapping)) {
3638 f2fs_put_page(page, unlock: 1);
3639 goto repeat;
3640 }
3641 if (unlikely(!PageUptodate(page))) {
3642 err = -EIO;
3643 goto fail;
3644 }
3645 }
3646 return 0;
3647
3648fail:
3649 f2fs_put_page(page, unlock: 1);
3650 f2fs_write_failed(inode, to: pos + len);
3651 return err;
3652}
3653
3654static int f2fs_write_end(struct file *file,
3655 struct address_space *mapping,
3656 loff_t pos, unsigned len, unsigned copied,
3657 struct page *page, void *fsdata)
3658{
3659 struct inode *inode = page->mapping->host;
3660
3661 trace_f2fs_write_end(inode, pos, len, copied);
3662
3663 /*
3664 * This should be come from len == PAGE_SIZE, and we expect copied
3665 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3666 * let generic_perform_write() try to copy data again through copied=0.
3667 */
3668 if (!PageUptodate(page)) {
3669 if (unlikely(copied != len))
3670 copied = 0;
3671 else
3672 SetPageUptodate(page);
3673 }
3674
3675#ifdef CONFIG_F2FS_FS_COMPRESSION
3676 /* overwrite compressed file */
3677 if (f2fs_compressed_file(inode) && fsdata) {
3678 f2fs_compress_write_end(inode, fsdata, index: page->index, copied);
3679 f2fs_update_time(sbi: F2FS_I_SB(inode), type: REQ_TIME);
3680
3681 if (pos + copied > i_size_read(inode) &&
3682 !f2fs_verity_in_progress(inode))
3683 f2fs_i_size_write(inode, i_size: pos + copied);
3684 return copied;
3685 }
3686#endif
3687
3688 if (!copied)
3689 goto unlock_out;
3690
3691 set_page_dirty(page);
3692
3693 if (pos + copied > i_size_read(inode) &&
3694 !f2fs_verity_in_progress(inode)) {
3695 f2fs_i_size_write(inode, i_size: pos + copied);
3696 if (f2fs_is_atomic_file(inode))
3697 f2fs_i_size_write(inode: F2FS_I(inode)->cow_inode,
3698 i_size: pos + copied);
3699 }
3700unlock_out:
3701 f2fs_put_page(page, unlock: 1);
3702 f2fs_update_time(sbi: F2FS_I_SB(inode), type: REQ_TIME);
3703 return copied;
3704}
3705
3706void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3707{
3708 struct inode *inode = folio->mapping->host;
3709 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3710
3711 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3712 (offset || length != folio_size(folio)))
3713 return;
3714
3715 if (folio_test_dirty(folio)) {
3716 if (inode->i_ino == F2FS_META_INO(sbi)) {
3717 dec_page_count(sbi, count_type: F2FS_DIRTY_META);
3718 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3719 dec_page_count(sbi, count_type: F2FS_DIRTY_NODES);
3720 } else {
3721 inode_dec_dirty_pages(inode);
3722 f2fs_remove_dirty_inode(inode);
3723 }
3724 }
3725 clear_page_private_all(page: &folio->page);
3726}
3727
3728bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3729{
3730 /* If this is dirty folio, keep private data */
3731 if (folio_test_dirty(folio))
3732 return false;
3733
3734 clear_page_private_all(page: &folio->page);
3735 return true;
3736}
3737
3738static bool f2fs_dirty_data_folio(struct address_space *mapping,
3739 struct folio *folio)
3740{
3741 struct inode *inode = mapping->host;
3742
3743 trace_f2fs_set_page_dirty(page: &folio->page, type: DATA);
3744
3745 if (!folio_test_uptodate(folio))
3746 folio_mark_uptodate(folio);
3747 BUG_ON(folio_test_swapcache(folio));
3748
3749 if (filemap_dirty_folio(mapping, folio)) {
3750 f2fs_update_dirty_folio(inode, folio);
3751 return true;
3752 }
3753 return false;
3754}
3755
3756
3757static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3758{
3759#ifdef CONFIG_F2FS_FS_COMPRESSION
3760 struct dnode_of_data dn;
3761 sector_t start_idx, blknr = 0;
3762 int ret;
3763
3764 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3765
3766 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
3767 ret = f2fs_get_dnode_of_data(dn: &dn, index: start_idx, mode: LOOKUP_NODE);
3768 if (ret)
3769 return 0;
3770
3771 if (dn.data_blkaddr != COMPRESS_ADDR) {
3772 dn.ofs_in_node += block - start_idx;
3773 blknr = f2fs_data_blkaddr(dn: &dn);
3774 if (!__is_valid_data_blkaddr(blkaddr: blknr))
3775 blknr = 0;
3776 }
3777
3778 f2fs_put_dnode(dn: &dn);
3779 return blknr;
3780#else
3781 return 0;
3782#endif
3783}
3784
3785
3786static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3787{
3788 struct inode *inode = mapping->host;
3789 sector_t blknr = 0;
3790
3791 if (f2fs_has_inline_data(inode))
3792 goto out;
3793
3794 /* make sure allocating whole blocks */
3795 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3796 filemap_write_and_wait(mapping);
3797
3798 /* Block number less than F2FS MAX BLOCKS */
3799 if (unlikely(block >= max_file_blocks(inode)))
3800 goto out;
3801
3802 if (f2fs_compressed_file(inode)) {
3803 blknr = f2fs_bmap_compress(inode, block);
3804 } else {
3805 struct f2fs_map_blocks map;
3806
3807 memset(&map, 0, sizeof(map));
3808 map.m_lblk = block;
3809 map.m_len = 1;
3810 map.m_next_pgofs = NULL;
3811 map.m_seg_type = NO_CHECK_TYPE;
3812
3813 if (!f2fs_map_blocks(inode, map: &map, flag: F2FS_GET_BLOCK_BMAP))
3814 blknr = map.m_pblk;
3815 }
3816out:
3817 trace_f2fs_bmap(inode, lblock: block, pblock: blknr);
3818 return blknr;
3819}
3820
3821#ifdef CONFIG_SWAP
3822static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3823 unsigned int blkcnt)
3824{
3825 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3826 unsigned int blkofs;
3827 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3828 unsigned int end_blk = start_blk + blkcnt - 1;
3829 unsigned int secidx = start_blk / blk_per_sec;
3830 unsigned int end_sec;
3831 int ret = 0;
3832
3833 if (!blkcnt)
3834 return 0;
3835 end_sec = end_blk / blk_per_sec;
3836
3837 f2fs_down_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
3838 filemap_invalidate_lock(mapping: inode->i_mapping);
3839
3840 set_inode_flag(inode, flag: FI_ALIGNED_WRITE);
3841 set_inode_flag(inode, flag: FI_OPU_WRITE);
3842
3843 for (; secidx <= end_sec; secidx++) {
3844 unsigned int blkofs_end = secidx == end_sec ?
3845 end_blk % blk_per_sec : blk_per_sec - 1;
3846
3847 f2fs_down_write(sem: &sbi->pin_sem);
3848
3849 ret = f2fs_allocate_pinning_section(sbi);
3850 if (ret) {
3851 f2fs_up_write(sem: &sbi->pin_sem);
3852 break;
3853 }
3854
3855 set_inode_flag(inode, flag: FI_SKIP_WRITES);
3856
3857 for (blkofs = 0; blkofs <= blkofs_end; blkofs++) {
3858 struct page *page;
3859 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3860
3861 page = f2fs_get_lock_data_page(inode, index: blkidx, for_write: true);
3862 if (IS_ERR(ptr: page)) {
3863 f2fs_up_write(sem: &sbi->pin_sem);
3864 ret = PTR_ERR(ptr: page);
3865 goto done;
3866 }
3867
3868 set_page_dirty(page);
3869 f2fs_put_page(page, unlock: 1);
3870 }
3871
3872 clear_inode_flag(inode, flag: FI_SKIP_WRITES);
3873
3874 ret = filemap_fdatawrite(inode->i_mapping);
3875
3876 f2fs_up_write(sem: &sbi->pin_sem);
3877
3878 if (ret)
3879 break;
3880 }
3881
3882done:
3883 clear_inode_flag(inode, flag: FI_SKIP_WRITES);
3884 clear_inode_flag(inode, flag: FI_OPU_WRITE);
3885 clear_inode_flag(inode, flag: FI_ALIGNED_WRITE);
3886
3887 filemap_invalidate_unlock(mapping: inode->i_mapping);
3888 f2fs_up_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
3889
3890 return ret;
3891}
3892
3893static int check_swap_activate(struct swap_info_struct *sis,
3894 struct file *swap_file, sector_t *span)
3895{
3896 struct address_space *mapping = swap_file->f_mapping;
3897 struct inode *inode = mapping->host;
3898 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3899 sector_t cur_lblock;
3900 sector_t last_lblock;
3901 sector_t pblock;
3902 sector_t lowest_pblock = -1;
3903 sector_t highest_pblock = 0;
3904 int nr_extents = 0;
3905 unsigned long nr_pblocks;
3906 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3907 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3908 unsigned int not_aligned = 0;
3909 int ret = 0;
3910
3911 /*
3912 * Map all the blocks into the extent list. This code doesn't try
3913 * to be very smart.
3914 */
3915 cur_lblock = 0;
3916 last_lblock = bytes_to_blks(inode, bytes: i_size_read(inode));
3917
3918 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3919 struct f2fs_map_blocks map;
3920retry:
3921 cond_resched();
3922
3923 memset(&map, 0, sizeof(map));
3924 map.m_lblk = cur_lblock;
3925 map.m_len = last_lblock - cur_lblock;
3926 map.m_next_pgofs = NULL;
3927 map.m_next_extent = NULL;
3928 map.m_seg_type = NO_CHECK_TYPE;
3929 map.m_may_create = false;
3930
3931 ret = f2fs_map_blocks(inode, map: &map, flag: F2FS_GET_BLOCK_FIEMAP);
3932 if (ret)
3933 goto out;
3934
3935 /* hole */
3936 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3937 f2fs_err(sbi, "Swapfile has holes");
3938 ret = -EINVAL;
3939 goto out;
3940 }
3941
3942 pblock = map.m_pblk;
3943 nr_pblocks = map.m_len;
3944
3945 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3946 nr_pblocks & sec_blks_mask ||
3947 !f2fs_valid_pinned_area(sbi, blkaddr: pblock)) {
3948 bool last_extent = false;
3949
3950 not_aligned++;
3951
3952 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3953 if (cur_lblock + nr_pblocks > sis->max)
3954 nr_pblocks -= blks_per_sec;
3955
3956 /* this extent is last one */
3957 if (!nr_pblocks) {
3958 nr_pblocks = last_lblock - cur_lblock;
3959 last_extent = true;
3960 }
3961
3962 ret = f2fs_migrate_blocks(inode, start_blk: cur_lblock,
3963 blkcnt: nr_pblocks);
3964 if (ret) {
3965 if (ret == -ENOENT)
3966 ret = -EINVAL;
3967 goto out;
3968 }
3969
3970 if (!last_extent)
3971 goto retry;
3972 }
3973
3974 if (cur_lblock + nr_pblocks >= sis->max)
3975 nr_pblocks = sis->max - cur_lblock;
3976
3977 if (cur_lblock) { /* exclude the header page */
3978 if (pblock < lowest_pblock)
3979 lowest_pblock = pblock;
3980 if (pblock + nr_pblocks - 1 > highest_pblock)
3981 highest_pblock = pblock + nr_pblocks - 1;
3982 }
3983
3984 /*
3985 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3986 */
3987 ret = add_swap_extent(sis, start_page: cur_lblock, nr_pages: nr_pblocks, start_block: pblock);
3988 if (ret < 0)
3989 goto out;
3990 nr_extents += ret;
3991 cur_lblock += nr_pblocks;
3992 }
3993 ret = nr_extents;
3994 *span = 1 + highest_pblock - lowest_pblock;
3995 if (cur_lblock == 0)
3996 cur_lblock = 1; /* force Empty message */
3997 sis->max = cur_lblock;
3998 sis->pages = cur_lblock - 1;
3999 sis->highest_bit = cur_lblock - 1;
4000out:
4001 if (not_aligned)
4002 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%lu * N)",
4003 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4004 return ret;
4005}
4006
4007static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4008 sector_t *span)
4009{
4010 struct inode *inode = file_inode(f: file);
4011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4012 int ret;
4013
4014 if (!S_ISREG(inode->i_mode))
4015 return -EINVAL;
4016
4017 if (f2fs_readonly(sb: sbi->sb))
4018 return -EROFS;
4019
4020 if (f2fs_lfs_mode(sbi) && !f2fs_sb_has_blkzoned(sbi)) {
4021 f2fs_err(sbi, "Swapfile not supported in LFS mode");
4022 return -EINVAL;
4023 }
4024
4025 ret = f2fs_convert_inline_inode(inode);
4026 if (ret)
4027 return ret;
4028
4029 if (!f2fs_disable_compressed_file(inode))
4030 return -EINVAL;
4031
4032 ret = filemap_fdatawrite(inode->i_mapping);
4033 if (ret < 0)
4034 return ret;
4035
4036 f2fs_precache_extents(inode);
4037
4038 ret = check_swap_activate(sis, swap_file: file, span);
4039 if (ret < 0)
4040 return ret;
4041
4042 stat_inc_swapfile_inode(inode);
4043 set_inode_flag(inode, flag: FI_PIN_FILE);
4044 f2fs_update_time(sbi, type: REQ_TIME);
4045 return ret;
4046}
4047
4048static void f2fs_swap_deactivate(struct file *file)
4049{
4050 struct inode *inode = file_inode(f: file);
4051
4052 stat_dec_swapfile_inode(inode);
4053 clear_inode_flag(inode, flag: FI_PIN_FILE);
4054}
4055#else
4056static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4057 sector_t *span)
4058{
4059 return -EOPNOTSUPP;
4060}
4061
4062static void f2fs_swap_deactivate(struct file *file)
4063{
4064}
4065#endif
4066
4067const struct address_space_operations f2fs_dblock_aops = {
4068 .read_folio = f2fs_read_data_folio,
4069 .readahead = f2fs_readahead,
4070 .writepage = f2fs_write_data_page,
4071 .writepages = f2fs_write_data_pages,
4072 .write_begin = f2fs_write_begin,
4073 .write_end = f2fs_write_end,
4074 .dirty_folio = f2fs_dirty_data_folio,
4075 .migrate_folio = filemap_migrate_folio,
4076 .invalidate_folio = f2fs_invalidate_folio,
4077 .release_folio = f2fs_release_folio,
4078 .bmap = f2fs_bmap,
4079 .swap_activate = f2fs_swap_activate,
4080 .swap_deactivate = f2fs_swap_deactivate,
4081};
4082
4083void f2fs_clear_page_cache_dirty_tag(struct page *page)
4084{
4085 struct address_space *mapping = page_mapping(page);
4086 unsigned long flags;
4087
4088 xa_lock_irqsave(&mapping->i_pages, flags);
4089 __xa_clear_mark(&mapping->i_pages, index: page_index(page),
4090 PAGECACHE_TAG_DIRTY);
4091 xa_unlock_irqrestore(&mapping->i_pages, flags);
4092}
4093
4094int __init f2fs_init_post_read_processing(void)
4095{
4096 bio_post_read_ctx_cache =
4097 kmem_cache_create(name: "f2fs_bio_post_read_ctx",
4098 size: sizeof(struct bio_post_read_ctx), align: 0, flags: 0, NULL);
4099 if (!bio_post_read_ctx_cache)
4100 goto fail;
4101 bio_post_read_ctx_pool =
4102 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4103 kc: bio_post_read_ctx_cache);
4104 if (!bio_post_read_ctx_pool)
4105 goto fail_free_cache;
4106 return 0;
4107
4108fail_free_cache:
4109 kmem_cache_destroy(s: bio_post_read_ctx_cache);
4110fail:
4111 return -ENOMEM;
4112}
4113
4114void f2fs_destroy_post_read_processing(void)
4115{
4116 mempool_destroy(pool: bio_post_read_ctx_pool);
4117 kmem_cache_destroy(s: bio_post_read_ctx_cache);
4118}
4119
4120int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4121{
4122 if (!f2fs_sb_has_encrypt(sbi) &&
4123 !f2fs_sb_has_verity(sbi) &&
4124 !f2fs_sb_has_compression(sbi))
4125 return 0;
4126
4127 sbi->post_read_wq = alloc_workqueue(fmt: "f2fs_post_read_wq",
4128 flags: WQ_UNBOUND | WQ_HIGHPRI,
4129 max_active: num_online_cpus());
4130 return sbi->post_read_wq ? 0 : -ENOMEM;
4131}
4132
4133void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4134{
4135 if (sbi->post_read_wq)
4136 destroy_workqueue(wq: sbi->post_read_wq);
4137}
4138
4139int __init f2fs_init_bio_entry_cache(void)
4140{
4141 bio_entry_slab = f2fs_kmem_cache_create(name: "f2fs_bio_entry_slab",
4142 size: sizeof(struct bio_entry));
4143 return bio_entry_slab ? 0 : -ENOMEM;
4144}
4145
4146void f2fs_destroy_bio_entry_cache(void)
4147{
4148 kmem_cache_destroy(s: bio_entry_slab);
4149}
4150
4151static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4152 unsigned int flags, struct iomap *iomap,
4153 struct iomap *srcmap)
4154{
4155 struct f2fs_map_blocks map = {};
4156 pgoff_t next_pgofs = 0;
4157 int err;
4158
4159 map.m_lblk = bytes_to_blks(inode, bytes: offset);
4160 map.m_len = bytes_to_blks(inode, bytes: offset + length - 1) - map.m_lblk + 1;
4161 map.m_next_pgofs = &next_pgofs;
4162 map.m_seg_type = f2fs_rw_hint_to_seg_type(hint: inode->i_write_hint);
4163 if (flags & IOMAP_WRITE)
4164 map.m_may_create = true;
4165
4166 err = f2fs_map_blocks(inode, map: &map, flag: F2FS_GET_BLOCK_DIO);
4167 if (err)
4168 return err;
4169
4170 iomap->offset = blks_to_bytes(inode, blks: map.m_lblk);
4171
4172 /*
4173 * When inline encryption is enabled, sometimes I/O to an encrypted file
4174 * has to be broken up to guarantee DUN contiguity. Handle this by
4175 * limiting the length of the mapping returned.
4176 */
4177 map.m_len = fscrypt_limit_io_blocks(inode, lblk: map.m_lblk, nr_blocks: map.m_len);
4178
4179 /*
4180 * We should never see delalloc or compressed extents here based on
4181 * prior flushing and checks.
4182 */
4183 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4184 return -EINVAL;
4185 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4186 return -EINVAL;
4187
4188 if (map.m_pblk != NULL_ADDR) {
4189 iomap->length = blks_to_bytes(inode, blks: map.m_len);
4190 iomap->type = IOMAP_MAPPED;
4191 iomap->flags |= IOMAP_F_MERGED;
4192 iomap->bdev = map.m_bdev;
4193 iomap->addr = blks_to_bytes(inode, blks: map.m_pblk);
4194 } else {
4195 if (flags & IOMAP_WRITE)
4196 return -ENOTBLK;
4197 iomap->length = blks_to_bytes(inode, blks: next_pgofs) -
4198 iomap->offset;
4199 iomap->type = IOMAP_HOLE;
4200 iomap->addr = IOMAP_NULL_ADDR;
4201 }
4202
4203 if (map.m_flags & F2FS_MAP_NEW)
4204 iomap->flags |= IOMAP_F_NEW;
4205 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4206 offset + length > i_size_read(inode))
4207 iomap->flags |= IOMAP_F_DIRTY;
4208
4209 return 0;
4210}
4211
4212const struct iomap_ops f2fs_iomap_ops = {
4213 .iomap_begin = f2fs_iomap_begin,
4214};
4215

source code of linux/fs/f2fs/data.c