1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Universal power supply monitor class
4 *
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
8 *
9 * Modified: 2004, Oct Szabolcs Gyurko
10 */
11
12#ifndef __LINUX_POWER_SUPPLY_H__
13#define __LINUX_POWER_SUPPLY_H__
14
15#include <linux/device.h>
16#include <linux/workqueue.h>
17#include <linux/leds.h>
18#include <linux/spinlock.h>
19#include <linux/notifier.h>
20
21/*
22 * All voltages, currents, charges, energies, time and temperatures in uV,
23 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
24 * stated. It's driver's job to convert its raw values to units in which
25 * this class operates.
26 */
27
28/*
29 * For systems where the charger determines the maximum battery capacity
30 * the min and max fields should be used to present these values to user
31 * space. Unused/unknown fields will not appear in sysfs.
32 */
33
34enum {
35 POWER_SUPPLY_STATUS_UNKNOWN = 0,
36 POWER_SUPPLY_STATUS_CHARGING,
37 POWER_SUPPLY_STATUS_DISCHARGING,
38 POWER_SUPPLY_STATUS_NOT_CHARGING,
39 POWER_SUPPLY_STATUS_FULL,
40};
41
42/* What algorithm is the charger using? */
43enum {
44 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN = 0,
45 POWER_SUPPLY_CHARGE_TYPE_NONE,
46 POWER_SUPPLY_CHARGE_TYPE_TRICKLE, /* slow speed */
47 POWER_SUPPLY_CHARGE_TYPE_FAST, /* fast speed */
48 POWER_SUPPLY_CHARGE_TYPE_STANDARD, /* normal speed */
49 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE, /* dynamically adjusted speed */
50 POWER_SUPPLY_CHARGE_TYPE_CUSTOM, /* use CHARGE_CONTROL_* props */
51 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE, /* slow speed, longer life */
52 POWER_SUPPLY_CHARGE_TYPE_BYPASS, /* bypassing the charger */
53};
54
55enum {
56 POWER_SUPPLY_HEALTH_UNKNOWN = 0,
57 POWER_SUPPLY_HEALTH_GOOD,
58 POWER_SUPPLY_HEALTH_OVERHEAT,
59 POWER_SUPPLY_HEALTH_DEAD,
60 POWER_SUPPLY_HEALTH_OVERVOLTAGE,
61 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE,
62 POWER_SUPPLY_HEALTH_COLD,
63 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE,
64 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE,
65 POWER_SUPPLY_HEALTH_OVERCURRENT,
66 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED,
67 POWER_SUPPLY_HEALTH_WARM,
68 POWER_SUPPLY_HEALTH_COOL,
69 POWER_SUPPLY_HEALTH_HOT,
70 POWER_SUPPLY_HEALTH_NO_BATTERY,
71};
72
73enum {
74 POWER_SUPPLY_TECHNOLOGY_UNKNOWN = 0,
75 POWER_SUPPLY_TECHNOLOGY_NiMH,
76 POWER_SUPPLY_TECHNOLOGY_LION,
77 POWER_SUPPLY_TECHNOLOGY_LIPO,
78 POWER_SUPPLY_TECHNOLOGY_LiFe,
79 POWER_SUPPLY_TECHNOLOGY_NiCd,
80 POWER_SUPPLY_TECHNOLOGY_LiMn,
81};
82
83enum {
84 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN = 0,
85 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL,
86 POWER_SUPPLY_CAPACITY_LEVEL_LOW,
87 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL,
88 POWER_SUPPLY_CAPACITY_LEVEL_HIGH,
89 POWER_SUPPLY_CAPACITY_LEVEL_FULL,
90};
91
92enum {
93 POWER_SUPPLY_SCOPE_UNKNOWN = 0,
94 POWER_SUPPLY_SCOPE_SYSTEM,
95 POWER_SUPPLY_SCOPE_DEVICE,
96};
97
98enum power_supply_property {
99 /* Properties of type `int' */
100 POWER_SUPPLY_PROP_STATUS = 0,
101 POWER_SUPPLY_PROP_CHARGE_TYPE,
102 POWER_SUPPLY_PROP_HEALTH,
103 POWER_SUPPLY_PROP_PRESENT,
104 POWER_SUPPLY_PROP_ONLINE,
105 POWER_SUPPLY_PROP_AUTHENTIC,
106 POWER_SUPPLY_PROP_TECHNOLOGY,
107 POWER_SUPPLY_PROP_CYCLE_COUNT,
108 POWER_SUPPLY_PROP_VOLTAGE_MAX,
109 POWER_SUPPLY_PROP_VOLTAGE_MIN,
110 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
111 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
112 POWER_SUPPLY_PROP_VOLTAGE_NOW,
113 POWER_SUPPLY_PROP_VOLTAGE_AVG,
114 POWER_SUPPLY_PROP_VOLTAGE_OCV,
115 POWER_SUPPLY_PROP_VOLTAGE_BOOT,
116 POWER_SUPPLY_PROP_CURRENT_MAX,
117 POWER_SUPPLY_PROP_CURRENT_NOW,
118 POWER_SUPPLY_PROP_CURRENT_AVG,
119 POWER_SUPPLY_PROP_CURRENT_BOOT,
120 POWER_SUPPLY_PROP_POWER_NOW,
121 POWER_SUPPLY_PROP_POWER_AVG,
122 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
123 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN,
124 POWER_SUPPLY_PROP_CHARGE_FULL,
125 POWER_SUPPLY_PROP_CHARGE_EMPTY,
126 POWER_SUPPLY_PROP_CHARGE_NOW,
127 POWER_SUPPLY_PROP_CHARGE_AVG,
128 POWER_SUPPLY_PROP_CHARGE_COUNTER,
129 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT,
130 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
131 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE,
132 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
133 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT,
134 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX,
135 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD, /* in percents! */
136 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD, /* in percents! */
137 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR,
138 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT,
139 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT,
140 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT,
141 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
142 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN,
143 POWER_SUPPLY_PROP_ENERGY_FULL,
144 POWER_SUPPLY_PROP_ENERGY_EMPTY,
145 POWER_SUPPLY_PROP_ENERGY_NOW,
146 POWER_SUPPLY_PROP_ENERGY_AVG,
147 POWER_SUPPLY_PROP_CAPACITY, /* in percents! */
148 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN, /* in percents! */
149 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX, /* in percents! */
150 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN, /* in percents! */
151 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
152 POWER_SUPPLY_PROP_TEMP,
153 POWER_SUPPLY_PROP_TEMP_MAX,
154 POWER_SUPPLY_PROP_TEMP_MIN,
155 POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
156 POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
157 POWER_SUPPLY_PROP_TEMP_AMBIENT,
158 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
159 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
160 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
161 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
162 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
163 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
164 POWER_SUPPLY_PROP_TYPE, /* use power_supply.type instead */
165 POWER_SUPPLY_PROP_USB_TYPE,
166 POWER_SUPPLY_PROP_SCOPE,
167 POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
168 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
169 POWER_SUPPLY_PROP_CALIBRATE,
170 POWER_SUPPLY_PROP_MANUFACTURE_YEAR,
171 POWER_SUPPLY_PROP_MANUFACTURE_MONTH,
172 POWER_SUPPLY_PROP_MANUFACTURE_DAY,
173 /* Properties of type `const char *' */
174 POWER_SUPPLY_PROP_MODEL_NAME,
175 POWER_SUPPLY_PROP_MANUFACTURER,
176 POWER_SUPPLY_PROP_SERIAL_NUMBER,
177};
178
179enum power_supply_type {
180 POWER_SUPPLY_TYPE_UNKNOWN = 0,
181 POWER_SUPPLY_TYPE_BATTERY,
182 POWER_SUPPLY_TYPE_UPS,
183 POWER_SUPPLY_TYPE_MAINS,
184 POWER_SUPPLY_TYPE_USB, /* Standard Downstream Port */
185 POWER_SUPPLY_TYPE_USB_DCP, /* Dedicated Charging Port */
186 POWER_SUPPLY_TYPE_USB_CDP, /* Charging Downstream Port */
187 POWER_SUPPLY_TYPE_USB_ACA, /* Accessory Charger Adapters */
188 POWER_SUPPLY_TYPE_USB_TYPE_C, /* Type C Port */
189 POWER_SUPPLY_TYPE_USB_PD, /* Power Delivery Port */
190 POWER_SUPPLY_TYPE_USB_PD_DRP, /* PD Dual Role Port */
191 POWER_SUPPLY_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
192 POWER_SUPPLY_TYPE_WIRELESS, /* Wireless */
193};
194
195enum power_supply_usb_type {
196 POWER_SUPPLY_USB_TYPE_UNKNOWN = 0,
197 POWER_SUPPLY_USB_TYPE_SDP, /* Standard Downstream Port */
198 POWER_SUPPLY_USB_TYPE_DCP, /* Dedicated Charging Port */
199 POWER_SUPPLY_USB_TYPE_CDP, /* Charging Downstream Port */
200 POWER_SUPPLY_USB_TYPE_ACA, /* Accessory Charger Adapters */
201 POWER_SUPPLY_USB_TYPE_C, /* Type C Port */
202 POWER_SUPPLY_USB_TYPE_PD, /* Power Delivery Port */
203 POWER_SUPPLY_USB_TYPE_PD_DRP, /* PD Dual Role Port */
204 POWER_SUPPLY_USB_TYPE_PD_PPS, /* PD Programmable Power Supply */
205 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID, /* Apple Charging Method */
206};
207
208enum power_supply_charge_behaviour {
209 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO = 0,
210 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE,
211 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE,
212};
213
214enum power_supply_notifier_events {
215 PSY_EVENT_PROP_CHANGED,
216};
217
218union power_supply_propval {
219 int intval;
220 const char *strval;
221};
222
223struct device_node;
224struct power_supply;
225
226/* Run-time specific power supply configuration */
227struct power_supply_config {
228 struct device_node *of_node;
229 struct fwnode_handle *fwnode;
230
231 /* Driver private data */
232 void *drv_data;
233
234 /* Device specific sysfs attributes */
235 const struct attribute_group **attr_grp;
236
237 char **supplied_to;
238 size_t num_supplicants;
239};
240
241/* Description of power supply */
242struct power_supply_desc {
243 const char *name;
244 enum power_supply_type type;
245 u8 charge_behaviours;
246 const enum power_supply_usb_type *usb_types;
247 size_t num_usb_types;
248 const enum power_supply_property *properties;
249 size_t num_properties;
250
251 /*
252 * Functions for drivers implementing power supply class.
253 * These shouldn't be called directly by other drivers for accessing
254 * this power supply. Instead use power_supply_*() functions (for
255 * example power_supply_get_property()).
256 */
257 int (*get_property)(struct power_supply *psy,
258 enum power_supply_property psp,
259 union power_supply_propval *val);
260 int (*set_property)(struct power_supply *psy,
261 enum power_supply_property psp,
262 const union power_supply_propval *val);
263 /*
264 * property_is_writeable() will be called during registration
265 * of power supply. If this happens during device probe then it must
266 * not access internal data of device (because probe did not end).
267 */
268 int (*property_is_writeable)(struct power_supply *psy,
269 enum power_supply_property psp);
270 void (*external_power_changed)(struct power_supply *psy);
271 void (*set_charged)(struct power_supply *psy);
272
273 /*
274 * Set if thermal zone should not be created for this power supply.
275 * For example for virtual supplies forwarding calls to actual
276 * sensors or other supplies.
277 */
278 bool no_thermal;
279 /* For APM emulation, think legacy userspace. */
280 int use_for_apm;
281};
282
283struct power_supply {
284 const struct power_supply_desc *desc;
285
286 char **supplied_to;
287 size_t num_supplicants;
288
289 char **supplied_from;
290 size_t num_supplies;
291 struct device_node *of_node;
292
293 /* Driver private data */
294 void *drv_data;
295
296 /* private */
297 struct device dev;
298 struct work_struct changed_work;
299 struct delayed_work deferred_register_work;
300 spinlock_t changed_lock;
301 bool changed;
302 bool initialized;
303 bool removing;
304 atomic_t use_cnt;
305 struct power_supply_battery_info *battery_info;
306#ifdef CONFIG_THERMAL
307 struct thermal_zone_device *tzd;
308 struct thermal_cooling_device *tcd;
309#endif
310
311#ifdef CONFIG_LEDS_TRIGGERS
312 struct led_trigger *charging_full_trig;
313 char *charging_full_trig_name;
314 struct led_trigger *charging_trig;
315 char *charging_trig_name;
316 struct led_trigger *full_trig;
317 char *full_trig_name;
318 struct led_trigger *online_trig;
319 char *online_trig_name;
320 struct led_trigger *charging_blink_full_solid_trig;
321 char *charging_blink_full_solid_trig_name;
322#endif
323};
324
325/*
326 * This is recommended structure to specify static power supply parameters.
327 * Generic one, parametrizable for different power supplies. Power supply
328 * class itself does not use it, but that's what implementing most platform
329 * drivers, should try reuse for consistency.
330 */
331
332struct power_supply_info {
333 const char *name;
334 int technology;
335 int voltage_max_design;
336 int voltage_min_design;
337 int charge_full_design;
338 int charge_empty_design;
339 int energy_full_design;
340 int energy_empty_design;
341 int use_for_apm;
342};
343
344struct power_supply_battery_ocv_table {
345 int ocv; /* microVolts */
346 int capacity; /* percent */
347};
348
349struct power_supply_resistance_temp_table {
350 int temp; /* celsius */
351 int resistance; /* internal resistance percent */
352};
353
354struct power_supply_vbat_ri_table {
355 int vbat_uv; /* Battery voltage in microvolt */
356 int ri_uohm; /* Internal resistance in microohm */
357};
358
359/**
360 * struct power_supply_maintenance_charge_table - setting for maintenace charging
361 * @charge_current_max_ua: maintenance charging current that is used to keep
362 * the charge of the battery full as current is consumed after full charging.
363 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
364 * reach this voltage the maintenance charging current is turned off. It is
365 * turned back on if we fall below this voltage.
366 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
367 * lower than the constant_charge_voltage_max_uv. We can apply this settings
368 * charge_current_max_ua until we get back up to this voltage.
369 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
370 * time in minutes. We will only use maintenance charging in this setting
371 * for a certain amount of time, then we will first move to the next
372 * maintenance charge current and voltage pair in respective array and wait
373 * for the next safety timer timeout, or, if we reached the last maintencance
374 * charging setting, disable charging until we reach
375 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
376 * These timers should be chosen to align with the typical discharge curve
377 * for the battery.
378 *
379 * Ordinary CC/CV charging will stop charging when the charge current goes
380 * below charge_term_current_ua, and then restart it (if the device is still
381 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
382 * consumer products because the power usage while connected to a charger is
383 * not zero, and devices are not manufactured to draw power directly from the
384 * charger: instead they will at all times dissipate the battery a little, like
385 * the power used in standby mode. This will over time give a charge graph
386 * such as this:
387 *
388 * Energy
389 * ^ ... ... ... ... ... ... ...
390 * | . . . . . . . . . . . . .
391 * | .. . .. . .. . .. . .. . .. . ..
392 * |. .. .. .. .. .. ..
393 * +-------------------------------------------------------------------> t
394 *
395 * Practically this means that the Li-ions are wandering back and forth in the
396 * battery and this causes degeneration of the battery anode and cathode.
397 * To prolong the life of the battery, maintenance charging is applied after
398 * reaching charge_term_current_ua to hold up the charge in the battery while
399 * consuming power, thus lowering the wear on the battery:
400 *
401 * Energy
402 * ^ .......................................
403 * | . ......................
404 * | ..
405 * |.
406 * +-------------------------------------------------------------------> t
407 *
408 * Maintenance charging uses the voltages from this table: a table of settings
409 * is traversed using a slightly lower current and voltage than what is used for
410 * CC/CV charging. The maintenance charging will for safety reasons not go on
411 * indefinately: we lower the current and voltage with successive maintenance
412 * settings, then disable charging completely after we reach the last one,
413 * and after that we do not restart charging until we reach
414 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
415 * ordinary CC/CV charging from there.
416 *
417 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
418 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
419 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
420 * After this the charge cycle is restarted waiting for
421 * charge_restart_voltage_uv.
422 *
423 * For most mobile electronics this type of maintenance charging is enough for
424 * the user to disconnect the device and make use of it before both maintenance
425 * charging cycles are complete, if the current and voltage has been chosen
426 * appropriately. These need to be determined from battery discharge curves
427 * and expected standby current.
428 *
429 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
430 * charging, ordinary CC/CV charging is restarted. This can happen if the
431 * device is e.g. actively used during charging, so more current is drawn than
432 * the expected stand-by current. Also overvoltage protection will be applied
433 * as usual.
434 */
435struct power_supply_maintenance_charge_table {
436 int charge_current_max_ua;
437 int charge_voltage_max_uv;
438 int charge_safety_timer_minutes;
439};
440
441#define POWER_SUPPLY_OCV_TEMP_MAX 20
442
443/**
444 * struct power_supply_battery_info - information about batteries
445 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
446 * @energy_full_design_uwh: energy content when fully charged in microwatt
447 * hours
448 * @charge_full_design_uah: charge content when fully charged in microampere
449 * hours
450 * @voltage_min_design_uv: minimum voltage across the poles when the battery
451 * is at minimum voltage level in microvolts. If the voltage drops below this
452 * level the battery will need precharging when using CC/CV charging.
453 * @voltage_max_design_uv: voltage across the poles when the battery is fully
454 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
455 * printed on the label of the battery.
456 * @tricklecharge_current_ua: the tricklecharge current used when trickle
457 * charging the battery in microamperes. This is the charging phase when the
458 * battery is completely empty and we need to carefully trickle in some
459 * charge until we reach the precharging voltage.
460 * @precharge_current_ua: current to use in the precharge phase in microamperes,
461 * the precharge rate is limited by limiting the current to this value.
462 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
463 * microvolts. When we pass this voltage we will nominally switch over to the
464 * CC (constant current) charging phase defined by constant_charge_current_ua
465 * and constant_charge_voltage_max_uv.
466 * @charge_term_current_ua: when the current in the CV (constant voltage)
467 * charging phase drops below this value in microamperes the charging will
468 * terminate completely and not restart until the voltage over the battery
469 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
470 * @charge_restart_voltage_uv: when the battery has been fully charged by
471 * CC/CV charging and charging has been disabled, and the voltage subsequently
472 * drops below this value in microvolts, the charging will be restarted
473 * (typically using CV charging).
474 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
475 * voltage_max_design_uv and we reach this voltage level, all charging must
476 * stop and emergency procedures take place, such as shutting down the system
477 * in some cases.
478 * @constant_charge_current_max_ua: current in microamperes to use in the CC
479 * (constant current) charging phase. The charging rate is limited
480 * by this current. This is the main charging phase and as the current is
481 * constant into the battery the voltage slowly ascends to
482 * constant_charge_voltage_max_uv.
483 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
484 * the CC (constant current) charging phase and the beginning of the CV
485 * (constant voltage) charging phase.
486 * @maintenance_charge: an array of maintenance charging settings to be used
487 * after the main CC/CV charging phase is complete.
488 * @maintenance_charge_size: the number of maintenance charging settings in
489 * maintenance_charge.
490 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
491 * enters low alert temperature, i.e. if the internal temperature is between
492 * temp_alert_min and temp_min. No matter the charging phase, this
493 * and alert_high_temp_charge_voltage_uv will be applied.
494 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
495 * but for the charging voltage.
496 * @alert_high_temp_charge_current_ua: The charging current to use if the
497 * battery enters high alert temperature, i.e. if the internal temperature is
498 * between temp_alert_max and temp_max. No matter the charging phase, this
499 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
500 * the charging current as an evasive manouver.
501 * @alert_high_temp_charge_voltage_uv: Same as
502 * alert_high_temp_charge_current_ua, but for the charging voltage.
503 * @factory_internal_resistance_uohm: the internal resistance of the battery
504 * at fabrication time, expressed in microohms. This resistance will vary
505 * depending on the lifetime and charge of the battery, so this is just a
506 * nominal ballpark figure. This internal resistance is given for the state
507 * when the battery is discharging.
508 * @factory_internal_resistance_charging_uohm: the internal resistance of the
509 * battery at fabrication time while charging, expressed in microohms.
510 * The charging process will affect the internal resistance of the battery
511 * so this value provides a better resistance under these circumstances.
512 * This resistance will vary depending on the lifetime and charge of the
513 * battery, so this is just a nominal ballpark figure.
514 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
515 * temperature indices. This is an array of temperatures in degrees Celsius
516 * indicating which capacity table to use for a certain temperature, since
517 * the capacity for reasons of chemistry will be different at different
518 * temperatures. Determining capacity is a multivariate problem and the
519 * temperature is the first variable we determine.
520 * @temp_ambient_alert_min: the battery will go outside of operating conditions
521 * when the ambient temperature goes below this temperature in degrees
522 * Celsius.
523 * @temp_ambient_alert_max: the battery will go outside of operating conditions
524 * when the ambient temperature goes above this temperature in degrees
525 * Celsius.
526 * @temp_alert_min: the battery should issue an alert if the internal
527 * temperature goes below this temperature in degrees Celsius.
528 * @temp_alert_max: the battery should issue an alert if the internal
529 * temperature goes above this temperature in degrees Celsius.
530 * @temp_min: the battery will go outside of operating conditions when
531 * the internal temperature goes below this temperature in degrees Celsius.
532 * Normally this means the system should shut down.
533 * @temp_max: the battery will go outside of operating conditions when
534 * the internal temperature goes above this temperature in degrees Celsius.
535 * Normally this means the system should shut down.
536 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
537 * ocv_table and a size for each entry in ocv_table_size. These arrays
538 * determine the capacity in percent in relation to the voltage in microvolts
539 * at the indexed temperature.
540 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
541 * each entry in the array of capacity arrays in ocv_table.
542 * @resist_table: this is a table that correlates a battery temperature to the
543 * expected internal resistance at this temperature. The resistance is given
544 * as a percentage of factory_internal_resistance_uohm. Knowing the
545 * resistance of the battery is usually necessary for calculating the open
546 * circuit voltage (OCV) that is then used with the ocv_table to calculate
547 * the capacity of the battery. The resist_table must be ordered descending
548 * by temperature: highest temperature with lowest resistance first, lowest
549 * temperature with highest resistance last.
550 * @resist_table_size: the number of items in the resist_table.
551 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
552 * to internal resistance (Ri). The resistance is given in microohm for the
553 * corresponding voltage in microvolts. The internal resistance is used to
554 * determine the open circuit voltage so that we can determine the capacity
555 * of the battery. These voltages to resistance tables apply when the battery
556 * is discharging. The table must be ordered descending by voltage: highest
557 * voltage first.
558 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
559 * table.
560 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
561 * when the battery is charging. Being under charge changes the battery's
562 * internal resistance characteristics so a separate table is needed.*
563 * The table must be ordered descending by voltage: highest voltage first.
564 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
565 * table.
566 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
567 * in ohms for this battery, if an identification resistor is mounted
568 * between a third battery terminal and ground. This scheme is used by a lot
569 * of mobile device batteries.
570 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
571 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
572 * tolerance is 10% we will detect a proper battery if the BTI resistance
573 * is between 6300 and 7700 Ohm.
574 *
575 * This is the recommended struct to manage static battery parameters,
576 * populated by power_supply_get_battery_info(). Most platform drivers should
577 * use these for consistency.
578 *
579 * Its field names must correspond to elements in enum power_supply_property.
580 * The default field value is -EINVAL or NULL for pointers.
581 *
582 * CC/CV CHARGING:
583 *
584 * The charging parameters here assume a CC/CV charging scheme. This method
585 * is most common with Lithium Ion batteries (other methods are possible) and
586 * looks as follows:
587 *
588 * ^ Battery voltage
589 * | --- overvoltage_limit_uv
590 * |
591 * | ...................................................
592 * | .. constant_charge_voltage_max_uv
593 * | ..
594 * | .
595 * | .
596 * | .
597 * | .
598 * | .
599 * | .. precharge_voltage_max_uv
600 * | ..
601 * |. (trickle charging)
602 * +------------------------------------------------------------------> time
603 *
604 * ^ Current into the battery
605 * |
606 * | ............. constant_charge_current_max_ua
607 * | . .
608 * | . .
609 * | . .
610 * | . .
611 * | . ..
612 * | . ....
613 * | . .....
614 * | ... precharge_current_ua ....... charge_term_current_ua
615 * | . .
616 * | . .
617 * |.... tricklecharge_current_ua .
618 * | .
619 * +-----------------------------------------------------------------> time
620 *
621 * These diagrams are synchronized on time and the voltage and current
622 * follow each other.
623 *
624 * With CC/CV charging commence over time like this for an empty battery:
625 *
626 * 1. When the battery is completely empty it may need to be charged with
627 * an especially small current so that electrons just "trickle in",
628 * this is the tricklecharge_current_ua.
629 *
630 * 2. Next a small initial pre-charge current (precharge_current_ua)
631 * is applied if the voltage is below precharge_voltage_max_uv until we
632 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
633 * to as "trickle charging" but the use in the Linux kernel is different
634 * see below!
635 *
636 * 3. Then the main charging current is applied, which is called the constant
637 * current (CC) phase. A current regulator is set up to allow
638 * constant_charge_current_max_ua of current to flow into the battery.
639 * The chemical reaction in the battery will make the voltage go up as
640 * charge goes into the battery. This current is applied until we reach
641 * the constant_charge_voltage_max_uv voltage.
642 *
643 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
644 * means we allow current to go into the battery, but we keep the voltage
645 * fixed. This current will continue to charge the battery while keeping
646 * the voltage the same. A chemical reaction in the battery goes on
647 * storing energy without affecting the voltage. Over time the current
648 * will slowly drop and when we reach charge_term_current_ua we will
649 * end the constant voltage phase.
650 *
651 * After this the battery is fully charged, and if we do not support maintenance
652 * charging, the charging will not restart until power dissipation makes the
653 * voltage fall so that we reach charge_restart_voltage_uv and at this point
654 * we restart charging at the appropriate phase, usually this will be inside
655 * the CV phase.
656 *
657 * If we support maintenance charging the voltage is however kept high after
658 * the CV phase with a very low current. This is meant to let the same charge
659 * go in for usage while the charger is still connected, mainly for
660 * dissipation for the power consuming entity while connected to the
661 * charger.
662 *
663 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
664 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
665 * explosions.
666 *
667 * DETERMINING BATTERY CAPACITY:
668 *
669 * Several members of the struct deal with trying to determine the remaining
670 * capacity in the battery, usually as a percentage of charge. In practice
671 * many chargers uses a so-called fuel gauge or coloumb counter that measure
672 * how much charge goes into the battery and how much goes out (+/- leak
673 * consumption). This does not help if we do not know how much capacity the
674 * battery has to begin with, such as when it is first used or was taken out
675 * and charged in a separate charger. Therefore many capacity algorithms use
676 * the open circuit voltage with a look-up table to determine the rough
677 * capacity of the battery. The open circuit voltage can be conceptualized
678 * with an ideal voltage source (V) in series with an internal resistance (Ri)
679 * like this:
680 *
681 * +-------> IBAT >----------------+
682 * | ^ |
683 * [ ] Ri | |
684 * | | VBAT |
685 * o <---------- | |
686 * +| ^ | [ ] Rload
687 * .---. | | |
688 * | V | | OCV | |
689 * '---' | | |
690 * | | | |
691 * GND +-------------------------------+
692 *
693 * If we disconnect the load (here simplified as a fixed resistance Rload)
694 * and measure VBAT with a infinite impedance voltage meter we will get
695 * VBAT = OCV and this assumption is sometimes made even under load, assuming
696 * Rload is insignificant. However this will be of dubious quality because the
697 * load is rarely that small and Ri is strongly nonlinear depending on
698 * temperature and how much capacity is left in the battery due to the
699 * chemistry involved.
700 *
701 * In many practical applications we cannot just disconnect the battery from
702 * the load, so instead we often try to measure the instantaneous IBAT (the
703 * current out from the battery), estimate the Ri and thus calculate the
704 * voltage drop over Ri and compensate like this:
705 *
706 * OCV = VBAT - (IBAT * Ri)
707 *
708 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
709 * (by interpolation) the Ri from the VBAT under load. These curves are highly
710 * nonlinear and may need many datapoints but can be found in datasheets for
711 * some batteries. This gives the compensated open circuit voltage (OCV) for
712 * the battery even under load. Using this method will also compensate for
713 * temperature changes in the environment: this will also make the internal
714 * resistance change, and it will affect the VBAT under load, so correlating
715 * VBAT to Ri takes both remaining capacity and temperature into consideration.
716 *
717 * Alternatively a manufacturer can specify how the capacity of the battery
718 * is dependent on the battery temperature which is the main factor affecting
719 * Ri. As we know all checmical reactions are faster when it is warm and slower
720 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
721 * voltage drops too low for example. This effect is also highly nonlinear and
722 * the purpose of the table resist_table: this will take a temperature and
723 * tell us how big percentage of Ri the specified temperature correlates to.
724 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
725 * Celsius.
726 *
727 * The power supply class itself doesn't use this struct as of now.
728 */
729
730struct power_supply_battery_info {
731 unsigned int technology;
732 int energy_full_design_uwh;
733 int charge_full_design_uah;
734 int voltage_min_design_uv;
735 int voltage_max_design_uv;
736 int tricklecharge_current_ua;
737 int precharge_current_ua;
738 int precharge_voltage_max_uv;
739 int charge_term_current_ua;
740 int charge_restart_voltage_uv;
741 int overvoltage_limit_uv;
742 int constant_charge_current_max_ua;
743 int constant_charge_voltage_max_uv;
744 struct power_supply_maintenance_charge_table *maintenance_charge;
745 int maintenance_charge_size;
746 int alert_low_temp_charge_current_ua;
747 int alert_low_temp_charge_voltage_uv;
748 int alert_high_temp_charge_current_ua;
749 int alert_high_temp_charge_voltage_uv;
750 int factory_internal_resistance_uohm;
751 int factory_internal_resistance_charging_uohm;
752 int ocv_temp[POWER_SUPPLY_OCV_TEMP_MAX];
753 int temp_ambient_alert_min;
754 int temp_ambient_alert_max;
755 int temp_alert_min;
756 int temp_alert_max;
757 int temp_min;
758 int temp_max;
759 struct power_supply_battery_ocv_table *ocv_table[POWER_SUPPLY_OCV_TEMP_MAX];
760 int ocv_table_size[POWER_SUPPLY_OCV_TEMP_MAX];
761 struct power_supply_resistance_temp_table *resist_table;
762 int resist_table_size;
763 struct power_supply_vbat_ri_table *vbat2ri_discharging;
764 int vbat2ri_discharging_size;
765 struct power_supply_vbat_ri_table *vbat2ri_charging;
766 int vbat2ri_charging_size;
767 int bti_resistance_ohm;
768 int bti_resistance_tolerance;
769};
770
771extern int power_supply_reg_notifier(struct notifier_block *nb);
772extern void power_supply_unreg_notifier(struct notifier_block *nb);
773#if IS_ENABLED(CONFIG_POWER_SUPPLY)
774extern struct power_supply *power_supply_get_by_name(const char *name);
775extern void power_supply_put(struct power_supply *psy);
776#else
777static inline void power_supply_put(struct power_supply *psy) {}
778static inline struct power_supply *power_supply_get_by_name(const char *name)
779{ return NULL; }
780#endif
781#ifdef CONFIG_OF
782extern struct power_supply *power_supply_get_by_phandle(struct device_node *np,
783 const char *property);
784extern struct power_supply *devm_power_supply_get_by_phandle(
785 struct device *dev, const char *property);
786#else /* !CONFIG_OF */
787static inline struct power_supply *
788power_supply_get_by_phandle(struct device_node *np, const char *property)
789{ return NULL; }
790static inline struct power_supply *
791devm_power_supply_get_by_phandle(struct device *dev, const char *property)
792{ return NULL; }
793#endif /* CONFIG_OF */
794
795extern const enum power_supply_property power_supply_battery_info_properties[];
796extern const size_t power_supply_battery_info_properties_size;
797extern int power_supply_get_battery_info(struct power_supply *psy,
798 struct power_supply_battery_info **info_out);
799extern void power_supply_put_battery_info(struct power_supply *psy,
800 struct power_supply_battery_info *info);
801extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
802 enum power_supply_property psp);
803extern int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
804 enum power_supply_property psp,
805 union power_supply_propval *val);
806extern int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
807 int table_len, int ocv);
808extern struct power_supply_battery_ocv_table *
809power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
810 int temp, int *table_len);
811extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
812 int ocv, int temp);
813extern int
814power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
815 int table_len, int temp);
816extern int power_supply_vbat2ri(struct power_supply_battery_info *info,
817 int vbat_uv, bool charging);
818extern struct power_supply_maintenance_charge_table *
819power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, int index);
820extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
821 int resistance);
822extern void power_supply_changed(struct power_supply *psy);
823extern int power_supply_am_i_supplied(struct power_supply *psy);
824int power_supply_get_property_from_supplier(struct power_supply *psy,
825 enum power_supply_property psp,
826 union power_supply_propval *val);
827extern int power_supply_set_battery_charged(struct power_supply *psy);
828
829static inline bool
830power_supply_supports_maintenance_charging(struct power_supply_battery_info *info)
831{
832 struct power_supply_maintenance_charge_table *mt;
833
834 mt = power_supply_get_maintenance_charging_setting(info, index: 0);
835
836 return (mt != NULL);
837}
838
839static inline bool
840power_supply_supports_vbat2ri(struct power_supply_battery_info *info)
841{
842 return ((info->vbat2ri_discharging != NULL) &&
843 info->vbat2ri_discharging_size > 0);
844}
845
846static inline bool
847power_supply_supports_temp2ri(struct power_supply_battery_info *info)
848{
849 return ((info->resist_table != NULL) &&
850 info->resist_table_size > 0);
851}
852
853#ifdef CONFIG_POWER_SUPPLY
854extern int power_supply_is_system_supplied(void);
855#else
856static inline int power_supply_is_system_supplied(void) { return -ENOSYS; }
857#endif
858
859extern int power_supply_get_property(struct power_supply *psy,
860 enum power_supply_property psp,
861 union power_supply_propval *val);
862#if IS_ENABLED(CONFIG_POWER_SUPPLY)
863extern int power_supply_set_property(struct power_supply *psy,
864 enum power_supply_property psp,
865 const union power_supply_propval *val);
866#else
867static inline int power_supply_set_property(struct power_supply *psy,
868 enum power_supply_property psp,
869 const union power_supply_propval *val)
870{ return 0; }
871#endif
872extern int power_supply_property_is_writeable(struct power_supply *psy,
873 enum power_supply_property psp);
874extern void power_supply_external_power_changed(struct power_supply *psy);
875
876extern struct power_supply *__must_check
877power_supply_register(struct device *parent,
878 const struct power_supply_desc *desc,
879 const struct power_supply_config *cfg);
880extern struct power_supply *__must_check
881power_supply_register_no_ws(struct device *parent,
882 const struct power_supply_desc *desc,
883 const struct power_supply_config *cfg);
884extern struct power_supply *__must_check
885devm_power_supply_register(struct device *parent,
886 const struct power_supply_desc *desc,
887 const struct power_supply_config *cfg);
888extern struct power_supply *__must_check
889devm_power_supply_register_no_ws(struct device *parent,
890 const struct power_supply_desc *desc,
891 const struct power_supply_config *cfg);
892extern void power_supply_unregister(struct power_supply *psy);
893extern int power_supply_powers(struct power_supply *psy, struct device *dev);
894
895#define to_power_supply(device) container_of(device, struct power_supply, dev)
896
897extern void *power_supply_get_drvdata(struct power_supply *psy);
898extern int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data));
899
900static inline bool power_supply_is_amp_property(enum power_supply_property psp)
901{
902 switch (psp) {
903 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
904 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN:
905 case POWER_SUPPLY_PROP_CHARGE_FULL:
906 case POWER_SUPPLY_PROP_CHARGE_EMPTY:
907 case POWER_SUPPLY_PROP_CHARGE_NOW:
908 case POWER_SUPPLY_PROP_CHARGE_AVG:
909 case POWER_SUPPLY_PROP_CHARGE_COUNTER:
910 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
911 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
912 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT:
913 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
914 case POWER_SUPPLY_PROP_CURRENT_MAX:
915 case POWER_SUPPLY_PROP_CURRENT_NOW:
916 case POWER_SUPPLY_PROP_CURRENT_AVG:
917 case POWER_SUPPLY_PROP_CURRENT_BOOT:
918 return true;
919 default:
920 break;
921 }
922
923 return false;
924}
925
926static inline bool power_supply_is_watt_property(enum power_supply_property psp)
927{
928 switch (psp) {
929 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
930 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN:
931 case POWER_SUPPLY_PROP_ENERGY_FULL:
932 case POWER_SUPPLY_PROP_ENERGY_EMPTY:
933 case POWER_SUPPLY_PROP_ENERGY_NOW:
934 case POWER_SUPPLY_PROP_ENERGY_AVG:
935 case POWER_SUPPLY_PROP_VOLTAGE_MAX:
936 case POWER_SUPPLY_PROP_VOLTAGE_MIN:
937 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
938 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
939 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
940 case POWER_SUPPLY_PROP_VOLTAGE_AVG:
941 case POWER_SUPPLY_PROP_VOLTAGE_OCV:
942 case POWER_SUPPLY_PROP_VOLTAGE_BOOT:
943 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE:
944 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
945 case POWER_SUPPLY_PROP_POWER_NOW:
946 return true;
947 default:
948 break;
949 }
950
951 return false;
952}
953
954#ifdef CONFIG_POWER_SUPPLY_HWMON
955int power_supply_add_hwmon_sysfs(struct power_supply *psy);
956void power_supply_remove_hwmon_sysfs(struct power_supply *psy);
957#else
958static inline int power_supply_add_hwmon_sysfs(struct power_supply *psy)
959{
960 return 0;
961}
962
963static inline
964void power_supply_remove_hwmon_sysfs(struct power_supply *psy) {}
965#endif
966
967#ifdef CONFIG_SYSFS
968ssize_t power_supply_charge_behaviour_show(struct device *dev,
969 unsigned int available_behaviours,
970 enum power_supply_charge_behaviour behaviour,
971 char *buf);
972
973int power_supply_charge_behaviour_parse(unsigned int available_behaviours, const char *buf);
974#else
975static inline
976ssize_t power_supply_charge_behaviour_show(struct device *dev,
977 unsigned int available_behaviours,
978 enum power_supply_charge_behaviour behaviour,
979 char *buf)
980{
981 return -EOPNOTSUPP;
982}
983
984static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours,
985 const char *buf)
986{
987 return -EOPNOTSUPP;
988}
989#endif
990
991#endif /* __LINUX_POWER_SUPPLY_H__ */
992

source code of linux/include/linux/power_supply.h