1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * Some corrections by tytso.
10 */
11
12/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18#include <linux/init.h>
19#include <linux/export.h>
20#include <linux/slab.h>
21#include <linux/wordpart.h>
22#include <linux/fs.h>
23#include <linux/filelock.h>
24#include <linux/namei.h>
25#include <linux/pagemap.h>
26#include <linux/sched/mm.h>
27#include <linux/fsnotify.h>
28#include <linux/personality.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
31#include <linux/mount.h>
32#include <linux/audit.h>
33#include <linux/capability.h>
34#include <linux/file.h>
35#include <linux/fcntl.h>
36#include <linux/device_cgroup.h>
37#include <linux/fs_struct.h>
38#include <linux/posix_acl.h>
39#include <linux/hash.h>
40#include <linux/bitops.h>
41#include <linux/init_task.h>
42#include <linux/uaccess.h>
43
44#include "internal.h"
45#include "mount.h"
46
47/* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112/*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118/* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128struct filename *
129getname_flags(const char __user *filename, int flags, int *empty)
130{
131 struct filename *result;
132 char *kname;
133 int len;
134
135 result = audit_reusename(name: filename);
136 if (result)
137 return result;
138
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(error: -ENOMEM);
142
143 /*
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
146 */
147 kname = (char *)result->iname;
148 result->name = kname;
149
150 len = strncpy_from_user(dst: kname, src: filename, EMBEDDED_NAME_MAX);
151 if (unlikely(len < 0)) {
152 __putname(result);
153 return ERR_PTR(error: len);
154 }
155
156 /*
157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 * separate struct filename so we can dedicate the entire
159 * names_cache allocation for the pathname, and re-do the copy from
160 * userland.
161 */
162 if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 const size_t size = offsetof(struct filename, iname[1]);
164 kname = (char *)result;
165
166 /*
167 * size is chosen that way we to guarantee that
168 * result->iname[0] is within the same object and that
169 * kname can't be equal to result->iname, no matter what.
170 */
171 result = kzalloc(size, GFP_KERNEL);
172 if (unlikely(!result)) {
173 __putname(kname);
174 return ERR_PTR(error: -ENOMEM);
175 }
176 result->name = kname;
177 len = strncpy_from_user(dst: kname, src: filename, PATH_MAX);
178 if (unlikely(len < 0)) {
179 __putname(kname);
180 kfree(objp: result);
181 return ERR_PTR(error: len);
182 }
183 if (unlikely(len == PATH_MAX)) {
184 __putname(kname);
185 kfree(objp: result);
186 return ERR_PTR(error: -ENAMETOOLONG);
187 }
188 }
189
190 atomic_set(v: &result->refcnt, i: 1);
191 /* The empty path is special. */
192 if (unlikely(!len)) {
193 if (empty)
194 *empty = 1;
195 if (!(flags & LOOKUP_EMPTY)) {
196 putname(name: result);
197 return ERR_PTR(error: -ENOENT);
198 }
199 }
200
201 result->uptr = filename;
202 result->aname = NULL;
203 audit_getname(name: result);
204 return result;
205}
206
207struct filename *
208getname_uflags(const char __user *filename, int uflags)
209{
210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211
212 return getname_flags(filename, flags, NULL);
213}
214
215struct filename *
216getname(const char __user * filename)
217{
218 return getname_flags(filename, flags: 0, NULL);
219}
220
221struct filename *
222getname_kernel(const char * filename)
223{
224 struct filename *result;
225 int len = strlen(filename) + 1;
226
227 result = __getname();
228 if (unlikely(!result))
229 return ERR_PTR(error: -ENOMEM);
230
231 if (len <= EMBEDDED_NAME_MAX) {
232 result->name = (char *)result->iname;
233 } else if (len <= PATH_MAX) {
234 const size_t size = offsetof(struct filename, iname[1]);
235 struct filename *tmp;
236
237 tmp = kmalloc(size, GFP_KERNEL);
238 if (unlikely(!tmp)) {
239 __putname(result);
240 return ERR_PTR(error: -ENOMEM);
241 }
242 tmp->name = (char *)result;
243 result = tmp;
244 } else {
245 __putname(result);
246 return ERR_PTR(error: -ENAMETOOLONG);
247 }
248 memcpy((char *)result->name, filename, len);
249 result->uptr = NULL;
250 result->aname = NULL;
251 atomic_set(v: &result->refcnt, i: 1);
252 audit_getname(name: result);
253
254 return result;
255}
256EXPORT_SYMBOL(getname_kernel);
257
258void putname(struct filename *name)
259{
260 if (IS_ERR(ptr: name))
261 return;
262
263 if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
264 return;
265
266 if (!atomic_dec_and_test(v: &name->refcnt))
267 return;
268
269 if (name->name != name->iname) {
270 __putname(name->name);
271 kfree(objp: name);
272 } else
273 __putname(name);
274}
275EXPORT_SYMBOL(putname);
276
277/**
278 * check_acl - perform ACL permission checking
279 * @idmap: idmap of the mount the inode was found from
280 * @inode: inode to check permissions on
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
282 *
283 * This function performs the ACL permission checking. Since this function
284 * retrieve POSIX acls it needs to know whether it is called from a blocking or
285 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
286 *
287 * If the inode has been found through an idmapped mount the idmap of
288 * the vfsmount must be passed through @idmap. This function will then take
289 * care to map the inode according to @idmap before checking permissions.
290 * On non-idmapped mounts or if permission checking is to be performed on the
291 * raw inode simply pass @nop_mnt_idmap.
292 */
293static int check_acl(struct mnt_idmap *idmap,
294 struct inode *inode, int mask)
295{
296#ifdef CONFIG_FS_POSIX_ACL
297 struct posix_acl *acl;
298
299 if (mask & MAY_NOT_BLOCK) {
300 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
301 if (!acl)
302 return -EAGAIN;
303 /* no ->get_inode_acl() calls in RCU mode... */
304 if (is_uncached_acl(acl))
305 return -ECHILD;
306 return posix_acl_permission(idmap, inode, acl, mask);
307 }
308
309 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
310 if (IS_ERR(ptr: acl))
311 return PTR_ERR(ptr: acl);
312 if (acl) {
313 int error = posix_acl_permission(idmap, inode, acl, mask);
314 posix_acl_release(acl);
315 return error;
316 }
317#endif
318
319 return -EAGAIN;
320}
321
322/**
323 * acl_permission_check - perform basic UNIX permission checking
324 * @idmap: idmap of the mount the inode was found from
325 * @inode: inode to check permissions on
326 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
327 *
328 * This function performs the basic UNIX permission checking. Since this
329 * function may retrieve POSIX acls it needs to know whether it is called from a
330 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
331 *
332 * If the inode has been found through an idmapped mount the idmap of
333 * the vfsmount must be passed through @idmap. This function will then take
334 * care to map the inode according to @idmap before checking permissions.
335 * On non-idmapped mounts or if permission checking is to be performed on the
336 * raw inode simply pass @nop_mnt_idmap.
337 */
338static int acl_permission_check(struct mnt_idmap *idmap,
339 struct inode *inode, int mask)
340{
341 unsigned int mode = inode->i_mode;
342 vfsuid_t vfsuid;
343
344 /* Are we the owner? If so, ACL's don't matter */
345 vfsuid = i_uid_into_vfsuid(idmap, inode);
346 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
347 mask &= 7;
348 mode >>= 6;
349 return (mask & ~mode) ? -EACCES : 0;
350 }
351
352 /* Do we have ACL's? */
353 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
354 int error = check_acl(idmap, inode, mask);
355 if (error != -EAGAIN)
356 return error;
357 }
358
359 /* Only RWX matters for group/other mode bits */
360 mask &= 7;
361
362 /*
363 * Are the group permissions different from
364 * the other permissions in the bits we care
365 * about? Need to check group ownership if so.
366 */
367 if (mask & (mode ^ (mode >> 3))) {
368 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
369 if (vfsgid_in_group_p(vfsgid))
370 mode >>= 3;
371 }
372
373 /* Bits in 'mode' clear that we require? */
374 return (mask & ~mode) ? -EACCES : 0;
375}
376
377/**
378 * generic_permission - check for access rights on a Posix-like filesystem
379 * @idmap: idmap of the mount the inode was found from
380 * @inode: inode to check access rights for
381 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
382 * %MAY_NOT_BLOCK ...)
383 *
384 * Used to check for read/write/execute permissions on a file.
385 * We use "fsuid" for this, letting us set arbitrary permissions
386 * for filesystem access without changing the "normal" uids which
387 * are used for other things.
388 *
389 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
390 * request cannot be satisfied (eg. requires blocking or too much complexity).
391 * It would then be called again in ref-walk mode.
392 *
393 * If the inode has been found through an idmapped mount the idmap of
394 * the vfsmount must be passed through @idmap. This function will then take
395 * care to map the inode according to @idmap before checking permissions.
396 * On non-idmapped mounts or if permission checking is to be performed on the
397 * raw inode simply pass @nop_mnt_idmap.
398 */
399int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
400 int mask)
401{
402 int ret;
403
404 /*
405 * Do the basic permission checks.
406 */
407 ret = acl_permission_check(idmap, inode, mask);
408 if (ret != -EACCES)
409 return ret;
410
411 if (S_ISDIR(inode->i_mode)) {
412 /* DACs are overridable for directories */
413 if (!(mask & MAY_WRITE))
414 if (capable_wrt_inode_uidgid(idmap, inode,
415 CAP_DAC_READ_SEARCH))
416 return 0;
417 if (capable_wrt_inode_uidgid(idmap, inode,
418 CAP_DAC_OVERRIDE))
419 return 0;
420 return -EACCES;
421 }
422
423 /*
424 * Searching includes executable on directories, else just read.
425 */
426 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
427 if (mask == MAY_READ)
428 if (capable_wrt_inode_uidgid(idmap, inode,
429 CAP_DAC_READ_SEARCH))
430 return 0;
431 /*
432 * Read/write DACs are always overridable.
433 * Executable DACs are overridable when there is
434 * at least one exec bit set.
435 */
436 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
437 if (capable_wrt_inode_uidgid(idmap, inode,
438 CAP_DAC_OVERRIDE))
439 return 0;
440
441 return -EACCES;
442}
443EXPORT_SYMBOL(generic_permission);
444
445/**
446 * do_inode_permission - UNIX permission checking
447 * @idmap: idmap of the mount the inode was found from
448 * @inode: inode to check permissions on
449 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
450 *
451 * We _really_ want to just do "generic_permission()" without
452 * even looking at the inode->i_op values. So we keep a cache
453 * flag in inode->i_opflags, that says "this has not special
454 * permission function, use the fast case".
455 */
456static inline int do_inode_permission(struct mnt_idmap *idmap,
457 struct inode *inode, int mask)
458{
459 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
460 if (likely(inode->i_op->permission))
461 return inode->i_op->permission(idmap, inode, mask);
462
463 /* This gets set once for the inode lifetime */
464 spin_lock(lock: &inode->i_lock);
465 inode->i_opflags |= IOP_FASTPERM;
466 spin_unlock(lock: &inode->i_lock);
467 }
468 return generic_permission(idmap, inode, mask);
469}
470
471/**
472 * sb_permission - Check superblock-level permissions
473 * @sb: Superblock of inode to check permission on
474 * @inode: Inode to check permission on
475 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
476 *
477 * Separate out file-system wide checks from inode-specific permission checks.
478 */
479static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
480{
481 if (unlikely(mask & MAY_WRITE)) {
482 umode_t mode = inode->i_mode;
483
484 /* Nobody gets write access to a read-only fs. */
485 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
486 return -EROFS;
487 }
488 return 0;
489}
490
491/**
492 * inode_permission - Check for access rights to a given inode
493 * @idmap: idmap of the mount the inode was found from
494 * @inode: Inode to check permission on
495 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
496 *
497 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
498 * this, letting us set arbitrary permissions for filesystem access without
499 * changing the "normal" UIDs which are used for other things.
500 *
501 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
502 */
503int inode_permission(struct mnt_idmap *idmap,
504 struct inode *inode, int mask)
505{
506 int retval;
507
508 retval = sb_permission(sb: inode->i_sb, inode, mask);
509 if (retval)
510 return retval;
511
512 if (unlikely(mask & MAY_WRITE)) {
513 /*
514 * Nobody gets write access to an immutable file.
515 */
516 if (IS_IMMUTABLE(inode))
517 return -EPERM;
518
519 /*
520 * Updating mtime will likely cause i_uid and i_gid to be
521 * written back improperly if their true value is unknown
522 * to the vfs.
523 */
524 if (HAS_UNMAPPED_ID(idmap, inode))
525 return -EACCES;
526 }
527
528 retval = do_inode_permission(idmap, inode, mask);
529 if (retval)
530 return retval;
531
532 retval = devcgroup_inode_permission(inode, mask);
533 if (retval)
534 return retval;
535
536 return security_inode_permission(inode, mask);
537}
538EXPORT_SYMBOL(inode_permission);
539
540/**
541 * path_get - get a reference to a path
542 * @path: path to get the reference to
543 *
544 * Given a path increment the reference count to the dentry and the vfsmount.
545 */
546void path_get(const struct path *path)
547{
548 mntget(mnt: path->mnt);
549 dget(dentry: path->dentry);
550}
551EXPORT_SYMBOL(path_get);
552
553/**
554 * path_put - put a reference to a path
555 * @path: path to put the reference to
556 *
557 * Given a path decrement the reference count to the dentry and the vfsmount.
558 */
559void path_put(const struct path *path)
560{
561 dput(path->dentry);
562 mntput(mnt: path->mnt);
563}
564EXPORT_SYMBOL(path_put);
565
566#define EMBEDDED_LEVELS 2
567struct nameidata {
568 struct path path;
569 struct qstr last;
570 struct path root;
571 struct inode *inode; /* path.dentry.d_inode */
572 unsigned int flags, state;
573 unsigned seq, next_seq, m_seq, r_seq;
574 int last_type;
575 unsigned depth;
576 int total_link_count;
577 struct saved {
578 struct path link;
579 struct delayed_call done;
580 const char *name;
581 unsigned seq;
582 } *stack, internal[EMBEDDED_LEVELS];
583 struct filename *name;
584 struct nameidata *saved;
585 unsigned root_seq;
586 int dfd;
587 vfsuid_t dir_vfsuid;
588 umode_t dir_mode;
589} __randomize_layout;
590
591#define ND_ROOT_PRESET 1
592#define ND_ROOT_GRABBED 2
593#define ND_JUMPED 4
594
595static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
596{
597 struct nameidata *old = current->nameidata;
598 p->stack = p->internal;
599 p->depth = 0;
600 p->dfd = dfd;
601 p->name = name;
602 p->path.mnt = NULL;
603 p->path.dentry = NULL;
604 p->total_link_count = old ? old->total_link_count : 0;
605 p->saved = old;
606 current->nameidata = p;
607}
608
609static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
610 const struct path *root)
611{
612 __set_nameidata(p, dfd, name);
613 p->state = 0;
614 if (unlikely(root)) {
615 p->state = ND_ROOT_PRESET;
616 p->root = *root;
617 }
618}
619
620static void restore_nameidata(void)
621{
622 struct nameidata *now = current->nameidata, *old = now->saved;
623
624 current->nameidata = old;
625 if (old)
626 old->total_link_count = now->total_link_count;
627 if (now->stack != now->internal)
628 kfree(objp: now->stack);
629}
630
631static bool nd_alloc_stack(struct nameidata *nd)
632{
633 struct saved *p;
634
635 p= kmalloc_array(MAXSYMLINKS, size: sizeof(struct saved),
636 flags: nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
637 if (unlikely(!p))
638 return false;
639 memcpy(p, nd->internal, sizeof(nd->internal));
640 nd->stack = p;
641 return true;
642}
643
644/**
645 * path_connected - Verify that a dentry is below mnt.mnt_root
646 * @mnt: The mountpoint to check.
647 * @dentry: The dentry to check.
648 *
649 * Rename can sometimes move a file or directory outside of a bind
650 * mount, path_connected allows those cases to be detected.
651 */
652static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
653{
654 struct super_block *sb = mnt->mnt_sb;
655
656 /* Bind mounts can have disconnected paths */
657 if (mnt->mnt_root == sb->s_root)
658 return true;
659
660 return is_subdir(dentry, mnt->mnt_root);
661}
662
663static void drop_links(struct nameidata *nd)
664{
665 int i = nd->depth;
666 while (i--) {
667 struct saved *last = nd->stack + i;
668 do_delayed_call(call: &last->done);
669 clear_delayed_call(call: &last->done);
670 }
671}
672
673static void leave_rcu(struct nameidata *nd)
674{
675 nd->flags &= ~LOOKUP_RCU;
676 nd->seq = nd->next_seq = 0;
677 rcu_read_unlock();
678}
679
680static void terminate_walk(struct nameidata *nd)
681{
682 drop_links(nd);
683 if (!(nd->flags & LOOKUP_RCU)) {
684 int i;
685 path_put(&nd->path);
686 for (i = 0; i < nd->depth; i++)
687 path_put(&nd->stack[i].link);
688 if (nd->state & ND_ROOT_GRABBED) {
689 path_put(&nd->root);
690 nd->state &= ~ND_ROOT_GRABBED;
691 }
692 } else {
693 leave_rcu(nd);
694 }
695 nd->depth = 0;
696 nd->path.mnt = NULL;
697 nd->path.dentry = NULL;
698}
699
700/* path_put is needed afterwards regardless of success or failure */
701static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
702{
703 int res = __legitimize_mnt(path->mnt, mseq);
704 if (unlikely(res)) {
705 if (res > 0)
706 path->mnt = NULL;
707 path->dentry = NULL;
708 return false;
709 }
710 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
711 path->dentry = NULL;
712 return false;
713 }
714 return !read_seqcount_retry(&path->dentry->d_seq, seq);
715}
716
717static inline bool legitimize_path(struct nameidata *nd,
718 struct path *path, unsigned seq)
719{
720 return __legitimize_path(path, seq, mseq: nd->m_seq);
721}
722
723static bool legitimize_links(struct nameidata *nd)
724{
725 int i;
726 if (unlikely(nd->flags & LOOKUP_CACHED)) {
727 drop_links(nd);
728 nd->depth = 0;
729 return false;
730 }
731 for (i = 0; i < nd->depth; i++) {
732 struct saved *last = nd->stack + i;
733 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
734 drop_links(nd);
735 nd->depth = i + 1;
736 return false;
737 }
738 }
739 return true;
740}
741
742static bool legitimize_root(struct nameidata *nd)
743{
744 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
745 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
746 return true;
747 nd->state |= ND_ROOT_GRABBED;
748 return legitimize_path(nd, path: &nd->root, seq: nd->root_seq);
749}
750
751/*
752 * Path walking has 2 modes, rcu-walk and ref-walk (see
753 * Documentation/filesystems/path-lookup.txt). In situations when we can't
754 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
755 * normal reference counts on dentries and vfsmounts to transition to ref-walk
756 * mode. Refcounts are grabbed at the last known good point before rcu-walk
757 * got stuck, so ref-walk may continue from there. If this is not successful
758 * (eg. a seqcount has changed), then failure is returned and it's up to caller
759 * to restart the path walk from the beginning in ref-walk mode.
760 */
761
762/**
763 * try_to_unlazy - try to switch to ref-walk mode.
764 * @nd: nameidata pathwalk data
765 * Returns: true on success, false on failure
766 *
767 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
768 * for ref-walk mode.
769 * Must be called from rcu-walk context.
770 * Nothing should touch nameidata between try_to_unlazy() failure and
771 * terminate_walk().
772 */
773static bool try_to_unlazy(struct nameidata *nd)
774{
775 struct dentry *parent = nd->path.dentry;
776
777 BUG_ON(!(nd->flags & LOOKUP_RCU));
778
779 if (unlikely(!legitimize_links(nd)))
780 goto out1;
781 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
782 goto out;
783 if (unlikely(!legitimize_root(nd)))
784 goto out;
785 leave_rcu(nd);
786 BUG_ON(nd->inode != parent->d_inode);
787 return true;
788
789out1:
790 nd->path.mnt = NULL;
791 nd->path.dentry = NULL;
792out:
793 leave_rcu(nd);
794 return false;
795}
796
797/**
798 * try_to_unlazy_next - try to switch to ref-walk mode.
799 * @nd: nameidata pathwalk data
800 * @dentry: next dentry to step into
801 * Returns: true on success, false on failure
802 *
803 * Similar to try_to_unlazy(), but here we have the next dentry already
804 * picked by rcu-walk and want to legitimize that in addition to the current
805 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
806 * Nothing should touch nameidata between try_to_unlazy_next() failure and
807 * terminate_walk().
808 */
809static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
810{
811 int res;
812 BUG_ON(!(nd->flags & LOOKUP_RCU));
813
814 if (unlikely(!legitimize_links(nd)))
815 goto out2;
816 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
817 if (unlikely(res)) {
818 if (res > 0)
819 goto out2;
820 goto out1;
821 }
822 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
823 goto out1;
824
825 /*
826 * We need to move both the parent and the dentry from the RCU domain
827 * to be properly refcounted. And the sequence number in the dentry
828 * validates *both* dentry counters, since we checked the sequence
829 * number of the parent after we got the child sequence number. So we
830 * know the parent must still be valid if the child sequence number is
831 */
832 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
833 goto out;
834 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
835 goto out_dput;
836 /*
837 * Sequence counts matched. Now make sure that the root is
838 * still valid and get it if required.
839 */
840 if (unlikely(!legitimize_root(nd)))
841 goto out_dput;
842 leave_rcu(nd);
843 return true;
844
845out2:
846 nd->path.mnt = NULL;
847out1:
848 nd->path.dentry = NULL;
849out:
850 leave_rcu(nd);
851 return false;
852out_dput:
853 leave_rcu(nd);
854 dput(dentry);
855 return false;
856}
857
858static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
859{
860 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
861 return dentry->d_op->d_revalidate(dentry, flags);
862 else
863 return 1;
864}
865
866/**
867 * complete_walk - successful completion of path walk
868 * @nd: pointer nameidata
869 *
870 * If we had been in RCU mode, drop out of it and legitimize nd->path.
871 * Revalidate the final result, unless we'd already done that during
872 * the path walk or the filesystem doesn't ask for it. Return 0 on
873 * success, -error on failure. In case of failure caller does not
874 * need to drop nd->path.
875 */
876static int complete_walk(struct nameidata *nd)
877{
878 struct dentry *dentry = nd->path.dentry;
879 int status;
880
881 if (nd->flags & LOOKUP_RCU) {
882 /*
883 * We don't want to zero nd->root for scoped-lookups or
884 * externally-managed nd->root.
885 */
886 if (!(nd->state & ND_ROOT_PRESET))
887 if (!(nd->flags & LOOKUP_IS_SCOPED))
888 nd->root.mnt = NULL;
889 nd->flags &= ~LOOKUP_CACHED;
890 if (!try_to_unlazy(nd))
891 return -ECHILD;
892 }
893
894 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
895 /*
896 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
897 * ever step outside the root during lookup" and should already
898 * be guaranteed by the rest of namei, we want to avoid a namei
899 * BUG resulting in userspace being given a path that was not
900 * scoped within the root at some point during the lookup.
901 *
902 * So, do a final sanity-check to make sure that in the
903 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
904 * we won't silently return an fd completely outside of the
905 * requested root to userspace.
906 *
907 * Userspace could move the path outside the root after this
908 * check, but as discussed elsewhere this is not a concern (the
909 * resolved file was inside the root at some point).
910 */
911 if (!path_is_under(&nd->path, &nd->root))
912 return -EXDEV;
913 }
914
915 if (likely(!(nd->state & ND_JUMPED)))
916 return 0;
917
918 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
919 return 0;
920
921 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
922 if (status > 0)
923 return 0;
924
925 if (!status)
926 status = -ESTALE;
927
928 return status;
929}
930
931static int set_root(struct nameidata *nd)
932{
933 struct fs_struct *fs = current->fs;
934
935 /*
936 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
937 * still have to ensure it doesn't happen because it will cause a breakout
938 * from the dirfd.
939 */
940 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
941 return -ENOTRECOVERABLE;
942
943 if (nd->flags & LOOKUP_RCU) {
944 unsigned seq;
945
946 do {
947 seq = read_seqcount_begin(&fs->seq);
948 nd->root = fs->root;
949 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
950 } while (read_seqcount_retry(&fs->seq, seq));
951 } else {
952 get_fs_root(fs, root: &nd->root);
953 nd->state |= ND_ROOT_GRABBED;
954 }
955 return 0;
956}
957
958static int nd_jump_root(struct nameidata *nd)
959{
960 if (unlikely(nd->flags & LOOKUP_BENEATH))
961 return -EXDEV;
962 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
963 /* Absolute path arguments to path_init() are allowed. */
964 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
965 return -EXDEV;
966 }
967 if (!nd->root.mnt) {
968 int error = set_root(nd);
969 if (error)
970 return error;
971 }
972 if (nd->flags & LOOKUP_RCU) {
973 struct dentry *d;
974 nd->path = nd->root;
975 d = nd->path.dentry;
976 nd->inode = d->d_inode;
977 nd->seq = nd->root_seq;
978 if (read_seqcount_retry(&d->d_seq, nd->seq))
979 return -ECHILD;
980 } else {
981 path_put(&nd->path);
982 nd->path = nd->root;
983 path_get(&nd->path);
984 nd->inode = nd->path.dentry->d_inode;
985 }
986 nd->state |= ND_JUMPED;
987 return 0;
988}
989
990/*
991 * Helper to directly jump to a known parsed path from ->get_link,
992 * caller must have taken a reference to path beforehand.
993 */
994int nd_jump_link(const struct path *path)
995{
996 int error = -ELOOP;
997 struct nameidata *nd = current->nameidata;
998
999 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1000 goto err;
1001
1002 error = -EXDEV;
1003 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1004 if (nd->path.mnt != path->mnt)
1005 goto err;
1006 }
1007 /* Not currently safe for scoped-lookups. */
1008 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1009 goto err;
1010
1011 path_put(&nd->path);
1012 nd->path = *path;
1013 nd->inode = nd->path.dentry->d_inode;
1014 nd->state |= ND_JUMPED;
1015 return 0;
1016
1017err:
1018 path_put(path);
1019 return error;
1020}
1021
1022static inline void put_link(struct nameidata *nd)
1023{
1024 struct saved *last = nd->stack + --nd->depth;
1025 do_delayed_call(call: &last->done);
1026 if (!(nd->flags & LOOKUP_RCU))
1027 path_put(&last->link);
1028}
1029
1030static int sysctl_protected_symlinks __read_mostly;
1031static int sysctl_protected_hardlinks __read_mostly;
1032static int sysctl_protected_fifos __read_mostly;
1033static int sysctl_protected_regular __read_mostly;
1034
1035#ifdef CONFIG_SYSCTL
1036static struct ctl_table namei_sysctls[] = {
1037 {
1038 .procname = "protected_symlinks",
1039 .data = &sysctl_protected_symlinks,
1040 .maxlen = sizeof(int),
1041 .mode = 0644,
1042 .proc_handler = proc_dointvec_minmax,
1043 .extra1 = SYSCTL_ZERO,
1044 .extra2 = SYSCTL_ONE,
1045 },
1046 {
1047 .procname = "protected_hardlinks",
1048 .data = &sysctl_protected_hardlinks,
1049 .maxlen = sizeof(int),
1050 .mode = 0644,
1051 .proc_handler = proc_dointvec_minmax,
1052 .extra1 = SYSCTL_ZERO,
1053 .extra2 = SYSCTL_ONE,
1054 },
1055 {
1056 .procname = "protected_fifos",
1057 .data = &sysctl_protected_fifos,
1058 .maxlen = sizeof(int),
1059 .mode = 0644,
1060 .proc_handler = proc_dointvec_minmax,
1061 .extra1 = SYSCTL_ZERO,
1062 .extra2 = SYSCTL_TWO,
1063 },
1064 {
1065 .procname = "protected_regular",
1066 .data = &sysctl_protected_regular,
1067 .maxlen = sizeof(int),
1068 .mode = 0644,
1069 .proc_handler = proc_dointvec_minmax,
1070 .extra1 = SYSCTL_ZERO,
1071 .extra2 = SYSCTL_TWO,
1072 },
1073};
1074
1075static int __init init_fs_namei_sysctls(void)
1076{
1077 register_sysctl_init("fs", namei_sysctls);
1078 return 0;
1079}
1080fs_initcall(init_fs_namei_sysctls);
1081
1082#endif /* CONFIG_SYSCTL */
1083
1084/**
1085 * may_follow_link - Check symlink following for unsafe situations
1086 * @nd: nameidata pathwalk data
1087 * @inode: Used for idmapping.
1088 *
1089 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1090 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1091 * in a sticky world-writable directory. This is to protect privileged
1092 * processes from failing races against path names that may change out
1093 * from under them by way of other users creating malicious symlinks.
1094 * It will permit symlinks to be followed only when outside a sticky
1095 * world-writable directory, or when the uid of the symlink and follower
1096 * match, or when the directory owner matches the symlink's owner.
1097 *
1098 * Returns 0 if following the symlink is allowed, -ve on error.
1099 */
1100static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1101{
1102 struct mnt_idmap *idmap;
1103 vfsuid_t vfsuid;
1104
1105 if (!sysctl_protected_symlinks)
1106 return 0;
1107
1108 idmap = mnt_idmap(mnt: nd->path.mnt);
1109 vfsuid = i_uid_into_vfsuid(idmap, inode);
1110 /* Allowed if owner and follower match. */
1111 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1112 return 0;
1113
1114 /* Allowed if parent directory not sticky and world-writable. */
1115 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1116 return 0;
1117
1118 /* Allowed if parent directory and link owner match. */
1119 if (vfsuid_valid(uid: nd->dir_vfsuid) && vfsuid_eq(left: nd->dir_vfsuid, right: vfsuid))
1120 return 0;
1121
1122 if (nd->flags & LOOKUP_RCU)
1123 return -ECHILD;
1124
1125 audit_inode(name: nd->name, dentry: nd->stack[0].link.dentry, aflags: 0);
1126 audit_log_path_denied(AUDIT_ANOM_LINK, operation: "follow_link");
1127 return -EACCES;
1128}
1129
1130/**
1131 * safe_hardlink_source - Check for safe hardlink conditions
1132 * @idmap: idmap of the mount the inode was found from
1133 * @inode: the source inode to hardlink from
1134 *
1135 * Return false if at least one of the following conditions:
1136 * - inode is not a regular file
1137 * - inode is setuid
1138 * - inode is setgid and group-exec
1139 * - access failure for read and write
1140 *
1141 * Otherwise returns true.
1142 */
1143static bool safe_hardlink_source(struct mnt_idmap *idmap,
1144 struct inode *inode)
1145{
1146 umode_t mode = inode->i_mode;
1147
1148 /* Special files should not get pinned to the filesystem. */
1149 if (!S_ISREG(mode))
1150 return false;
1151
1152 /* Setuid files should not get pinned to the filesystem. */
1153 if (mode & S_ISUID)
1154 return false;
1155
1156 /* Executable setgid files should not get pinned to the filesystem. */
1157 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1158 return false;
1159
1160 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1161 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1162 return false;
1163
1164 return true;
1165}
1166
1167/**
1168 * may_linkat - Check permissions for creating a hardlink
1169 * @idmap: idmap of the mount the inode was found from
1170 * @link: the source to hardlink from
1171 *
1172 * Block hardlink when all of:
1173 * - sysctl_protected_hardlinks enabled
1174 * - fsuid does not match inode
1175 * - hardlink source is unsafe (see safe_hardlink_source() above)
1176 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1177 *
1178 * If the inode has been found through an idmapped mount the idmap of
1179 * the vfsmount must be passed through @idmap. This function will then take
1180 * care to map the inode according to @idmap before checking permissions.
1181 * On non-idmapped mounts or if permission checking is to be performed on the
1182 * raw inode simply pass @nop_mnt_idmap.
1183 *
1184 * Returns 0 if successful, -ve on error.
1185 */
1186int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1187{
1188 struct inode *inode = link->dentry->d_inode;
1189
1190 /* Inode writeback is not safe when the uid or gid are invalid. */
1191 if (!vfsuid_valid(uid: i_uid_into_vfsuid(idmap, inode)) ||
1192 !vfsgid_valid(gid: i_gid_into_vfsgid(idmap, inode)))
1193 return -EOVERFLOW;
1194
1195 if (!sysctl_protected_hardlinks)
1196 return 0;
1197
1198 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1199 * otherwise, it must be a safe source.
1200 */
1201 if (safe_hardlink_source(idmap, inode) ||
1202 inode_owner_or_capable(idmap, inode))
1203 return 0;
1204
1205 audit_log_path_denied(AUDIT_ANOM_LINK, operation: "linkat");
1206 return -EPERM;
1207}
1208
1209/**
1210 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1211 * should be allowed, or not, on files that already
1212 * exist.
1213 * @idmap: idmap of the mount the inode was found from
1214 * @nd: nameidata pathwalk data
1215 * @inode: the inode of the file to open
1216 *
1217 * Block an O_CREAT open of a FIFO (or a regular file) when:
1218 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1219 * - the file already exists
1220 * - we are in a sticky directory
1221 * - we don't own the file
1222 * - the owner of the directory doesn't own the file
1223 * - the directory is world writable
1224 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1225 * the directory doesn't have to be world writable: being group writable will
1226 * be enough.
1227 *
1228 * If the inode has been found through an idmapped mount the idmap of
1229 * the vfsmount must be passed through @idmap. This function will then take
1230 * care to map the inode according to @idmap before checking permissions.
1231 * On non-idmapped mounts or if permission checking is to be performed on the
1232 * raw inode simply pass @nop_mnt_idmap.
1233 *
1234 * Returns 0 if the open is allowed, -ve on error.
1235 */
1236static int may_create_in_sticky(struct mnt_idmap *idmap,
1237 struct nameidata *nd, struct inode *const inode)
1238{
1239 umode_t dir_mode = nd->dir_mode;
1240 vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1241
1242 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1243 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1244 likely(!(dir_mode & S_ISVTX)) ||
1245 vfsuid_eq(left: i_uid_into_vfsuid(idmap, inode), right: dir_vfsuid) ||
1246 vfsuid_eq_kuid(vfsuid: i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1247 return 0;
1248
1249 if (likely(dir_mode & 0002) ||
1250 (dir_mode & 0020 &&
1251 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1252 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1253 const char *operation = S_ISFIFO(inode->i_mode) ?
1254 "sticky_create_fifo" :
1255 "sticky_create_regular";
1256 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1257 return -EACCES;
1258 }
1259 return 0;
1260}
1261
1262/*
1263 * follow_up - Find the mountpoint of path's vfsmount
1264 *
1265 * Given a path, find the mountpoint of its source file system.
1266 * Replace @path with the path of the mountpoint in the parent mount.
1267 * Up is towards /.
1268 *
1269 * Return 1 if we went up a level and 0 if we were already at the
1270 * root.
1271 */
1272int follow_up(struct path *path)
1273{
1274 struct mount *mnt = real_mount(mnt: path->mnt);
1275 struct mount *parent;
1276 struct dentry *mountpoint;
1277
1278 read_seqlock_excl(sl: &mount_lock);
1279 parent = mnt->mnt_parent;
1280 if (parent == mnt) {
1281 read_sequnlock_excl(sl: &mount_lock);
1282 return 0;
1283 }
1284 mntget(mnt: &parent->mnt);
1285 mountpoint = dget(dentry: mnt->mnt_mountpoint);
1286 read_sequnlock_excl(sl: &mount_lock);
1287 dput(path->dentry);
1288 path->dentry = mountpoint;
1289 mntput(mnt: path->mnt);
1290 path->mnt = &parent->mnt;
1291 return 1;
1292}
1293EXPORT_SYMBOL(follow_up);
1294
1295static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1296 struct path *path, unsigned *seqp)
1297{
1298 while (mnt_has_parent(mnt: m)) {
1299 struct dentry *mountpoint = m->mnt_mountpoint;
1300
1301 m = m->mnt_parent;
1302 if (unlikely(root->dentry == mountpoint &&
1303 root->mnt == &m->mnt))
1304 break;
1305 if (mountpoint != m->mnt.mnt_root) {
1306 path->mnt = &m->mnt;
1307 path->dentry = mountpoint;
1308 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1309 return true;
1310 }
1311 }
1312 return false;
1313}
1314
1315static bool choose_mountpoint(struct mount *m, const struct path *root,
1316 struct path *path)
1317{
1318 bool found;
1319
1320 rcu_read_lock();
1321 while (1) {
1322 unsigned seq, mseq = read_seqbegin(sl: &mount_lock);
1323
1324 found = choose_mountpoint_rcu(m, root, path, seqp: &seq);
1325 if (unlikely(!found)) {
1326 if (!read_seqretry(sl: &mount_lock, start: mseq))
1327 break;
1328 } else {
1329 if (likely(__legitimize_path(path, seq, mseq)))
1330 break;
1331 rcu_read_unlock();
1332 path_put(path);
1333 rcu_read_lock();
1334 }
1335 }
1336 rcu_read_unlock();
1337 return found;
1338}
1339
1340/*
1341 * Perform an automount
1342 * - return -EISDIR to tell follow_managed() to stop and return the path we
1343 * were called with.
1344 */
1345static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1346{
1347 struct dentry *dentry = path->dentry;
1348
1349 /* We don't want to mount if someone's just doing a stat -
1350 * unless they're stat'ing a directory and appended a '/' to
1351 * the name.
1352 *
1353 * We do, however, want to mount if someone wants to open or
1354 * create a file of any type under the mountpoint, wants to
1355 * traverse through the mountpoint or wants to open the
1356 * mounted directory. Also, autofs may mark negative dentries
1357 * as being automount points. These will need the attentions
1358 * of the daemon to instantiate them before they can be used.
1359 */
1360 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1361 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1362 dentry->d_inode)
1363 return -EISDIR;
1364
1365 if (count && (*count)++ >= MAXSYMLINKS)
1366 return -ELOOP;
1367
1368 return finish_automount(dentry->d_op->d_automount(path), path);
1369}
1370
1371/*
1372 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1373 * dentries are pinned but not locked here, so negative dentry can go
1374 * positive right under us. Use of smp_load_acquire() provides a barrier
1375 * sufficient for ->d_inode and ->d_flags consistency.
1376 */
1377static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1378 int *count, unsigned lookup_flags)
1379{
1380 struct vfsmount *mnt = path->mnt;
1381 bool need_mntput = false;
1382 int ret = 0;
1383
1384 while (flags & DCACHE_MANAGED_DENTRY) {
1385 /* Allow the filesystem to manage the transit without i_mutex
1386 * being held. */
1387 if (flags & DCACHE_MANAGE_TRANSIT) {
1388 ret = path->dentry->d_op->d_manage(path, false);
1389 flags = smp_load_acquire(&path->dentry->d_flags);
1390 if (ret < 0)
1391 break;
1392 }
1393
1394 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1395 struct vfsmount *mounted = lookup_mnt(path);
1396 if (mounted) { // ... in our namespace
1397 dput(path->dentry);
1398 if (need_mntput)
1399 mntput(mnt: path->mnt);
1400 path->mnt = mounted;
1401 path->dentry = dget(dentry: mounted->mnt_root);
1402 // here we know it's positive
1403 flags = path->dentry->d_flags;
1404 need_mntput = true;
1405 continue;
1406 }
1407 }
1408
1409 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1410 break;
1411
1412 // uncovered automount point
1413 ret = follow_automount(path, count, lookup_flags);
1414 flags = smp_load_acquire(&path->dentry->d_flags);
1415 if (ret < 0)
1416 break;
1417 }
1418
1419 if (ret == -EISDIR)
1420 ret = 0;
1421 // possible if you race with several mount --move
1422 if (need_mntput && path->mnt == mnt)
1423 mntput(mnt: path->mnt);
1424 if (!ret && unlikely(d_flags_negative(flags)))
1425 ret = -ENOENT;
1426 *jumped = need_mntput;
1427 return ret;
1428}
1429
1430static inline int traverse_mounts(struct path *path, bool *jumped,
1431 int *count, unsigned lookup_flags)
1432{
1433 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1434
1435 /* fastpath */
1436 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1437 *jumped = false;
1438 if (unlikely(d_flags_negative(flags)))
1439 return -ENOENT;
1440 return 0;
1441 }
1442 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1443}
1444
1445int follow_down_one(struct path *path)
1446{
1447 struct vfsmount *mounted;
1448
1449 mounted = lookup_mnt(path);
1450 if (mounted) {
1451 dput(path->dentry);
1452 mntput(mnt: path->mnt);
1453 path->mnt = mounted;
1454 path->dentry = dget(dentry: mounted->mnt_root);
1455 return 1;
1456 }
1457 return 0;
1458}
1459EXPORT_SYMBOL(follow_down_one);
1460
1461/*
1462 * Follow down to the covering mount currently visible to userspace. At each
1463 * point, the filesystem owning that dentry may be queried as to whether the
1464 * caller is permitted to proceed or not.
1465 */
1466int follow_down(struct path *path, unsigned int flags)
1467{
1468 struct vfsmount *mnt = path->mnt;
1469 bool jumped;
1470 int ret = traverse_mounts(path, jumped: &jumped, NULL, lookup_flags: flags);
1471
1472 if (path->mnt != mnt)
1473 mntput(mnt);
1474 return ret;
1475}
1476EXPORT_SYMBOL(follow_down);
1477
1478/*
1479 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1480 * we meet a managed dentry that would need blocking.
1481 */
1482static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1483{
1484 struct dentry *dentry = path->dentry;
1485 unsigned int flags = dentry->d_flags;
1486
1487 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1488 return true;
1489
1490 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1491 return false;
1492
1493 for (;;) {
1494 /*
1495 * Don't forget we might have a non-mountpoint managed dentry
1496 * that wants to block transit.
1497 */
1498 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1499 int res = dentry->d_op->d_manage(path, true);
1500 if (res)
1501 return res == -EISDIR;
1502 flags = dentry->d_flags;
1503 }
1504
1505 if (flags & DCACHE_MOUNTED) {
1506 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1507 if (mounted) {
1508 path->mnt = &mounted->mnt;
1509 dentry = path->dentry = mounted->mnt.mnt_root;
1510 nd->state |= ND_JUMPED;
1511 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1512 flags = dentry->d_flags;
1513 // makes sure that non-RCU pathwalk could reach
1514 // this state.
1515 if (read_seqretry(sl: &mount_lock, start: nd->m_seq))
1516 return false;
1517 continue;
1518 }
1519 if (read_seqretry(sl: &mount_lock, start: nd->m_seq))
1520 return false;
1521 }
1522 return !(flags & DCACHE_NEED_AUTOMOUNT);
1523 }
1524}
1525
1526static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1527 struct path *path)
1528{
1529 bool jumped;
1530 int ret;
1531
1532 path->mnt = nd->path.mnt;
1533 path->dentry = dentry;
1534 if (nd->flags & LOOKUP_RCU) {
1535 unsigned int seq = nd->next_seq;
1536 if (likely(__follow_mount_rcu(nd, path)))
1537 return 0;
1538 // *path and nd->next_seq might've been clobbered
1539 path->mnt = nd->path.mnt;
1540 path->dentry = dentry;
1541 nd->next_seq = seq;
1542 if (!try_to_unlazy_next(nd, dentry))
1543 return -ECHILD;
1544 }
1545 ret = traverse_mounts(path, jumped: &jumped, count: &nd->total_link_count, lookup_flags: nd->flags);
1546 if (jumped) {
1547 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1548 ret = -EXDEV;
1549 else
1550 nd->state |= ND_JUMPED;
1551 }
1552 if (unlikely(ret)) {
1553 dput(path->dentry);
1554 if (path->mnt != nd->path.mnt)
1555 mntput(mnt: path->mnt);
1556 }
1557 return ret;
1558}
1559
1560/*
1561 * This looks up the name in dcache and possibly revalidates the found dentry.
1562 * NULL is returned if the dentry does not exist in the cache.
1563 */
1564static struct dentry *lookup_dcache(const struct qstr *name,
1565 struct dentry *dir,
1566 unsigned int flags)
1567{
1568 struct dentry *dentry = d_lookup(dir, name);
1569 if (dentry) {
1570 int error = d_revalidate(dentry, flags);
1571 if (unlikely(error <= 0)) {
1572 if (!error)
1573 d_invalidate(dentry);
1574 dput(dentry);
1575 return ERR_PTR(error);
1576 }
1577 }
1578 return dentry;
1579}
1580
1581/*
1582 * Parent directory has inode locked exclusive. This is one
1583 * and only case when ->lookup() gets called on non in-lookup
1584 * dentries - as the matter of fact, this only gets called
1585 * when directory is guaranteed to have no in-lookup children
1586 * at all.
1587 */
1588struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1589 struct dentry *base,
1590 unsigned int flags)
1591{
1592 struct dentry *dentry = lookup_dcache(name, dir: base, flags);
1593 struct dentry *old;
1594 struct inode *dir = base->d_inode;
1595
1596 if (dentry)
1597 return dentry;
1598
1599 /* Don't create child dentry for a dead directory. */
1600 if (unlikely(IS_DEADDIR(dir)))
1601 return ERR_PTR(error: -ENOENT);
1602
1603 dentry = d_alloc(base, name);
1604 if (unlikely(!dentry))
1605 return ERR_PTR(error: -ENOMEM);
1606
1607 old = dir->i_op->lookup(dir, dentry, flags);
1608 if (unlikely(old)) {
1609 dput(dentry);
1610 dentry = old;
1611 }
1612 return dentry;
1613}
1614EXPORT_SYMBOL(lookup_one_qstr_excl);
1615
1616static struct dentry *lookup_fast(struct nameidata *nd)
1617{
1618 struct dentry *dentry, *parent = nd->path.dentry;
1619 int status = 1;
1620
1621 /*
1622 * Rename seqlock is not required here because in the off chance
1623 * of a false negative due to a concurrent rename, the caller is
1624 * going to fall back to non-racy lookup.
1625 */
1626 if (nd->flags & LOOKUP_RCU) {
1627 dentry = __d_lookup_rcu(parent, name: &nd->last, seq: &nd->next_seq);
1628 if (unlikely(!dentry)) {
1629 if (!try_to_unlazy(nd))
1630 return ERR_PTR(error: -ECHILD);
1631 return NULL;
1632 }
1633
1634 /*
1635 * This sequence count validates that the parent had no
1636 * changes while we did the lookup of the dentry above.
1637 */
1638 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1639 return ERR_PTR(error: -ECHILD);
1640
1641 status = d_revalidate(dentry, flags: nd->flags);
1642 if (likely(status > 0))
1643 return dentry;
1644 if (!try_to_unlazy_next(nd, dentry))
1645 return ERR_PTR(error: -ECHILD);
1646 if (status == -ECHILD)
1647 /* we'd been told to redo it in non-rcu mode */
1648 status = d_revalidate(dentry, flags: nd->flags);
1649 } else {
1650 dentry = __d_lookup(parent, &nd->last);
1651 if (unlikely(!dentry))
1652 return NULL;
1653 status = d_revalidate(dentry, flags: nd->flags);
1654 }
1655 if (unlikely(status <= 0)) {
1656 if (!status)
1657 d_invalidate(dentry);
1658 dput(dentry);
1659 return ERR_PTR(error: status);
1660 }
1661 return dentry;
1662}
1663
1664/* Fast lookup failed, do it the slow way */
1665static struct dentry *__lookup_slow(const struct qstr *name,
1666 struct dentry *dir,
1667 unsigned int flags)
1668{
1669 struct dentry *dentry, *old;
1670 struct inode *inode = dir->d_inode;
1671 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1672
1673 /* Don't go there if it's already dead */
1674 if (unlikely(IS_DEADDIR(inode)))
1675 return ERR_PTR(error: -ENOENT);
1676again:
1677 dentry = d_alloc_parallel(dir, name, &wq);
1678 if (IS_ERR(ptr: dentry))
1679 return dentry;
1680 if (unlikely(!d_in_lookup(dentry))) {
1681 int error = d_revalidate(dentry, flags);
1682 if (unlikely(error <= 0)) {
1683 if (!error) {
1684 d_invalidate(dentry);
1685 dput(dentry);
1686 goto again;
1687 }
1688 dput(dentry);
1689 dentry = ERR_PTR(error);
1690 }
1691 } else {
1692 old = inode->i_op->lookup(inode, dentry, flags);
1693 d_lookup_done(dentry);
1694 if (unlikely(old)) {
1695 dput(dentry);
1696 dentry = old;
1697 }
1698 }
1699 return dentry;
1700}
1701
1702static struct dentry *lookup_slow(const struct qstr *name,
1703 struct dentry *dir,
1704 unsigned int flags)
1705{
1706 struct inode *inode = dir->d_inode;
1707 struct dentry *res;
1708 inode_lock_shared(inode);
1709 res = __lookup_slow(name, dir, flags);
1710 inode_unlock_shared(inode);
1711 return res;
1712}
1713
1714static inline int may_lookup(struct mnt_idmap *idmap,
1715 struct nameidata *nd)
1716{
1717 if (nd->flags & LOOKUP_RCU) {
1718 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1719 if (!err) // success, keep going
1720 return 0;
1721 if (!try_to_unlazy(nd))
1722 return -ECHILD; // redo it all non-lazy
1723 if (err != -ECHILD) // hard error
1724 return err;
1725 }
1726 return inode_permission(idmap, nd->inode, MAY_EXEC);
1727}
1728
1729static int reserve_stack(struct nameidata *nd, struct path *link)
1730{
1731 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1732 return -ELOOP;
1733
1734 if (likely(nd->depth != EMBEDDED_LEVELS))
1735 return 0;
1736 if (likely(nd->stack != nd->internal))
1737 return 0;
1738 if (likely(nd_alloc_stack(nd)))
1739 return 0;
1740
1741 if (nd->flags & LOOKUP_RCU) {
1742 // we need to grab link before we do unlazy. And we can't skip
1743 // unlazy even if we fail to grab the link - cleanup needs it
1744 bool grabbed_link = legitimize_path(nd, path: link, seq: nd->next_seq);
1745
1746 if (!try_to_unlazy(nd) || !grabbed_link)
1747 return -ECHILD;
1748
1749 if (nd_alloc_stack(nd))
1750 return 0;
1751 }
1752 return -ENOMEM;
1753}
1754
1755enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1756
1757static const char *pick_link(struct nameidata *nd, struct path *link,
1758 struct inode *inode, int flags)
1759{
1760 struct saved *last;
1761 const char *res;
1762 int error = reserve_stack(nd, link);
1763
1764 if (unlikely(error)) {
1765 if (!(nd->flags & LOOKUP_RCU))
1766 path_put(link);
1767 return ERR_PTR(error);
1768 }
1769 last = nd->stack + nd->depth++;
1770 last->link = *link;
1771 clear_delayed_call(call: &last->done);
1772 last->seq = nd->next_seq;
1773
1774 if (flags & WALK_TRAILING) {
1775 error = may_follow_link(nd, inode);
1776 if (unlikely(error))
1777 return ERR_PTR(error);
1778 }
1779
1780 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1781 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1782 return ERR_PTR(error: -ELOOP);
1783
1784 if (!(nd->flags & LOOKUP_RCU)) {
1785 touch_atime(&last->link);
1786 cond_resched();
1787 } else if (atime_needs_update(&last->link, inode)) {
1788 if (!try_to_unlazy(nd))
1789 return ERR_PTR(error: -ECHILD);
1790 touch_atime(&last->link);
1791 }
1792
1793 error = security_inode_follow_link(dentry: link->dentry, inode,
1794 rcu: nd->flags & LOOKUP_RCU);
1795 if (unlikely(error))
1796 return ERR_PTR(error);
1797
1798 res = READ_ONCE(inode->i_link);
1799 if (!res) {
1800 const char * (*get)(struct dentry *, struct inode *,
1801 struct delayed_call *);
1802 get = inode->i_op->get_link;
1803 if (nd->flags & LOOKUP_RCU) {
1804 res = get(NULL, inode, &last->done);
1805 if (res == ERR_PTR(error: -ECHILD) && try_to_unlazy(nd))
1806 res = get(link->dentry, inode, &last->done);
1807 } else {
1808 res = get(link->dentry, inode, &last->done);
1809 }
1810 if (!res)
1811 goto all_done;
1812 if (IS_ERR(ptr: res))
1813 return res;
1814 }
1815 if (*res == '/') {
1816 error = nd_jump_root(nd);
1817 if (unlikely(error))
1818 return ERR_PTR(error);
1819 while (unlikely(*++res == '/'))
1820 ;
1821 }
1822 if (*res)
1823 return res;
1824all_done: // pure jump
1825 put_link(nd);
1826 return NULL;
1827}
1828
1829/*
1830 * Do we need to follow links? We _really_ want to be able
1831 * to do this check without having to look at inode->i_op,
1832 * so we keep a cache of "no, this doesn't need follow_link"
1833 * for the common case.
1834 *
1835 * NOTE: dentry must be what nd->next_seq had been sampled from.
1836 */
1837static const char *step_into(struct nameidata *nd, int flags,
1838 struct dentry *dentry)
1839{
1840 struct path path;
1841 struct inode *inode;
1842 int err = handle_mounts(nd, dentry, path: &path);
1843
1844 if (err < 0)
1845 return ERR_PTR(error: err);
1846 inode = path.dentry->d_inode;
1847 if (likely(!d_is_symlink(path.dentry)) ||
1848 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1849 (flags & WALK_NOFOLLOW)) {
1850 /* not a symlink or should not follow */
1851 if (nd->flags & LOOKUP_RCU) {
1852 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1853 return ERR_PTR(error: -ECHILD);
1854 if (unlikely(!inode))
1855 return ERR_PTR(error: -ENOENT);
1856 } else {
1857 dput(nd->path.dentry);
1858 if (nd->path.mnt != path.mnt)
1859 mntput(mnt: nd->path.mnt);
1860 }
1861 nd->path = path;
1862 nd->inode = inode;
1863 nd->seq = nd->next_seq;
1864 return NULL;
1865 }
1866 if (nd->flags & LOOKUP_RCU) {
1867 /* make sure that d_is_symlink above matches inode */
1868 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1869 return ERR_PTR(error: -ECHILD);
1870 } else {
1871 if (path.mnt == nd->path.mnt)
1872 mntget(mnt: path.mnt);
1873 }
1874 return pick_link(nd, link: &path, inode, flags);
1875}
1876
1877static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1878{
1879 struct dentry *parent, *old;
1880
1881 if (path_equal(path1: &nd->path, path2: &nd->root))
1882 goto in_root;
1883 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1884 struct path path;
1885 unsigned seq;
1886 if (!choose_mountpoint_rcu(m: real_mount(mnt: nd->path.mnt),
1887 root: &nd->root, path: &path, seqp: &seq))
1888 goto in_root;
1889 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1890 return ERR_PTR(error: -ECHILD);
1891 nd->path = path;
1892 nd->inode = path.dentry->d_inode;
1893 nd->seq = seq;
1894 // makes sure that non-RCU pathwalk could reach this state
1895 if (read_seqretry(sl: &mount_lock, start: nd->m_seq))
1896 return ERR_PTR(error: -ECHILD);
1897 /* we know that mountpoint was pinned */
1898 }
1899 old = nd->path.dentry;
1900 parent = old->d_parent;
1901 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1902 // makes sure that non-RCU pathwalk could reach this state
1903 if (read_seqcount_retry(&old->d_seq, nd->seq))
1904 return ERR_PTR(error: -ECHILD);
1905 if (unlikely(!path_connected(nd->path.mnt, parent)))
1906 return ERR_PTR(error: -ECHILD);
1907 return parent;
1908in_root:
1909 if (read_seqretry(sl: &mount_lock, start: nd->m_seq))
1910 return ERR_PTR(error: -ECHILD);
1911 if (unlikely(nd->flags & LOOKUP_BENEATH))
1912 return ERR_PTR(error: -ECHILD);
1913 nd->next_seq = nd->seq;
1914 return nd->path.dentry;
1915}
1916
1917static struct dentry *follow_dotdot(struct nameidata *nd)
1918{
1919 struct dentry *parent;
1920
1921 if (path_equal(path1: &nd->path, path2: &nd->root))
1922 goto in_root;
1923 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1924 struct path path;
1925
1926 if (!choose_mountpoint(m: real_mount(mnt: nd->path.mnt),
1927 root: &nd->root, path: &path))
1928 goto in_root;
1929 path_put(&nd->path);
1930 nd->path = path;
1931 nd->inode = path.dentry->d_inode;
1932 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1933 return ERR_PTR(error: -EXDEV);
1934 }
1935 /* rare case of legitimate dget_parent()... */
1936 parent = dget_parent(dentry: nd->path.dentry);
1937 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1938 dput(parent);
1939 return ERR_PTR(error: -ENOENT);
1940 }
1941 return parent;
1942
1943in_root:
1944 if (unlikely(nd->flags & LOOKUP_BENEATH))
1945 return ERR_PTR(error: -EXDEV);
1946 return dget(dentry: nd->path.dentry);
1947}
1948
1949static const char *handle_dots(struct nameidata *nd, int type)
1950{
1951 if (type == LAST_DOTDOT) {
1952 const char *error = NULL;
1953 struct dentry *parent;
1954
1955 if (!nd->root.mnt) {
1956 error = ERR_PTR(error: set_root(nd));
1957 if (error)
1958 return error;
1959 }
1960 if (nd->flags & LOOKUP_RCU)
1961 parent = follow_dotdot_rcu(nd);
1962 else
1963 parent = follow_dotdot(nd);
1964 if (IS_ERR(ptr: parent))
1965 return ERR_CAST(ptr: parent);
1966 error = step_into(nd, flags: WALK_NOFOLLOW, dentry: parent);
1967 if (unlikely(error))
1968 return error;
1969
1970 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1971 /*
1972 * If there was a racing rename or mount along our
1973 * path, then we can't be sure that ".." hasn't jumped
1974 * above nd->root (and so userspace should retry or use
1975 * some fallback).
1976 */
1977 smp_rmb();
1978 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1979 return ERR_PTR(error: -EAGAIN);
1980 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1981 return ERR_PTR(error: -EAGAIN);
1982 }
1983 }
1984 return NULL;
1985}
1986
1987static const char *walk_component(struct nameidata *nd, int flags)
1988{
1989 struct dentry *dentry;
1990 /*
1991 * "." and ".." are special - ".." especially so because it has
1992 * to be able to know about the current root directory and
1993 * parent relationships.
1994 */
1995 if (unlikely(nd->last_type != LAST_NORM)) {
1996 if (!(flags & WALK_MORE) && nd->depth)
1997 put_link(nd);
1998 return handle_dots(nd, type: nd->last_type);
1999 }
2000 dentry = lookup_fast(nd);
2001 if (IS_ERR(ptr: dentry))
2002 return ERR_CAST(ptr: dentry);
2003 if (unlikely(!dentry)) {
2004 dentry = lookup_slow(name: &nd->last, dir: nd->path.dentry, flags: nd->flags);
2005 if (IS_ERR(ptr: dentry))
2006 return ERR_CAST(ptr: dentry);
2007 }
2008 if (!(flags & WALK_MORE) && nd->depth)
2009 put_link(nd);
2010 return step_into(nd, flags, dentry);
2011}
2012
2013/*
2014 * We can do the critical dentry name comparison and hashing
2015 * operations one word at a time, but we are limited to:
2016 *
2017 * - Architectures with fast unaligned word accesses. We could
2018 * do a "get_unaligned()" if this helps and is sufficiently
2019 * fast.
2020 *
2021 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2022 * do not trap on the (extremely unlikely) case of a page
2023 * crossing operation.
2024 *
2025 * - Furthermore, we need an efficient 64-bit compile for the
2026 * 64-bit case in order to generate the "number of bytes in
2027 * the final mask". Again, that could be replaced with a
2028 * efficient population count instruction or similar.
2029 */
2030#ifdef CONFIG_DCACHE_WORD_ACCESS
2031
2032#include <asm/word-at-a-time.h>
2033
2034#ifdef HASH_MIX
2035
2036/* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2037
2038#elif defined(CONFIG_64BIT)
2039/*
2040 * Register pressure in the mixing function is an issue, particularly
2041 * on 32-bit x86, but almost any function requires one state value and
2042 * one temporary. Instead, use a function designed for two state values
2043 * and no temporaries.
2044 *
2045 * This function cannot create a collision in only two iterations, so
2046 * we have two iterations to achieve avalanche. In those two iterations,
2047 * we have six layers of mixing, which is enough to spread one bit's
2048 * influence out to 2^6 = 64 state bits.
2049 *
2050 * Rotate constants are scored by considering either 64 one-bit input
2051 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2052 * probability of that delta causing a change to each of the 128 output
2053 * bits, using a sample of random initial states.
2054 *
2055 * The Shannon entropy of the computed probabilities is then summed
2056 * to produce a score. Ideally, any input change has a 50% chance of
2057 * toggling any given output bit.
2058 *
2059 * Mixing scores (in bits) for (12,45):
2060 * Input delta: 1-bit 2-bit
2061 * 1 round: 713.3 42542.6
2062 * 2 rounds: 2753.7 140389.8
2063 * 3 rounds: 5954.1 233458.2
2064 * 4 rounds: 7862.6 256672.2
2065 * Perfect: 8192 258048
2066 * (64*128) (64*63/2 * 128)
2067 */
2068#define HASH_MIX(x, y, a) \
2069 ( x ^= (a), \
2070 y ^= x, x = rol64(x,12),\
2071 x += y, y = rol64(y,45),\
2072 y *= 9 )
2073
2074/*
2075 * Fold two longs into one 32-bit hash value. This must be fast, but
2076 * latency isn't quite as critical, as there is a fair bit of additional
2077 * work done before the hash value is used.
2078 */
2079static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2080{
2081 y ^= x * GOLDEN_RATIO_64;
2082 y *= GOLDEN_RATIO_64;
2083 return y >> 32;
2084}
2085
2086#else /* 32-bit case */
2087
2088/*
2089 * Mixing scores (in bits) for (7,20):
2090 * Input delta: 1-bit 2-bit
2091 * 1 round: 330.3 9201.6
2092 * 2 rounds: 1246.4 25475.4
2093 * 3 rounds: 1907.1 31295.1
2094 * 4 rounds: 2042.3 31718.6
2095 * Perfect: 2048 31744
2096 * (32*64) (32*31/2 * 64)
2097 */
2098#define HASH_MIX(x, y, a) \
2099 ( x ^= (a), \
2100 y ^= x, x = rol32(x, 7),\
2101 x += y, y = rol32(y,20),\
2102 y *= 9 )
2103
2104static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2105{
2106 /* Use arch-optimized multiply if one exists */
2107 return __hash_32(y ^ __hash_32(x));
2108}
2109
2110#endif
2111
2112/*
2113 * Return the hash of a string of known length. This is carfully
2114 * designed to match hash_name(), which is the more critical function.
2115 * In particular, we must end by hashing a final word containing 0..7
2116 * payload bytes, to match the way that hash_name() iterates until it
2117 * finds the delimiter after the name.
2118 */
2119unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2120{
2121 unsigned long a, x = 0, y = (unsigned long)salt;
2122
2123 for (;;) {
2124 if (!len)
2125 goto done;
2126 a = load_unaligned_zeropad(addr: name);
2127 if (len < sizeof(unsigned long))
2128 break;
2129 HASH_MIX(x, y, a);
2130 name += sizeof(unsigned long);
2131 len -= sizeof(unsigned long);
2132 }
2133 x ^= a & bytemask_from_count(len);
2134done:
2135 return fold_hash(x, y);
2136}
2137EXPORT_SYMBOL(full_name_hash);
2138
2139/* Return the "hash_len" (hash and length) of a null-terminated string */
2140u64 hashlen_string(const void *salt, const char *name)
2141{
2142 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2143 unsigned long adata, mask, len;
2144 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2145
2146 len = 0;
2147 goto inside;
2148
2149 do {
2150 HASH_MIX(x, y, a);
2151 len += sizeof(unsigned long);
2152inside:
2153 a = load_unaligned_zeropad(addr: name+len);
2154 } while (!has_zero(a, bits: &adata, c: &constants));
2155
2156 adata = prep_zero_mask(a, bits: adata, c: &constants);
2157 mask = create_zero_mask(bits: adata);
2158 x ^= a & zero_bytemask(mask);
2159
2160 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2161}
2162EXPORT_SYMBOL(hashlen_string);
2163
2164/*
2165 * Calculate the length and hash of the path component, and
2166 * return the "hash_len" as the result.
2167 */
2168static inline u64 hash_name(const void *salt, const char *name)
2169{
2170 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2171 unsigned long adata, bdata, mask, len;
2172 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2173
2174 len = 0;
2175 goto inside;
2176
2177 do {
2178 HASH_MIX(x, y, a);
2179 len += sizeof(unsigned long);
2180inside:
2181 a = load_unaligned_zeropad(addr: name+len);
2182 b = a ^ REPEAT_BYTE('/');
2183 } while (!(has_zero(a, bits: &adata, c: &constants) | has_zero(a: b, bits: &bdata, c: &constants)));
2184
2185 adata = prep_zero_mask(a, bits: adata, c: &constants);
2186 bdata = prep_zero_mask(a: b, bits: bdata, c: &constants);
2187 mask = create_zero_mask(bits: adata | bdata);
2188 x ^= a & zero_bytemask(mask);
2189
2190 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2191}
2192
2193#else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2194
2195/* Return the hash of a string of known length */
2196unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2197{
2198 unsigned long hash = init_name_hash(salt);
2199 while (len--)
2200 hash = partial_name_hash((unsigned char)*name++, hash);
2201 return end_name_hash(hash);
2202}
2203EXPORT_SYMBOL(full_name_hash);
2204
2205/* Return the "hash_len" (hash and length) of a null-terminated string */
2206u64 hashlen_string(const void *salt, const char *name)
2207{
2208 unsigned long hash = init_name_hash(salt);
2209 unsigned long len = 0, c;
2210
2211 c = (unsigned char)*name;
2212 while (c) {
2213 len++;
2214 hash = partial_name_hash(c, hash);
2215 c = (unsigned char)name[len];
2216 }
2217 return hashlen_create(end_name_hash(hash), len);
2218}
2219EXPORT_SYMBOL(hashlen_string);
2220
2221/*
2222 * We know there's a real path component here of at least
2223 * one character.
2224 */
2225static inline u64 hash_name(const void *salt, const char *name)
2226{
2227 unsigned long hash = init_name_hash(salt);
2228 unsigned long len = 0, c;
2229
2230 c = (unsigned char)*name;
2231 do {
2232 len++;
2233 hash = partial_name_hash(c, hash);
2234 c = (unsigned char)name[len];
2235 } while (c && c != '/');
2236 return hashlen_create(end_name_hash(hash), len);
2237}
2238
2239#endif
2240
2241/*
2242 * Name resolution.
2243 * This is the basic name resolution function, turning a pathname into
2244 * the final dentry. We expect 'base' to be positive and a directory.
2245 *
2246 * Returns 0 and nd will have valid dentry and mnt on success.
2247 * Returns error and drops reference to input namei data on failure.
2248 */
2249static int link_path_walk(const char *name, struct nameidata *nd)
2250{
2251 int depth = 0; // depth <= nd->depth
2252 int err;
2253
2254 nd->last_type = LAST_ROOT;
2255 nd->flags |= LOOKUP_PARENT;
2256 if (IS_ERR(ptr: name))
2257 return PTR_ERR(ptr: name);
2258 while (*name=='/')
2259 name++;
2260 if (!*name) {
2261 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2262 return 0;
2263 }
2264
2265 /* At this point we know we have a real path component. */
2266 for(;;) {
2267 struct mnt_idmap *idmap;
2268 const char *link;
2269 u64 hash_len;
2270 int type;
2271
2272 idmap = mnt_idmap(mnt: nd->path.mnt);
2273 err = may_lookup(idmap, nd);
2274 if (err)
2275 return err;
2276
2277 hash_len = hash_name(salt: nd->path.dentry, name);
2278
2279 type = LAST_NORM;
2280 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2281 case 2:
2282 if (name[1] == '.') {
2283 type = LAST_DOTDOT;
2284 nd->state |= ND_JUMPED;
2285 }
2286 break;
2287 case 1:
2288 type = LAST_DOT;
2289 }
2290 if (likely(type == LAST_NORM)) {
2291 struct dentry *parent = nd->path.dentry;
2292 nd->state &= ~ND_JUMPED;
2293 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2294 struct qstr this = { { .hash_len = hash_len }, .name = name };
2295 err = parent->d_op->d_hash(parent, &this);
2296 if (err < 0)
2297 return err;
2298 hash_len = this.hash_len;
2299 name = this.name;
2300 }
2301 }
2302
2303 nd->last.hash_len = hash_len;
2304 nd->last.name = name;
2305 nd->last_type = type;
2306
2307 name += hashlen_len(hash_len);
2308 if (!*name)
2309 goto OK;
2310 /*
2311 * If it wasn't NUL, we know it was '/'. Skip that
2312 * slash, and continue until no more slashes.
2313 */
2314 do {
2315 name++;
2316 } while (unlikely(*name == '/'));
2317 if (unlikely(!*name)) {
2318OK:
2319 /* pathname or trailing symlink, done */
2320 if (!depth) {
2321 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, inode: nd->inode);
2322 nd->dir_mode = nd->inode->i_mode;
2323 nd->flags &= ~LOOKUP_PARENT;
2324 return 0;
2325 }
2326 /* last component of nested symlink */
2327 name = nd->stack[--depth].name;
2328 link = walk_component(nd, flags: 0);
2329 } else {
2330 /* not the last component */
2331 link = walk_component(nd, flags: WALK_MORE);
2332 }
2333 if (unlikely(link)) {
2334 if (IS_ERR(ptr: link))
2335 return PTR_ERR(ptr: link);
2336 /* a symlink to follow */
2337 nd->stack[depth++].name = name;
2338 name = link;
2339 continue;
2340 }
2341 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2342 if (nd->flags & LOOKUP_RCU) {
2343 if (!try_to_unlazy(nd))
2344 return -ECHILD;
2345 }
2346 return -ENOTDIR;
2347 }
2348 }
2349}
2350
2351/* must be paired with terminate_walk() */
2352static const char *path_init(struct nameidata *nd, unsigned flags)
2353{
2354 int error;
2355 const char *s = nd->name->name;
2356
2357 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2358 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2359 return ERR_PTR(error: -EAGAIN);
2360
2361 if (!*s)
2362 flags &= ~LOOKUP_RCU;
2363 if (flags & LOOKUP_RCU)
2364 rcu_read_lock();
2365 else
2366 nd->seq = nd->next_seq = 0;
2367
2368 nd->flags = flags;
2369 nd->state |= ND_JUMPED;
2370
2371 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2372 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2373 smp_rmb();
2374
2375 if (nd->state & ND_ROOT_PRESET) {
2376 struct dentry *root = nd->root.dentry;
2377 struct inode *inode = root->d_inode;
2378 if (*s && unlikely(!d_can_lookup(root)))
2379 return ERR_PTR(error: -ENOTDIR);
2380 nd->path = nd->root;
2381 nd->inode = inode;
2382 if (flags & LOOKUP_RCU) {
2383 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2384 nd->root_seq = nd->seq;
2385 } else {
2386 path_get(&nd->path);
2387 }
2388 return s;
2389 }
2390
2391 nd->root.mnt = NULL;
2392
2393 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2394 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2395 error = nd_jump_root(nd);
2396 if (unlikely(error))
2397 return ERR_PTR(error);
2398 return s;
2399 }
2400
2401 /* Relative pathname -- get the starting-point it is relative to. */
2402 if (nd->dfd == AT_FDCWD) {
2403 if (flags & LOOKUP_RCU) {
2404 struct fs_struct *fs = current->fs;
2405 unsigned seq;
2406
2407 do {
2408 seq = read_seqcount_begin(&fs->seq);
2409 nd->path = fs->pwd;
2410 nd->inode = nd->path.dentry->d_inode;
2411 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2412 } while (read_seqcount_retry(&fs->seq, seq));
2413 } else {
2414 get_fs_pwd(current->fs, pwd: &nd->path);
2415 nd->inode = nd->path.dentry->d_inode;
2416 }
2417 } else {
2418 /* Caller must check execute permissions on the starting path component */
2419 struct fd f = fdget_raw(fd: nd->dfd);
2420 struct dentry *dentry;
2421
2422 if (!f.file)
2423 return ERR_PTR(error: -EBADF);
2424
2425 dentry = f.file->f_path.dentry;
2426
2427 if (*s && unlikely(!d_can_lookup(dentry))) {
2428 fdput(fd: f);
2429 return ERR_PTR(error: -ENOTDIR);
2430 }
2431
2432 nd->path = f.file->f_path;
2433 if (flags & LOOKUP_RCU) {
2434 nd->inode = nd->path.dentry->d_inode;
2435 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2436 } else {
2437 path_get(&nd->path);
2438 nd->inode = nd->path.dentry->d_inode;
2439 }
2440 fdput(fd: f);
2441 }
2442
2443 /* For scoped-lookups we need to set the root to the dirfd as well. */
2444 if (flags & LOOKUP_IS_SCOPED) {
2445 nd->root = nd->path;
2446 if (flags & LOOKUP_RCU) {
2447 nd->root_seq = nd->seq;
2448 } else {
2449 path_get(&nd->root);
2450 nd->state |= ND_ROOT_GRABBED;
2451 }
2452 }
2453 return s;
2454}
2455
2456static inline const char *lookup_last(struct nameidata *nd)
2457{
2458 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2459 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2460
2461 return walk_component(nd, flags: WALK_TRAILING);
2462}
2463
2464static int handle_lookup_down(struct nameidata *nd)
2465{
2466 if (!(nd->flags & LOOKUP_RCU))
2467 dget(dentry: nd->path.dentry);
2468 nd->next_seq = nd->seq;
2469 return PTR_ERR(ptr: step_into(nd, flags: WALK_NOFOLLOW, dentry: nd->path.dentry));
2470}
2471
2472/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2473static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2474{
2475 const char *s = path_init(nd, flags);
2476 int err;
2477
2478 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(ptr: s)) {
2479 err = handle_lookup_down(nd);
2480 if (unlikely(err < 0))
2481 s = ERR_PTR(error: err);
2482 }
2483
2484 while (!(err = link_path_walk(name: s, nd)) &&
2485 (s = lookup_last(nd)) != NULL)
2486 ;
2487 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2488 err = handle_lookup_down(nd);
2489 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2490 }
2491 if (!err)
2492 err = complete_walk(nd);
2493
2494 if (!err && nd->flags & LOOKUP_DIRECTORY)
2495 if (!d_can_lookup(dentry: nd->path.dentry))
2496 err = -ENOTDIR;
2497 if (!err) {
2498 *path = nd->path;
2499 nd->path.mnt = NULL;
2500 nd->path.dentry = NULL;
2501 }
2502 terminate_walk(nd);
2503 return err;
2504}
2505
2506int filename_lookup(int dfd, struct filename *name, unsigned flags,
2507 struct path *path, struct path *root)
2508{
2509 int retval;
2510 struct nameidata nd;
2511 if (IS_ERR(ptr: name))
2512 return PTR_ERR(ptr: name);
2513 set_nameidata(p: &nd, dfd, name, root);
2514 retval = path_lookupat(nd: &nd, flags: flags | LOOKUP_RCU, path);
2515 if (unlikely(retval == -ECHILD))
2516 retval = path_lookupat(nd: &nd, flags, path);
2517 if (unlikely(retval == -ESTALE))
2518 retval = path_lookupat(nd: &nd, flags: flags | LOOKUP_REVAL, path);
2519
2520 if (likely(!retval))
2521 audit_inode(name, dentry: path->dentry,
2522 aflags: flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2523 restore_nameidata();
2524 return retval;
2525}
2526
2527/* Returns 0 and nd will be valid on success; Returns error, otherwise. */
2528static int path_parentat(struct nameidata *nd, unsigned flags,
2529 struct path *parent)
2530{
2531 const char *s = path_init(nd, flags);
2532 int err = link_path_walk(name: s, nd);
2533 if (!err)
2534 err = complete_walk(nd);
2535 if (!err) {
2536 *parent = nd->path;
2537 nd->path.mnt = NULL;
2538 nd->path.dentry = NULL;
2539 }
2540 terminate_walk(nd);
2541 return err;
2542}
2543
2544/* Note: this does not consume "name" */
2545static int __filename_parentat(int dfd, struct filename *name,
2546 unsigned int flags, struct path *parent,
2547 struct qstr *last, int *type,
2548 const struct path *root)
2549{
2550 int retval;
2551 struct nameidata nd;
2552
2553 if (IS_ERR(ptr: name))
2554 return PTR_ERR(ptr: name);
2555 set_nameidata(p: &nd, dfd, name, root);
2556 retval = path_parentat(nd: &nd, flags: flags | LOOKUP_RCU, parent);
2557 if (unlikely(retval == -ECHILD))
2558 retval = path_parentat(nd: &nd, flags, parent);
2559 if (unlikely(retval == -ESTALE))
2560 retval = path_parentat(nd: &nd, flags: flags | LOOKUP_REVAL, parent);
2561 if (likely(!retval)) {
2562 *last = nd.last;
2563 *type = nd.last_type;
2564 audit_inode(name, dentry: parent->dentry, AUDIT_INODE_PARENT);
2565 }
2566 restore_nameidata();
2567 return retval;
2568}
2569
2570static int filename_parentat(int dfd, struct filename *name,
2571 unsigned int flags, struct path *parent,
2572 struct qstr *last, int *type)
2573{
2574 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2575}
2576
2577/* does lookup, returns the object with parent locked */
2578static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2579{
2580 struct dentry *d;
2581 struct qstr last;
2582 int type, error;
2583
2584 error = filename_parentat(dfd, name, flags: 0, parent: path, last: &last, type: &type);
2585 if (error)
2586 return ERR_PTR(error);
2587 if (unlikely(type != LAST_NORM)) {
2588 path_put(path);
2589 return ERR_PTR(error: -EINVAL);
2590 }
2591 inode_lock_nested(inode: path->dentry->d_inode, subclass: I_MUTEX_PARENT);
2592 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2593 if (IS_ERR(ptr: d)) {
2594 inode_unlock(inode: path->dentry->d_inode);
2595 path_put(path);
2596 }
2597 return d;
2598}
2599
2600struct dentry *kern_path_locked(const char *name, struct path *path)
2601{
2602 struct filename *filename = getname_kernel(name);
2603 struct dentry *res = __kern_path_locked(AT_FDCWD, name: filename, path);
2604
2605 putname(filename);
2606 return res;
2607}
2608
2609struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2610{
2611 struct filename *filename = getname(filename: name);
2612 struct dentry *res = __kern_path_locked(dfd, name: filename, path);
2613
2614 putname(filename);
2615 return res;
2616}
2617EXPORT_SYMBOL(user_path_locked_at);
2618
2619int kern_path(const char *name, unsigned int flags, struct path *path)
2620{
2621 struct filename *filename = getname_kernel(name);
2622 int ret = filename_lookup(AT_FDCWD, name: filename, flags, path, NULL);
2623
2624 putname(filename);
2625 return ret;
2626
2627}
2628EXPORT_SYMBOL(kern_path);
2629
2630/**
2631 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2632 * @filename: filename structure
2633 * @flags: lookup flags
2634 * @parent: pointer to struct path to fill
2635 * @last: last component
2636 * @type: type of the last component
2637 * @root: pointer to struct path of the base directory
2638 */
2639int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2640 struct path *parent, struct qstr *last, int *type,
2641 const struct path *root)
2642{
2643 return __filename_parentat(AT_FDCWD, name: filename, flags, parent, last,
2644 type, root);
2645}
2646EXPORT_SYMBOL(vfs_path_parent_lookup);
2647
2648/**
2649 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2650 * @dentry: pointer to dentry of the base directory
2651 * @mnt: pointer to vfs mount of the base directory
2652 * @name: pointer to file name
2653 * @flags: lookup flags
2654 * @path: pointer to struct path to fill
2655 */
2656int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2657 const char *name, unsigned int flags,
2658 struct path *path)
2659{
2660 struct filename *filename;
2661 struct path root = {.mnt = mnt, .dentry = dentry};
2662 int ret;
2663
2664 filename = getname_kernel(name);
2665 /* the first argument of filename_lookup() is ignored with root */
2666 ret = filename_lookup(AT_FDCWD, name: filename, flags, path, root: &root);
2667 putname(filename);
2668 return ret;
2669}
2670EXPORT_SYMBOL(vfs_path_lookup);
2671
2672static int lookup_one_common(struct mnt_idmap *idmap,
2673 const char *name, struct dentry *base, int len,
2674 struct qstr *this)
2675{
2676 this->name = name;
2677 this->len = len;
2678 this->hash = full_name_hash(base, name, len);
2679 if (!len)
2680 return -EACCES;
2681
2682 if (is_dot_dotdot(name, len))
2683 return -EACCES;
2684
2685 while (len--) {
2686 unsigned int c = *(const unsigned char *)name++;
2687 if (c == '/' || c == '\0')
2688 return -EACCES;
2689 }
2690 /*
2691 * See if the low-level filesystem might want
2692 * to use its own hash..
2693 */
2694 if (base->d_flags & DCACHE_OP_HASH) {
2695 int err = base->d_op->d_hash(base, this);
2696 if (err < 0)
2697 return err;
2698 }
2699
2700 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2701}
2702
2703/**
2704 * try_lookup_one_len - filesystem helper to lookup single pathname component
2705 * @name: pathname component to lookup
2706 * @base: base directory to lookup from
2707 * @len: maximum length @len should be interpreted to
2708 *
2709 * Look up a dentry by name in the dcache, returning NULL if it does not
2710 * currently exist. The function does not try to create a dentry.
2711 *
2712 * Note that this routine is purely a helper for filesystem usage and should
2713 * not be called by generic code.
2714 *
2715 * The caller must hold base->i_mutex.
2716 */
2717struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2718{
2719 struct qstr this;
2720 int err;
2721
2722 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2723
2724 err = lookup_one_common(idmap: &nop_mnt_idmap, name, base, len, this: &this);
2725 if (err)
2726 return ERR_PTR(error: err);
2727
2728 return lookup_dcache(name: &this, dir: base, flags: 0);
2729}
2730EXPORT_SYMBOL(try_lookup_one_len);
2731
2732/**
2733 * lookup_one_len - filesystem helper to lookup single pathname component
2734 * @name: pathname component to lookup
2735 * @base: base directory to lookup from
2736 * @len: maximum length @len should be interpreted to
2737 *
2738 * Note that this routine is purely a helper for filesystem usage and should
2739 * not be called by generic code.
2740 *
2741 * The caller must hold base->i_mutex.
2742 */
2743struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2744{
2745 struct dentry *dentry;
2746 struct qstr this;
2747 int err;
2748
2749 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2750
2751 err = lookup_one_common(idmap: &nop_mnt_idmap, name, base, len, this: &this);
2752 if (err)
2753 return ERR_PTR(error: err);
2754
2755 dentry = lookup_dcache(name: &this, dir: base, flags: 0);
2756 return dentry ? dentry : __lookup_slow(name: &this, dir: base, flags: 0);
2757}
2758EXPORT_SYMBOL(lookup_one_len);
2759
2760/**
2761 * lookup_one - filesystem helper to lookup single pathname component
2762 * @idmap: idmap of the mount the lookup is performed from
2763 * @name: pathname component to lookup
2764 * @base: base directory to lookup from
2765 * @len: maximum length @len should be interpreted to
2766 *
2767 * Note that this routine is purely a helper for filesystem usage and should
2768 * not be called by generic code.
2769 *
2770 * The caller must hold base->i_mutex.
2771 */
2772struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2773 struct dentry *base, int len)
2774{
2775 struct dentry *dentry;
2776 struct qstr this;
2777 int err;
2778
2779 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2780
2781 err = lookup_one_common(idmap, name, base, len, this: &this);
2782 if (err)
2783 return ERR_PTR(error: err);
2784
2785 dentry = lookup_dcache(name: &this, dir: base, flags: 0);
2786 return dentry ? dentry : __lookup_slow(name: &this, dir: base, flags: 0);
2787}
2788EXPORT_SYMBOL(lookup_one);
2789
2790/**
2791 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2792 * @idmap: idmap of the mount the lookup is performed from
2793 * @name: pathname component to lookup
2794 * @base: base directory to lookup from
2795 * @len: maximum length @len should be interpreted to
2796 *
2797 * Note that this routine is purely a helper for filesystem usage and should
2798 * not be called by generic code.
2799 *
2800 * Unlike lookup_one_len, it should be called without the parent
2801 * i_mutex held, and will take the i_mutex itself if necessary.
2802 */
2803struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2804 const char *name, struct dentry *base,
2805 int len)
2806{
2807 struct qstr this;
2808 int err;
2809 struct dentry *ret;
2810
2811 err = lookup_one_common(idmap, name, base, len, this: &this);
2812 if (err)
2813 return ERR_PTR(error: err);
2814
2815 ret = lookup_dcache(name: &this, dir: base, flags: 0);
2816 if (!ret)
2817 ret = lookup_slow(name: &this, dir: base, flags: 0);
2818 return ret;
2819}
2820EXPORT_SYMBOL(lookup_one_unlocked);
2821
2822/**
2823 * lookup_one_positive_unlocked - filesystem helper to lookup single
2824 * pathname component
2825 * @idmap: idmap of the mount the lookup is performed from
2826 * @name: pathname component to lookup
2827 * @base: base directory to lookup from
2828 * @len: maximum length @len should be interpreted to
2829 *
2830 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2831 * known positive or ERR_PTR(). This is what most of the users want.
2832 *
2833 * Note that pinned negative with unlocked parent _can_ become positive at any
2834 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2835 * positives have >d_inode stable, so this one avoids such problems.
2836 *
2837 * Note that this routine is purely a helper for filesystem usage and should
2838 * not be called by generic code.
2839 *
2840 * The helper should be called without i_mutex held.
2841 */
2842struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2843 const char *name,
2844 struct dentry *base, int len)
2845{
2846 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2847
2848 if (!IS_ERR(ptr: ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2849 dput(ret);
2850 ret = ERR_PTR(error: -ENOENT);
2851 }
2852 return ret;
2853}
2854EXPORT_SYMBOL(lookup_one_positive_unlocked);
2855
2856/**
2857 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2858 * @name: pathname component to lookup
2859 * @base: base directory to lookup from
2860 * @len: maximum length @len should be interpreted to
2861 *
2862 * Note that this routine is purely a helper for filesystem usage and should
2863 * not be called by generic code.
2864 *
2865 * Unlike lookup_one_len, it should be called without the parent
2866 * i_mutex held, and will take the i_mutex itself if necessary.
2867 */
2868struct dentry *lookup_one_len_unlocked(const char *name,
2869 struct dentry *base, int len)
2870{
2871 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2872}
2873EXPORT_SYMBOL(lookup_one_len_unlocked);
2874
2875/*
2876 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2877 * on negatives. Returns known positive or ERR_PTR(); that's what
2878 * most of the users want. Note that pinned negative with unlocked parent
2879 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2880 * need to be very careful; pinned positives have ->d_inode stable, so
2881 * this one avoids such problems.
2882 */
2883struct dentry *lookup_positive_unlocked(const char *name,
2884 struct dentry *base, int len)
2885{
2886 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2887}
2888EXPORT_SYMBOL(lookup_positive_unlocked);
2889
2890#ifdef CONFIG_UNIX98_PTYS
2891int path_pts(struct path *path)
2892{
2893 /* Find something mounted on "pts" in the same directory as
2894 * the input path.
2895 */
2896 struct dentry *parent = dget_parent(dentry: path->dentry);
2897 struct dentry *child;
2898 struct qstr this = QSTR_INIT("pts", 3);
2899
2900 if (unlikely(!path_connected(path->mnt, parent))) {
2901 dput(parent);
2902 return -ENOENT;
2903 }
2904 dput(path->dentry);
2905 path->dentry = parent;
2906 child = d_hash_and_lookup(parent, &this);
2907 if (IS_ERR_OR_NULL(ptr: child))
2908 return -ENOENT;
2909
2910 path->dentry = child;
2911 dput(parent);
2912 follow_down(path, 0);
2913 return 0;
2914}
2915#endif
2916
2917int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2918 struct path *path, int *empty)
2919{
2920 struct filename *filename = getname_flags(filename: name, flags, empty);
2921 int ret = filename_lookup(dfd, name: filename, flags, path, NULL);
2922
2923 putname(filename);
2924 return ret;
2925}
2926EXPORT_SYMBOL(user_path_at_empty);
2927
2928int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2929 struct inode *inode)
2930{
2931 kuid_t fsuid = current_fsuid();
2932
2933 if (vfsuid_eq_kuid(vfsuid: i_uid_into_vfsuid(idmap, inode), kuid: fsuid))
2934 return 0;
2935 if (vfsuid_eq_kuid(vfsuid: i_uid_into_vfsuid(idmap, inode: dir), kuid: fsuid))
2936 return 0;
2937 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2938}
2939EXPORT_SYMBOL(__check_sticky);
2940
2941/*
2942 * Check whether we can remove a link victim from directory dir, check
2943 * whether the type of victim is right.
2944 * 1. We can't do it if dir is read-only (done in permission())
2945 * 2. We should have write and exec permissions on dir
2946 * 3. We can't remove anything from append-only dir
2947 * 4. We can't do anything with immutable dir (done in permission())
2948 * 5. If the sticky bit on dir is set we should either
2949 * a. be owner of dir, or
2950 * b. be owner of victim, or
2951 * c. have CAP_FOWNER capability
2952 * 6. If the victim is append-only or immutable we can't do antyhing with
2953 * links pointing to it.
2954 * 7. If the victim has an unknown uid or gid we can't change the inode.
2955 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2956 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2957 * 10. We can't remove a root or mountpoint.
2958 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2959 * nfs_async_unlink().
2960 */
2961static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2962 struct dentry *victim, bool isdir)
2963{
2964 struct inode *inode = d_backing_inode(upper: victim);
2965 int error;
2966
2967 if (d_is_negative(dentry: victim))
2968 return -ENOENT;
2969 BUG_ON(!inode);
2970
2971 BUG_ON(victim->d_parent->d_inode != dir);
2972
2973 /* Inode writeback is not safe when the uid or gid are invalid. */
2974 if (!vfsuid_valid(uid: i_uid_into_vfsuid(idmap, inode)) ||
2975 !vfsgid_valid(gid: i_gid_into_vfsgid(idmap, inode)))
2976 return -EOVERFLOW;
2977
2978 audit_inode_child(parent: dir, dentry: victim, AUDIT_TYPE_CHILD_DELETE);
2979
2980 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2981 if (error)
2982 return error;
2983 if (IS_APPEND(dir))
2984 return -EPERM;
2985
2986 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2987 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2988 HAS_UNMAPPED_ID(idmap, inode))
2989 return -EPERM;
2990 if (isdir) {
2991 if (!d_is_dir(dentry: victim))
2992 return -ENOTDIR;
2993 if (IS_ROOT(victim))
2994 return -EBUSY;
2995 } else if (d_is_dir(dentry: victim))
2996 return -EISDIR;
2997 if (IS_DEADDIR(dir))
2998 return -ENOENT;
2999 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3000 return -EBUSY;
3001 return 0;
3002}
3003
3004/* Check whether we can create an object with dentry child in directory
3005 * dir.
3006 * 1. We can't do it if child already exists (open has special treatment for
3007 * this case, but since we are inlined it's OK)
3008 * 2. We can't do it if dir is read-only (done in permission())
3009 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3010 * 4. We should have write and exec permissions on dir
3011 * 5. We can't do it if dir is immutable (done in permission())
3012 */
3013static inline int may_create(struct mnt_idmap *idmap,
3014 struct inode *dir, struct dentry *child)
3015{
3016 audit_inode_child(parent: dir, dentry: child, AUDIT_TYPE_CHILD_CREATE);
3017 if (child->d_inode)
3018 return -EEXIST;
3019 if (IS_DEADDIR(dir))
3020 return -ENOENT;
3021 if (!fsuidgid_has_mapping(sb: dir->i_sb, idmap))
3022 return -EOVERFLOW;
3023
3024 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3025}
3026
3027// p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
3028static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3029{
3030 struct dentry *p = p1, *q = p2, *r;
3031
3032 while ((r = p->d_parent) != p2 && r != p)
3033 p = r;
3034 if (r == p2) {
3035 // p is a child of p2 and an ancestor of p1 or p1 itself
3036 inode_lock_nested(inode: p2->d_inode, subclass: I_MUTEX_PARENT);
3037 inode_lock_nested(inode: p1->d_inode, subclass: I_MUTEX_PARENT2);
3038 return p;
3039 }
3040 // p is the root of connected component that contains p1
3041 // p2 does not occur on the path from p to p1
3042 while ((r = q->d_parent) != p1 && r != p && r != q)
3043 q = r;
3044 if (r == p1) {
3045 // q is a child of p1 and an ancestor of p2 or p2 itself
3046 inode_lock_nested(inode: p1->d_inode, subclass: I_MUTEX_PARENT);
3047 inode_lock_nested(inode: p2->d_inode, subclass: I_MUTEX_PARENT2);
3048 return q;
3049 } else if (likely(r == p)) {
3050 // both p2 and p1 are descendents of p
3051 inode_lock_nested(inode: p1->d_inode, subclass: I_MUTEX_PARENT);
3052 inode_lock_nested(inode: p2->d_inode, subclass: I_MUTEX_PARENT2);
3053 return NULL;
3054 } else { // no common ancestor at the time we'd been called
3055 mutex_unlock(lock: &p1->d_sb->s_vfs_rename_mutex);
3056 return ERR_PTR(error: -EXDEV);
3057 }
3058}
3059
3060/*
3061 * p1 and p2 should be directories on the same fs.
3062 */
3063struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3064{
3065 if (p1 == p2) {
3066 inode_lock_nested(inode: p1->d_inode, subclass: I_MUTEX_PARENT);
3067 return NULL;
3068 }
3069
3070 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3071 return lock_two_directories(p1, p2);
3072}
3073EXPORT_SYMBOL(lock_rename);
3074
3075/*
3076 * c1 and p2 should be on the same fs.
3077 */
3078struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3079{
3080 if (READ_ONCE(c1->d_parent) == p2) {
3081 /*
3082 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3083 */
3084 inode_lock_nested(inode: p2->d_inode, subclass: I_MUTEX_PARENT);
3085 /*
3086 * now that p2 is locked, nobody can move in or out of it,
3087 * so the test below is safe.
3088 */
3089 if (likely(c1->d_parent == p2))
3090 return NULL;
3091
3092 /*
3093 * c1 got moved out of p2 while we'd been taking locks;
3094 * unlock and fall back to slow case.
3095 */
3096 inode_unlock(inode: p2->d_inode);
3097 }
3098
3099 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3100 /*
3101 * nobody can move out of any directories on this fs.
3102 */
3103 if (likely(c1->d_parent != p2))
3104 return lock_two_directories(p1: c1->d_parent, p2);
3105
3106 /*
3107 * c1 got moved into p2 while we were taking locks;
3108 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3109 * for consistency with lock_rename().
3110 */
3111 inode_lock_nested(inode: p2->d_inode, subclass: I_MUTEX_PARENT);
3112 mutex_unlock(lock: &c1->d_sb->s_vfs_rename_mutex);
3113 return NULL;
3114}
3115EXPORT_SYMBOL(lock_rename_child);
3116
3117void unlock_rename(struct dentry *p1, struct dentry *p2)
3118{
3119 inode_unlock(inode: p1->d_inode);
3120 if (p1 != p2) {
3121 inode_unlock(inode: p2->d_inode);
3122 mutex_unlock(lock: &p1->d_sb->s_vfs_rename_mutex);
3123 }
3124}
3125EXPORT_SYMBOL(unlock_rename);
3126
3127/**
3128 * vfs_prepare_mode - prepare the mode to be used for a new inode
3129 * @idmap: idmap of the mount the inode was found from
3130 * @dir: parent directory of the new inode
3131 * @mode: mode of the new inode
3132 * @mask_perms: allowed permission by the vfs
3133 * @type: type of file to be created
3134 *
3135 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3136 * object to be created.
3137 *
3138 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3139 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3140 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3141 * POSIX ACL supporting filesystems.
3142 *
3143 * Note that it's currently valid for @type to be 0 if a directory is created.
3144 * Filesystems raise that flag individually and we need to check whether each
3145 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3146 * non-zero type.
3147 *
3148 * Returns: mode to be passed to the filesystem
3149 */
3150static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3151 const struct inode *dir, umode_t mode,
3152 umode_t mask_perms, umode_t type)
3153{
3154 mode = mode_strip_sgid(idmap, dir, mode);
3155 mode = mode_strip_umask(dir, mode);
3156
3157 /*
3158 * Apply the vfs mandated allowed permission mask and set the type of
3159 * file to be created before we call into the filesystem.
3160 */
3161 mode &= (mask_perms & ~S_IFMT);
3162 mode |= (type & S_IFMT);
3163
3164 return mode;
3165}
3166
3167/**
3168 * vfs_create - create new file
3169 * @idmap: idmap of the mount the inode was found from
3170 * @dir: inode of @dentry
3171 * @dentry: pointer to dentry of the base directory
3172 * @mode: mode of the new file
3173 * @want_excl: whether the file must not yet exist
3174 *
3175 * Create a new file.
3176 *
3177 * If the inode has been found through an idmapped mount the idmap of
3178 * the vfsmount must be passed through @idmap. This function will then take
3179 * care to map the inode according to @idmap before checking permissions.
3180 * On non-idmapped mounts or if permission checking is to be performed on the
3181 * raw inode simply pass @nop_mnt_idmap.
3182 */
3183int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3184 struct dentry *dentry, umode_t mode, bool want_excl)
3185{
3186 int error;
3187
3188 error = may_create(idmap, dir, child: dentry);
3189 if (error)
3190 return error;
3191
3192 if (!dir->i_op->create)
3193 return -EACCES; /* shouldn't it be ENOSYS? */
3194
3195 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3196 error = security_inode_create(dir, dentry, mode);
3197 if (error)
3198 return error;
3199 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3200 if (!error)
3201 fsnotify_create(dir, dentry);
3202 return error;
3203}
3204EXPORT_SYMBOL(vfs_create);
3205
3206int vfs_mkobj(struct dentry *dentry, umode_t mode,
3207 int (*f)(struct dentry *, umode_t, void *),
3208 void *arg)
3209{
3210 struct inode *dir = dentry->d_parent->d_inode;
3211 int error = may_create(idmap: &nop_mnt_idmap, dir, child: dentry);
3212 if (error)
3213 return error;
3214
3215 mode &= S_IALLUGO;
3216 mode |= S_IFREG;
3217 error = security_inode_create(dir, dentry, mode);
3218 if (error)
3219 return error;
3220 error = f(dentry, mode, arg);
3221 if (!error)
3222 fsnotify_create(dir, dentry);
3223 return error;
3224}
3225EXPORT_SYMBOL(vfs_mkobj);
3226
3227bool may_open_dev(const struct path *path)
3228{
3229 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3230 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3231}
3232
3233static int may_open(struct mnt_idmap *idmap, const struct path *path,
3234 int acc_mode, int flag)
3235{
3236 struct dentry *dentry = path->dentry;
3237 struct inode *inode = dentry->d_inode;
3238 int error;
3239
3240 if (!inode)
3241 return -ENOENT;
3242
3243 switch (inode->i_mode & S_IFMT) {
3244 case S_IFLNK:
3245 return -ELOOP;
3246 case S_IFDIR:
3247 if (acc_mode & MAY_WRITE)
3248 return -EISDIR;
3249 if (acc_mode & MAY_EXEC)
3250 return -EACCES;
3251 break;
3252 case S_IFBLK:
3253 case S_IFCHR:
3254 if (!may_open_dev(path))
3255 return -EACCES;
3256 fallthrough;
3257 case S_IFIFO:
3258 case S_IFSOCK:
3259 if (acc_mode & MAY_EXEC)
3260 return -EACCES;
3261 flag &= ~O_TRUNC;
3262 break;
3263 case S_IFREG:
3264 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3265 return -EACCES;
3266 break;
3267 }
3268
3269 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3270 if (error)
3271 return error;
3272
3273 /*
3274 * An append-only file must be opened in append mode for writing.
3275 */
3276 if (IS_APPEND(inode)) {
3277 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3278 return -EPERM;
3279 if (flag & O_TRUNC)
3280 return -EPERM;
3281 }
3282
3283 /* O_NOATIME can only be set by the owner or superuser */
3284 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3285 return -EPERM;
3286
3287 return 0;
3288}
3289
3290static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3291{
3292 const struct path *path = &filp->f_path;
3293 struct inode *inode = path->dentry->d_inode;
3294 int error = get_write_access(inode);
3295 if (error)
3296 return error;
3297
3298 error = security_file_truncate(file: filp);
3299 if (!error) {
3300 error = do_truncate(idmap, path->dentry, start: 0,
3301 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3302 filp);
3303 }
3304 put_write_access(inode);
3305 return error;
3306}
3307
3308static inline int open_to_namei_flags(int flag)
3309{
3310 if ((flag & O_ACCMODE) == 3)
3311 flag--;
3312 return flag;
3313}
3314
3315static int may_o_create(struct mnt_idmap *idmap,
3316 const struct path *dir, struct dentry *dentry,
3317 umode_t mode)
3318{
3319 int error = security_path_mknod(dir, dentry, mode, dev: 0);
3320 if (error)
3321 return error;
3322
3323 if (!fsuidgid_has_mapping(sb: dir->dentry->d_sb, idmap))
3324 return -EOVERFLOW;
3325
3326 error = inode_permission(idmap, dir->dentry->d_inode,
3327 MAY_WRITE | MAY_EXEC);
3328 if (error)
3329 return error;
3330
3331 return security_inode_create(dir: dir->dentry->d_inode, dentry, mode);
3332}
3333
3334/*
3335 * Attempt to atomically look up, create and open a file from a negative
3336 * dentry.
3337 *
3338 * Returns 0 if successful. The file will have been created and attached to
3339 * @file by the filesystem calling finish_open().
3340 *
3341 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3342 * be set. The caller will need to perform the open themselves. @path will
3343 * have been updated to point to the new dentry. This may be negative.
3344 *
3345 * Returns an error code otherwise.
3346 */
3347static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3348 struct file *file,
3349 int open_flag, umode_t mode)
3350{
3351 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3352 struct inode *dir = nd->path.dentry->d_inode;
3353 int error;
3354
3355 if (nd->flags & LOOKUP_DIRECTORY)
3356 open_flag |= O_DIRECTORY;
3357
3358 file->f_path.dentry = DENTRY_NOT_SET;
3359 file->f_path.mnt = nd->path.mnt;
3360 error = dir->i_op->atomic_open(dir, dentry, file,
3361 open_to_namei_flags(flag: open_flag), mode);
3362 d_lookup_done(dentry);
3363 if (!error) {
3364 if (file->f_mode & FMODE_OPENED) {
3365 if (unlikely(dentry != file->f_path.dentry)) {
3366 dput(dentry);
3367 dentry = dget(dentry: file->f_path.dentry);
3368 }
3369 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3370 error = -EIO;
3371 } else {
3372 if (file->f_path.dentry) {
3373 dput(dentry);
3374 dentry = file->f_path.dentry;
3375 }
3376 if (unlikely(d_is_negative(dentry)))
3377 error = -ENOENT;
3378 }
3379 }
3380 if (error) {
3381 dput(dentry);
3382 dentry = ERR_PTR(error);
3383 }
3384 return dentry;
3385}
3386
3387/*
3388 * Look up and maybe create and open the last component.
3389 *
3390 * Must be called with parent locked (exclusive in O_CREAT case).
3391 *
3392 * Returns 0 on success, that is, if
3393 * the file was successfully atomically created (if necessary) and opened, or
3394 * the file was not completely opened at this time, though lookups and
3395 * creations were performed.
3396 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3397 * In the latter case dentry returned in @path might be negative if O_CREAT
3398 * hadn't been specified.
3399 *
3400 * An error code is returned on failure.
3401 */
3402static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3403 const struct open_flags *op,
3404 bool got_write)
3405{
3406 struct mnt_idmap *idmap;
3407 struct dentry *dir = nd->path.dentry;
3408 struct inode *dir_inode = dir->d_inode;
3409 int open_flag = op->open_flag;
3410 struct dentry *dentry;
3411 int error, create_error = 0;
3412 umode_t mode = op->mode;
3413 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3414
3415 if (unlikely(IS_DEADDIR(dir_inode)))
3416 return ERR_PTR(error: -ENOENT);
3417
3418 file->f_mode &= ~FMODE_CREATED;
3419 dentry = d_lookup(dir, &nd->last);
3420 for (;;) {
3421 if (!dentry) {
3422 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3423 if (IS_ERR(ptr: dentry))
3424 return dentry;
3425 }
3426 if (d_in_lookup(dentry))
3427 break;
3428
3429 error = d_revalidate(dentry, flags: nd->flags);
3430 if (likely(error > 0))
3431 break;
3432 if (error)
3433 goto out_dput;
3434 d_invalidate(dentry);
3435 dput(dentry);
3436 dentry = NULL;
3437 }
3438 if (dentry->d_inode) {
3439 /* Cached positive dentry: will open in f_op->open */
3440 return dentry;
3441 }
3442
3443 /*
3444 * Checking write permission is tricky, bacuse we don't know if we are
3445 * going to actually need it: O_CREAT opens should work as long as the
3446 * file exists. But checking existence breaks atomicity. The trick is
3447 * to check access and if not granted clear O_CREAT from the flags.
3448 *
3449 * Another problem is returing the "right" error value (e.g. for an
3450 * O_EXCL open we want to return EEXIST not EROFS).
3451 */
3452 if (unlikely(!got_write))
3453 open_flag &= ~O_TRUNC;
3454 idmap = mnt_idmap(mnt: nd->path.mnt);
3455 if (open_flag & O_CREAT) {
3456 if (open_flag & O_EXCL)
3457 open_flag &= ~O_TRUNC;
3458 mode = vfs_prepare_mode(idmap, dir: dir->d_inode, mode, mask_perms: mode, type: mode);
3459 if (likely(got_write))
3460 create_error = may_o_create(idmap, dir: &nd->path,
3461 dentry, mode);
3462 else
3463 create_error = -EROFS;
3464 }
3465 if (create_error)
3466 open_flag &= ~O_CREAT;
3467 if (dir_inode->i_op->atomic_open) {
3468 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3469 if (unlikely(create_error) && dentry == ERR_PTR(error: -ENOENT))
3470 dentry = ERR_PTR(error: create_error);
3471 return dentry;
3472 }
3473
3474 if (d_in_lookup(dentry)) {
3475 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3476 nd->flags);
3477 d_lookup_done(dentry);
3478 if (unlikely(res)) {
3479 if (IS_ERR(ptr: res)) {
3480 error = PTR_ERR(ptr: res);
3481 goto out_dput;
3482 }
3483 dput(dentry);
3484 dentry = res;
3485 }
3486 }
3487
3488 /* Negative dentry, just create the file */
3489 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3490 file->f_mode |= FMODE_CREATED;
3491 audit_inode_child(parent: dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3492 if (!dir_inode->i_op->create) {
3493 error = -EACCES;
3494 goto out_dput;
3495 }
3496
3497 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3498 mode, open_flag & O_EXCL);
3499 if (error)
3500 goto out_dput;
3501 }
3502 if (unlikely(create_error) && !dentry->d_inode) {
3503 error = create_error;
3504 goto out_dput;
3505 }
3506 return dentry;
3507
3508out_dput:
3509 dput(dentry);
3510 return ERR_PTR(error);
3511}
3512
3513static const char *open_last_lookups(struct nameidata *nd,
3514 struct file *file, const struct open_flags *op)
3515{
3516 struct dentry *dir = nd->path.dentry;
3517 int open_flag = op->open_flag;
3518 bool got_write = false;
3519 struct dentry *dentry;
3520 const char *res;
3521
3522 nd->flags |= op->intent;
3523
3524 if (nd->last_type != LAST_NORM) {
3525 if (nd->depth)
3526 put_link(nd);
3527 return handle_dots(nd, type: nd->last_type);
3528 }
3529
3530 if (!(open_flag & O_CREAT)) {
3531 if (nd->last.name[nd->last.len])
3532 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3533 /* we _can_ be in RCU mode here */
3534 dentry = lookup_fast(nd);
3535 if (IS_ERR(ptr: dentry))
3536 return ERR_CAST(ptr: dentry);
3537 if (likely(dentry))
3538 goto finish_lookup;
3539
3540 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3541 return ERR_PTR(error: -ECHILD);
3542 } else {
3543 /* create side of things */
3544 if (nd->flags & LOOKUP_RCU) {
3545 if (!try_to_unlazy(nd))
3546 return ERR_PTR(error: -ECHILD);
3547 }
3548 audit_inode(name: nd->name, dentry: dir, AUDIT_INODE_PARENT);
3549 /* trailing slashes? */
3550 if (unlikely(nd->last.name[nd->last.len]))
3551 return ERR_PTR(error: -EISDIR);
3552 }
3553
3554 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3555 got_write = !mnt_want_write(mnt: nd->path.mnt);
3556 /*
3557 * do _not_ fail yet - we might not need that or fail with
3558 * a different error; let lookup_open() decide; we'll be
3559 * dropping this one anyway.
3560 */
3561 }
3562 if (open_flag & O_CREAT)
3563 inode_lock(inode: dir->d_inode);
3564 else
3565 inode_lock_shared(inode: dir->d_inode);
3566 dentry = lookup_open(nd, file, op, got_write);
3567 if (!IS_ERR(ptr: dentry) && (file->f_mode & FMODE_CREATED))
3568 fsnotify_create(dir: dir->d_inode, dentry);
3569 if (open_flag & O_CREAT)
3570 inode_unlock(inode: dir->d_inode);
3571 else
3572 inode_unlock_shared(inode: dir->d_inode);
3573
3574 if (got_write)
3575 mnt_drop_write(mnt: nd->path.mnt);
3576
3577 if (IS_ERR(ptr: dentry))
3578 return ERR_CAST(ptr: dentry);
3579
3580 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3581 dput(nd->path.dentry);
3582 nd->path.dentry = dentry;
3583 return NULL;
3584 }
3585
3586finish_lookup:
3587 if (nd->depth)
3588 put_link(nd);
3589 res = step_into(nd, flags: WALK_TRAILING, dentry);
3590 if (unlikely(res))
3591 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3592 return res;
3593}
3594
3595/*
3596 * Handle the last step of open()
3597 */
3598static int do_open(struct nameidata *nd,
3599 struct file *file, const struct open_flags *op)
3600{
3601 struct mnt_idmap *idmap;
3602 int open_flag = op->open_flag;
3603 bool do_truncate;
3604 int acc_mode;
3605 int error;
3606
3607 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3608 error = complete_walk(nd);
3609 if (error)
3610 return error;
3611 }
3612 if (!(file->f_mode & FMODE_CREATED))
3613 audit_inode(name: nd->name, dentry: nd->path.dentry, aflags: 0);
3614 idmap = mnt_idmap(mnt: nd->path.mnt);
3615 if (open_flag & O_CREAT) {
3616 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3617 return -EEXIST;
3618 if (d_is_dir(dentry: nd->path.dentry))
3619 return -EISDIR;
3620 error = may_create_in_sticky(idmap, nd,
3621 inode: d_backing_inode(upper: nd->path.dentry));
3622 if (unlikely(error))
3623 return error;
3624 }
3625 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(dentry: nd->path.dentry))
3626 return -ENOTDIR;
3627
3628 do_truncate = false;
3629 acc_mode = op->acc_mode;
3630 if (file->f_mode & FMODE_CREATED) {
3631 /* Don't check for write permission, don't truncate */
3632 open_flag &= ~O_TRUNC;
3633 acc_mode = 0;
3634 } else if (d_is_reg(dentry: nd->path.dentry) && open_flag & O_TRUNC) {
3635 error = mnt_want_write(mnt: nd->path.mnt);
3636 if (error)
3637 return error;
3638 do_truncate = true;
3639 }
3640 error = may_open(idmap, path: &nd->path, acc_mode, flag: open_flag);
3641 if (!error && !(file->f_mode & FMODE_OPENED))
3642 error = vfs_open(&nd->path, file);
3643 if (!error)
3644 error = security_file_post_open(file, mask: op->acc_mode);
3645 if (!error && do_truncate)
3646 error = handle_truncate(idmap, filp: file);
3647 if (unlikely(error > 0)) {
3648 WARN_ON(1);
3649 error = -EINVAL;
3650 }
3651 if (do_truncate)
3652 mnt_drop_write(mnt: nd->path.mnt);
3653 return error;
3654}
3655
3656/**
3657 * vfs_tmpfile - create tmpfile
3658 * @idmap: idmap of the mount the inode was found from
3659 * @parentpath: pointer to the path of the base directory
3660 * @file: file descriptor of the new tmpfile
3661 * @mode: mode of the new tmpfile
3662 *
3663 * Create a temporary file.
3664 *
3665 * If the inode has been found through an idmapped mount the idmap of
3666 * the vfsmount must be passed through @idmap. This function will then take
3667 * care to map the inode according to @idmap before checking permissions.
3668 * On non-idmapped mounts or if permission checking is to be performed on the
3669 * raw inode simply pass @nop_mnt_idmap.
3670 */
3671static int vfs_tmpfile(struct mnt_idmap *idmap,
3672 const struct path *parentpath,
3673 struct file *file, umode_t mode)
3674{
3675 struct dentry *child;
3676 struct inode *dir = d_inode(dentry: parentpath->dentry);
3677 struct inode *inode;
3678 int error;
3679 int open_flag = file->f_flags;
3680
3681 /* we want directory to be writable */
3682 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3683 if (error)
3684 return error;
3685 if (!dir->i_op->tmpfile)
3686 return -EOPNOTSUPP;
3687 child = d_alloc(parentpath->dentry, &slash_name);
3688 if (unlikely(!child))
3689 return -ENOMEM;
3690 file->f_path.mnt = parentpath->mnt;
3691 file->f_path.dentry = child;
3692 mode = vfs_prepare_mode(idmap, dir, mode, mask_perms: mode, type: mode);
3693 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3694 dput(child);
3695 if (error)
3696 return error;
3697 /* Don't check for other permissions, the inode was just created */
3698 error = may_open(idmap, path: &file->f_path, acc_mode: 0, flag: file->f_flags);
3699 if (error)
3700 return error;
3701 inode = file_inode(f: file);
3702 if (!(open_flag & O_EXCL)) {
3703 spin_lock(lock: &inode->i_lock);
3704 inode->i_state |= I_LINKABLE;
3705 spin_unlock(lock: &inode->i_lock);
3706 }
3707 security_inode_post_create_tmpfile(idmap, inode);
3708 return 0;
3709}
3710
3711/**
3712 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3713 * @idmap: idmap of the mount the inode was found from
3714 * @parentpath: path of the base directory
3715 * @mode: mode of the new tmpfile
3716 * @open_flag: flags
3717 * @cred: credentials for open
3718 *
3719 * Create and open a temporary file. The file is not accounted in nr_files,
3720 * hence this is only for kernel internal use, and must not be installed into
3721 * file tables or such.
3722 */
3723struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3724 const struct path *parentpath,
3725 umode_t mode, int open_flag,
3726 const struct cred *cred)
3727{
3728 struct file *file;
3729 int error;
3730
3731 file = alloc_empty_file_noaccount(flags: open_flag, cred);
3732 if (IS_ERR(ptr: file))
3733 return file;
3734
3735 error = vfs_tmpfile(idmap, parentpath, file, mode);
3736 if (error) {
3737 fput(file);
3738 file = ERR_PTR(error);
3739 }
3740 return file;
3741}
3742EXPORT_SYMBOL(kernel_tmpfile_open);
3743
3744static int do_tmpfile(struct nameidata *nd, unsigned flags,
3745 const struct open_flags *op,
3746 struct file *file)
3747{
3748 struct path path;
3749 int error = path_lookupat(nd, flags: flags | LOOKUP_DIRECTORY, path: &path);
3750
3751 if (unlikely(error))
3752 return error;
3753 error = mnt_want_write(mnt: path.mnt);
3754 if (unlikely(error))
3755 goto out;
3756 error = vfs_tmpfile(idmap: mnt_idmap(mnt: path.mnt), parentpath: &path, file, mode: op->mode);
3757 if (error)
3758 goto out2;
3759 audit_inode(name: nd->name, dentry: file->f_path.dentry, aflags: 0);
3760out2:
3761 mnt_drop_write(mnt: path.mnt);
3762out:
3763 path_put(&path);
3764 return error;
3765}
3766
3767static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3768{
3769 struct path path;
3770 int error = path_lookupat(nd, flags, path: &path);
3771 if (!error) {
3772 audit_inode(name: nd->name, dentry: path.dentry, aflags: 0);
3773 error = vfs_open(&path, file);
3774 path_put(&path);
3775 }
3776 return error;
3777}
3778
3779static struct file *path_openat(struct nameidata *nd,
3780 const struct open_flags *op, unsigned flags)
3781{
3782 struct file *file;
3783 int error;
3784
3785 file = alloc_empty_file(flags: op->open_flag, current_cred());
3786 if (IS_ERR(ptr: file))
3787 return file;
3788
3789 if (unlikely(file->f_flags & __O_TMPFILE)) {
3790 error = do_tmpfile(nd, flags, op, file);
3791 } else if (unlikely(file->f_flags & O_PATH)) {
3792 error = do_o_path(nd, flags, file);
3793 } else {
3794 const char *s = path_init(nd, flags);
3795 while (!(error = link_path_walk(name: s, nd)) &&
3796 (s = open_last_lookups(nd, file, op)) != NULL)
3797 ;
3798 if (!error)
3799 error = do_open(nd, file, op);
3800 terminate_walk(nd);
3801 }
3802 if (likely(!error)) {
3803 if (likely(file->f_mode & FMODE_OPENED))
3804 return file;
3805 WARN_ON(1);
3806 error = -EINVAL;
3807 }
3808 fput(file);
3809 if (error == -EOPENSTALE) {
3810 if (flags & LOOKUP_RCU)
3811 error = -ECHILD;
3812 else
3813 error = -ESTALE;
3814 }
3815 return ERR_PTR(error);
3816}
3817
3818struct file *do_filp_open(int dfd, struct filename *pathname,
3819 const struct open_flags *op)
3820{
3821 struct nameidata nd;
3822 int flags = op->lookup_flags;
3823 struct file *filp;
3824
3825 set_nameidata(p: &nd, dfd, name: pathname, NULL);
3826 filp = path_openat(nd: &nd, op, flags: flags | LOOKUP_RCU);
3827 if (unlikely(filp == ERR_PTR(-ECHILD)))
3828 filp = path_openat(nd: &nd, op, flags);
3829 if (unlikely(filp == ERR_PTR(-ESTALE)))
3830 filp = path_openat(nd: &nd, op, flags: flags | LOOKUP_REVAL);
3831 restore_nameidata();
3832 return filp;
3833}
3834
3835struct file *do_file_open_root(const struct path *root,
3836 const char *name, const struct open_flags *op)
3837{
3838 struct nameidata nd;
3839 struct file *file;
3840 struct filename *filename;
3841 int flags = op->lookup_flags;
3842
3843 if (d_is_symlink(dentry: root->dentry) && op->intent & LOOKUP_OPEN)
3844 return ERR_PTR(error: -ELOOP);
3845
3846 filename = getname_kernel(name);
3847 if (IS_ERR(ptr: filename))
3848 return ERR_CAST(ptr: filename);
3849
3850 set_nameidata(p: &nd, dfd: -1, name: filename, root);
3851 file = path_openat(nd: &nd, op, flags: flags | LOOKUP_RCU);
3852 if (unlikely(file == ERR_PTR(-ECHILD)))
3853 file = path_openat(nd: &nd, op, flags);
3854 if (unlikely(file == ERR_PTR(-ESTALE)))
3855 file = path_openat(nd: &nd, op, flags: flags | LOOKUP_REVAL);
3856 restore_nameidata();
3857 putname(filename);
3858 return file;
3859}
3860
3861static struct dentry *filename_create(int dfd, struct filename *name,
3862 struct path *path, unsigned int lookup_flags)
3863{
3864 struct dentry *dentry = ERR_PTR(error: -EEXIST);
3865 struct qstr last;
3866 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3867 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3868 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3869 int type;
3870 int err2;
3871 int error;
3872
3873 error = filename_parentat(dfd, name, flags: reval_flag, parent: path, last: &last, type: &type);
3874 if (error)
3875 return ERR_PTR(error);
3876
3877 /*
3878 * Yucky last component or no last component at all?
3879 * (foo/., foo/.., /////)
3880 */
3881 if (unlikely(type != LAST_NORM))
3882 goto out;
3883
3884 /* don't fail immediately if it's r/o, at least try to report other errors */
3885 err2 = mnt_want_write(mnt: path->mnt);
3886 /*
3887 * Do the final lookup. Suppress 'create' if there is a trailing
3888 * '/', and a directory wasn't requested.
3889 */
3890 if (last.name[last.len] && !want_dir)
3891 create_flags = 0;
3892 inode_lock_nested(inode: path->dentry->d_inode, subclass: I_MUTEX_PARENT);
3893 dentry = lookup_one_qstr_excl(&last, path->dentry,
3894 reval_flag | create_flags);
3895 if (IS_ERR(ptr: dentry))
3896 goto unlock;
3897
3898 error = -EEXIST;
3899 if (d_is_positive(dentry))
3900 goto fail;
3901
3902 /*
3903 * Special case - lookup gave negative, but... we had foo/bar/
3904 * From the vfs_mknod() POV we just have a negative dentry -
3905 * all is fine. Let's be bastards - you had / on the end, you've
3906 * been asking for (non-existent) directory. -ENOENT for you.
3907 */
3908 if (unlikely(!create_flags)) {
3909 error = -ENOENT;
3910 goto fail;
3911 }
3912 if (unlikely(err2)) {
3913 error = err2;
3914 goto fail;
3915 }
3916 return dentry;
3917fail:
3918 dput(dentry);
3919 dentry = ERR_PTR(error);
3920unlock:
3921 inode_unlock(inode: path->dentry->d_inode);
3922 if (!err2)
3923 mnt_drop_write(mnt: path->mnt);
3924out:
3925 path_put(path);
3926 return dentry;
3927}
3928
3929struct dentry *kern_path_create(int dfd, const char *pathname,
3930 struct path *path, unsigned int lookup_flags)
3931{
3932 struct filename *filename = getname_kernel(pathname);
3933 struct dentry *res = filename_create(dfd, name: filename, path, lookup_flags);
3934
3935 putname(filename);
3936 return res;
3937}
3938EXPORT_SYMBOL(kern_path_create);
3939
3940void done_path_create(struct path *path, struct dentry *dentry)
3941{
3942 dput(dentry);
3943 inode_unlock(inode: path->dentry->d_inode);
3944 mnt_drop_write(mnt: path->mnt);
3945 path_put(path);
3946}
3947EXPORT_SYMBOL(done_path_create);
3948
3949inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3950 struct path *path, unsigned int lookup_flags)
3951{
3952 struct filename *filename = getname(filename: pathname);
3953 struct dentry *res = filename_create(dfd, name: filename, path, lookup_flags);
3954
3955 putname(filename);
3956 return res;
3957}
3958EXPORT_SYMBOL(user_path_create);
3959
3960/**
3961 * vfs_mknod - create device node or file
3962 * @idmap: idmap of the mount the inode was found from
3963 * @dir: inode of @dentry
3964 * @dentry: pointer to dentry of the base directory
3965 * @mode: mode of the new device node or file
3966 * @dev: device number of device to create
3967 *
3968 * Create a device node or file.
3969 *
3970 * If the inode has been found through an idmapped mount the idmap of
3971 * the vfsmount must be passed through @idmap. This function will then take
3972 * care to map the inode according to @idmap before checking permissions.
3973 * On non-idmapped mounts or if permission checking is to be performed on the
3974 * raw inode simply pass @nop_mnt_idmap.
3975 */
3976int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3977 struct dentry *dentry, umode_t mode, dev_t dev)
3978{
3979 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3980 int error = may_create(idmap, dir, child: dentry);
3981
3982 if (error)
3983 return error;
3984
3985 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3986 !capable(CAP_MKNOD))
3987 return -EPERM;
3988
3989 if (!dir->i_op->mknod)
3990 return -EPERM;
3991
3992 mode = vfs_prepare_mode(idmap, dir, mode, mask_perms: mode, type: mode);
3993 error = devcgroup_inode_mknod(mode, dev);
3994 if (error)
3995 return error;
3996
3997 error = security_inode_mknod(dir, dentry, mode, dev);
3998 if (error)
3999 return error;
4000
4001 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4002 if (!error)
4003 fsnotify_create(dir, dentry);
4004 return error;
4005}
4006EXPORT_SYMBOL(vfs_mknod);
4007
4008static int may_mknod(umode_t mode)
4009{
4010 switch (mode & S_IFMT) {
4011 case S_IFREG:
4012 case S_IFCHR:
4013 case S_IFBLK:
4014 case S_IFIFO:
4015 case S_IFSOCK:
4016 case 0: /* zero mode translates to S_IFREG */
4017 return 0;
4018 case S_IFDIR:
4019 return -EPERM;
4020 default:
4021 return -EINVAL;
4022 }
4023}
4024
4025static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4026 unsigned int dev)
4027{
4028 struct mnt_idmap *idmap;
4029 struct dentry *dentry;
4030 struct path path;
4031 int error;
4032 unsigned int lookup_flags = 0;
4033
4034 error = may_mknod(mode);
4035 if (error)
4036 goto out1;
4037retry:
4038 dentry = filename_create(dfd, name, path: &path, lookup_flags);
4039 error = PTR_ERR(ptr: dentry);
4040 if (IS_ERR(ptr: dentry))
4041 goto out1;
4042
4043 error = security_path_mknod(dir: &path, dentry,
4044 mode: mode_strip_umask(dir: path.dentry->d_inode, mode), dev);
4045 if (error)
4046 goto out2;
4047
4048 idmap = mnt_idmap(mnt: path.mnt);
4049 switch (mode & S_IFMT) {
4050 case 0: case S_IFREG:
4051 error = vfs_create(idmap, path.dentry->d_inode,
4052 dentry, mode, true);
4053 if (!error)
4054 security_path_post_mknod(idmap, dentry);
4055 break;
4056 case S_IFCHR: case S_IFBLK:
4057 error = vfs_mknod(idmap, path.dentry->d_inode,
4058 dentry, mode, new_decode_dev(dev));
4059 break;
4060 case S_IFIFO: case S_IFSOCK:
4061 error = vfs_mknod(idmap, path.dentry->d_inode,
4062 dentry, mode, 0);
4063 break;
4064 }
4065out2:
4066 done_path_create(&path, dentry);
4067 if (retry_estale(error, flags: lookup_flags)) {
4068 lookup_flags |= LOOKUP_REVAL;
4069 goto retry;
4070 }
4071out1:
4072 putname(name);
4073 return error;
4074}
4075
4076SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4077 unsigned int, dev)
4078{
4079 return do_mknodat(dfd, name: getname(filename), mode, dev);
4080}
4081
4082SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4083{
4084 return do_mknodat(AT_FDCWD, name: getname(filename), mode, dev);
4085}
4086
4087/**
4088 * vfs_mkdir - create directory
4089 * @idmap: idmap of the mount the inode was found from
4090 * @dir: inode of @dentry
4091 * @dentry: pointer to dentry of the base directory
4092 * @mode: mode of the new directory
4093 *
4094 * Create a directory.
4095 *
4096 * If the inode has been found through an idmapped mount the idmap of
4097 * the vfsmount must be passed through @idmap. This function will then take
4098 * care to map the inode according to @idmap before checking permissions.
4099 * On non-idmapped mounts or if permission checking is to be performed on the
4100 * raw inode simply pass @nop_mnt_idmap.
4101 */
4102int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4103 struct dentry *dentry, umode_t mode)
4104{
4105 int error;
4106 unsigned max_links = dir->i_sb->s_max_links;
4107
4108 error = may_create(idmap, dir, child: dentry);
4109 if (error)
4110 return error;
4111
4112 if (!dir->i_op->mkdir)
4113 return -EPERM;
4114
4115 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, type: 0);
4116 error = security_inode_mkdir(dir, dentry, mode);
4117 if (error)
4118 return error;
4119
4120 if (max_links && dir->i_nlink >= max_links)
4121 return -EMLINK;
4122
4123 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4124 if (!error)
4125 fsnotify_mkdir(dir, dentry);
4126 return error;
4127}
4128EXPORT_SYMBOL(vfs_mkdir);
4129
4130int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4131{
4132 struct dentry *dentry;
4133 struct path path;
4134 int error;
4135 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4136
4137retry:
4138 dentry = filename_create(dfd, name, path: &path, lookup_flags);
4139 error = PTR_ERR(ptr: dentry);
4140 if (IS_ERR(ptr: dentry))
4141 goto out_putname;
4142
4143 error = security_path_mkdir(dir: &path, dentry,
4144 mode: mode_strip_umask(dir: path.dentry->d_inode, mode));
4145 if (!error) {
4146 error = vfs_mkdir(mnt_idmap(mnt: path.mnt), path.dentry->d_inode,
4147 dentry, mode);
4148 }
4149 done_path_create(&path, dentry);
4150 if (retry_estale(error, flags: lookup_flags)) {
4151 lookup_flags |= LOOKUP_REVAL;
4152 goto retry;
4153 }
4154out_putname:
4155 putname(name);
4156 return error;
4157}
4158
4159SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4160{
4161 return do_mkdirat(dfd, name: getname(filename: pathname), mode);
4162}
4163
4164SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4165{
4166 return do_mkdirat(AT_FDCWD, name: getname(filename: pathname), mode);
4167}
4168
4169/**
4170 * vfs_rmdir - remove directory
4171 * @idmap: idmap of the mount the inode was found from
4172 * @dir: inode of @dentry
4173 * @dentry: pointer to dentry of the base directory
4174 *
4175 * Remove a directory.
4176 *
4177 * If the inode has been found through an idmapped mount the idmap of
4178 * the vfsmount must be passed through @idmap. This function will then take
4179 * care to map the inode according to @idmap before checking permissions.
4180 * On non-idmapped mounts or if permission checking is to be performed on the
4181 * raw inode simply pass @nop_mnt_idmap.
4182 */
4183int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4184 struct dentry *dentry)
4185{
4186 int error = may_delete(idmap, dir, victim: dentry, isdir: 1);
4187
4188 if (error)
4189 return error;
4190
4191 if (!dir->i_op->rmdir)
4192 return -EPERM;
4193
4194 dget(dentry);
4195 inode_lock(inode: dentry->d_inode);
4196
4197 error = -EBUSY;
4198 if (is_local_mountpoint(dentry) ||
4199 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4200 goto out;
4201
4202 error = security_inode_rmdir(dir, dentry);
4203 if (error)
4204 goto out;
4205
4206 error = dir->i_op->rmdir(dir, dentry);
4207 if (error)
4208 goto out;
4209
4210 shrink_dcache_parent(dentry);
4211 dentry->d_inode->i_flags |= S_DEAD;
4212 dont_mount(dentry);
4213 detach_mounts(dentry);
4214
4215out:
4216 inode_unlock(inode: dentry->d_inode);
4217 dput(dentry);
4218 if (!error)
4219 d_delete_notify(dir, dentry);
4220 return error;
4221}
4222EXPORT_SYMBOL(vfs_rmdir);
4223
4224int do_rmdir(int dfd, struct filename *name)
4225{
4226 int error;
4227 struct dentry *dentry;
4228 struct path path;
4229 struct qstr last;
4230 int type;
4231 unsigned int lookup_flags = 0;
4232retry:
4233 error = filename_parentat(dfd, name, flags: lookup_flags, parent: &path, last: &last, type: &type);
4234 if (error)
4235 goto exit1;
4236
4237 switch (type) {
4238 case LAST_DOTDOT:
4239 error = -ENOTEMPTY;
4240 goto exit2;
4241 case LAST_DOT:
4242 error = -EINVAL;
4243 goto exit2;
4244 case LAST_ROOT:
4245 error = -EBUSY;
4246 goto exit2;
4247 }
4248
4249 error = mnt_want_write(mnt: path.mnt);
4250 if (error)
4251 goto exit2;
4252
4253 inode_lock_nested(inode: path.dentry->d_inode, subclass: I_MUTEX_PARENT);
4254 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4255 error = PTR_ERR(ptr: dentry);
4256 if (IS_ERR(ptr: dentry))
4257 goto exit3;
4258 if (!dentry->d_inode) {
4259 error = -ENOENT;
4260 goto exit4;
4261 }
4262 error = security_path_rmdir(dir: &path, dentry);
4263 if (error)
4264 goto exit4;
4265 error = vfs_rmdir(mnt_idmap(mnt: path.mnt), path.dentry->d_inode, dentry);
4266exit4:
4267 dput(dentry);
4268exit3:
4269 inode_unlock(inode: path.dentry->d_inode);
4270 mnt_drop_write(mnt: path.mnt);
4271exit2:
4272 path_put(&path);
4273 if (retry_estale(error, flags: lookup_flags)) {
4274 lookup_flags |= LOOKUP_REVAL;
4275 goto retry;
4276 }
4277exit1:
4278 putname(name);
4279 return error;
4280}
4281
4282SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4283{
4284 return do_rmdir(AT_FDCWD, name: getname(filename: pathname));
4285}
4286
4287/**
4288 * vfs_unlink - unlink a filesystem object
4289 * @idmap: idmap of the mount the inode was found from
4290 * @dir: parent directory
4291 * @dentry: victim
4292 * @delegated_inode: returns victim inode, if the inode is delegated.
4293 *
4294 * The caller must hold dir->i_mutex.
4295 *
4296 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4297 * return a reference to the inode in delegated_inode. The caller
4298 * should then break the delegation on that inode and retry. Because
4299 * breaking a delegation may take a long time, the caller should drop
4300 * dir->i_mutex before doing so.
4301 *
4302 * Alternatively, a caller may pass NULL for delegated_inode. This may
4303 * be appropriate for callers that expect the underlying filesystem not
4304 * to be NFS exported.
4305 *
4306 * If the inode has been found through an idmapped mount the idmap of
4307 * the vfsmount must be passed through @idmap. This function will then take
4308 * care to map the inode according to @idmap before checking permissions.
4309 * On non-idmapped mounts or if permission checking is to be performed on the
4310 * raw inode simply pass @nop_mnt_idmap.
4311 */
4312int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4313 struct dentry *dentry, struct inode **delegated_inode)
4314{
4315 struct inode *target = dentry->d_inode;
4316 int error = may_delete(idmap, dir, victim: dentry, isdir: 0);
4317
4318 if (error)
4319 return error;
4320
4321 if (!dir->i_op->unlink)
4322 return -EPERM;
4323
4324 inode_lock(inode: target);
4325 if (IS_SWAPFILE(target))
4326 error = -EPERM;
4327 else if (is_local_mountpoint(dentry))
4328 error = -EBUSY;
4329 else {
4330 error = security_inode_unlink(dir, dentry);
4331 if (!error) {
4332 error = try_break_deleg(inode: target, delegated_inode);
4333 if (error)
4334 goto out;
4335 error = dir->i_op->unlink(dir, dentry);
4336 if (!error) {
4337 dont_mount(dentry);
4338 detach_mounts(dentry);
4339 }
4340 }
4341 }
4342out:
4343 inode_unlock(inode: target);
4344
4345 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4346 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4347 fsnotify_unlink(dir, dentry);
4348 } else if (!error) {
4349 fsnotify_link_count(inode: target);
4350 d_delete_notify(dir, dentry);
4351 }
4352
4353 return error;
4354}
4355EXPORT_SYMBOL(vfs_unlink);
4356
4357/*
4358 * Make sure that the actual truncation of the file will occur outside its
4359 * directory's i_mutex. Truncate can take a long time if there is a lot of
4360 * writeout happening, and we don't want to prevent access to the directory
4361 * while waiting on the I/O.
4362 */
4363int do_unlinkat(int dfd, struct filename *name)
4364{
4365 int error;
4366 struct dentry *dentry;
4367 struct path path;
4368 struct qstr last;
4369 int type;
4370 struct inode *inode = NULL;
4371 struct inode *delegated_inode = NULL;
4372 unsigned int lookup_flags = 0;
4373retry:
4374 error = filename_parentat(dfd, name, flags: lookup_flags, parent: &path, last: &last, type: &type);
4375 if (error)
4376 goto exit1;
4377
4378 error = -EISDIR;
4379 if (type != LAST_NORM)
4380 goto exit2;
4381
4382 error = mnt_want_write(mnt: path.mnt);
4383 if (error)
4384 goto exit2;
4385retry_deleg:
4386 inode_lock_nested(inode: path.dentry->d_inode, subclass: I_MUTEX_PARENT);
4387 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4388 error = PTR_ERR(ptr: dentry);
4389 if (!IS_ERR(ptr: dentry)) {
4390
4391 /* Why not before? Because we want correct error value */
4392 if (last.name[last.len] || d_is_negative(dentry))
4393 goto slashes;
4394 inode = dentry->d_inode;
4395 ihold(inode);
4396 error = security_path_unlink(dir: &path, dentry);
4397 if (error)
4398 goto exit3;
4399 error = vfs_unlink(mnt_idmap(mnt: path.mnt), path.dentry->d_inode,
4400 dentry, &delegated_inode);
4401exit3:
4402 dput(dentry);
4403 }
4404 inode_unlock(inode: path.dentry->d_inode);
4405 if (inode)
4406 iput(inode); /* truncate the inode here */
4407 inode = NULL;
4408 if (delegated_inode) {
4409 error = break_deleg_wait(delegated_inode: &delegated_inode);
4410 if (!error)
4411 goto retry_deleg;
4412 }
4413 mnt_drop_write(mnt: path.mnt);
4414exit2:
4415 path_put(&path);
4416 if (retry_estale(error, flags: lookup_flags)) {
4417 lookup_flags |= LOOKUP_REVAL;
4418 inode = NULL;
4419 goto retry;
4420 }
4421exit1:
4422 putname(name);
4423 return error;
4424
4425slashes:
4426 if (d_is_negative(dentry))
4427 error = -ENOENT;
4428 else if (d_is_dir(dentry))
4429 error = -EISDIR;
4430 else
4431 error = -ENOTDIR;
4432 goto exit3;
4433}
4434
4435SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4436{
4437 if ((flag & ~AT_REMOVEDIR) != 0)
4438 return -EINVAL;
4439
4440 if (flag & AT_REMOVEDIR)
4441 return do_rmdir(dfd, name: getname(filename: pathname));
4442 return do_unlinkat(dfd, name: getname(filename: pathname));
4443}
4444
4445SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4446{
4447 return do_unlinkat(AT_FDCWD, name: getname(filename: pathname));
4448}
4449
4450/**
4451 * vfs_symlink - create symlink
4452 * @idmap: idmap of the mount the inode was found from
4453 * @dir: inode of @dentry
4454 * @dentry: pointer to dentry of the base directory
4455 * @oldname: name of the file to link to
4456 *
4457 * Create a symlink.
4458 *
4459 * If the inode has been found through an idmapped mount the idmap of
4460 * the vfsmount must be passed through @idmap. This function will then take
4461 * care to map the inode according to @idmap before checking permissions.
4462 * On non-idmapped mounts or if permission checking is to be performed on the
4463 * raw inode simply pass @nop_mnt_idmap.
4464 */
4465int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4466 struct dentry *dentry, const char *oldname)
4467{
4468 int error;
4469
4470 error = may_create(idmap, dir, child: dentry);
4471 if (error)
4472 return error;
4473
4474 if (!dir->i_op->symlink)
4475 return -EPERM;
4476
4477 error = security_inode_symlink(dir, dentry, old_name: oldname);
4478 if (error)
4479 return error;
4480
4481 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4482 if (!error)
4483 fsnotify_create(dir, dentry);
4484 return error;
4485}
4486EXPORT_SYMBOL(vfs_symlink);
4487
4488int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4489{
4490 int error;
4491 struct dentry *dentry;
4492 struct path path;
4493 unsigned int lookup_flags = 0;
4494
4495 if (IS_ERR(ptr: from)) {
4496 error = PTR_ERR(ptr: from);
4497 goto out_putnames;
4498 }
4499retry:
4500 dentry = filename_create(dfd: newdfd, name: to, path: &path, lookup_flags);
4501 error = PTR_ERR(ptr: dentry);
4502 if (IS_ERR(ptr: dentry))
4503 goto out_putnames;
4504
4505 error = security_path_symlink(dir: &path, dentry, old_name: from->name);
4506 if (!error)
4507 error = vfs_symlink(mnt_idmap(mnt: path.mnt), path.dentry->d_inode,
4508 dentry, from->name);
4509 done_path_create(&path, dentry);
4510 if (retry_estale(error, flags: lookup_flags)) {
4511 lookup_flags |= LOOKUP_REVAL;
4512 goto retry;
4513 }
4514out_putnames:
4515 putname(to);
4516 putname(from);
4517 return error;
4518}
4519
4520SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4521 int, newdfd, const char __user *, newname)
4522{
4523 return do_symlinkat(from: getname(filename: oldname), newdfd, to: getname(filename: newname));
4524}
4525
4526SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4527{
4528 return do_symlinkat(from: getname(filename: oldname), AT_FDCWD, to: getname(filename: newname));
4529}
4530
4531/**
4532 * vfs_link - create a new link
4533 * @old_dentry: object to be linked
4534 * @idmap: idmap of the mount
4535 * @dir: new parent
4536 * @new_dentry: where to create the new link
4537 * @delegated_inode: returns inode needing a delegation break
4538 *
4539 * The caller must hold dir->i_mutex
4540 *
4541 * If vfs_link discovers a delegation on the to-be-linked file in need
4542 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4543 * inode in delegated_inode. The caller should then break the delegation
4544 * and retry. Because breaking a delegation may take a long time, the
4545 * caller should drop the i_mutex before doing so.
4546 *
4547 * Alternatively, a caller may pass NULL for delegated_inode. This may
4548 * be appropriate for callers that expect the underlying filesystem not
4549 * to be NFS exported.
4550 *
4551 * If the inode has been found through an idmapped mount the idmap of
4552 * the vfsmount must be passed through @idmap. This function will then take
4553 * care to map the inode according to @idmap before checking permissions.
4554 * On non-idmapped mounts or if permission checking is to be performed on the
4555 * raw inode simply pass @nop_mnt_idmap.
4556 */
4557int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4558 struct inode *dir, struct dentry *new_dentry,
4559 struct inode **delegated_inode)
4560{
4561 struct inode *inode = old_dentry->d_inode;
4562 unsigned max_links = dir->i_sb->s_max_links;
4563 int error;
4564
4565 if (!inode)
4566 return -ENOENT;
4567
4568 error = may_create(idmap, dir, child: new_dentry);
4569 if (error)
4570 return error;
4571
4572 if (dir->i_sb != inode->i_sb)
4573 return -EXDEV;
4574
4575 /*
4576 * A link to an append-only or immutable file cannot be created.
4577 */
4578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4579 return -EPERM;
4580 /*
4581 * Updating the link count will likely cause i_uid and i_gid to
4582 * be writen back improperly if their true value is unknown to
4583 * the vfs.
4584 */
4585 if (HAS_UNMAPPED_ID(idmap, inode))
4586 return -EPERM;
4587 if (!dir->i_op->link)
4588 return -EPERM;
4589 if (S_ISDIR(inode->i_mode))
4590 return -EPERM;
4591
4592 error = security_inode_link(old_dentry, dir, new_dentry);
4593 if (error)
4594 return error;
4595
4596 inode_lock(inode);
4597 /* Make sure we don't allow creating hardlink to an unlinked file */
4598 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4599 error = -ENOENT;
4600 else if (max_links && inode->i_nlink >= max_links)
4601 error = -EMLINK;
4602 else {
4603 error = try_break_deleg(inode, delegated_inode);
4604 if (!error)
4605 error = dir->i_op->link(old_dentry, dir, new_dentry);
4606 }
4607
4608 if (!error && (inode->i_state & I_LINKABLE)) {
4609 spin_lock(lock: &inode->i_lock);
4610 inode->i_state &= ~I_LINKABLE;
4611 spin_unlock(lock: &inode->i_lock);
4612 }
4613 inode_unlock(inode);
4614 if (!error)
4615 fsnotify_link(dir, inode, new_dentry);
4616 return error;
4617}
4618EXPORT_SYMBOL(vfs_link);
4619
4620/*
4621 * Hardlinks are often used in delicate situations. We avoid
4622 * security-related surprises by not following symlinks on the
4623 * newname. --KAB
4624 *
4625 * We don't follow them on the oldname either to be compatible
4626 * with linux 2.0, and to avoid hard-linking to directories
4627 * and other special files. --ADM
4628 */
4629int do_linkat(int olddfd, struct filename *old, int newdfd,
4630 struct filename *new, int flags)
4631{
4632 struct mnt_idmap *idmap;
4633 struct dentry *new_dentry;
4634 struct path old_path, new_path;
4635 struct inode *delegated_inode = NULL;
4636 int how = 0;
4637 int error;
4638
4639 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4640 error = -EINVAL;
4641 goto out_putnames;
4642 }
4643 /*
4644 * To use null names we require CAP_DAC_READ_SEARCH
4645 * This ensures that not everyone will be able to create
4646 * handlink using the passed filedescriptor.
4647 */
4648 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4649 error = -ENOENT;
4650 goto out_putnames;
4651 }
4652
4653 if (flags & AT_SYMLINK_FOLLOW)
4654 how |= LOOKUP_FOLLOW;
4655retry:
4656 error = filename_lookup(dfd: olddfd, name: old, flags: how, path: &old_path, NULL);
4657 if (error)
4658 goto out_putnames;
4659
4660 new_dentry = filename_create(dfd: newdfd, name: new, path: &new_path,
4661 lookup_flags: (how & LOOKUP_REVAL));
4662 error = PTR_ERR(ptr: new_dentry);
4663 if (IS_ERR(ptr: new_dentry))
4664 goto out_putpath;
4665
4666 error = -EXDEV;
4667 if (old_path.mnt != new_path.mnt)
4668 goto out_dput;
4669 idmap = mnt_idmap(mnt: new_path.mnt);
4670 error = may_linkat(idmap, link: &old_path);
4671 if (unlikely(error))
4672 goto out_dput;
4673 error = security_path_link(old_dentry: old_path.dentry, new_dir: &new_path, new_dentry);
4674 if (error)
4675 goto out_dput;
4676 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4677 new_dentry, &delegated_inode);
4678out_dput:
4679 done_path_create(&new_path, new_dentry);
4680 if (delegated_inode) {
4681 error = break_deleg_wait(delegated_inode: &delegated_inode);
4682 if (!error) {
4683 path_put(&old_path);
4684 goto retry;
4685 }
4686 }
4687 if (retry_estale(error, flags: how)) {
4688 path_put(&old_path);
4689 how |= LOOKUP_REVAL;
4690 goto retry;
4691 }
4692out_putpath:
4693 path_put(&old_path);
4694out_putnames:
4695 putname(old);
4696 putname(new);
4697
4698 return error;
4699}
4700
4701SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4702 int, newdfd, const char __user *, newname, int, flags)
4703{
4704 return do_linkat(olddfd, old: getname_uflags(filename: oldname, uflags: flags),
4705 newdfd, new: getname(filename: newname), flags);
4706}
4707
4708SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4709{
4710 return do_linkat(AT_FDCWD, old: getname(filename: oldname), AT_FDCWD, new: getname(filename: newname), flags: 0);
4711}
4712
4713/**
4714 * vfs_rename - rename a filesystem object
4715 * @rd: pointer to &struct renamedata info
4716 *
4717 * The caller must hold multiple mutexes--see lock_rename()).
4718 *
4719 * If vfs_rename discovers a delegation in need of breaking at either
4720 * the source or destination, it will return -EWOULDBLOCK and return a
4721 * reference to the inode in delegated_inode. The caller should then
4722 * break the delegation and retry. Because breaking a delegation may
4723 * take a long time, the caller should drop all locks before doing
4724 * so.
4725 *
4726 * Alternatively, a caller may pass NULL for delegated_inode. This may
4727 * be appropriate for callers that expect the underlying filesystem not
4728 * to be NFS exported.
4729 *
4730 * The worst of all namespace operations - renaming directory. "Perverted"
4731 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4732 * Problems:
4733 *
4734 * a) we can get into loop creation.
4735 * b) race potential - two innocent renames can create a loop together.
4736 * That's where 4.4BSD screws up. Current fix: serialization on
4737 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4738 * story.
4739 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4740 * and source (if it's a non-directory or a subdirectory that moves to
4741 * different parent).
4742 * And that - after we got ->i_mutex on parents (until then we don't know
4743 * whether the target exists). Solution: try to be smart with locking
4744 * order for inodes. We rely on the fact that tree topology may change
4745 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4746 * move will be locked. Thus we can rank directories by the tree
4747 * (ancestors first) and rank all non-directories after them.
4748 * That works since everybody except rename does "lock parent, lookup,
4749 * lock child" and rename is under ->s_vfs_rename_mutex.
4750 * HOWEVER, it relies on the assumption that any object with ->lookup()
4751 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4752 * we'd better make sure that there's no link(2) for them.
4753 * d) conversion from fhandle to dentry may come in the wrong moment - when
4754 * we are removing the target. Solution: we will have to grab ->i_mutex
4755 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4756 * ->i_mutex on parents, which works but leads to some truly excessive
4757 * locking].
4758 */
4759int vfs_rename(struct renamedata *rd)
4760{
4761 int error;
4762 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4763 struct dentry *old_dentry = rd->old_dentry;
4764 struct dentry *new_dentry = rd->new_dentry;
4765 struct inode **delegated_inode = rd->delegated_inode;
4766 unsigned int flags = rd->flags;
4767 bool is_dir = d_is_dir(dentry: old_dentry);
4768 struct inode *source = old_dentry->d_inode;
4769 struct inode *target = new_dentry->d_inode;
4770 bool new_is_dir = false;
4771 unsigned max_links = new_dir->i_sb->s_max_links;
4772 struct name_snapshot old_name;
4773 bool lock_old_subdir, lock_new_subdir;
4774
4775 if (source == target)
4776 return 0;
4777
4778 error = may_delete(idmap: rd->old_mnt_idmap, dir: old_dir, victim: old_dentry, isdir: is_dir);
4779 if (error)
4780 return error;
4781
4782 if (!target) {
4783 error = may_create(idmap: rd->new_mnt_idmap, dir: new_dir, child: new_dentry);
4784 } else {
4785 new_is_dir = d_is_dir(dentry: new_dentry);
4786
4787 if (!(flags & RENAME_EXCHANGE))
4788 error = may_delete(idmap: rd->new_mnt_idmap, dir: new_dir,
4789 victim: new_dentry, isdir: is_dir);
4790 else
4791 error = may_delete(idmap: rd->new_mnt_idmap, dir: new_dir,
4792 victim: new_dentry, isdir: new_is_dir);
4793 }
4794 if (error)
4795 return error;
4796
4797 if (!old_dir->i_op->rename)
4798 return -EPERM;
4799
4800 /*
4801 * If we are going to change the parent - check write permissions,
4802 * we'll need to flip '..'.
4803 */
4804 if (new_dir != old_dir) {
4805 if (is_dir) {
4806 error = inode_permission(rd->old_mnt_idmap, source,
4807 MAY_WRITE);
4808 if (error)
4809 return error;
4810 }
4811 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4812 error = inode_permission(rd->new_mnt_idmap, target,
4813 MAY_WRITE);
4814 if (error)
4815 return error;
4816 }
4817 }
4818
4819 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4820 flags);
4821 if (error)
4822 return error;
4823
4824 take_dentry_name_snapshot(&old_name, old_dentry);
4825 dget(dentry: new_dentry);
4826 /*
4827 * Lock children.
4828 * The source subdirectory needs to be locked on cross-directory
4829 * rename or cross-directory exchange since its parent changes.
4830 * The target subdirectory needs to be locked on cross-directory
4831 * exchange due to parent change and on any rename due to becoming
4832 * a victim.
4833 * Non-directories need locking in all cases (for NFS reasons);
4834 * they get locked after any subdirectories (in inode address order).
4835 *
4836 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4837 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4838 */
4839 lock_old_subdir = new_dir != old_dir;
4840 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4841 if (is_dir) {
4842 if (lock_old_subdir)
4843 inode_lock_nested(inode: source, subclass: I_MUTEX_CHILD);
4844 if (target && (!new_is_dir || lock_new_subdir))
4845 inode_lock(inode: target);
4846 } else if (new_is_dir) {
4847 if (lock_new_subdir)
4848 inode_lock_nested(inode: target, subclass: I_MUTEX_CHILD);
4849 inode_lock(inode: source);
4850 } else {
4851 lock_two_nondirectories(source, target);
4852 }
4853
4854 error = -EPERM;
4855 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4856 goto out;
4857
4858 error = -EBUSY;
4859 if (is_local_mountpoint(dentry: old_dentry) || is_local_mountpoint(dentry: new_dentry))
4860 goto out;
4861
4862 if (max_links && new_dir != old_dir) {
4863 error = -EMLINK;
4864 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4865 goto out;
4866 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4867 old_dir->i_nlink >= max_links)
4868 goto out;
4869 }
4870 if (!is_dir) {
4871 error = try_break_deleg(inode: source, delegated_inode);
4872 if (error)
4873 goto out;
4874 }
4875 if (target && !new_is_dir) {
4876 error = try_break_deleg(inode: target, delegated_inode);
4877 if (error)
4878 goto out;
4879 }
4880 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4881 new_dir, new_dentry, flags);
4882 if (error)
4883 goto out;
4884
4885 if (!(flags & RENAME_EXCHANGE) && target) {
4886 if (is_dir) {
4887 shrink_dcache_parent(new_dentry);
4888 target->i_flags |= S_DEAD;
4889 }
4890 dont_mount(dentry: new_dentry);
4891 detach_mounts(dentry: new_dentry);
4892 }
4893 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4894 if (!(flags & RENAME_EXCHANGE))
4895 d_move(old_dentry, new_dentry);
4896 else
4897 d_exchange(old_dentry, new_dentry);
4898 }
4899out:
4900 if (!is_dir || lock_old_subdir)
4901 inode_unlock(inode: source);
4902 if (target && (!new_is_dir || lock_new_subdir))
4903 inode_unlock(inode: target);
4904 dput(new_dentry);
4905 if (!error) {
4906 fsnotify_move(old_dir, new_dir, old_name: &old_name.name, isdir: is_dir,
4907 target: !(flags & RENAME_EXCHANGE) ? target : NULL, moved: old_dentry);
4908 if (flags & RENAME_EXCHANGE) {
4909 fsnotify_move(old_dir: new_dir, new_dir: old_dir, old_name: &old_dentry->d_name,
4910 isdir: new_is_dir, NULL, moved: new_dentry);
4911 }
4912 }
4913 release_dentry_name_snapshot(&old_name);
4914
4915 return error;
4916}
4917EXPORT_SYMBOL(vfs_rename);
4918
4919int do_renameat2(int olddfd, struct filename *from, int newdfd,
4920 struct filename *to, unsigned int flags)
4921{
4922 struct renamedata rd;
4923 struct dentry *old_dentry, *new_dentry;
4924 struct dentry *trap;
4925 struct path old_path, new_path;
4926 struct qstr old_last, new_last;
4927 int old_type, new_type;
4928 struct inode *delegated_inode = NULL;
4929 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4930 bool should_retry = false;
4931 int error = -EINVAL;
4932
4933 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4934 goto put_names;
4935
4936 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4937 (flags & RENAME_EXCHANGE))
4938 goto put_names;
4939
4940 if (flags & RENAME_EXCHANGE)
4941 target_flags = 0;
4942
4943retry:
4944 error = filename_parentat(dfd: olddfd, name: from, flags: lookup_flags, parent: &old_path,
4945 last: &old_last, type: &old_type);
4946 if (error)
4947 goto put_names;
4948
4949 error = filename_parentat(dfd: newdfd, name: to, flags: lookup_flags, parent: &new_path, last: &new_last,
4950 type: &new_type);
4951 if (error)
4952 goto exit1;
4953
4954 error = -EXDEV;
4955 if (old_path.mnt != new_path.mnt)
4956 goto exit2;
4957
4958 error = -EBUSY;
4959 if (old_type != LAST_NORM)
4960 goto exit2;
4961
4962 if (flags & RENAME_NOREPLACE)
4963 error = -EEXIST;
4964 if (new_type != LAST_NORM)
4965 goto exit2;
4966
4967 error = mnt_want_write(mnt: old_path.mnt);
4968 if (error)
4969 goto exit2;
4970
4971retry_deleg:
4972 trap = lock_rename(new_path.dentry, old_path.dentry);
4973 if (IS_ERR(ptr: trap)) {
4974 error = PTR_ERR(ptr: trap);
4975 goto exit_lock_rename;
4976 }
4977
4978 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4979 lookup_flags);
4980 error = PTR_ERR(ptr: old_dentry);
4981 if (IS_ERR(ptr: old_dentry))
4982 goto exit3;
4983 /* source must exist */
4984 error = -ENOENT;
4985 if (d_is_negative(dentry: old_dentry))
4986 goto exit4;
4987 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4988 lookup_flags | target_flags);
4989 error = PTR_ERR(ptr: new_dentry);
4990 if (IS_ERR(ptr: new_dentry))
4991 goto exit4;
4992 error = -EEXIST;
4993 if ((flags & RENAME_NOREPLACE) && d_is_positive(dentry: new_dentry))
4994 goto exit5;
4995 if (flags & RENAME_EXCHANGE) {
4996 error = -ENOENT;
4997 if (d_is_negative(dentry: new_dentry))
4998 goto exit5;
4999
5000 if (!d_is_dir(dentry: new_dentry)) {
5001 error = -ENOTDIR;
5002 if (new_last.name[new_last.len])
5003 goto exit5;
5004 }
5005 }
5006 /* unless the source is a directory trailing slashes give -ENOTDIR */
5007 if (!d_is_dir(dentry: old_dentry)) {
5008 error = -ENOTDIR;
5009 if (old_last.name[old_last.len])
5010 goto exit5;
5011 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5012 goto exit5;
5013 }
5014 /* source should not be ancestor of target */
5015 error = -EINVAL;
5016 if (old_dentry == trap)
5017 goto exit5;
5018 /* target should not be an ancestor of source */
5019 if (!(flags & RENAME_EXCHANGE))
5020 error = -ENOTEMPTY;
5021 if (new_dentry == trap)
5022 goto exit5;
5023
5024 error = security_path_rename(old_dir: &old_path, old_dentry,
5025 new_dir: &new_path, new_dentry, flags);
5026 if (error)
5027 goto exit5;
5028
5029 rd.old_dir = old_path.dentry->d_inode;
5030 rd.old_dentry = old_dentry;
5031 rd.old_mnt_idmap = mnt_idmap(mnt: old_path.mnt);
5032 rd.new_dir = new_path.dentry->d_inode;
5033 rd.new_dentry = new_dentry;
5034 rd.new_mnt_idmap = mnt_idmap(mnt: new_path.mnt);
5035 rd.delegated_inode = &delegated_inode;
5036 rd.flags = flags;
5037 error = vfs_rename(&rd);
5038exit5:
5039 dput(new_dentry);
5040exit4:
5041 dput(old_dentry);
5042exit3:
5043 unlock_rename(new_path.dentry, old_path.dentry);
5044exit_lock_rename:
5045 if (delegated_inode) {
5046 error = break_deleg_wait(delegated_inode: &delegated_inode);
5047 if (!error)
5048 goto retry_deleg;
5049 }
5050 mnt_drop_write(mnt: old_path.mnt);
5051exit2:
5052 if (retry_estale(error, flags: lookup_flags))
5053 should_retry = true;
5054 path_put(&new_path);
5055exit1:
5056 path_put(&old_path);
5057 if (should_retry) {
5058 should_retry = false;
5059 lookup_flags |= LOOKUP_REVAL;
5060 goto retry;
5061 }
5062put_names:
5063 putname(from);
5064 putname(to);
5065 return error;
5066}
5067
5068SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5069 int, newdfd, const char __user *, newname, unsigned int, flags)
5070{
5071 return do_renameat2(olddfd, from: getname(filename: oldname), newdfd, to: getname(filename: newname),
5072 flags);
5073}
5074
5075SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5076 int, newdfd, const char __user *, newname)
5077{
5078 return do_renameat2(olddfd, from: getname(filename: oldname), newdfd, to: getname(filename: newname),
5079 flags: 0);
5080}
5081
5082SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5083{
5084 return do_renameat2(AT_FDCWD, from: getname(filename: oldname), AT_FDCWD,
5085 to: getname(filename: newname), flags: 0);
5086}
5087
5088int readlink_copy(char __user *buffer, int buflen, const char *link)
5089{
5090 int len = PTR_ERR(ptr: link);
5091 if (IS_ERR(ptr: link))
5092 goto out;
5093
5094 len = strlen(link);
5095 if (len > (unsigned) buflen)
5096 len = buflen;
5097 if (copy_to_user(to: buffer, from: link, n: len))
5098 len = -EFAULT;
5099out:
5100 return len;
5101}
5102
5103/**
5104 * vfs_readlink - copy symlink body into userspace buffer
5105 * @dentry: dentry on which to get symbolic link
5106 * @buffer: user memory pointer
5107 * @buflen: size of buffer
5108 *
5109 * Does not touch atime. That's up to the caller if necessary
5110 *
5111 * Does not call security hook.
5112 */
5113int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5114{
5115 struct inode *inode = d_inode(dentry);
5116 DEFINE_DELAYED_CALL(done);
5117 const char *link;
5118 int res;
5119
5120 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5121 if (unlikely(inode->i_op->readlink))
5122 return inode->i_op->readlink(dentry, buffer, buflen);
5123
5124 if (!d_is_symlink(dentry))
5125 return -EINVAL;
5126
5127 spin_lock(lock: &inode->i_lock);
5128 inode->i_opflags |= IOP_DEFAULT_READLINK;
5129 spin_unlock(lock: &inode->i_lock);
5130 }
5131
5132 link = READ_ONCE(inode->i_link);
5133 if (!link) {
5134 link = inode->i_op->get_link(dentry, inode, &done);
5135 if (IS_ERR(ptr: link))
5136 return PTR_ERR(ptr: link);
5137 }
5138 res = readlink_copy(buffer, buflen, link);
5139 do_delayed_call(call: &done);
5140 return res;
5141}
5142EXPORT_SYMBOL(vfs_readlink);
5143
5144/**
5145 * vfs_get_link - get symlink body
5146 * @dentry: dentry on which to get symbolic link
5147 * @done: caller needs to free returned data with this
5148 *
5149 * Calls security hook and i_op->get_link() on the supplied inode.
5150 *
5151 * It does not touch atime. That's up to the caller if necessary.
5152 *
5153 * Does not work on "special" symlinks like /proc/$$/fd/N
5154 */
5155const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5156{
5157 const char *res = ERR_PTR(error: -EINVAL);
5158 struct inode *inode = d_inode(dentry);
5159
5160 if (d_is_symlink(dentry)) {
5161 res = ERR_PTR(error: security_inode_readlink(dentry));
5162 if (!res)
5163 res = inode->i_op->get_link(dentry, inode, done);
5164 }
5165 return res;
5166}
5167EXPORT_SYMBOL(vfs_get_link);
5168
5169/* get the link contents into pagecache */
5170const char *page_get_link(struct dentry *dentry, struct inode *inode,
5171 struct delayed_call *callback)
5172{
5173 char *kaddr;
5174 struct page *page;
5175 struct address_space *mapping = inode->i_mapping;
5176
5177 if (!dentry) {
5178 page = find_get_page(mapping, offset: 0);
5179 if (!page)
5180 return ERR_PTR(error: -ECHILD);
5181 if (!PageUptodate(page)) {
5182 put_page(page);
5183 return ERR_PTR(error: -ECHILD);
5184 }
5185 } else {
5186 page = read_mapping_page(mapping, index: 0, NULL);
5187 if (IS_ERR(ptr: page))
5188 return (char*)page;
5189 }
5190 set_delayed_call(call: callback, fn: page_put_link, arg: page);
5191 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5192 kaddr = page_address(page);
5193 nd_terminate_link(name: kaddr, len: inode->i_size, PAGE_SIZE - 1);
5194 return kaddr;
5195}
5196
5197EXPORT_SYMBOL(page_get_link);
5198
5199void page_put_link(void *arg)
5200{
5201 put_page(page: arg);
5202}
5203EXPORT_SYMBOL(page_put_link);
5204
5205int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5206{
5207 DEFINE_DELAYED_CALL(done);
5208 int res = readlink_copy(buffer, buflen,
5209 link: page_get_link(dentry, d_inode(dentry),
5210 &done));
5211 do_delayed_call(call: &done);
5212 return res;
5213}
5214EXPORT_SYMBOL(page_readlink);
5215
5216int page_symlink(struct inode *inode, const char *symname, int len)
5217{
5218 struct address_space *mapping = inode->i_mapping;
5219 const struct address_space_operations *aops = mapping->a_ops;
5220 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5221 struct page *page;
5222 void *fsdata = NULL;
5223 int err;
5224 unsigned int flags;
5225
5226retry:
5227 if (nofs)
5228 flags = memalloc_nofs_save();
5229 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5230 if (nofs)
5231 memalloc_nofs_restore(flags);
5232 if (err)
5233 goto fail;
5234
5235 memcpy(page_address(page), symname, len-1);
5236
5237 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5238 page, fsdata);
5239 if (err < 0)
5240 goto fail;
5241 if (err < len-1)
5242 goto retry;
5243
5244 mark_inode_dirty(inode);
5245 return 0;
5246fail:
5247 return err;
5248}
5249EXPORT_SYMBOL(page_symlink);
5250
5251const struct inode_operations page_symlink_inode_operations = {
5252 .get_link = page_get_link,
5253};
5254EXPORT_SYMBOL(page_symlink_inode_operations);
5255

source code of linux/fs/namei.c