1/*
2 * Generic EDAC defs
3 *
4 * Author: Dave Jiang <djiang@mvista.com>
5 *
6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under
7 * the terms of the GNU General Public License version 2. This program
8 * is licensed "as is" without any warranty of any kind, whether express
9 * or implied.
10 *
11 */
12#ifndef _LINUX_EDAC_H_
13#define _LINUX_EDAC_H_
14
15#include <linux/atomic.h>
16#include <linux/device.h>
17#include <linux/completion.h>
18#include <linux/workqueue.h>
19#include <linux/debugfs.h>
20#include <linux/numa.h>
21
22#define EDAC_DEVICE_NAME_LEN 31
23
24struct device;
25
26#define EDAC_OPSTATE_INVAL -1
27#define EDAC_OPSTATE_POLL 0
28#define EDAC_OPSTATE_NMI 1
29#define EDAC_OPSTATE_INT 2
30
31extern int edac_op_state;
32
33const struct bus_type *edac_get_sysfs_subsys(void);
34
35static inline void opstate_init(void)
36{
37 switch (edac_op_state) {
38 case EDAC_OPSTATE_POLL:
39 case EDAC_OPSTATE_NMI:
40 break;
41 default:
42 edac_op_state = EDAC_OPSTATE_POLL;
43 }
44 return;
45}
46
47/* Max length of a DIMM label*/
48#define EDAC_MC_LABEL_LEN 31
49
50/* Maximum size of the location string */
51#define LOCATION_SIZE 256
52
53/* Defines the maximum number of labels that can be reported */
54#define EDAC_MAX_LABELS 8
55
56/* String used to join two or more labels */
57#define OTHER_LABEL " or "
58
59/**
60 * enum dev_type - describe the type of memory DRAM chips used at the stick
61 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it
62 * @DEV_X1: 1 bit for data
63 * @DEV_X2: 2 bits for data
64 * @DEV_X4: 4 bits for data
65 * @DEV_X8: 8 bits for data
66 * @DEV_X16: 16 bits for data
67 * @DEV_X32: 32 bits for data
68 * @DEV_X64: 64 bits for data
69 *
70 * Typical values are x4 and x8.
71 */
72enum dev_type {
73 DEV_UNKNOWN = 0,
74 DEV_X1,
75 DEV_X2,
76 DEV_X4,
77 DEV_X8,
78 DEV_X16,
79 DEV_X32, /* Do these parts exist? */
80 DEV_X64 /* Do these parts exist? */
81};
82
83#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
84#define DEV_FLAG_X1 BIT(DEV_X1)
85#define DEV_FLAG_X2 BIT(DEV_X2)
86#define DEV_FLAG_X4 BIT(DEV_X4)
87#define DEV_FLAG_X8 BIT(DEV_X8)
88#define DEV_FLAG_X16 BIT(DEV_X16)
89#define DEV_FLAG_X32 BIT(DEV_X32)
90#define DEV_FLAG_X64 BIT(DEV_X64)
91
92/**
93 * enum hw_event_mc_err_type - type of the detected error
94 *
95 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC
96 * corrected error was detected
97 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that
98 * can't be corrected by ECC, but it is not
99 * fatal (maybe it is on an unused memory area,
100 * or the memory controller could recover from
101 * it for example, by re-trying the operation).
102 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable
103 * error whose handling is not urgent. This could
104 * be due to hardware data poisoning where the
105 * system can continue operation until the poisoned
106 * data is consumed. Preemptive measures may also
107 * be taken, e.g. offlining pages, etc.
108 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not
109 * be recovered.
110 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth
111 * type of error: informational logs.
112 */
113enum hw_event_mc_err_type {
114 HW_EVENT_ERR_CORRECTED,
115 HW_EVENT_ERR_UNCORRECTED,
116 HW_EVENT_ERR_DEFERRED,
117 HW_EVENT_ERR_FATAL,
118 HW_EVENT_ERR_INFO,
119};
120
121static inline char *mc_event_error_type(const unsigned int err_type)
122{
123 switch (err_type) {
124 case HW_EVENT_ERR_CORRECTED:
125 return "Corrected";
126 case HW_EVENT_ERR_UNCORRECTED:
127 return "Uncorrected";
128 case HW_EVENT_ERR_DEFERRED:
129 return "Deferred";
130 case HW_EVENT_ERR_FATAL:
131 return "Fatal";
132 default:
133 case HW_EVENT_ERR_INFO:
134 return "Info";
135 }
136}
137
138/**
139 * enum mem_type - memory types. For a more detailed reference, please see
140 * http://en.wikipedia.org/wiki/DRAM
141 *
142 * @MEM_EMPTY: Empty csrow
143 * @MEM_RESERVED: Reserved csrow type
144 * @MEM_UNKNOWN: Unknown csrow type
145 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995.
146 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998.
147 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant.
148 * @MEM_SDR: SDR - Single data rate SDRAM
149 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
150 * They use 3 pins for chip select: Pins 0 and 2 are
151 * for rank 0; pins 1 and 3 are for rank 1, if the memory
152 * is dual-rank.
153 * @MEM_RDR: Registered SDR SDRAM
154 * @MEM_DDR: Double data rate SDRAM
155 * http://en.wikipedia.org/wiki/DDR_SDRAM
156 * @MEM_RDDR: Registered Double data rate SDRAM
157 * This is a variant of the DDR memories.
158 * A registered memory has a buffer inside it, hiding
159 * part of the memory details to the memory controller.
160 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers.
161 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F.
162 * Those memories are labeled as "PC2-" instead of "PC" to
163 * differentiate from DDR.
164 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205
165 * and JESD206.
166 * Those memories are accessed per DIMM slot, and not by
167 * a chip select signal.
168 * @MEM_RDDR2: Registered DDR2 RAM
169 * This is a variant of the DDR2 memories.
170 * @MEM_XDR: Rambus XDR
171 * It is an evolution of the original RAMBUS memories,
172 * created to compete with DDR2. Weren't used on any
173 * x86 arch, but cell_edac PPC memory controller uses it.
174 * @MEM_DDR3: DDR3 RAM
175 * @MEM_RDDR3: Registered DDR3 RAM
176 * This is a variant of the DDR3 memories.
177 * @MEM_LRDDR3: Load-Reduced DDR3 memory.
178 * @MEM_LPDDR3: Low-Power DDR3 memory.
179 * @MEM_DDR4: Unbuffered DDR4 RAM
180 * @MEM_RDDR4: Registered DDR4 RAM
181 * This is a variant of the DDR4 memories.
182 * @MEM_LRDDR4: Load-Reduced DDR4 memory.
183 * @MEM_LPDDR4: Low-Power DDR4 memory.
184 * @MEM_DDR5: Unbuffered DDR5 RAM
185 * @MEM_RDDR5: Registered DDR5 RAM
186 * @MEM_LRDDR5: Load-Reduced DDR5 memory.
187 * @MEM_NVDIMM: Non-volatile RAM
188 * @MEM_WIO2: Wide I/O 2.
189 * @MEM_HBM2: High bandwidth Memory Gen 2.
190 * @MEM_HBM3: High bandwidth Memory Gen 3.
191 */
192enum mem_type {
193 MEM_EMPTY = 0,
194 MEM_RESERVED,
195 MEM_UNKNOWN,
196 MEM_FPM,
197 MEM_EDO,
198 MEM_BEDO,
199 MEM_SDR,
200 MEM_RDR,
201 MEM_DDR,
202 MEM_RDDR,
203 MEM_RMBS,
204 MEM_DDR2,
205 MEM_FB_DDR2,
206 MEM_RDDR2,
207 MEM_XDR,
208 MEM_DDR3,
209 MEM_RDDR3,
210 MEM_LRDDR3,
211 MEM_LPDDR3,
212 MEM_DDR4,
213 MEM_RDDR4,
214 MEM_LRDDR4,
215 MEM_LPDDR4,
216 MEM_DDR5,
217 MEM_RDDR5,
218 MEM_LRDDR5,
219 MEM_NVDIMM,
220 MEM_WIO2,
221 MEM_HBM2,
222 MEM_HBM3,
223};
224
225#define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
226#define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
227#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
228#define MEM_FLAG_FPM BIT(MEM_FPM)
229#define MEM_FLAG_EDO BIT(MEM_EDO)
230#define MEM_FLAG_BEDO BIT(MEM_BEDO)
231#define MEM_FLAG_SDR BIT(MEM_SDR)
232#define MEM_FLAG_RDR BIT(MEM_RDR)
233#define MEM_FLAG_DDR BIT(MEM_DDR)
234#define MEM_FLAG_RDDR BIT(MEM_RDDR)
235#define MEM_FLAG_RMBS BIT(MEM_RMBS)
236#define MEM_FLAG_DDR2 BIT(MEM_DDR2)
237#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
238#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
239#define MEM_FLAG_XDR BIT(MEM_XDR)
240#define MEM_FLAG_DDR3 BIT(MEM_DDR3)
241#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3)
242#define MEM_FLAG_LPDDR3 BIT(MEM_LPDDR3)
243#define MEM_FLAG_DDR4 BIT(MEM_DDR4)
244#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4)
245#define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4)
246#define MEM_FLAG_LPDDR4 BIT(MEM_LPDDR4)
247#define MEM_FLAG_DDR5 BIT(MEM_DDR5)
248#define MEM_FLAG_RDDR5 BIT(MEM_RDDR5)
249#define MEM_FLAG_LRDDR5 BIT(MEM_LRDDR5)
250#define MEM_FLAG_NVDIMM BIT(MEM_NVDIMM)
251#define MEM_FLAG_WIO2 BIT(MEM_WIO2)
252#define MEM_FLAG_HBM2 BIT(MEM_HBM2)
253#define MEM_FLAG_HBM3 BIT(MEM_HBM3)
254
255/**
256 * enum edac_type - Error Detection and Correction capabilities and mode
257 * @EDAC_UNKNOWN: Unknown if ECC is available
258 * @EDAC_NONE: Doesn't support ECC
259 * @EDAC_RESERVED: Reserved ECC type
260 * @EDAC_PARITY: Detects parity errors
261 * @EDAC_EC: Error Checking - no correction
262 * @EDAC_SECDED: Single bit error correction, Double detection
263 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist?
264 * @EDAC_S4ECD4ED: Chipkill x4 devices
265 * @EDAC_S8ECD8ED: Chipkill x8 devices
266 * @EDAC_S16ECD16ED: Chipkill x16 devices
267 */
268enum edac_type {
269 EDAC_UNKNOWN = 0,
270 EDAC_NONE,
271 EDAC_RESERVED,
272 EDAC_PARITY,
273 EDAC_EC,
274 EDAC_SECDED,
275 EDAC_S2ECD2ED,
276 EDAC_S4ECD4ED,
277 EDAC_S8ECD8ED,
278 EDAC_S16ECD16ED,
279};
280
281#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
282#define EDAC_FLAG_NONE BIT(EDAC_NONE)
283#define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
284#define EDAC_FLAG_EC BIT(EDAC_EC)
285#define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
286#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
287#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
288#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
289#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
290
291/**
292 * enum scrub_type - scrubbing capabilities
293 * @SCRUB_UNKNOWN: Unknown if scrubber is available
294 * @SCRUB_NONE: No scrubber
295 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing
296 * @SCRUB_SW_SRC: Software scrub only errors
297 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error
298 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable
299 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing
300 * @SCRUB_HW_SRC: Hardware scrub only errors
301 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error
302 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable
303 */
304enum scrub_type {
305 SCRUB_UNKNOWN = 0,
306 SCRUB_NONE,
307 SCRUB_SW_PROG,
308 SCRUB_SW_SRC,
309 SCRUB_SW_PROG_SRC,
310 SCRUB_SW_TUNABLE,
311 SCRUB_HW_PROG,
312 SCRUB_HW_SRC,
313 SCRUB_HW_PROG_SRC,
314 SCRUB_HW_TUNABLE
315};
316
317#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
318#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC)
319#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC)
320#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
321#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
322#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC)
323#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC)
324#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
325
326/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
327
328/* EDAC internal operation states */
329#define OP_ALLOC 0x100
330#define OP_RUNNING_POLL 0x201
331#define OP_RUNNING_INTERRUPT 0x202
332#define OP_RUNNING_POLL_INTR 0x203
333#define OP_OFFLINE 0x300
334
335/**
336 * enum edac_mc_layer_type - memory controller hierarchy layer
337 *
338 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch"
339 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel"
340 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot"
341 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select"
342 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped
343 * as a single memory area. This is used when
344 * retrieving errors from a firmware driven driver.
345 *
346 * This enum is used by the drivers to tell edac_mc_sysfs what name should
347 * be used when describing a memory stick location.
348 */
349enum edac_mc_layer_type {
350 EDAC_MC_LAYER_BRANCH,
351 EDAC_MC_LAYER_CHANNEL,
352 EDAC_MC_LAYER_SLOT,
353 EDAC_MC_LAYER_CHIP_SELECT,
354 EDAC_MC_LAYER_ALL_MEM,
355};
356
357/**
358 * struct edac_mc_layer - describes the memory controller hierarchy
359 * @type: layer type
360 * @size: number of components per layer. For example,
361 * if the channel layer has two channels, size = 2
362 * @is_virt_csrow: This layer is part of the "csrow" when old API
363 * compatibility mode is enabled. Otherwise, it is
364 * a channel
365 */
366struct edac_mc_layer {
367 enum edac_mc_layer_type type;
368 unsigned size;
369 bool is_virt_csrow;
370};
371
372/*
373 * Maximum number of layers used by the memory controller to uniquely
374 * identify a single memory stick.
375 * NOTE: Changing this constant requires not only to change the constant
376 * below, but also to change the existing code at the core, as there are
377 * some code there that are optimized for 3 layers.
378 */
379#define EDAC_MAX_LAYERS 3
380
381struct dimm_info {
382 struct device dev;
383
384 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
385
386 /* Memory location data */
387 unsigned int location[EDAC_MAX_LAYERS];
388
389 struct mem_ctl_info *mci; /* the parent */
390 unsigned int idx; /* index within the parent dimm array */
391
392 u32 grain; /* granularity of reported error in bytes */
393 enum dev_type dtype; /* memory device type */
394 enum mem_type mtype; /* memory dimm type */
395 enum edac_type edac_mode; /* EDAC mode for this dimm */
396
397 u32 nr_pages; /* number of pages on this dimm */
398
399 unsigned int csrow, cschannel; /* Points to the old API data */
400
401 u16 smbios_handle; /* Handle for SMBIOS type 17 */
402
403 u32 ce_count;
404 u32 ue_count;
405};
406
407/**
408 * struct rank_info - contains the information for one DIMM rank
409 *
410 * @chan_idx: channel number where the rank is (typically, 0 or 1)
411 * @ce_count: number of correctable errors for this rank
412 * @csrow: A pointer to the chip select row structure (the parent
413 * structure). The location of the rank is given by
414 * the (csrow->csrow_idx, chan_idx) vector.
415 * @dimm: A pointer to the DIMM structure, where the DIMM label
416 * information is stored.
417 *
418 * FIXME: Currently, the EDAC core model will assume one DIMM per rank.
419 * This is a bad assumption, but it makes this patch easier. Later
420 * patches in this series will fix this issue.
421 */
422struct rank_info {
423 int chan_idx;
424 struct csrow_info *csrow;
425 struct dimm_info *dimm;
426
427 u32 ce_count; /* Correctable Errors for this csrow */
428};
429
430struct csrow_info {
431 struct device dev;
432
433 /* Used only by edac_mc_find_csrow_by_page() */
434 unsigned long first_page; /* first page number in csrow */
435 unsigned long last_page; /* last page number in csrow */
436 unsigned long page_mask; /* used for interleaving -
437 * 0UL for non intlv */
438
439 int csrow_idx; /* the chip-select row */
440
441 u32 ue_count; /* Uncorrectable Errors for this csrow */
442 u32 ce_count; /* Correctable Errors for this csrow */
443
444 struct mem_ctl_info *mci; /* the parent */
445
446 /* channel information for this csrow */
447 u32 nr_channels;
448 struct rank_info **channels;
449};
450
451/*
452 * struct errcount_attribute - used to store the several error counts
453 */
454struct errcount_attribute_data {
455 int n_layers;
456 int pos[EDAC_MAX_LAYERS];
457 int layer0, layer1, layer2;
458};
459
460/**
461 * struct edac_raw_error_desc - Raw error report structure
462 * @grain: minimum granularity for an error report, in bytes
463 * @error_count: number of errors of the same type
464 * @type: severity of the error (CE/UE/Fatal)
465 * @top_layer: top layer of the error (layer[0])
466 * @mid_layer: middle layer of the error (layer[1])
467 * @low_layer: low layer of the error (layer[2])
468 * @page_frame_number: page where the error happened
469 * @offset_in_page: page offset
470 * @syndrome: syndrome of the error (or 0 if unknown or if
471 * the syndrome is not applicable)
472 * @msg: error message
473 * @location: location of the error
474 * @label: label of the affected DIMM(s)
475 * @other_detail: other driver-specific detail about the error
476 */
477struct edac_raw_error_desc {
478 char location[LOCATION_SIZE];
479 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS];
480 long grain;
481
482 u16 error_count;
483 enum hw_event_mc_err_type type;
484 int top_layer;
485 int mid_layer;
486 int low_layer;
487 unsigned long page_frame_number;
488 unsigned long offset_in_page;
489 unsigned long syndrome;
490 const char *msg;
491 const char *other_detail;
492};
493
494/* MEMORY controller information structure
495 */
496struct mem_ctl_info {
497 struct device dev;
498 const struct bus_type *bus;
499
500 struct list_head link; /* for global list of mem_ctl_info structs */
501
502 struct module *owner; /* Module owner of this control struct */
503
504 unsigned long mtype_cap; /* memory types supported by mc */
505 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
506 unsigned long edac_cap; /* configuration capabilities - this is
507 * closely related to edac_ctl_cap. The
508 * difference is that the controller may be
509 * capable of s4ecd4ed which would be listed
510 * in edac_ctl_cap, but if channels aren't
511 * capable of s4ecd4ed then the edac_cap would
512 * not have that capability.
513 */
514 unsigned long scrub_cap; /* chipset scrub capabilities */
515 enum scrub_type scrub_mode; /* current scrub mode */
516
517 /* Translates sdram memory scrub rate given in bytes/sec to the
518 internal representation and configures whatever else needs
519 to be configured.
520 */
521 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw);
522
523 /* Get the current sdram memory scrub rate from the internal
524 representation and converts it to the closest matching
525 bandwidth in bytes/sec.
526 */
527 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci);
528
529
530 /* pointer to edac checking routine */
531 void (*edac_check) (struct mem_ctl_info * mci);
532
533 /*
534 * Remaps memory pages: controller pages to physical pages.
535 * For most MC's, this will be NULL.
536 */
537 /* FIXME - why not send the phys page to begin with? */
538 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
539 unsigned long page);
540 int mc_idx;
541 struct csrow_info **csrows;
542 unsigned int nr_csrows, num_cschannel;
543
544 /*
545 * Memory Controller hierarchy
546 *
547 * There are basically two types of memory controller: the ones that
548 * sees memory sticks ("dimms"), and the ones that sees memory ranks.
549 * All old memory controllers enumerate memories per rank, but most
550 * of the recent drivers enumerate memories per DIMM, instead.
551 * When the memory controller is per rank, csbased is true.
552 */
553 unsigned int n_layers;
554 struct edac_mc_layer *layers;
555 bool csbased;
556
557 /*
558 * DIMM info. Will eventually remove the entire csrows_info some day
559 */
560 unsigned int tot_dimms;
561 struct dimm_info **dimms;
562
563 /*
564 * FIXME - what about controllers on other busses? - IDs must be
565 * unique. dev pointer should be sufficiently unique, but
566 * BUS:SLOT.FUNC numbers may not be unique.
567 */
568 struct device *pdev;
569 const char *mod_name;
570 const char *ctl_name;
571 const char *dev_name;
572 void *pvt_info;
573 unsigned long start_time; /* mci load start time (in jiffies) */
574
575 /*
576 * drivers shouldn't access those fields directly, as the core
577 * already handles that.
578 */
579 u32 ce_noinfo_count, ue_noinfo_count;
580 u32 ue_mc, ce_mc;
581
582 struct completion complete;
583
584 /* Additional top controller level attributes, but specified
585 * by the low level driver.
586 *
587 * Set by the low level driver to provide attributes at the
588 * controller level.
589 * An array of structures, NULL terminated
590 *
591 * If attributes are desired, then set to array of attributes
592 * If no attributes are desired, leave NULL
593 */
594 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes;
595
596 /* work struct for this MC */
597 struct delayed_work work;
598
599 /*
600 * Used to report an error - by being at the global struct
601 * makes the memory allocated by the EDAC core
602 */
603 struct edac_raw_error_desc error_desc;
604
605 /* the internal state of this controller instance */
606 int op_state;
607
608 struct dentry *debugfs;
609 u8 fake_inject_layer[EDAC_MAX_LAYERS];
610 bool fake_inject_ue;
611 u16 fake_inject_count;
612};
613
614#define mci_for_each_dimm(mci, dimm) \
615 for ((dimm) = (mci)->dimms[0]; \
616 (dimm); \
617 (dimm) = (dimm)->idx + 1 < (mci)->tot_dimms \
618 ? (mci)->dimms[(dimm)->idx + 1] \
619 : NULL)
620
621/**
622 * edac_get_dimm - Get DIMM info from a memory controller given by
623 * [layer0,layer1,layer2] position
624 *
625 * @mci: MC descriptor struct mem_ctl_info
626 * @layer0: layer0 position
627 * @layer1: layer1 position. Unused if n_layers < 2
628 * @layer2: layer2 position. Unused if n_layers < 3
629 *
630 * For 1 layer, this function returns "dimms[layer0]";
631 *
632 * For 2 layers, this function is similar to allocating a two-dimensional
633 * array and returning "dimms[layer0][layer1]";
634 *
635 * For 3 layers, this function is similar to allocating a tri-dimensional
636 * array and returning "dimms[layer0][layer1][layer2]";
637 */
638static inline struct dimm_info *edac_get_dimm(struct mem_ctl_info *mci,
639 int layer0, int layer1, int layer2)
640{
641 int index;
642
643 if (layer0 < 0
644 || (mci->n_layers > 1 && layer1 < 0)
645 || (mci->n_layers > 2 && layer2 < 0))
646 return NULL;
647
648 index = layer0;
649
650 if (mci->n_layers > 1)
651 index = index * mci->layers[1].size + layer1;
652
653 if (mci->n_layers > 2)
654 index = index * mci->layers[2].size + layer2;
655
656 if (index < 0 || index >= mci->tot_dimms)
657 return NULL;
658
659 if (WARN_ON_ONCE(mci->dimms[index]->idx != index))
660 return NULL;
661
662 return mci->dimms[index];
663}
664#endif /* _LINUX_EDAC_H_ */
665

source code of linux/include/linux/edac.h