1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/sched/stat.h>
14#include <linux/bug.h>
15#include <linux/minmax.h>
16#include <linux/mm.h>
17#include <linux/mmu_notifier.h>
18#include <linux/preempt.h>
19#include <linux/msi.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/rcupdate.h>
23#include <linux/ratelimit.h>
24#include <linux/err.h>
25#include <linux/irqflags.h>
26#include <linux/context_tracking.h>
27#include <linux/irqbypass.h>
28#include <linux/rcuwait.h>
29#include <linux/refcount.h>
30#include <linux/nospec.h>
31#include <linux/notifier.h>
32#include <linux/ftrace.h>
33#include <linux/hashtable.h>
34#include <linux/instrumentation.h>
35#include <linux/interval_tree.h>
36#include <linux/rbtree.h>
37#include <linux/xarray.h>
38#include <asm/signal.h>
39
40#include <linux/kvm.h>
41#include <linux/kvm_para.h>
42
43#include <linux/kvm_types.h>
44
45#include <asm/kvm_host.h>
46#include <linux/kvm_dirty_ring.h>
47
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50#endif
51
52/*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
59/*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
82
83#ifndef KVM_MAX_NR_ADDRESS_SPACES
84#define KVM_MAX_NR_ADDRESS_SPACES 1
85#endif
86
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
100
101/*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
105static inline bool is_error_pfn(kvm_pfn_t pfn)
106{
107 return !!(pfn & KVM_PFN_ERR_MASK);
108}
109
110/*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
114static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115{
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117}
118
119/*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
124static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
125{
126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
127}
128
129/* noslot pfn indicates that the gfn is not in slot. */
130static inline bool is_noslot_pfn(kvm_pfn_t pfn)
131{
132 return pfn == KVM_PFN_NOSLOT;
133}
134
135/*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139#ifndef KVM_HVA_ERR_BAD
140
141#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
143
144static inline bool kvm_is_error_hva(unsigned long addr)
145{
146 return addr >= PAGE_OFFSET;
147}
148
149#endif
150
151static inline bool kvm_is_error_gpa(gpa_t gpa)
152{
153 return gpa == INVALID_GPA;
154}
155
156#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
157
158static inline bool is_error_page(struct page *page)
159{
160 return IS_ERR(ptr: page);
161}
162
163#define KVM_REQUEST_MASK GENMASK(7,0)
164#define KVM_REQUEST_NO_WAKEUP BIT(8)
165#define KVM_REQUEST_WAIT BIT(9)
166#define KVM_REQUEST_NO_ACTION BIT(10)
167/*
168 * Architecture-independent vcpu->requests bit members
169 * Bits 3-7 are reserved for more arch-independent bits.
170 */
171#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173#define KVM_REQ_UNBLOCK 2
174#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
175#define KVM_REQUEST_ARCH_BASE 8
176
177/*
178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183 * guarantee the vCPU received an IPI and has actually exited guest mode.
184 */
185#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186
187#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190})
191#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
192
193bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
194 unsigned long *vcpu_bitmap);
195bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
196bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
197 struct kvm_vcpu *except);
198
199#define KVM_USERSPACE_IRQ_SOURCE_ID 0
200#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
201
202extern struct mutex kvm_lock;
203extern struct list_head vm_list;
204
205struct kvm_io_range {
206 gpa_t addr;
207 int len;
208 struct kvm_io_device *dev;
209};
210
211#define NR_IOBUS_DEVS 1000
212
213struct kvm_io_bus {
214 int dev_count;
215 int ioeventfd_count;
216 struct kvm_io_range range[];
217};
218
219enum kvm_bus {
220 KVM_MMIO_BUS,
221 KVM_PIO_BUS,
222 KVM_VIRTIO_CCW_NOTIFY_BUS,
223 KVM_FAST_MMIO_BUS,
224 KVM_NR_BUSES
225};
226
227int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 int len, const void *val);
229int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
230 gpa_t addr, int len, const void *val, long cookie);
231int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
232 int len, void *val);
233int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
234 int len, struct kvm_io_device *dev);
235int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 struct kvm_io_device *dev);
237struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
238 gpa_t addr);
239
240#ifdef CONFIG_KVM_ASYNC_PF
241struct kvm_async_pf {
242 struct work_struct work;
243 struct list_head link;
244 struct list_head queue;
245 struct kvm_vcpu *vcpu;
246 gpa_t cr2_or_gpa;
247 unsigned long addr;
248 struct kvm_arch_async_pf arch;
249 bool wakeup_all;
250 bool notpresent_injected;
251};
252
253void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
254void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
255bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
256 unsigned long hva, struct kvm_arch_async_pf *arch);
257int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
258#endif
259
260#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
261union kvm_mmu_notifier_arg {
262 pte_t pte;
263 unsigned long attributes;
264};
265
266struct kvm_gfn_range {
267 struct kvm_memory_slot *slot;
268 gfn_t start;
269 gfn_t end;
270 union kvm_mmu_notifier_arg arg;
271 bool may_block;
272};
273bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
274bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
275bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
276bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
277#endif
278
279enum {
280 OUTSIDE_GUEST_MODE,
281 IN_GUEST_MODE,
282 EXITING_GUEST_MODE,
283 READING_SHADOW_PAGE_TABLES,
284};
285
286#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
287
288struct kvm_host_map {
289 /*
290 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
291 * a 'struct page' for it. When using mem= kernel parameter some memory
292 * can be used as guest memory but they are not managed by host
293 * kernel).
294 * If 'pfn' is not managed by the host kernel, this field is
295 * initialized to KVM_UNMAPPED_PAGE.
296 */
297 struct page *page;
298 void *hva;
299 kvm_pfn_t pfn;
300 kvm_pfn_t gfn;
301};
302
303/*
304 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
305 * directly to check for that.
306 */
307static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
308{
309 return !!map->hva;
310}
311
312static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
313{
314 return single_task_running() && !need_resched() && ktime_before(cmp1: cur, cmp2: stop);
315}
316
317/*
318 * Sometimes a large or cross-page mmio needs to be broken up into separate
319 * exits for userspace servicing.
320 */
321struct kvm_mmio_fragment {
322 gpa_t gpa;
323 void *data;
324 unsigned len;
325};
326
327struct kvm_vcpu {
328 struct kvm *kvm;
329#ifdef CONFIG_PREEMPT_NOTIFIERS
330 struct preempt_notifier preempt_notifier;
331#endif
332 int cpu;
333 int vcpu_id; /* id given by userspace at creation */
334 int vcpu_idx; /* index into kvm->vcpu_array */
335 int ____srcu_idx; /* Don't use this directly. You've been warned. */
336#ifdef CONFIG_PROVE_RCU
337 int srcu_depth;
338#endif
339 int mode;
340 u64 requests;
341 unsigned long guest_debug;
342
343 struct mutex mutex;
344 struct kvm_run *run;
345
346#ifndef __KVM_HAVE_ARCH_WQP
347 struct rcuwait wait;
348#endif
349 struct pid __rcu *pid;
350 int sigset_active;
351 sigset_t sigset;
352 unsigned int halt_poll_ns;
353 bool valid_wakeup;
354
355#ifdef CONFIG_HAS_IOMEM
356 int mmio_needed;
357 int mmio_read_completed;
358 int mmio_is_write;
359 int mmio_cur_fragment;
360 int mmio_nr_fragments;
361 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
362#endif
363
364#ifdef CONFIG_KVM_ASYNC_PF
365 struct {
366 u32 queued;
367 struct list_head queue;
368 struct list_head done;
369 spinlock_t lock;
370 } async_pf;
371#endif
372
373#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
374 /*
375 * Cpu relax intercept or pause loop exit optimization
376 * in_spin_loop: set when a vcpu does a pause loop exit
377 * or cpu relax intercepted.
378 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 */
380 struct {
381 bool in_spin_loop;
382 bool dy_eligible;
383 } spin_loop;
384#endif
385 bool preempted;
386 bool ready;
387 struct kvm_vcpu_arch arch;
388 struct kvm_vcpu_stat stat;
389 char stats_id[KVM_STATS_NAME_SIZE];
390 struct kvm_dirty_ring dirty_ring;
391
392 /*
393 * The most recently used memslot by this vCPU and the slots generation
394 * for which it is valid.
395 * No wraparound protection is needed since generations won't overflow in
396 * thousands of years, even assuming 1M memslot operations per second.
397 */
398 struct kvm_memory_slot *last_used_slot;
399 u64 last_used_slot_gen;
400};
401
402/*
403 * Start accounting time towards a guest.
404 * Must be called before entering guest context.
405 */
406static __always_inline void guest_timing_enter_irqoff(void)
407{
408 /*
409 * This is running in ioctl context so its safe to assume that it's the
410 * stime pending cputime to flush.
411 */
412 instrumentation_begin();
413 vtime_account_guest_enter();
414 instrumentation_end();
415}
416
417/*
418 * Enter guest context and enter an RCU extended quiescent state.
419 *
420 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
421 * unsafe to use any code which may directly or indirectly use RCU, tracing
422 * (including IRQ flag tracing), or lockdep. All code in this period must be
423 * non-instrumentable.
424 */
425static __always_inline void guest_context_enter_irqoff(void)
426{
427 /*
428 * KVM does not hold any references to rcu protected data when it
429 * switches CPU into a guest mode. In fact switching to a guest mode
430 * is very similar to exiting to userspace from rcu point of view. In
431 * addition CPU may stay in a guest mode for quite a long time (up to
432 * one time slice). Lets treat guest mode as quiescent state, just like
433 * we do with user-mode execution.
434 */
435 if (!context_tracking_guest_enter()) {
436 instrumentation_begin();
437 rcu_virt_note_context_switch();
438 instrumentation_end();
439 }
440}
441
442/*
443 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
444 * guest_state_enter_irqoff().
445 */
446static __always_inline void guest_enter_irqoff(void)
447{
448 guest_timing_enter_irqoff();
449 guest_context_enter_irqoff();
450}
451
452/**
453 * guest_state_enter_irqoff - Fixup state when entering a guest
454 *
455 * Entry to a guest will enable interrupts, but the kernel state is interrupts
456 * disabled when this is invoked. Also tell RCU about it.
457 *
458 * 1) Trace interrupts on state
459 * 2) Invoke context tracking if enabled to adjust RCU state
460 * 3) Tell lockdep that interrupts are enabled
461 *
462 * Invoked from architecture specific code before entering a guest.
463 * Must be called with interrupts disabled and the caller must be
464 * non-instrumentable.
465 * The caller has to invoke guest_timing_enter_irqoff() before this.
466 *
467 * Note: this is analogous to exit_to_user_mode().
468 */
469static __always_inline void guest_state_enter_irqoff(void)
470{
471 instrumentation_begin();
472 trace_hardirqs_on_prepare();
473 lockdep_hardirqs_on_prepare();
474 instrumentation_end();
475
476 guest_context_enter_irqoff();
477 lockdep_hardirqs_on(CALLER_ADDR0);
478}
479
480/*
481 * Exit guest context and exit an RCU extended quiescent state.
482 *
483 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
484 * unsafe to use any code which may directly or indirectly use RCU, tracing
485 * (including IRQ flag tracing), or lockdep. All code in this period must be
486 * non-instrumentable.
487 */
488static __always_inline void guest_context_exit_irqoff(void)
489{
490 context_tracking_guest_exit();
491}
492
493/*
494 * Stop accounting time towards a guest.
495 * Must be called after exiting guest context.
496 */
497static __always_inline void guest_timing_exit_irqoff(void)
498{
499 instrumentation_begin();
500 /* Flush the guest cputime we spent on the guest */
501 vtime_account_guest_exit();
502 instrumentation_end();
503}
504
505/*
506 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
507 * guest_timing_exit_irqoff().
508 */
509static __always_inline void guest_exit_irqoff(void)
510{
511 guest_context_exit_irqoff();
512 guest_timing_exit_irqoff();
513}
514
515static inline void guest_exit(void)
516{
517 unsigned long flags;
518
519 local_irq_save(flags);
520 guest_exit_irqoff();
521 local_irq_restore(flags);
522}
523
524/**
525 * guest_state_exit_irqoff - Establish state when returning from guest mode
526 *
527 * Entry from a guest disables interrupts, but guest mode is traced as
528 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
529 *
530 * 1) Tell lockdep that interrupts are disabled
531 * 2) Invoke context tracking if enabled to reactivate RCU
532 * 3) Trace interrupts off state
533 *
534 * Invoked from architecture specific code after exiting a guest.
535 * Must be invoked with interrupts disabled and the caller must be
536 * non-instrumentable.
537 * The caller has to invoke guest_timing_exit_irqoff() after this.
538 *
539 * Note: this is analogous to enter_from_user_mode().
540 */
541static __always_inline void guest_state_exit_irqoff(void)
542{
543 lockdep_hardirqs_off(CALLER_ADDR0);
544 guest_context_exit_irqoff();
545
546 instrumentation_begin();
547 trace_hardirqs_off_finish();
548 instrumentation_end();
549}
550
551static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
552{
553 /*
554 * The memory barrier ensures a previous write to vcpu->requests cannot
555 * be reordered with the read of vcpu->mode. It pairs with the general
556 * memory barrier following the write of vcpu->mode in VCPU RUN.
557 */
558 smp_mb__before_atomic();
559 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
560}
561
562/*
563 * Some of the bitops functions do not support too long bitmaps.
564 * This number must be determined not to exceed such limits.
565 */
566#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
567
568/*
569 * Since at idle each memslot belongs to two memslot sets it has to contain
570 * two embedded nodes for each data structure that it forms a part of.
571 *
572 * Two memslot sets (one active and one inactive) are necessary so the VM
573 * continues to run on one memslot set while the other is being modified.
574 *
575 * These two memslot sets normally point to the same set of memslots.
576 * They can, however, be desynchronized when performing a memslot management
577 * operation by replacing the memslot to be modified by its copy.
578 * After the operation is complete, both memslot sets once again point to
579 * the same, common set of memslot data.
580 *
581 * The memslots themselves are independent of each other so they can be
582 * individually added or deleted.
583 */
584struct kvm_memory_slot {
585 struct hlist_node id_node[2];
586 struct interval_tree_node hva_node[2];
587 struct rb_node gfn_node[2];
588 gfn_t base_gfn;
589 unsigned long npages;
590 unsigned long *dirty_bitmap;
591 struct kvm_arch_memory_slot arch;
592 unsigned long userspace_addr;
593 u32 flags;
594 short id;
595 u16 as_id;
596
597#ifdef CONFIG_KVM_PRIVATE_MEM
598 struct {
599 struct file __rcu *file;
600 pgoff_t pgoff;
601 } gmem;
602#endif
603};
604
605static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
606{
607 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
608}
609
610static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
611{
612 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
613}
614
615static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
616{
617 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
618}
619
620static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
621{
622 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
623
624 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
625}
626
627#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
628#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
629#endif
630
631struct kvm_s390_adapter_int {
632 u64 ind_addr;
633 u64 summary_addr;
634 u64 ind_offset;
635 u32 summary_offset;
636 u32 adapter_id;
637};
638
639struct kvm_hv_sint {
640 u32 vcpu;
641 u32 sint;
642};
643
644struct kvm_xen_evtchn {
645 u32 port;
646 u32 vcpu_id;
647 int vcpu_idx;
648 u32 priority;
649};
650
651struct kvm_kernel_irq_routing_entry {
652 u32 gsi;
653 u32 type;
654 int (*set)(struct kvm_kernel_irq_routing_entry *e,
655 struct kvm *kvm, int irq_source_id, int level,
656 bool line_status);
657 union {
658 struct {
659 unsigned irqchip;
660 unsigned pin;
661 } irqchip;
662 struct {
663 u32 address_lo;
664 u32 address_hi;
665 u32 data;
666 u32 flags;
667 u32 devid;
668 } msi;
669 struct kvm_s390_adapter_int adapter;
670 struct kvm_hv_sint hv_sint;
671 struct kvm_xen_evtchn xen_evtchn;
672 };
673 struct hlist_node link;
674};
675
676#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
677struct kvm_irq_routing_table {
678 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
679 u32 nr_rt_entries;
680 /*
681 * Array indexed by gsi. Each entry contains list of irq chips
682 * the gsi is connected to.
683 */
684 struct hlist_head map[] __counted_by(nr_rt_entries);
685};
686#endif
687
688bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
689
690#ifndef KVM_INTERNAL_MEM_SLOTS
691#define KVM_INTERNAL_MEM_SLOTS 0
692#endif
693
694#define KVM_MEM_SLOTS_NUM SHRT_MAX
695#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
696
697#if KVM_MAX_NR_ADDRESS_SPACES == 1
698static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
699{
700 return KVM_MAX_NR_ADDRESS_SPACES;
701}
702
703static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
704{
705 return 0;
706}
707#endif
708
709/*
710 * Arch code must define kvm_arch_has_private_mem if support for private memory
711 * is enabled.
712 */
713#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
714static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
715{
716 return false;
717}
718#endif
719
720struct kvm_memslots {
721 u64 generation;
722 atomic_long_t last_used_slot;
723 struct rb_root_cached hva_tree;
724 struct rb_root gfn_tree;
725 /*
726 * The mapping table from slot id to memslot.
727 *
728 * 7-bit bucket count matches the size of the old id to index array for
729 * 512 slots, while giving good performance with this slot count.
730 * Higher bucket counts bring only small performance improvements but
731 * always result in higher memory usage (even for lower memslot counts).
732 */
733 DECLARE_HASHTABLE(id_hash, 7);
734 int node_idx;
735};
736
737struct kvm {
738#ifdef KVM_HAVE_MMU_RWLOCK
739 rwlock_t mmu_lock;
740#else
741 spinlock_t mmu_lock;
742#endif /* KVM_HAVE_MMU_RWLOCK */
743
744 struct mutex slots_lock;
745
746 /*
747 * Protects the arch-specific fields of struct kvm_memory_slots in
748 * use by the VM. To be used under the slots_lock (above) or in a
749 * kvm->srcu critical section where acquiring the slots_lock would
750 * lead to deadlock with the synchronize_srcu in
751 * kvm_swap_active_memslots().
752 */
753 struct mutex slots_arch_lock;
754 struct mm_struct *mm; /* userspace tied to this vm */
755 unsigned long nr_memslot_pages;
756 /* The two memslot sets - active and inactive (per address space) */
757 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
758 /* The current active memslot set for each address space */
759 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
760 struct xarray vcpu_array;
761 /*
762 * Protected by slots_lock, but can be read outside if an
763 * incorrect answer is acceptable.
764 */
765 atomic_t nr_memslots_dirty_logging;
766
767 /* Used to wait for completion of MMU notifiers. */
768 spinlock_t mn_invalidate_lock;
769 unsigned long mn_active_invalidate_count;
770 struct rcuwait mn_memslots_update_rcuwait;
771
772 /* For management / invalidation of gfn_to_pfn_caches */
773 spinlock_t gpc_lock;
774 struct list_head gpc_list;
775
776 /*
777 * created_vcpus is protected by kvm->lock, and is incremented
778 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
779 * incremented after storing the kvm_vcpu pointer in vcpus,
780 * and is accessed atomically.
781 */
782 atomic_t online_vcpus;
783 int max_vcpus;
784 int created_vcpus;
785 int last_boosted_vcpu;
786 struct list_head vm_list;
787 struct mutex lock;
788 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
789#ifdef CONFIG_HAVE_KVM_IRQCHIP
790 struct {
791 spinlock_t lock;
792 struct list_head items;
793 /* resampler_list update side is protected by resampler_lock. */
794 struct list_head resampler_list;
795 struct mutex resampler_lock;
796 } irqfds;
797#endif
798 struct list_head ioeventfds;
799 struct kvm_vm_stat stat;
800 struct kvm_arch arch;
801 refcount_t users_count;
802#ifdef CONFIG_KVM_MMIO
803 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
804 spinlock_t ring_lock;
805 struct list_head coalesced_zones;
806#endif
807
808 struct mutex irq_lock;
809#ifdef CONFIG_HAVE_KVM_IRQCHIP
810 /*
811 * Update side is protected by irq_lock.
812 */
813 struct kvm_irq_routing_table __rcu *irq_routing;
814
815 struct hlist_head irq_ack_notifier_list;
816#endif
817
818#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
819 struct mmu_notifier mmu_notifier;
820 unsigned long mmu_invalidate_seq;
821 long mmu_invalidate_in_progress;
822 gfn_t mmu_invalidate_range_start;
823 gfn_t mmu_invalidate_range_end;
824#endif
825 struct list_head devices;
826 u64 manual_dirty_log_protect;
827 struct dentry *debugfs_dentry;
828 struct kvm_stat_data **debugfs_stat_data;
829 struct srcu_struct srcu;
830 struct srcu_struct irq_srcu;
831 pid_t userspace_pid;
832 bool override_halt_poll_ns;
833 unsigned int max_halt_poll_ns;
834 u32 dirty_ring_size;
835 bool dirty_ring_with_bitmap;
836 bool vm_bugged;
837 bool vm_dead;
838
839#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
840 struct notifier_block pm_notifier;
841#endif
842#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
843 /* Protected by slots_locks (for writes) and RCU (for reads) */
844 struct xarray mem_attr_array;
845#endif
846 char stats_id[KVM_STATS_NAME_SIZE];
847};
848
849#define kvm_err(fmt, ...) \
850 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
851#define kvm_info(fmt, ...) \
852 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
853#define kvm_debug(fmt, ...) \
854 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
855#define kvm_debug_ratelimited(fmt, ...) \
856 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
857 ## __VA_ARGS__)
858#define kvm_pr_unimpl(fmt, ...) \
859 pr_err_ratelimited("kvm [%i]: " fmt, \
860 task_tgid_nr(current), ## __VA_ARGS__)
861
862/* The guest did something we don't support. */
863#define vcpu_unimpl(vcpu, fmt, ...) \
864 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
865 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
866
867#define vcpu_debug(vcpu, fmt, ...) \
868 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
869#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
870 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
871 ## __VA_ARGS__)
872#define vcpu_err(vcpu, fmt, ...) \
873 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
874
875static inline void kvm_vm_dead(struct kvm *kvm)
876{
877 kvm->vm_dead = true;
878 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
879}
880
881static inline void kvm_vm_bugged(struct kvm *kvm)
882{
883 kvm->vm_bugged = true;
884 kvm_vm_dead(kvm);
885}
886
887
888#define KVM_BUG(cond, kvm, fmt...) \
889({ \
890 bool __ret = !!(cond); \
891 \
892 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
893 kvm_vm_bugged(kvm); \
894 unlikely(__ret); \
895})
896
897#define KVM_BUG_ON(cond, kvm) \
898({ \
899 bool __ret = !!(cond); \
900 \
901 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
902 kvm_vm_bugged(kvm); \
903 unlikely(__ret); \
904})
905
906/*
907 * Note, "data corruption" refers to corruption of host kernel data structures,
908 * not guest data. Guest data corruption, suspected or confirmed, that is tied
909 * and contained to a single VM should *never* BUG() and potentially panic the
910 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
911 * is corrupted and that corruption can have a cascading effect to other parts
912 * of the hosts and/or to other VMs.
913 */
914#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
915({ \
916 bool __ret = !!(cond); \
917 \
918 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
919 BUG_ON(__ret); \
920 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
921 kvm_vm_bugged(kvm); \
922 unlikely(__ret); \
923})
924
925static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
926{
927#ifdef CONFIG_PROVE_RCU
928 WARN_ONCE(vcpu->srcu_depth++,
929 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
930#endif
931 vcpu->____srcu_idx = srcu_read_lock(ssp: &vcpu->kvm->srcu);
932}
933
934static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
935{
936 srcu_read_unlock(ssp: &vcpu->kvm->srcu, idx: vcpu->____srcu_idx);
937
938#ifdef CONFIG_PROVE_RCU
939 WARN_ONCE(--vcpu->srcu_depth,
940 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
941#endif
942}
943
944static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
945{
946 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
947}
948
949static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
950{
951 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
952 lockdep_is_held(&kvm->slots_lock) ||
953 !refcount_read(&kvm->users_count));
954}
955
956static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
957{
958 int num_vcpus = atomic_read(v: &kvm->online_vcpus);
959 i = array_index_nospec(i, num_vcpus);
960
961 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
962 smp_rmb();
963 return xa_load(&kvm->vcpu_array, index: i);
964}
965
966#define kvm_for_each_vcpu(idx, vcpup, kvm) \
967 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
968 (atomic_read(&kvm->online_vcpus) - 1))
969
970static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
971{
972 struct kvm_vcpu *vcpu = NULL;
973 unsigned long i;
974
975 if (id < 0)
976 return NULL;
977 if (id < KVM_MAX_VCPUS)
978 vcpu = kvm_get_vcpu(kvm, i: id);
979 if (vcpu && vcpu->vcpu_id == id)
980 return vcpu;
981 kvm_for_each_vcpu(i, vcpu, kvm)
982 if (vcpu->vcpu_id == id)
983 return vcpu;
984 return NULL;
985}
986
987void kvm_destroy_vcpus(struct kvm *kvm);
988
989void vcpu_load(struct kvm_vcpu *vcpu);
990void vcpu_put(struct kvm_vcpu *vcpu);
991
992#ifdef __KVM_HAVE_IOAPIC
993void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
994void kvm_arch_post_irq_routing_update(struct kvm *kvm);
995#else
996static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
997{
998}
999static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
1000{
1001}
1002#endif
1003
1004#ifdef CONFIG_HAVE_KVM_IRQCHIP
1005int kvm_irqfd_init(void);
1006void kvm_irqfd_exit(void);
1007#else
1008static inline int kvm_irqfd_init(void)
1009{
1010 return 0;
1011}
1012
1013static inline void kvm_irqfd_exit(void)
1014{
1015}
1016#endif
1017int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1018void kvm_exit(void);
1019
1020void kvm_get_kvm(struct kvm *kvm);
1021bool kvm_get_kvm_safe(struct kvm *kvm);
1022void kvm_put_kvm(struct kvm *kvm);
1023bool file_is_kvm(struct file *file);
1024void kvm_put_kvm_no_destroy(struct kvm *kvm);
1025
1026static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1027{
1028 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1029 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1030 lockdep_is_held(&kvm->slots_lock) ||
1031 !refcount_read(&kvm->users_count));
1032}
1033
1034static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1035{
1036 return __kvm_memslots(kvm, as_id: 0);
1037}
1038
1039static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1040{
1041 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1042
1043 return __kvm_memslots(kvm: vcpu->kvm, as_id);
1044}
1045
1046static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1047{
1048 return RB_EMPTY_ROOT(&slots->gfn_tree);
1049}
1050
1051bool kvm_are_all_memslots_empty(struct kvm *kvm);
1052
1053#define kvm_for_each_memslot(memslot, bkt, slots) \
1054 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1055 if (WARN_ON_ONCE(!memslot->npages)) { \
1056 } else
1057
1058static inline
1059struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1060{
1061 struct kvm_memory_slot *slot;
1062 int idx = slots->node_idx;
1063
1064 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1065 if (slot->id == id)
1066 return slot;
1067 }
1068
1069 return NULL;
1070}
1071
1072/* Iterator used for walking memslots that overlap a gfn range. */
1073struct kvm_memslot_iter {
1074 struct kvm_memslots *slots;
1075 struct rb_node *node;
1076 struct kvm_memory_slot *slot;
1077};
1078
1079static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1080{
1081 iter->node = rb_next(iter->node);
1082 if (!iter->node)
1083 return;
1084
1085 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1086}
1087
1088static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1089 struct kvm_memslots *slots,
1090 gfn_t start)
1091{
1092 int idx = slots->node_idx;
1093 struct rb_node *tmp;
1094 struct kvm_memory_slot *slot;
1095
1096 iter->slots = slots;
1097
1098 /*
1099 * Find the so called "upper bound" of a key - the first node that has
1100 * its key strictly greater than the searched one (the start gfn in our case).
1101 */
1102 iter->node = NULL;
1103 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1104 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1105 if (start < slot->base_gfn) {
1106 iter->node = tmp;
1107 tmp = tmp->rb_left;
1108 } else {
1109 tmp = tmp->rb_right;
1110 }
1111 }
1112
1113 /*
1114 * Find the slot with the lowest gfn that can possibly intersect with
1115 * the range, so we'll ideally have slot start <= range start
1116 */
1117 if (iter->node) {
1118 /*
1119 * A NULL previous node means that the very first slot
1120 * already has a higher start gfn.
1121 * In this case slot start > range start.
1122 */
1123 tmp = rb_prev(iter->node);
1124 if (tmp)
1125 iter->node = tmp;
1126 } else {
1127 /* a NULL node below means no slots */
1128 iter->node = rb_last(&slots->gfn_tree);
1129 }
1130
1131 if (iter->node) {
1132 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1133
1134 /*
1135 * It is possible in the slot start < range start case that the
1136 * found slot ends before or at range start (slot end <= range start)
1137 * and so it does not overlap the requested range.
1138 *
1139 * In such non-overlapping case the next slot (if it exists) will
1140 * already have slot start > range start, otherwise the logic above
1141 * would have found it instead of the current slot.
1142 */
1143 if (iter->slot->base_gfn + iter->slot->npages <= start)
1144 kvm_memslot_iter_next(iter);
1145 }
1146}
1147
1148static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1149{
1150 if (!iter->node)
1151 return false;
1152
1153 /*
1154 * If this slot starts beyond or at the end of the range so does
1155 * every next one
1156 */
1157 return iter->slot->base_gfn < end;
1158}
1159
1160/* Iterate over each memslot at least partially intersecting [start, end) range */
1161#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1162 for (kvm_memslot_iter_start(iter, slots, start); \
1163 kvm_memslot_iter_is_valid(iter, end); \
1164 kvm_memslot_iter_next(iter))
1165
1166/*
1167 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1168 * - create a new memory slot
1169 * - delete an existing memory slot
1170 * - modify an existing memory slot
1171 * -- move it in the guest physical memory space
1172 * -- just change its flags
1173 *
1174 * Since flags can be changed by some of these operations, the following
1175 * differentiation is the best we can do for __kvm_set_memory_region():
1176 */
1177enum kvm_mr_change {
1178 KVM_MR_CREATE,
1179 KVM_MR_DELETE,
1180 KVM_MR_MOVE,
1181 KVM_MR_FLAGS_ONLY,
1182};
1183
1184int kvm_set_memory_region(struct kvm *kvm,
1185 const struct kvm_userspace_memory_region2 *mem);
1186int __kvm_set_memory_region(struct kvm *kvm,
1187 const struct kvm_userspace_memory_region2 *mem);
1188void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1189void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1190int kvm_arch_prepare_memory_region(struct kvm *kvm,
1191 const struct kvm_memory_slot *old,
1192 struct kvm_memory_slot *new,
1193 enum kvm_mr_change change);
1194void kvm_arch_commit_memory_region(struct kvm *kvm,
1195 struct kvm_memory_slot *old,
1196 const struct kvm_memory_slot *new,
1197 enum kvm_mr_change change);
1198/* flush all memory translations */
1199void kvm_arch_flush_shadow_all(struct kvm *kvm);
1200/* flush memory translations pointing to 'slot' */
1201void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1202 struct kvm_memory_slot *slot);
1203
1204int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1205 struct page **pages, int nr_pages);
1206
1207struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1208unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1209unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1210unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1211unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1212 bool *writable);
1213void kvm_release_page_clean(struct page *page);
1214void kvm_release_page_dirty(struct page *page);
1215
1216kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1217kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1218 bool *writable);
1219kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1220kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1221kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1222 bool atomic, bool interruptible, bool *async,
1223 bool write_fault, bool *writable, hva_t *hva);
1224
1225void kvm_release_pfn_clean(kvm_pfn_t pfn);
1226void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1227void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1228void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1229
1230void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1231int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1232 int len);
1233int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1234int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1235 void *data, unsigned long len);
1236int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1237 void *data, unsigned int offset,
1238 unsigned long len);
1239int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1240 int offset, int len);
1241int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1242 unsigned long len);
1243int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1244 void *data, unsigned long len);
1245int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1246 void *data, unsigned int offset,
1247 unsigned long len);
1248int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1249 gpa_t gpa, unsigned long len);
1250
1251#define __kvm_get_guest(kvm, gfn, offset, v) \
1252({ \
1253 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1254 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1255 int __ret = -EFAULT; \
1256 \
1257 if (!kvm_is_error_hva(__addr)) \
1258 __ret = get_user(v, __uaddr); \
1259 __ret; \
1260})
1261
1262#define kvm_get_guest(kvm, gpa, v) \
1263({ \
1264 gpa_t __gpa = gpa; \
1265 struct kvm *__kvm = kvm; \
1266 \
1267 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1268 offset_in_page(__gpa), v); \
1269})
1270
1271#define __kvm_put_guest(kvm, gfn, offset, v) \
1272({ \
1273 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1274 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1275 int __ret = -EFAULT; \
1276 \
1277 if (!kvm_is_error_hva(__addr)) \
1278 __ret = put_user(v, __uaddr); \
1279 if (!__ret) \
1280 mark_page_dirty(kvm, gfn); \
1281 __ret; \
1282})
1283
1284#define kvm_put_guest(kvm, gpa, v) \
1285({ \
1286 gpa_t __gpa = gpa; \
1287 struct kvm *__kvm = kvm; \
1288 \
1289 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1290 offset_in_page(__gpa), v); \
1291})
1292
1293int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1294struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1295bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1296bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1297unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1298void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1299void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1300
1301struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1302struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1303kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1304kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1305int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1306void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1307unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1308unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1309int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1310 int len);
1311int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1312 unsigned long len);
1313int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1314 unsigned long len);
1315int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1316 int offset, int len);
1317int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1318 unsigned long len);
1319void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1320
1321/**
1322 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1323 *
1324 * @gpc: struct gfn_to_pfn_cache object.
1325 * @kvm: pointer to kvm instance.
1326 *
1327 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1328 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1329 * the caller before init).
1330 */
1331void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1332
1333/**
1334 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1335 * physical address.
1336 *
1337 * @gpc: struct gfn_to_pfn_cache object.
1338 * @gpa: guest physical address to map.
1339 * @len: sanity check; the range being access must fit a single page.
1340 *
1341 * @return: 0 for success.
1342 * -EINVAL for a mapping which would cross a page boundary.
1343 * -EFAULT for an untranslatable guest physical address.
1344 *
1345 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1346 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1347 * to ensure that the cache is valid before accessing the target page.
1348 */
1349int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1350
1351/**
1352 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1353 *
1354 * @gpc: struct gfn_to_pfn_cache object.
1355 * @hva: userspace virtual address to map.
1356 * @len: sanity check; the range being access must fit a single page.
1357 *
1358 * @return: 0 for success.
1359 * -EINVAL for a mapping which would cross a page boundary.
1360 * -EFAULT for an untranslatable guest physical address.
1361 *
1362 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1363 * merely bypasses a layer of address translation.
1364 */
1365int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1366
1367/**
1368 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1369 *
1370 * @gpc: struct gfn_to_pfn_cache object.
1371 * @len: sanity check; the range being access must fit a single page.
1372 *
1373 * @return: %true if the cache is still valid and the address matches.
1374 * %false if the cache is not valid.
1375 *
1376 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1377 * while calling this function, and then continue to hold the lock until the
1378 * access is complete.
1379 *
1380 * Callers in IN_GUEST_MODE may do so without locking, although they should
1381 * still hold a read lock on kvm->scru for the memslot checks.
1382 */
1383bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1384
1385/**
1386 * kvm_gpc_refresh - update a previously initialized cache.
1387 *
1388 * @gpc: struct gfn_to_pfn_cache object.
1389 * @len: sanity check; the range being access must fit a single page.
1390 *
1391 * @return: 0 for success.
1392 * -EINVAL for a mapping which would cross a page boundary.
1393 * -EFAULT for an untranslatable guest physical address.
1394 *
1395 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1396 * return from this function does not mean the page can be immediately
1397 * accessed because it may have raced with an invalidation. Callers must
1398 * still lock and check the cache status, as this function does not return
1399 * with the lock still held to permit access.
1400 */
1401int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1402
1403/**
1404 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1405 *
1406 * @gpc: struct gfn_to_pfn_cache object.
1407 *
1408 * This removes a cache from the VM's list to be processed on MMU notifier
1409 * invocation.
1410 */
1411void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1412
1413static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1414{
1415 return gpc->active && !kvm_is_error_gpa(gpa: gpc->gpa);
1416}
1417
1418static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1419{
1420 return gpc->active && kvm_is_error_gpa(gpa: gpc->gpa);
1421}
1422
1423void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1424void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1425
1426void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1427bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1428void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1429void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1430bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1431void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1432int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1433void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1434
1435void kvm_flush_remote_tlbs(struct kvm *kvm);
1436void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1437void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1438 const struct kvm_memory_slot *memslot);
1439
1440#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1441int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1442int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1443int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1444void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1445void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1446#endif
1447
1448void kvm_mmu_invalidate_begin(struct kvm *kvm);
1449void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1450void kvm_mmu_invalidate_end(struct kvm *kvm);
1451bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1452
1453long kvm_arch_dev_ioctl(struct file *filp,
1454 unsigned int ioctl, unsigned long arg);
1455long kvm_arch_vcpu_ioctl(struct file *filp,
1456 unsigned int ioctl, unsigned long arg);
1457vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1458
1459int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1460
1461void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1462 struct kvm_memory_slot *slot,
1463 gfn_t gfn_offset,
1464 unsigned long mask);
1465void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1466
1467#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1468int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1469int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1470 int *is_dirty, struct kvm_memory_slot **memslot);
1471#endif
1472
1473int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1474 bool line_status);
1475int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1476 struct kvm_enable_cap *cap);
1477int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1478long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1479 unsigned long arg);
1480
1481int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1482int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1483
1484int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1485 struct kvm_translation *tr);
1486
1487int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1488int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1489int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1490 struct kvm_sregs *sregs);
1491int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1492 struct kvm_sregs *sregs);
1493int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1494 struct kvm_mp_state *mp_state);
1495int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1496 struct kvm_mp_state *mp_state);
1497int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1498 struct kvm_guest_debug *dbg);
1499int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1500
1501void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1502
1503void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1504void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1505int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1506int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1507void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1508void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1509
1510#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1511int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1512#endif
1513
1514#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1515void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1516#else
1517static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1518#endif
1519
1520#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1521int kvm_arch_hardware_enable(void);
1522void kvm_arch_hardware_disable(void);
1523#endif
1524int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1525bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1526int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1527bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1528bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1529bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1530int kvm_arch_post_init_vm(struct kvm *kvm);
1531void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1532void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1533
1534#ifndef __KVM_HAVE_ARCH_VM_ALLOC
1535/*
1536 * All architectures that want to use vzalloc currently also
1537 * need their own kvm_arch_alloc_vm implementation.
1538 */
1539static inline struct kvm *kvm_arch_alloc_vm(void)
1540{
1541 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1542}
1543#endif
1544
1545static inline void __kvm_arch_free_vm(struct kvm *kvm)
1546{
1547 kvfree(addr: kvm);
1548}
1549
1550#ifndef __KVM_HAVE_ARCH_VM_FREE
1551static inline void kvm_arch_free_vm(struct kvm *kvm)
1552{
1553 __kvm_arch_free_vm(kvm);
1554}
1555#endif
1556
1557#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1558static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1559{
1560 return -ENOTSUPP;
1561}
1562#else
1563int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1564#endif
1565
1566#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1567static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1568 gfn_t gfn, u64 nr_pages)
1569{
1570 return -EOPNOTSUPP;
1571}
1572#else
1573int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1574#endif
1575
1576#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1577void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1578void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1579bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1580#else
1581static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1582{
1583}
1584
1585static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1586{
1587}
1588
1589static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1590{
1591 return false;
1592}
1593#endif
1594#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1595void kvm_arch_start_assignment(struct kvm *kvm);
1596void kvm_arch_end_assignment(struct kvm *kvm);
1597bool kvm_arch_has_assigned_device(struct kvm *kvm);
1598#else
1599static inline void kvm_arch_start_assignment(struct kvm *kvm)
1600{
1601}
1602
1603static inline void kvm_arch_end_assignment(struct kvm *kvm)
1604{
1605}
1606
1607static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1608{
1609 return false;
1610}
1611#endif
1612
1613static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1614{
1615#ifdef __KVM_HAVE_ARCH_WQP
1616 return vcpu->arch.waitp;
1617#else
1618 return &vcpu->wait;
1619#endif
1620}
1621
1622/*
1623 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1624 * true if the vCPU was blocking and was awakened, false otherwise.
1625 */
1626static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1627{
1628 return !!rcuwait_wake_up(w: kvm_arch_vcpu_get_wait(vcpu));
1629}
1630
1631static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1632{
1633 return rcuwait_active(w: kvm_arch_vcpu_get_wait(vcpu));
1634}
1635
1636#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1637/*
1638 * returns true if the virtual interrupt controller is initialized and
1639 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1640 * controller is dynamically instantiated and this is not always true.
1641 */
1642bool kvm_arch_intc_initialized(struct kvm *kvm);
1643#else
1644static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1645{
1646 return true;
1647}
1648#endif
1649
1650#ifdef CONFIG_GUEST_PERF_EVENTS
1651unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1652
1653void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1654void kvm_unregister_perf_callbacks(void);
1655#else
1656static inline void kvm_register_perf_callbacks(void *ign) {}
1657static inline void kvm_unregister_perf_callbacks(void) {}
1658#endif /* CONFIG_GUEST_PERF_EVENTS */
1659
1660int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1661void kvm_arch_destroy_vm(struct kvm *kvm);
1662void kvm_arch_sync_events(struct kvm *kvm);
1663
1664int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1665
1666struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1667bool kvm_is_zone_device_page(struct page *page);
1668
1669struct kvm_irq_ack_notifier {
1670 struct hlist_node link;
1671 unsigned gsi;
1672 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1673};
1674
1675int kvm_irq_map_gsi(struct kvm *kvm,
1676 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1677int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1678
1679int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1680 bool line_status);
1681int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1682 int irq_source_id, int level, bool line_status);
1683int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1684 struct kvm *kvm, int irq_source_id,
1685 int level, bool line_status);
1686bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1687void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1688void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1689void kvm_register_irq_ack_notifier(struct kvm *kvm,
1690 struct kvm_irq_ack_notifier *kian);
1691void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1692 struct kvm_irq_ack_notifier *kian);
1693int kvm_request_irq_source_id(struct kvm *kvm);
1694void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1695bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1696
1697/*
1698 * Returns a pointer to the memslot if it contains gfn.
1699 * Otherwise returns NULL.
1700 */
1701static inline struct kvm_memory_slot *
1702try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1703{
1704 if (!slot)
1705 return NULL;
1706
1707 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1708 return slot;
1709 else
1710 return NULL;
1711}
1712
1713/*
1714 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1715 *
1716 * With "approx" set returns the memslot also when the address falls
1717 * in a hole. In that case one of the memslots bordering the hole is
1718 * returned.
1719 */
1720static inline struct kvm_memory_slot *
1721search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1722{
1723 struct kvm_memory_slot *slot;
1724 struct rb_node *node;
1725 int idx = slots->node_idx;
1726
1727 slot = NULL;
1728 for (node = slots->gfn_tree.rb_node; node; ) {
1729 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1730 if (gfn >= slot->base_gfn) {
1731 if (gfn < slot->base_gfn + slot->npages)
1732 return slot;
1733 node = node->rb_right;
1734 } else
1735 node = node->rb_left;
1736 }
1737
1738 return approx ? slot : NULL;
1739}
1740
1741static inline struct kvm_memory_slot *
1742____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1743{
1744 struct kvm_memory_slot *slot;
1745
1746 slot = (struct kvm_memory_slot *)atomic_long_read(v: &slots->last_used_slot);
1747 slot = try_get_memslot(slot, gfn);
1748 if (slot)
1749 return slot;
1750
1751 slot = search_memslots(slots, gfn, approx);
1752 if (slot) {
1753 atomic_long_set(v: &slots->last_used_slot, i: (unsigned long)slot);
1754 return slot;
1755 }
1756
1757 return NULL;
1758}
1759
1760/*
1761 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1762 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1763 * because that would bloat other code too much.
1764 */
1765static inline struct kvm_memory_slot *
1766__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1767{
1768 return ____gfn_to_memslot(slots, gfn, approx: false);
1769}
1770
1771static inline unsigned long
1772__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1773{
1774 /*
1775 * The index was checked originally in search_memslots. To avoid
1776 * that a malicious guest builds a Spectre gadget out of e.g. page
1777 * table walks, do not let the processor speculate loads outside
1778 * the guest's registered memslots.
1779 */
1780 unsigned long offset = gfn - slot->base_gfn;
1781 offset = array_index_nospec(offset, slot->npages);
1782 return slot->userspace_addr + offset * PAGE_SIZE;
1783}
1784
1785static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1786{
1787 return gfn_to_memslot(kvm, gfn)->id;
1788}
1789
1790static inline gfn_t
1791hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1792{
1793 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1794
1795 return slot->base_gfn + gfn_offset;
1796}
1797
1798static inline gpa_t gfn_to_gpa(gfn_t gfn)
1799{
1800 return (gpa_t)gfn << PAGE_SHIFT;
1801}
1802
1803static inline gfn_t gpa_to_gfn(gpa_t gpa)
1804{
1805 return (gfn_t)(gpa >> PAGE_SHIFT);
1806}
1807
1808static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1809{
1810 return (hpa_t)pfn << PAGE_SHIFT;
1811}
1812
1813static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1814{
1815 unsigned long hva = gfn_to_hva(kvm, gfn: gpa_to_gfn(gpa));
1816
1817 return !kvm_is_error_hva(addr: hva);
1818}
1819
1820static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1821{
1822 lockdep_assert_held(&gpc->lock);
1823
1824 if (!gpc->memslot)
1825 return;
1826
1827 mark_page_dirty_in_slot(kvm: gpc->kvm, memslot: gpc->memslot, gfn: gpa_to_gfn(gpa: gpc->gpa));
1828}
1829
1830enum kvm_stat_kind {
1831 KVM_STAT_VM,
1832 KVM_STAT_VCPU,
1833};
1834
1835struct kvm_stat_data {
1836 struct kvm *kvm;
1837 const struct _kvm_stats_desc *desc;
1838 enum kvm_stat_kind kind;
1839};
1840
1841struct _kvm_stats_desc {
1842 struct kvm_stats_desc desc;
1843 char name[KVM_STATS_NAME_SIZE];
1844};
1845
1846#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1847 .flags = type | unit | base | \
1848 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1849 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1850 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1851 .exponent = exp, \
1852 .size = sz, \
1853 .bucket_size = bsz
1854
1855#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1856 { \
1857 { \
1858 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1859 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1860 }, \
1861 .name = #stat, \
1862 }
1863#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1864 { \
1865 { \
1866 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1867 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1868 }, \
1869 .name = #stat, \
1870 }
1871#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1872 { \
1873 { \
1874 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1875 .offset = offsetof(struct kvm_vm_stat, stat) \
1876 }, \
1877 .name = #stat, \
1878 }
1879#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1880 { \
1881 { \
1882 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1883 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1884 }, \
1885 .name = #stat, \
1886 }
1887/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1888#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1889 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1890
1891#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1892 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1893 unit, base, exponent, 1, 0)
1894#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1895 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1896 unit, base, exponent, 1, 0)
1897#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1898 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1899 unit, base, exponent, 1, 0)
1900#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1901 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1902 unit, base, exponent, sz, bsz)
1903#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1904 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1905 unit, base, exponent, sz, 0)
1906
1907/* Cumulative counter, read/write */
1908#define STATS_DESC_COUNTER(SCOPE, name) \
1909 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1910 KVM_STATS_BASE_POW10, 0)
1911/* Instantaneous counter, read only */
1912#define STATS_DESC_ICOUNTER(SCOPE, name) \
1913 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1914 KVM_STATS_BASE_POW10, 0)
1915/* Peak counter, read/write */
1916#define STATS_DESC_PCOUNTER(SCOPE, name) \
1917 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1918 KVM_STATS_BASE_POW10, 0)
1919
1920/* Instantaneous boolean value, read only */
1921#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1922 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1923 KVM_STATS_BASE_POW10, 0)
1924/* Peak (sticky) boolean value, read/write */
1925#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1926 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1927 KVM_STATS_BASE_POW10, 0)
1928
1929/* Cumulative time in nanosecond */
1930#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1931 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1932 KVM_STATS_BASE_POW10, -9)
1933/* Linear histogram for time in nanosecond */
1934#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1935 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1936 KVM_STATS_BASE_POW10, -9, sz, bsz)
1937/* Logarithmic histogram for time in nanosecond */
1938#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1939 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1940 KVM_STATS_BASE_POW10, -9, sz)
1941
1942#define KVM_GENERIC_VM_STATS() \
1943 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1944 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1945
1946#define KVM_GENERIC_VCPU_STATS() \
1947 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1948 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1949 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1950 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1951 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1952 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1953 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1954 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1955 HALT_POLL_HIST_COUNT), \
1956 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1957 HALT_POLL_HIST_COUNT), \
1958 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1959 HALT_POLL_HIST_COUNT), \
1960 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1961
1962extern struct dentry *kvm_debugfs_dir;
1963
1964ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1965 const struct _kvm_stats_desc *desc,
1966 void *stats, size_t size_stats,
1967 char __user *user_buffer, size_t size, loff_t *offset);
1968
1969/**
1970 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1971 * statistics data.
1972 *
1973 * @data: start address of the stats data
1974 * @size: the number of bucket of the stats data
1975 * @value: the new value used to update the linear histogram's bucket
1976 * @bucket_size: the size (width) of a bucket
1977 */
1978static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1979 u64 value, size_t bucket_size)
1980{
1981 size_t index = div64_u64(dividend: value, divisor: bucket_size);
1982
1983 index = min(index, size - 1);
1984 ++data[index];
1985}
1986
1987/**
1988 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1989 * statistics data.
1990 *
1991 * @data: start address of the stats data
1992 * @size: the number of bucket of the stats data
1993 * @value: the new value used to update the logarithmic histogram's bucket
1994 */
1995static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1996{
1997 size_t index = fls64(x: value);
1998
1999 index = min(index, size - 1);
2000 ++data[index];
2001}
2002
2003#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2004 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2005#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2006 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2007
2008
2009extern const struct kvm_stats_header kvm_vm_stats_header;
2010extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2011extern const struct kvm_stats_header kvm_vcpu_stats_header;
2012extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2013
2014#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
2015static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2016{
2017 if (unlikely(kvm->mmu_invalidate_in_progress))
2018 return 1;
2019 /*
2020 * Ensure the read of mmu_invalidate_in_progress happens before
2021 * the read of mmu_invalidate_seq. This interacts with the
2022 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2023 * that the caller either sees the old (non-zero) value of
2024 * mmu_invalidate_in_progress or the new (incremented) value of
2025 * mmu_invalidate_seq.
2026 *
2027 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2028 * than under kvm->mmu_lock, for scalability, so can't rely on
2029 * kvm->mmu_lock to keep things ordered.
2030 */
2031 smp_rmb();
2032 if (kvm->mmu_invalidate_seq != mmu_seq)
2033 return 1;
2034 return 0;
2035}
2036
2037static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2038 unsigned long mmu_seq,
2039 gfn_t gfn)
2040{
2041 lockdep_assert_held(&kvm->mmu_lock);
2042 /*
2043 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2044 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2045 * that might be being invalidated. Note that it may include some false
2046 * positives, due to shortcuts when handing concurrent invalidations.
2047 */
2048 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2049 /*
2050 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2051 * but before updating the range is a KVM bug.
2052 */
2053 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2054 kvm->mmu_invalidate_range_end == INVALID_GPA))
2055 return 1;
2056
2057 if (gfn >= kvm->mmu_invalidate_range_start &&
2058 gfn < kvm->mmu_invalidate_range_end)
2059 return 1;
2060 }
2061
2062 if (kvm->mmu_invalidate_seq != mmu_seq)
2063 return 1;
2064 return 0;
2065}
2066
2067/*
2068 * This lockless version of the range-based retry check *must* be paired with a
2069 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2070 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2071 * get false negatives and false positives.
2072 */
2073static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2074 unsigned long mmu_seq,
2075 gfn_t gfn)
2076{
2077 /*
2078 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2079 * are always read from memory, e.g. so that checking for retry in a
2080 * loop won't result in an infinite retry loop. Don't force loads for
2081 * start+end, as the key to avoiding infinite retry loops is observing
2082 * the 1=>0 transition of in-progress, i.e. getting false negatives
2083 * due to stale start+end values is acceptable.
2084 */
2085 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2086 gfn >= kvm->mmu_invalidate_range_start &&
2087 gfn < kvm->mmu_invalidate_range_end)
2088 return true;
2089
2090 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2091}
2092#endif
2093
2094#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2095
2096#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2097
2098bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2099int kvm_set_irq_routing(struct kvm *kvm,
2100 const struct kvm_irq_routing_entry *entries,
2101 unsigned nr,
2102 unsigned flags);
2103int kvm_set_routing_entry(struct kvm *kvm,
2104 struct kvm_kernel_irq_routing_entry *e,
2105 const struct kvm_irq_routing_entry *ue);
2106void kvm_free_irq_routing(struct kvm *kvm);
2107
2108#else
2109
2110static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2111
2112#endif
2113
2114int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2115
2116void kvm_eventfd_init(struct kvm *kvm);
2117int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2118
2119#ifdef CONFIG_HAVE_KVM_IRQCHIP
2120int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2121void kvm_irqfd_release(struct kvm *kvm);
2122bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2123 unsigned int irqchip,
2124 unsigned int pin);
2125void kvm_irq_routing_update(struct kvm *);
2126#else
2127static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2128{
2129 return -EINVAL;
2130}
2131
2132static inline void kvm_irqfd_release(struct kvm *kvm) {}
2133
2134static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2135 unsigned int irqchip,
2136 unsigned int pin)
2137{
2138 return false;
2139}
2140#endif /* CONFIG_HAVE_KVM_IRQCHIP */
2141
2142void kvm_arch_irq_routing_update(struct kvm *kvm);
2143
2144static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2145{
2146 /*
2147 * Ensure the rest of the request is published to kvm_check_request's
2148 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2149 */
2150 smp_wmb();
2151 set_bit(nr: req & KVM_REQUEST_MASK, addr: (void *)&vcpu->requests);
2152}
2153
2154static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2155{
2156 /*
2157 * Request that don't require vCPU action should never be logged in
2158 * vcpu->requests. The vCPU won't clear the request, so it will stay
2159 * logged indefinitely and prevent the vCPU from entering the guest.
2160 */
2161 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2162 (req & KVM_REQUEST_NO_ACTION));
2163
2164 __kvm_make_request(req, vcpu);
2165}
2166
2167static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2168{
2169 return READ_ONCE(vcpu->requests);
2170}
2171
2172static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2173{
2174 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2175}
2176
2177static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2178{
2179 clear_bit(nr: req & KVM_REQUEST_MASK, addr: (void *)&vcpu->requests);
2180}
2181
2182static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2183{
2184 if (kvm_test_request(req, vcpu)) {
2185 kvm_clear_request(req, vcpu);
2186
2187 /*
2188 * Ensure the rest of the request is visible to kvm_check_request's
2189 * caller. Paired with the smp_wmb in kvm_make_request.
2190 */
2191 smp_mb__after_atomic();
2192 return true;
2193 } else {
2194 return false;
2195 }
2196}
2197
2198#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2199extern bool kvm_rebooting;
2200#endif
2201
2202extern unsigned int halt_poll_ns;
2203extern unsigned int halt_poll_ns_grow;
2204extern unsigned int halt_poll_ns_grow_start;
2205extern unsigned int halt_poll_ns_shrink;
2206
2207struct kvm_device {
2208 const struct kvm_device_ops *ops;
2209 struct kvm *kvm;
2210 void *private;
2211 struct list_head vm_node;
2212};
2213
2214/* create, destroy, and name are mandatory */
2215struct kvm_device_ops {
2216 const char *name;
2217
2218 /*
2219 * create is called holding kvm->lock and any operations not suitable
2220 * to do while holding the lock should be deferred to init (see
2221 * below).
2222 */
2223 int (*create)(struct kvm_device *dev, u32 type);
2224
2225 /*
2226 * init is called after create if create is successful and is called
2227 * outside of holding kvm->lock.
2228 */
2229 void (*init)(struct kvm_device *dev);
2230
2231 /*
2232 * Destroy is responsible for freeing dev.
2233 *
2234 * Destroy may be called before or after destructors are called
2235 * on emulated I/O regions, depending on whether a reference is
2236 * held by a vcpu or other kvm component that gets destroyed
2237 * after the emulated I/O.
2238 */
2239 void (*destroy)(struct kvm_device *dev);
2240
2241 /*
2242 * Release is an alternative method to free the device. It is
2243 * called when the device file descriptor is closed. Once
2244 * release is called, the destroy method will not be called
2245 * anymore as the device is removed from the device list of
2246 * the VM. kvm->lock is held.
2247 */
2248 void (*release)(struct kvm_device *dev);
2249
2250 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2251 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2252 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2253 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2254 unsigned long arg);
2255 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2256};
2257
2258struct kvm_device *kvm_device_from_filp(struct file *filp);
2259int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2260void kvm_unregister_device_ops(u32 type);
2261
2262extern struct kvm_device_ops kvm_mpic_ops;
2263extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2264extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2265
2266#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2267
2268static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2269{
2270 vcpu->spin_loop.in_spin_loop = val;
2271}
2272static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2273{
2274 vcpu->spin_loop.dy_eligible = val;
2275}
2276
2277#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2278
2279static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2280{
2281}
2282
2283static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2284{
2285}
2286#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2287
2288static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2289{
2290 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2291 !(memslot->flags & KVM_MEMSLOT_INVALID));
2292}
2293
2294struct kvm_vcpu *kvm_get_running_vcpu(void);
2295struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2296
2297#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2298bool kvm_arch_has_irq_bypass(void);
2299int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2300 struct irq_bypass_producer *);
2301void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2302 struct irq_bypass_producer *);
2303void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2304void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2305int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2306 uint32_t guest_irq, bool set);
2307bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2308 struct kvm_kernel_irq_routing_entry *);
2309#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2310
2311#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2312/* If we wakeup during the poll time, was it a sucessful poll? */
2313static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2314{
2315 return vcpu->valid_wakeup;
2316}
2317
2318#else
2319static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2320{
2321 return true;
2322}
2323#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2324
2325#ifdef CONFIG_HAVE_KVM_NO_POLL
2326/* Callback that tells if we must not poll */
2327bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2328#else
2329static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2330{
2331 return false;
2332}
2333#endif /* CONFIG_HAVE_KVM_NO_POLL */
2334
2335#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2336long kvm_arch_vcpu_async_ioctl(struct file *filp,
2337 unsigned int ioctl, unsigned long arg);
2338#else
2339static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2340 unsigned int ioctl,
2341 unsigned long arg)
2342{
2343 return -ENOIOCTLCMD;
2344}
2345#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2346
2347void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2348
2349#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2350int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2351#else
2352static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2353{
2354 return 0;
2355}
2356#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2357
2358typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2359
2360int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2361 uintptr_t data, const char *name,
2362 struct task_struct **thread_ptr);
2363
2364#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2365static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2366{
2367 vcpu->run->exit_reason = KVM_EXIT_INTR;
2368 vcpu->stat.signal_exits++;
2369}
2370#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2371
2372/*
2373 * If more than one page is being (un)accounted, @virt must be the address of
2374 * the first page of a block of pages what were allocated together (i.e
2375 * accounted together).
2376 *
2377 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2378 * is thread-safe.
2379 */
2380static inline void kvm_account_pgtable_pages(void *virt, int nr)
2381{
2382 mod_lruvec_page_state(virt_to_page(virt), idx: NR_SECONDARY_PAGETABLE, val: nr);
2383}
2384
2385/*
2386 * This defines how many reserved entries we want to keep before we
2387 * kick the vcpu to the userspace to avoid dirty ring full. This
2388 * value can be tuned to higher if e.g. PML is enabled on the host.
2389 */
2390#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2391
2392/* Max number of entries allowed for each kvm dirty ring */
2393#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2394
2395static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2396 gpa_t gpa, gpa_t size,
2397 bool is_write, bool is_exec,
2398 bool is_private)
2399{
2400 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2401 vcpu->run->memory_fault.gpa = gpa;
2402 vcpu->run->memory_fault.size = size;
2403
2404 /* RWX flags are not (yet) defined or communicated to userspace. */
2405 vcpu->run->memory_fault.flags = 0;
2406 if (is_private)
2407 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2408}
2409
2410#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2411static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2412{
2413 return xa_to_value(entry: xa_load(&kvm->mem_attr_array, index: gfn));
2414}
2415
2416bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2417 unsigned long attrs);
2418bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2419 struct kvm_gfn_range *range);
2420bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2421 struct kvm_gfn_range *range);
2422
2423static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2424{
2425 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2426 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2427}
2428#else
2429static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2430{
2431 return false;
2432}
2433#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2434
2435#ifdef CONFIG_KVM_PRIVATE_MEM
2436int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2437 gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2438#else
2439static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2440 struct kvm_memory_slot *slot, gfn_t gfn,
2441 kvm_pfn_t *pfn, int *max_order)
2442{
2443 KVM_BUG_ON(1, kvm);
2444 return -EIO;
2445}
2446#endif /* CONFIG_KVM_PRIVATE_MEM */
2447
2448#endif
2449

source code of linux/include/linux/kvm_host.h