1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __LINUX_USB_H
3#define __LINUX_USB_H
4
5#include <linux/mod_devicetable.h>
6#include <linux/usb/ch9.h>
7
8#define USB_MAJOR 180
9#define USB_DEVICE_MAJOR 189
10
11
12#ifdef __KERNEL__
13
14#include <linux/errno.h> /* for -ENODEV */
15#include <linux/delay.h> /* for mdelay() */
16#include <linux/interrupt.h> /* for in_interrupt() */
17#include <linux/list.h> /* for struct list_head */
18#include <linux/kref.h> /* for struct kref */
19#include <linux/device.h> /* for struct device */
20#include <linux/fs.h> /* for struct file_operations */
21#include <linux/completion.h> /* for struct completion */
22#include <linux/sched.h> /* for current && schedule_timeout */
23#include <linux/mutex.h> /* for struct mutex */
24#include <linux/pm_runtime.h> /* for runtime PM */
25
26struct usb_device;
27struct usb_driver;
28
29/*-------------------------------------------------------------------------*/
30
31/*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47struct ep_device;
48
49/**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @ssp_isoc_ep_comp: SuperSpeedPlus isoc companion descriptor for this endpoint
54 * @urb_list: urbs queued to this endpoint; maintained by usbcore
55 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
56 * with one or more transfer descriptors (TDs) per urb
57 * @ep_dev: ep_device for sysfs info
58 * @extra: descriptors following this endpoint in the configuration
59 * @extralen: how many bytes of "extra" are valid
60 * @enabled: URBs may be submitted to this endpoint
61 * @streams: number of USB-3 streams allocated on the endpoint
62 *
63 * USB requests are always queued to a given endpoint, identified by a
64 * descriptor within an active interface in a given USB configuration.
65 */
66struct usb_host_endpoint {
67 struct usb_endpoint_descriptor desc;
68 struct usb_ss_ep_comp_descriptor ss_ep_comp;
69 struct usb_ssp_isoc_ep_comp_descriptor ssp_isoc_ep_comp;
70 struct list_head urb_list;
71 void *hcpriv;
72 struct ep_device *ep_dev; /* For sysfs info */
73
74 unsigned char *extra; /* Extra descriptors */
75 int extralen;
76 int enabled;
77 int streams;
78};
79
80/* host-side wrapper for one interface setting's parsed descriptors */
81struct usb_host_interface {
82 struct usb_interface_descriptor desc;
83
84 int extralen;
85 unsigned char *extra; /* Extra descriptors */
86
87 /* array of desc.bNumEndpoints endpoints associated with this
88 * interface setting. these will be in no particular order.
89 */
90 struct usb_host_endpoint *endpoint;
91
92 char *string; /* iInterface string, if present */
93};
94
95enum usb_interface_condition {
96 USB_INTERFACE_UNBOUND = 0,
97 USB_INTERFACE_BINDING,
98 USB_INTERFACE_BOUND,
99 USB_INTERFACE_UNBINDING,
100};
101
102int __must_check
103usb_find_common_endpoints(struct usb_host_interface *alt,
104 struct usb_endpoint_descriptor **bulk_in,
105 struct usb_endpoint_descriptor **bulk_out,
106 struct usb_endpoint_descriptor **int_in,
107 struct usb_endpoint_descriptor **int_out);
108
109int __must_check
110usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
111 struct usb_endpoint_descriptor **bulk_in,
112 struct usb_endpoint_descriptor **bulk_out,
113 struct usb_endpoint_descriptor **int_in,
114 struct usb_endpoint_descriptor **int_out);
115
116static inline int __must_check
117usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
118 struct usb_endpoint_descriptor **bulk_in)
119{
120 return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
121}
122
123static inline int __must_check
124usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
125 struct usb_endpoint_descriptor **bulk_out)
126{
127 return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
128}
129
130static inline int __must_check
131usb_find_int_in_endpoint(struct usb_host_interface *alt,
132 struct usb_endpoint_descriptor **int_in)
133{
134 return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
135}
136
137static inline int __must_check
138usb_find_int_out_endpoint(struct usb_host_interface *alt,
139 struct usb_endpoint_descriptor **int_out)
140{
141 return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
142}
143
144static inline int __must_check
145usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
146 struct usb_endpoint_descriptor **bulk_in)
147{
148 return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
149}
150
151static inline int __must_check
152usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
153 struct usb_endpoint_descriptor **bulk_out)
154{
155 return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
156}
157
158static inline int __must_check
159usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
160 struct usb_endpoint_descriptor **int_in)
161{
162 return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
163}
164
165static inline int __must_check
166usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
167 struct usb_endpoint_descriptor **int_out)
168{
169 return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
170}
171
172enum usb_wireless_status {
173 USB_WIRELESS_STATUS_NA = 0,
174 USB_WIRELESS_STATUS_DISCONNECTED,
175 USB_WIRELESS_STATUS_CONNECTED,
176};
177
178/**
179 * struct usb_interface - what usb device drivers talk to
180 * @altsetting: array of interface structures, one for each alternate
181 * setting that may be selected. Each one includes a set of
182 * endpoint configurations. They will be in no particular order.
183 * @cur_altsetting: the current altsetting.
184 * @num_altsetting: number of altsettings defined.
185 * @intf_assoc: interface association descriptor
186 * @minor: the minor number assigned to this interface, if this
187 * interface is bound to a driver that uses the USB major number.
188 * If this interface does not use the USB major, this field should
189 * be unused. The driver should set this value in the probe()
190 * function of the driver, after it has been assigned a minor
191 * number from the USB core by calling usb_register_dev().
192 * @condition: binding state of the interface: not bound, binding
193 * (in probe()), bound to a driver, or unbinding (in disconnect())
194 * @sysfs_files_created: sysfs attributes exist
195 * @ep_devs_created: endpoint child pseudo-devices exist
196 * @unregistering: flag set when the interface is being unregistered
197 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
198 * capability during autosuspend.
199 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
200 * has been deferred.
201 * @needs_binding: flag set when the driver should be re-probed or unbound
202 * following a reset or suspend operation it doesn't support.
203 * @authorized: This allows to (de)authorize individual interfaces instead
204 * a whole device in contrast to the device authorization.
205 * @wireless_status: if the USB device uses a receiver/emitter combo, whether
206 * the emitter is connected.
207 * @wireless_status_work: Used for scheduling wireless status changes
208 * from atomic context.
209 * @dev: driver model's view of this device
210 * @usb_dev: if an interface is bound to the USB major, this will point
211 * to the sysfs representation for that device.
212 * @reset_ws: Used for scheduling resets from atomic context.
213 * @resetting_device: USB core reset the device, so use alt setting 0 as
214 * current; needs bandwidth alloc after reset.
215 *
216 * USB device drivers attach to interfaces on a physical device. Each
217 * interface encapsulates a single high level function, such as feeding
218 * an audio stream to a speaker or reporting a change in a volume control.
219 * Many USB devices only have one interface. The protocol used to talk to
220 * an interface's endpoints can be defined in a usb "class" specification,
221 * or by a product's vendor. The (default) control endpoint is part of
222 * every interface, but is never listed among the interface's descriptors.
223 *
224 * The driver that is bound to the interface can use standard driver model
225 * calls such as dev_get_drvdata() on the dev member of this structure.
226 *
227 * Each interface may have alternate settings. The initial configuration
228 * of a device sets altsetting 0, but the device driver can change
229 * that setting using usb_set_interface(). Alternate settings are often
230 * used to control the use of periodic endpoints, such as by having
231 * different endpoints use different amounts of reserved USB bandwidth.
232 * All standards-conformant USB devices that use isochronous endpoints
233 * will use them in non-default settings.
234 *
235 * The USB specification says that alternate setting numbers must run from
236 * 0 to one less than the total number of alternate settings. But some
237 * devices manage to mess this up, and the structures aren't necessarily
238 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
239 * look up an alternate setting in the altsetting array based on its number.
240 */
241struct usb_interface {
242 /* array of alternate settings for this interface,
243 * stored in no particular order */
244 struct usb_host_interface *altsetting;
245
246 struct usb_host_interface *cur_altsetting; /* the currently
247 * active alternate setting */
248 unsigned num_altsetting; /* number of alternate settings */
249
250 /* If there is an interface association descriptor then it will list
251 * the associated interfaces */
252 struct usb_interface_assoc_descriptor *intf_assoc;
253
254 int minor; /* minor number this interface is
255 * bound to */
256 enum usb_interface_condition condition; /* state of binding */
257 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
258 unsigned ep_devs_created:1; /* endpoint "devices" exist */
259 unsigned unregistering:1; /* unregistration is in progress */
260 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
261 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
262 unsigned needs_binding:1; /* needs delayed unbind/rebind */
263 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
264 unsigned authorized:1; /* used for interface authorization */
265 enum usb_wireless_status wireless_status;
266 struct work_struct wireless_status_work;
267
268 struct device dev; /* interface specific device info */
269 struct device *usb_dev;
270 struct work_struct reset_ws; /* for resets in atomic context */
271};
272
273#define to_usb_interface(__dev) container_of_const(__dev, struct usb_interface, dev)
274
275static inline void *usb_get_intfdata(struct usb_interface *intf)
276{
277 return dev_get_drvdata(dev: &intf->dev);
278}
279
280/**
281 * usb_set_intfdata() - associate driver-specific data with an interface
282 * @intf: USB interface
283 * @data: driver data
284 *
285 * Drivers can use this function in their probe() callbacks to associate
286 * driver-specific data with an interface.
287 *
288 * Note that there is generally no need to clear the driver-data pointer even
289 * if some drivers do so for historical or implementation-specific reasons.
290 */
291static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
292{
293 dev_set_drvdata(dev: &intf->dev, data);
294}
295
296struct usb_interface *usb_get_intf(struct usb_interface *intf);
297void usb_put_intf(struct usb_interface *intf);
298
299/* Hard limit */
300#define USB_MAXENDPOINTS 30
301/* this maximum is arbitrary */
302#define USB_MAXINTERFACES 32
303#define USB_MAXIADS (USB_MAXINTERFACES/2)
304
305bool usb_check_bulk_endpoints(
306 const struct usb_interface *intf, const u8 *ep_addrs);
307bool usb_check_int_endpoints(
308 const struct usb_interface *intf, const u8 *ep_addrs);
309
310/*
311 * USB Resume Timer: Every Host controller driver should drive the resume
312 * signalling on the bus for the amount of time defined by this macro.
313 *
314 * That way we will have a 'stable' behavior among all HCDs supported by Linux.
315 *
316 * Note that the USB Specification states we should drive resume for *at least*
317 * 20 ms, but it doesn't give an upper bound. This creates two possible
318 * situations which we want to avoid:
319 *
320 * (a) sometimes an msleep(20) might expire slightly before 20 ms, which causes
321 * us to fail USB Electrical Tests, thus failing Certification
322 *
323 * (b) Some (many) devices actually need more than 20 ms of resume signalling,
324 * and while we can argue that's against the USB Specification, we don't have
325 * control over which devices a certification laboratory will be using for
326 * certification. If CertLab uses a device which was tested against Windows and
327 * that happens to have relaxed resume signalling rules, we might fall into
328 * situations where we fail interoperability and electrical tests.
329 *
330 * In order to avoid both conditions, we're using a 40 ms resume timeout, which
331 * should cope with both LPJ calibration errors and devices not following every
332 * detail of the USB Specification.
333 */
334#define USB_RESUME_TIMEOUT 40 /* ms */
335
336/**
337 * struct usb_interface_cache - long-term representation of a device interface
338 * @num_altsetting: number of altsettings defined.
339 * @ref: reference counter.
340 * @altsetting: variable-length array of interface structures, one for
341 * each alternate setting that may be selected. Each one includes a
342 * set of endpoint configurations. They will be in no particular order.
343 *
344 * These structures persist for the lifetime of a usb_device, unlike
345 * struct usb_interface (which persists only as long as its configuration
346 * is installed). The altsetting arrays can be accessed through these
347 * structures at any time, permitting comparison of configurations and
348 * providing support for the /sys/kernel/debug/usb/devices pseudo-file.
349 */
350struct usb_interface_cache {
351 unsigned num_altsetting; /* number of alternate settings */
352 struct kref ref; /* reference counter */
353
354 /* variable-length array of alternate settings for this interface,
355 * stored in no particular order */
356 struct usb_host_interface altsetting[];
357};
358#define ref_to_usb_interface_cache(r) \
359 container_of(r, struct usb_interface_cache, ref)
360#define altsetting_to_usb_interface_cache(a) \
361 container_of(a, struct usb_interface_cache, altsetting[0])
362
363/**
364 * struct usb_host_config - representation of a device's configuration
365 * @desc: the device's configuration descriptor.
366 * @string: pointer to the cached version of the iConfiguration string, if
367 * present for this configuration.
368 * @intf_assoc: list of any interface association descriptors in this config
369 * @interface: array of pointers to usb_interface structures, one for each
370 * interface in the configuration. The number of interfaces is stored
371 * in desc.bNumInterfaces. These pointers are valid only while the
372 * configuration is active.
373 * @intf_cache: array of pointers to usb_interface_cache structures, one
374 * for each interface in the configuration. These structures exist
375 * for the entire life of the device.
376 * @extra: pointer to buffer containing all extra descriptors associated
377 * with this configuration (those preceding the first interface
378 * descriptor).
379 * @extralen: length of the extra descriptors buffer.
380 *
381 * USB devices may have multiple configurations, but only one can be active
382 * at any time. Each encapsulates a different operational environment;
383 * for example, a dual-speed device would have separate configurations for
384 * full-speed and high-speed operation. The number of configurations
385 * available is stored in the device descriptor as bNumConfigurations.
386 *
387 * A configuration can contain multiple interfaces. Each corresponds to
388 * a different function of the USB device, and all are available whenever
389 * the configuration is active. The USB standard says that interfaces
390 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
391 * of devices get this wrong. In addition, the interface array is not
392 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
393 * look up an interface entry based on its number.
394 *
395 * Device drivers should not attempt to activate configurations. The choice
396 * of which configuration to install is a policy decision based on such
397 * considerations as available power, functionality provided, and the user's
398 * desires (expressed through userspace tools). However, drivers can call
399 * usb_reset_configuration() to reinitialize the current configuration and
400 * all its interfaces.
401 */
402struct usb_host_config {
403 struct usb_config_descriptor desc;
404
405 char *string; /* iConfiguration string, if present */
406
407 /* List of any Interface Association Descriptors in this
408 * configuration. */
409 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
410
411 /* the interfaces associated with this configuration,
412 * stored in no particular order */
413 struct usb_interface *interface[USB_MAXINTERFACES];
414
415 /* Interface information available even when this is not the
416 * active configuration */
417 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
418
419 unsigned char *extra; /* Extra descriptors */
420 int extralen;
421};
422
423/* USB2.0 and USB3.0 device BOS descriptor set */
424struct usb_host_bos {
425 struct usb_bos_descriptor *desc;
426
427 struct usb_ext_cap_descriptor *ext_cap;
428 struct usb_ss_cap_descriptor *ss_cap;
429 struct usb_ssp_cap_descriptor *ssp_cap;
430 struct usb_ss_container_id_descriptor *ss_id;
431 struct usb_ptm_cap_descriptor *ptm_cap;
432};
433
434int __usb_get_extra_descriptor(char *buffer, unsigned size,
435 unsigned char type, void **ptr, size_t min);
436#define usb_get_extra_descriptor(ifpoint, type, ptr) \
437 __usb_get_extra_descriptor((ifpoint)->extra, \
438 (ifpoint)->extralen, \
439 type, (void **)ptr, sizeof(**(ptr)))
440
441/* ----------------------------------------------------------------------- */
442
443/* USB device number allocation bitmap */
444struct usb_devmap {
445 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
446};
447
448/*
449 * Allocated per bus (tree of devices) we have:
450 */
451struct usb_bus {
452 struct device *controller; /* host side hardware */
453 struct device *sysdev; /* as seen from firmware or bus */
454 int busnum; /* Bus number (in order of reg) */
455 const char *bus_name; /* stable id (PCI slot_name etc) */
456 u8 uses_pio_for_control; /*
457 * Does the host controller use PIO
458 * for control transfers?
459 */
460 u8 otg_port; /* 0, or number of OTG/HNP port */
461 unsigned is_b_host:1; /* true during some HNP roleswitches */
462 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
463 unsigned no_stop_on_short:1; /*
464 * Quirk: some controllers don't stop
465 * the ep queue on a short transfer
466 * with the URB_SHORT_NOT_OK flag set.
467 */
468 unsigned no_sg_constraint:1; /* no sg constraint */
469 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
470
471 int devnum_next; /* Next open device number in
472 * round-robin allocation */
473 struct mutex devnum_next_mutex; /* devnum_next mutex */
474
475 struct usb_devmap devmap; /* device address allocation map */
476 struct usb_device *root_hub; /* Root hub */
477 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
478
479 int bandwidth_allocated; /* on this bus: how much of the time
480 * reserved for periodic (intr/iso)
481 * requests is used, on average?
482 * Units: microseconds/frame.
483 * Limits: Full/low speed reserve 90%,
484 * while high speed reserves 80%.
485 */
486 int bandwidth_int_reqs; /* number of Interrupt requests */
487 int bandwidth_isoc_reqs; /* number of Isoc. requests */
488
489 unsigned resuming_ports; /* bit array: resuming root-hub ports */
490
491#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
492 struct mon_bus *mon_bus; /* non-null when associated */
493 int monitored; /* non-zero when monitored */
494#endif
495};
496
497struct usb_dev_state;
498
499/* ----------------------------------------------------------------------- */
500
501struct usb_tt;
502
503enum usb_port_connect_type {
504 USB_PORT_CONNECT_TYPE_UNKNOWN = 0,
505 USB_PORT_CONNECT_TYPE_HOT_PLUG,
506 USB_PORT_CONNECT_TYPE_HARD_WIRED,
507 USB_PORT_NOT_USED,
508};
509
510/*
511 * USB port quirks.
512 */
513
514/* For the given port, prefer the old (faster) enumeration scheme. */
515#define USB_PORT_QUIRK_OLD_SCHEME BIT(0)
516
517/* Decrease TRSTRCY to 10ms during device enumeration. */
518#define USB_PORT_QUIRK_FAST_ENUM BIT(1)
519
520/*
521 * USB 2.0 Link Power Management (LPM) parameters.
522 */
523struct usb2_lpm_parameters {
524 /* Best effort service latency indicate how long the host will drive
525 * resume on an exit from L1.
526 */
527 unsigned int besl;
528
529 /* Timeout value in microseconds for the L1 inactivity (LPM) timer.
530 * When the timer counts to zero, the parent hub will initiate a LPM
531 * transition to L1.
532 */
533 int timeout;
534};
535
536/*
537 * USB 3.0 Link Power Management (LPM) parameters.
538 *
539 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
540 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
541 * All three are stored in nanoseconds.
542 */
543struct usb3_lpm_parameters {
544 /*
545 * Maximum exit latency (MEL) for the host to send a packet to the
546 * device (either a Ping for isoc endpoints, or a data packet for
547 * interrupt endpoints), the hubs to decode the packet, and for all hubs
548 * in the path to transition the links to U0.
549 */
550 unsigned int mel;
551 /*
552 * Maximum exit latency for a device-initiated LPM transition to bring
553 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
554 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
555 */
556 unsigned int pel;
557
558 /*
559 * The System Exit Latency (SEL) includes PEL, and three other
560 * latencies. After a device initiates a U0 transition, it will take
561 * some time from when the device sends the ERDY to when it will finally
562 * receive the data packet. Basically, SEL should be the worse-case
563 * latency from when a device starts initiating a U0 transition to when
564 * it will get data.
565 */
566 unsigned int sel;
567 /*
568 * The idle timeout value that is currently programmed into the parent
569 * hub for this device. When the timer counts to zero, the parent hub
570 * will initiate an LPM transition to either U1 or U2.
571 */
572 int timeout;
573};
574
575/**
576 * struct usb_device - kernel's representation of a USB device
577 * @devnum: device number; address on a USB bus
578 * @devpath: device ID string for use in messages (e.g., /port/...)
579 * @route: tree topology hex string for use with xHCI
580 * @state: device state: configured, not attached, etc.
581 * @speed: device speed: high/full/low (or error)
582 * @rx_lanes: number of rx lanes in use, USB 3.2 adds dual-lane support
583 * @tx_lanes: number of tx lanes in use, USB 3.2 adds dual-lane support
584 * @ssp_rate: SuperSpeed Plus phy signaling rate and lane count
585 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
586 * @ttport: device port on that tt hub
587 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
588 * @parent: our hub, unless we're the root
589 * @bus: bus we're part of
590 * @ep0: endpoint 0 data (default control pipe)
591 * @dev: generic device interface
592 * @descriptor: USB device descriptor
593 * @bos: USB device BOS descriptor set
594 * @config: all of the device's configs
595 * @actconfig: the active configuration
596 * @ep_in: array of IN endpoints
597 * @ep_out: array of OUT endpoints
598 * @rawdescriptors: raw descriptors for each config
599 * @bus_mA: Current available from the bus
600 * @portnum: parent port number (origin 1)
601 * @level: number of USB hub ancestors
602 * @devaddr: device address, XHCI: assigned by HW, others: same as devnum
603 * @can_submit: URBs may be submitted
604 * @persist_enabled: USB_PERSIST enabled for this device
605 * @reset_in_progress: the device is being reset
606 * @have_langid: whether string_langid is valid
607 * @authorized: policy has said we can use it;
608 * (user space) policy determines if we authorize this device to be
609 * used or not. By default, wired USB devices are authorized.
610 * WUSB devices are not, until we authorize them from user space.
611 * FIXME -- complete doc
612 * @authenticated: Crypto authentication passed
613 * @lpm_capable: device supports LPM
614 * @lpm_devinit_allow: Allow USB3 device initiated LPM, exit latency is in range
615 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
616 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM
617 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled
618 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled
619 * @usb3_lpm_u1_enabled: USB3 hardware U1 LPM enabled
620 * @usb3_lpm_u2_enabled: USB3 hardware U2 LPM enabled
621 * @string_langid: language ID for strings
622 * @product: iProduct string, if present (static)
623 * @manufacturer: iManufacturer string, if present (static)
624 * @serial: iSerialNumber string, if present (static)
625 * @filelist: usbfs files that are open to this device
626 * @maxchild: number of ports if hub
627 * @quirks: quirks of the whole device
628 * @urbnum: number of URBs submitted for the whole device
629 * @active_duration: total time device is not suspended
630 * @connect_time: time device was first connected
631 * @do_remote_wakeup: remote wakeup should be enabled
632 * @reset_resume: needs reset instead of resume
633 * @port_is_suspended: the upstream port is suspended (L2 or U3)
634 * @slot_id: Slot ID assigned by xHCI
635 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout.
636 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
637 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
638 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
639 * to keep track of the number of functions that require USB 3.0 Link Power
640 * Management to be disabled for this usb_device. This count should only
641 * be manipulated by those functions, with the bandwidth_mutex is held.
642 * @hub_delay: cached value consisting of:
643 * parent->hub_delay + wHubDelay + tTPTransmissionDelay (40ns)
644 * Will be used as wValue for SetIsochDelay requests.
645 * @use_generic_driver: ask driver core to reprobe using the generic driver.
646 *
647 * Notes:
648 * Usbcore drivers should not set usbdev->state directly. Instead use
649 * usb_set_device_state().
650 */
651struct usb_device {
652 int devnum;
653 char devpath[16];
654 u32 route;
655 enum usb_device_state state;
656 enum usb_device_speed speed;
657 unsigned int rx_lanes;
658 unsigned int tx_lanes;
659 enum usb_ssp_rate ssp_rate;
660
661 struct usb_tt *tt;
662 int ttport;
663
664 unsigned int toggle[2];
665
666 struct usb_device *parent;
667 struct usb_bus *bus;
668 struct usb_host_endpoint ep0;
669
670 struct device dev;
671
672 struct usb_device_descriptor descriptor;
673 struct usb_host_bos *bos;
674 struct usb_host_config *config;
675
676 struct usb_host_config *actconfig;
677 struct usb_host_endpoint *ep_in[16];
678 struct usb_host_endpoint *ep_out[16];
679
680 char **rawdescriptors;
681
682 unsigned short bus_mA;
683 u8 portnum;
684 u8 level;
685 u8 devaddr;
686
687 unsigned can_submit:1;
688 unsigned persist_enabled:1;
689 unsigned reset_in_progress:1;
690 unsigned have_langid:1;
691 unsigned authorized:1;
692 unsigned authenticated:1;
693 unsigned lpm_capable:1;
694 unsigned lpm_devinit_allow:1;
695 unsigned usb2_hw_lpm_capable:1;
696 unsigned usb2_hw_lpm_besl_capable:1;
697 unsigned usb2_hw_lpm_enabled:1;
698 unsigned usb2_hw_lpm_allowed:1;
699 unsigned usb3_lpm_u1_enabled:1;
700 unsigned usb3_lpm_u2_enabled:1;
701 int string_langid;
702
703 /* static strings from the device */
704 char *product;
705 char *manufacturer;
706 char *serial;
707
708 struct list_head filelist;
709
710 int maxchild;
711
712 u32 quirks;
713 atomic_t urbnum;
714
715 unsigned long active_duration;
716
717 unsigned long connect_time;
718
719 unsigned do_remote_wakeup:1;
720 unsigned reset_resume:1;
721 unsigned port_is_suspended:1;
722
723 int slot_id;
724 struct usb2_lpm_parameters l1_params;
725 struct usb3_lpm_parameters u1_params;
726 struct usb3_lpm_parameters u2_params;
727 unsigned lpm_disable_count;
728
729 u16 hub_delay;
730 unsigned use_generic_driver:1;
731};
732
733#define to_usb_device(__dev) container_of_const(__dev, struct usb_device, dev)
734
735static inline struct usb_device *__intf_to_usbdev(struct usb_interface *intf)
736{
737 return to_usb_device(intf->dev.parent);
738}
739static inline const struct usb_device *__intf_to_usbdev_const(const struct usb_interface *intf)
740{
741 return to_usb_device((const struct device *)intf->dev.parent);
742}
743
744#define interface_to_usbdev(intf) \
745 _Generic((intf), \
746 const struct usb_interface *: __intf_to_usbdev_const, \
747 struct usb_interface *: __intf_to_usbdev)(intf)
748
749extern struct usb_device *usb_get_dev(struct usb_device *dev);
750extern void usb_put_dev(struct usb_device *dev);
751extern struct usb_device *usb_hub_find_child(struct usb_device *hdev,
752 int port1);
753
754/**
755 * usb_hub_for_each_child - iterate over all child devices on the hub
756 * @hdev: USB device belonging to the usb hub
757 * @port1: portnum associated with child device
758 * @child: child device pointer
759 */
760#define usb_hub_for_each_child(hdev, port1, child) \
761 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \
762 port1 <= hdev->maxchild; \
763 child = usb_hub_find_child(hdev, ++port1)) \
764 if (!child) continue; else
765
766/* USB device locking */
767#define usb_lock_device(udev) device_lock(&(udev)->dev)
768#define usb_unlock_device(udev) device_unlock(&(udev)->dev)
769#define usb_lock_device_interruptible(udev) device_lock_interruptible(&(udev)->dev)
770#define usb_trylock_device(udev) device_trylock(&(udev)->dev)
771extern int usb_lock_device_for_reset(struct usb_device *udev,
772 const struct usb_interface *iface);
773
774/* USB port reset for device reinitialization */
775extern int usb_reset_device(struct usb_device *dev);
776extern void usb_queue_reset_device(struct usb_interface *dev);
777
778extern struct device *usb_intf_get_dma_device(struct usb_interface *intf);
779
780#ifdef CONFIG_ACPI
781extern int usb_acpi_set_power_state(struct usb_device *hdev, int index,
782 bool enable);
783extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index);
784extern int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index);
785#else
786static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index,
787 bool enable) { return 0; }
788static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index)
789 { return true; }
790static inline int usb_acpi_port_lpm_incapable(struct usb_device *hdev, int index)
791 { return 0; }
792#endif
793
794/* USB autosuspend and autoresume */
795#ifdef CONFIG_PM
796extern void usb_enable_autosuspend(struct usb_device *udev);
797extern void usb_disable_autosuspend(struct usb_device *udev);
798
799extern int usb_autopm_get_interface(struct usb_interface *intf);
800extern void usb_autopm_put_interface(struct usb_interface *intf);
801extern int usb_autopm_get_interface_async(struct usb_interface *intf);
802extern void usb_autopm_put_interface_async(struct usb_interface *intf);
803extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
804extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
805
806static inline void usb_mark_last_busy(struct usb_device *udev)
807{
808 pm_runtime_mark_last_busy(dev: &udev->dev);
809}
810
811#else
812
813static inline int usb_enable_autosuspend(struct usb_device *udev)
814{ return 0; }
815static inline int usb_disable_autosuspend(struct usb_device *udev)
816{ return 0; }
817
818static inline int usb_autopm_get_interface(struct usb_interface *intf)
819{ return 0; }
820static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
821{ return 0; }
822
823static inline void usb_autopm_put_interface(struct usb_interface *intf)
824{ }
825static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
826{ }
827static inline void usb_autopm_get_interface_no_resume(
828 struct usb_interface *intf)
829{ }
830static inline void usb_autopm_put_interface_no_suspend(
831 struct usb_interface *intf)
832{ }
833static inline void usb_mark_last_busy(struct usb_device *udev)
834{ }
835#endif
836
837extern int usb_disable_lpm(struct usb_device *udev);
838extern void usb_enable_lpm(struct usb_device *udev);
839/* Same as above, but these functions lock/unlock the bandwidth_mutex. */
840extern int usb_unlocked_disable_lpm(struct usb_device *udev);
841extern void usb_unlocked_enable_lpm(struct usb_device *udev);
842
843extern int usb_disable_ltm(struct usb_device *udev);
844extern void usb_enable_ltm(struct usb_device *udev);
845
846static inline bool usb_device_supports_ltm(struct usb_device *udev)
847{
848 if (udev->speed < USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap)
849 return false;
850 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT;
851}
852
853static inline bool usb_device_no_sg_constraint(struct usb_device *udev)
854{
855 return udev && udev->bus && udev->bus->no_sg_constraint;
856}
857
858
859/*-------------------------------------------------------------------------*/
860
861/* for drivers using iso endpoints */
862extern int usb_get_current_frame_number(struct usb_device *usb_dev);
863
864/* Sets up a group of bulk endpoints to support multiple stream IDs. */
865extern int usb_alloc_streams(struct usb_interface *interface,
866 struct usb_host_endpoint **eps, unsigned int num_eps,
867 unsigned int num_streams, gfp_t mem_flags);
868
869/* Reverts a group of bulk endpoints back to not using stream IDs. */
870extern int usb_free_streams(struct usb_interface *interface,
871 struct usb_host_endpoint **eps, unsigned int num_eps,
872 gfp_t mem_flags);
873
874/* used these for multi-interface device registration */
875extern int usb_driver_claim_interface(struct usb_driver *driver,
876 struct usb_interface *iface, void *data);
877
878/**
879 * usb_interface_claimed - returns true iff an interface is claimed
880 * @iface: the interface being checked
881 *
882 * Return: %true (nonzero) iff the interface is claimed, else %false
883 * (zero).
884 *
885 * Note:
886 * Callers must own the driver model's usb bus readlock. So driver
887 * probe() entries don't need extra locking, but other call contexts
888 * may need to explicitly claim that lock.
889 *
890 */
891static inline int usb_interface_claimed(struct usb_interface *iface)
892{
893 return (iface->dev.driver != NULL);
894}
895
896extern void usb_driver_release_interface(struct usb_driver *driver,
897 struct usb_interface *iface);
898
899int usb_set_wireless_status(struct usb_interface *iface,
900 enum usb_wireless_status status);
901
902const struct usb_device_id *usb_match_id(struct usb_interface *interface,
903 const struct usb_device_id *id);
904extern int usb_match_one_id(struct usb_interface *interface,
905 const struct usb_device_id *id);
906
907extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *));
908extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
909 int minor);
910extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
911 unsigned ifnum);
912extern struct usb_host_interface *usb_altnum_to_altsetting(
913 const struct usb_interface *intf, unsigned int altnum);
914extern struct usb_host_interface *usb_find_alt_setting(
915 struct usb_host_config *config,
916 unsigned int iface_num,
917 unsigned int alt_num);
918
919/* port claiming functions */
920int usb_hub_claim_port(struct usb_device *hdev, unsigned port1,
921 struct usb_dev_state *owner);
922int usb_hub_release_port(struct usb_device *hdev, unsigned port1,
923 struct usb_dev_state *owner);
924
925/**
926 * usb_make_path - returns stable device path in the usb tree
927 * @dev: the device whose path is being constructed
928 * @buf: where to put the string
929 * @size: how big is "buf"?
930 *
931 * Return: Length of the string (> 0) or negative if size was too small.
932 *
933 * Note:
934 * This identifier is intended to be "stable", reflecting physical paths in
935 * hardware such as physical bus addresses for host controllers or ports on
936 * USB hubs. That makes it stay the same until systems are physically
937 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
938 * controllers. Adding and removing devices, including virtual root hubs
939 * in host controller driver modules, does not change these path identifiers;
940 * neither does rebooting or re-enumerating. These are more useful identifiers
941 * than changeable ("unstable") ones like bus numbers or device addresses.
942 *
943 * With a partial exception for devices connected to USB 2.0 root hubs, these
944 * identifiers are also predictable. So long as the device tree isn't changed,
945 * plugging any USB device into a given hub port always gives it the same path.
946 * Because of the use of "companion" controllers, devices connected to ports on
947 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
948 * high speed, and a different one if they are full or low speed.
949 */
950static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
951{
952 int actual;
953 actual = snprintf(buf, size, fmt: "usb-%s-%s", dev->bus->bus_name,
954 dev->devpath);
955 return (actual >= (int)size) ? -1 : actual;
956}
957
958/*-------------------------------------------------------------------------*/
959
960#define USB_DEVICE_ID_MATCH_DEVICE \
961 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
962#define USB_DEVICE_ID_MATCH_DEV_RANGE \
963 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
964#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
965 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
966#define USB_DEVICE_ID_MATCH_DEV_INFO \
967 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
968 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
969 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
970#define USB_DEVICE_ID_MATCH_INT_INFO \
971 (USB_DEVICE_ID_MATCH_INT_CLASS | \
972 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
973 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
974
975/**
976 * USB_DEVICE - macro used to describe a specific usb device
977 * @vend: the 16 bit USB Vendor ID
978 * @prod: the 16 bit USB Product ID
979 *
980 * This macro is used to create a struct usb_device_id that matches a
981 * specific device.
982 */
983#define USB_DEVICE(vend, prod) \
984 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
985 .idVendor = (vend), \
986 .idProduct = (prod)
987/**
988 * USB_DEVICE_VER - describe a specific usb device with a version range
989 * @vend: the 16 bit USB Vendor ID
990 * @prod: the 16 bit USB Product ID
991 * @lo: the bcdDevice_lo value
992 * @hi: the bcdDevice_hi value
993 *
994 * This macro is used to create a struct usb_device_id that matches a
995 * specific device, with a version range.
996 */
997#define USB_DEVICE_VER(vend, prod, lo, hi) \
998 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
999 .idVendor = (vend), \
1000 .idProduct = (prod), \
1001 .bcdDevice_lo = (lo), \
1002 .bcdDevice_hi = (hi)
1003
1004/**
1005 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class
1006 * @vend: the 16 bit USB Vendor ID
1007 * @prod: the 16 bit USB Product ID
1008 * @cl: bInterfaceClass value
1009 *
1010 * This macro is used to create a struct usb_device_id that matches a
1011 * specific interface class of devices.
1012 */
1013#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \
1014 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1015 USB_DEVICE_ID_MATCH_INT_CLASS, \
1016 .idVendor = (vend), \
1017 .idProduct = (prod), \
1018 .bInterfaceClass = (cl)
1019
1020/**
1021 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
1022 * @vend: the 16 bit USB Vendor ID
1023 * @prod: the 16 bit USB Product ID
1024 * @pr: bInterfaceProtocol value
1025 *
1026 * This macro is used to create a struct usb_device_id that matches a
1027 * specific interface protocol of devices.
1028 */
1029#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
1030 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1031 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
1032 .idVendor = (vend), \
1033 .idProduct = (prod), \
1034 .bInterfaceProtocol = (pr)
1035
1036/**
1037 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number
1038 * @vend: the 16 bit USB Vendor ID
1039 * @prod: the 16 bit USB Product ID
1040 * @num: bInterfaceNumber value
1041 *
1042 * This macro is used to create a struct usb_device_id that matches a
1043 * specific interface number of devices.
1044 */
1045#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \
1046 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
1047 USB_DEVICE_ID_MATCH_INT_NUMBER, \
1048 .idVendor = (vend), \
1049 .idProduct = (prod), \
1050 .bInterfaceNumber = (num)
1051
1052/**
1053 * USB_DEVICE_INFO - macro used to describe a class of usb devices
1054 * @cl: bDeviceClass value
1055 * @sc: bDeviceSubClass value
1056 * @pr: bDeviceProtocol value
1057 *
1058 * This macro is used to create a struct usb_device_id that matches a
1059 * specific class of devices.
1060 */
1061#define USB_DEVICE_INFO(cl, sc, pr) \
1062 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
1063 .bDeviceClass = (cl), \
1064 .bDeviceSubClass = (sc), \
1065 .bDeviceProtocol = (pr)
1066
1067/**
1068 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
1069 * @cl: bInterfaceClass value
1070 * @sc: bInterfaceSubClass value
1071 * @pr: bInterfaceProtocol value
1072 *
1073 * This macro is used to create a struct usb_device_id that matches a
1074 * specific class of interfaces.
1075 */
1076#define USB_INTERFACE_INFO(cl, sc, pr) \
1077 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
1078 .bInterfaceClass = (cl), \
1079 .bInterfaceSubClass = (sc), \
1080 .bInterfaceProtocol = (pr)
1081
1082/**
1083 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
1084 * @vend: the 16 bit USB Vendor ID
1085 * @prod: the 16 bit USB Product ID
1086 * @cl: bInterfaceClass value
1087 * @sc: bInterfaceSubClass value
1088 * @pr: bInterfaceProtocol value
1089 *
1090 * This macro is used to create a struct usb_device_id that matches a
1091 * specific device with a specific class of interfaces.
1092 *
1093 * This is especially useful when explicitly matching devices that have
1094 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1095 */
1096#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
1097 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1098 | USB_DEVICE_ID_MATCH_DEVICE, \
1099 .idVendor = (vend), \
1100 .idProduct = (prod), \
1101 .bInterfaceClass = (cl), \
1102 .bInterfaceSubClass = (sc), \
1103 .bInterfaceProtocol = (pr)
1104
1105/**
1106 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
1107 * @vend: the 16 bit USB Vendor ID
1108 * @cl: bInterfaceClass value
1109 * @sc: bInterfaceSubClass value
1110 * @pr: bInterfaceProtocol value
1111 *
1112 * This macro is used to create a struct usb_device_id that matches a
1113 * specific vendor with a specific class of interfaces.
1114 *
1115 * This is especially useful when explicitly matching devices that have
1116 * vendor specific bDeviceClass values, but standards-compliant interfaces.
1117 */
1118#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
1119 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
1120 | USB_DEVICE_ID_MATCH_VENDOR, \
1121 .idVendor = (vend), \
1122 .bInterfaceClass = (cl), \
1123 .bInterfaceSubClass = (sc), \
1124 .bInterfaceProtocol = (pr)
1125
1126/* ----------------------------------------------------------------------- */
1127
1128/* Stuff for dynamic usb ids */
1129struct usb_dynids {
1130 spinlock_t lock;
1131 struct list_head list;
1132};
1133
1134struct usb_dynid {
1135 struct list_head node;
1136 struct usb_device_id id;
1137};
1138
1139extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
1140 const struct usb_device_id *id_table,
1141 struct device_driver *driver,
1142 const char *buf, size_t count);
1143
1144extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
1145
1146/**
1147 * struct usb_driver - identifies USB interface driver to usbcore
1148 * @name: The driver name should be unique among USB drivers,
1149 * and should normally be the same as the module name.
1150 * @probe: Called to see if the driver is willing to manage a particular
1151 * interface on a device. If it is, probe returns zero and uses
1152 * usb_set_intfdata() to associate driver-specific data with the
1153 * interface. It may also use usb_set_interface() to specify the
1154 * appropriate altsetting. If unwilling to manage the interface,
1155 * return -ENODEV, if genuine IO errors occurred, an appropriate
1156 * negative errno value.
1157 * @disconnect: Called when the interface is no longer accessible, usually
1158 * because its device has been (or is being) disconnected or the
1159 * driver module is being unloaded.
1160 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
1161 * the "usbfs" filesystem. This lets devices provide ways to
1162 * expose information to user space regardless of where they
1163 * do (or don't) show up otherwise in the filesystem.
1164 * @suspend: Called when the device is going to be suspended by the
1165 * system either from system sleep or runtime suspend context. The
1166 * return value will be ignored in system sleep context, so do NOT
1167 * try to continue using the device if suspend fails in this case.
1168 * Instead, let the resume or reset-resume routine recover from
1169 * the failure.
1170 * @resume: Called when the device is being resumed by the system.
1171 * @reset_resume: Called when the suspended device has been reset instead
1172 * of being resumed.
1173 * @pre_reset: Called by usb_reset_device() when the device is about to be
1174 * reset. This routine must not return until the driver has no active
1175 * URBs for the device, and no more URBs may be submitted until the
1176 * post_reset method is called.
1177 * @post_reset: Called by usb_reset_device() after the device
1178 * has been reset
1179 * @id_table: USB drivers use ID table to support hotplugging.
1180 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
1181 * or your driver's probe function will never get called.
1182 * @dev_groups: Attributes attached to the device that will be created once it
1183 * is bound to the driver.
1184 * @dynids: used internally to hold the list of dynamically added device
1185 * ids for this driver.
1186 * @driver: The driver-model core driver structure.
1187 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
1188 * added to this driver by preventing the sysfs file from being created.
1189 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1190 * for interfaces bound to this driver.
1191 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
1192 * endpoints before calling the driver's disconnect method.
1193 * @disable_hub_initiated_lpm: if set to 1, the USB core will not allow hubs
1194 * to initiate lower power link state transitions when an idle timeout
1195 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
1196 *
1197 * USB interface drivers must provide a name, probe() and disconnect()
1198 * methods, and an id_table. Other driver fields are optional.
1199 *
1200 * The id_table is used in hotplugging. It holds a set of descriptors,
1201 * and specialized data may be associated with each entry. That table
1202 * is used by both user and kernel mode hotplugging support.
1203 *
1204 * The probe() and disconnect() methods are called in a context where
1205 * they can sleep, but they should avoid abusing the privilege. Most
1206 * work to connect to a device should be done when the device is opened,
1207 * and undone at the last close. The disconnect code needs to address
1208 * concurrency issues with respect to open() and close() methods, as
1209 * well as forcing all pending I/O requests to complete (by unlinking
1210 * them as necessary, and blocking until the unlinks complete).
1211 */
1212struct usb_driver {
1213 const char *name;
1214
1215 int (*probe) (struct usb_interface *intf,
1216 const struct usb_device_id *id);
1217
1218 void (*disconnect) (struct usb_interface *intf);
1219
1220 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
1221 void *buf);
1222
1223 int (*suspend) (struct usb_interface *intf, pm_message_t message);
1224 int (*resume) (struct usb_interface *intf);
1225 int (*reset_resume)(struct usb_interface *intf);
1226
1227 int (*pre_reset)(struct usb_interface *intf);
1228 int (*post_reset)(struct usb_interface *intf);
1229
1230 const struct usb_device_id *id_table;
1231 const struct attribute_group **dev_groups;
1232
1233 struct usb_dynids dynids;
1234 struct device_driver driver;
1235 unsigned int no_dynamic_id:1;
1236 unsigned int supports_autosuspend:1;
1237 unsigned int disable_hub_initiated_lpm:1;
1238 unsigned int soft_unbind:1;
1239};
1240#define to_usb_driver(d) container_of(d, struct usb_driver, driver)
1241
1242/**
1243 * struct usb_device_driver - identifies USB device driver to usbcore
1244 * @name: The driver name should be unique among USB drivers,
1245 * and should normally be the same as the module name.
1246 * @match: If set, used for better device/driver matching.
1247 * @probe: Called to see if the driver is willing to manage a particular
1248 * device. If it is, probe returns zero and uses dev_set_drvdata()
1249 * to associate driver-specific data with the device. If unwilling
1250 * to manage the device, return a negative errno value.
1251 * @disconnect: Called when the device is no longer accessible, usually
1252 * because it has been (or is being) disconnected or the driver's
1253 * module is being unloaded.
1254 * @suspend: Called when the device is going to be suspended by the system.
1255 * @resume: Called when the device is being resumed by the system.
1256 * @choose_configuration: If non-NULL, called instead of the default
1257 * usb_choose_configuration(). If this returns an error then we'll go
1258 * on to call the normal usb_choose_configuration().
1259 * @dev_groups: Attributes attached to the device that will be created once it
1260 * is bound to the driver.
1261 * @driver: The driver-model core driver structure.
1262 * @id_table: used with @match() to select better matching driver at
1263 * probe() time.
1264 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
1265 * for devices bound to this driver.
1266 * @generic_subclass: if set to 1, the generic USB driver's probe, disconnect,
1267 * resume and suspend functions will be called in addition to the driver's
1268 * own, so this part of the setup does not need to be replicated.
1269 *
1270 * USB drivers must provide all the fields listed above except driver,
1271 * match, and id_table.
1272 */
1273struct usb_device_driver {
1274 const char *name;
1275
1276 bool (*match) (struct usb_device *udev);
1277 int (*probe) (struct usb_device *udev);
1278 void (*disconnect) (struct usb_device *udev);
1279
1280 int (*suspend) (struct usb_device *udev, pm_message_t message);
1281 int (*resume) (struct usb_device *udev, pm_message_t message);
1282
1283 int (*choose_configuration) (struct usb_device *udev);
1284
1285 const struct attribute_group **dev_groups;
1286 struct device_driver driver;
1287 const struct usb_device_id *id_table;
1288 unsigned int supports_autosuspend:1;
1289 unsigned int generic_subclass:1;
1290};
1291#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1292 driver)
1293
1294/**
1295 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1296 * @name: the usb class device name for this driver. Will show up in sysfs.
1297 * @devnode: Callback to provide a naming hint for a possible
1298 * device node to create.
1299 * @fops: pointer to the struct file_operations of this driver.
1300 * @minor_base: the start of the minor range for this driver.
1301 *
1302 * This structure is used for the usb_register_dev() and
1303 * usb_deregister_dev() functions, to consolidate a number of the
1304 * parameters used for them.
1305 */
1306struct usb_class_driver {
1307 char *name;
1308 char *(*devnode)(const struct device *dev, umode_t *mode);
1309 const struct file_operations *fops;
1310 int minor_base;
1311};
1312
1313/*
1314 * use these in module_init()/module_exit()
1315 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1316 */
1317extern int usb_register_driver(struct usb_driver *, struct module *,
1318 const char *);
1319
1320/* use a define to avoid include chaining to get THIS_MODULE & friends */
1321#define usb_register(driver) \
1322 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1323
1324extern void usb_deregister(struct usb_driver *);
1325
1326/**
1327 * module_usb_driver() - Helper macro for registering a USB driver
1328 * @__usb_driver: usb_driver struct
1329 *
1330 * Helper macro for USB drivers which do not do anything special in module
1331 * init/exit. This eliminates a lot of boilerplate. Each module may only
1332 * use this macro once, and calling it replaces module_init() and module_exit()
1333 */
1334#define module_usb_driver(__usb_driver) \
1335 module_driver(__usb_driver, usb_register, \
1336 usb_deregister)
1337
1338extern int usb_register_device_driver(struct usb_device_driver *,
1339 struct module *);
1340extern void usb_deregister_device_driver(struct usb_device_driver *);
1341
1342extern int usb_register_dev(struct usb_interface *intf,
1343 struct usb_class_driver *class_driver);
1344extern void usb_deregister_dev(struct usb_interface *intf,
1345 struct usb_class_driver *class_driver);
1346
1347extern int usb_disabled(void);
1348
1349/* ----------------------------------------------------------------------- */
1350
1351/*
1352 * URB support, for asynchronous request completions
1353 */
1354
1355/*
1356 * urb->transfer_flags:
1357 *
1358 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1359 */
1360#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1361#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired
1362 * slot in the schedule */
1363#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1364#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1365#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1366 * needed */
1367#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1368
1369/* The following flags are used internally by usbcore and HCDs */
1370#define URB_DIR_IN 0x0200 /* Transfer from device to host */
1371#define URB_DIR_OUT 0
1372#define URB_DIR_MASK URB_DIR_IN
1373
1374#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1375#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1376#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1377#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1378#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1379#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1380#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1381#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1382
1383struct usb_iso_packet_descriptor {
1384 unsigned int offset;
1385 unsigned int length; /* expected length */
1386 unsigned int actual_length;
1387 int status;
1388};
1389
1390struct urb;
1391
1392struct usb_anchor {
1393 struct list_head urb_list;
1394 wait_queue_head_t wait;
1395 spinlock_t lock;
1396 atomic_t suspend_wakeups;
1397 unsigned int poisoned:1;
1398};
1399
1400static inline void init_usb_anchor(struct usb_anchor *anchor)
1401{
1402 memset(anchor, 0, sizeof(*anchor));
1403 INIT_LIST_HEAD(list: &anchor->urb_list);
1404 init_waitqueue_head(&anchor->wait);
1405 spin_lock_init(&anchor->lock);
1406}
1407
1408typedef void (*usb_complete_t)(struct urb *);
1409
1410/**
1411 * struct urb - USB Request Block
1412 * @urb_list: For use by current owner of the URB.
1413 * @anchor_list: membership in the list of an anchor
1414 * @anchor: to anchor URBs to a common mooring
1415 * @ep: Points to the endpoint's data structure. Will eventually
1416 * replace @pipe.
1417 * @pipe: Holds endpoint number, direction, type, and more.
1418 * Create these values with the eight macros available;
1419 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1420 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1421 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1422 * numbers range from zero to fifteen. Note that "in" endpoint two
1423 * is a different endpoint (and pipe) from "out" endpoint two.
1424 * The current configuration controls the existence, type, and
1425 * maximum packet size of any given endpoint.
1426 * @stream_id: the endpoint's stream ID for bulk streams
1427 * @dev: Identifies the USB device to perform the request.
1428 * @status: This is read in non-iso completion functions to get the
1429 * status of the particular request. ISO requests only use it
1430 * to tell whether the URB was unlinked; detailed status for
1431 * each frame is in the fields of the iso_frame-desc.
1432 * @transfer_flags: A variety of flags may be used to affect how URB
1433 * submission, unlinking, or operation are handled. Different
1434 * kinds of URB can use different flags.
1435 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1436 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1437 * (however, do not leave garbage in transfer_buffer even then).
1438 * This buffer must be suitable for DMA; allocate it with
1439 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1440 * of this buffer will be modified. This buffer is used for the data
1441 * stage of control transfers.
1442 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1443 * the device driver is saying that it provided this DMA address,
1444 * which the host controller driver should use in preference to the
1445 * transfer_buffer.
1446 * @sg: scatter gather buffer list, the buffer size of each element in
1447 * the list (except the last) must be divisible by the endpoint's
1448 * max packet size if no_sg_constraint isn't set in 'struct usb_bus'
1449 * @num_mapped_sgs: (internal) number of mapped sg entries
1450 * @num_sgs: number of entries in the sg list
1451 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1452 * be broken up into chunks according to the current maximum packet
1453 * size for the endpoint, which is a function of the configuration
1454 * and is encoded in the pipe. When the length is zero, neither
1455 * transfer_buffer nor transfer_dma is used.
1456 * @actual_length: This is read in non-iso completion functions, and
1457 * it tells how many bytes (out of transfer_buffer_length) were
1458 * transferred. It will normally be the same as requested, unless
1459 * either an error was reported or a short read was performed.
1460 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1461 * short reads be reported as errors.
1462 * @setup_packet: Only used for control transfers, this points to eight bytes
1463 * of setup data. Control transfers always start by sending this data
1464 * to the device. Then transfer_buffer is read or written, if needed.
1465 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1466 * this field; setup_packet must point to a valid buffer.
1467 * @start_frame: Returns the initial frame for isochronous transfers.
1468 * @number_of_packets: Lists the number of ISO transfer buffers.
1469 * @interval: Specifies the polling interval for interrupt or isochronous
1470 * transfers. The units are frames (milliseconds) for full and low
1471 * speed devices, and microframes (1/8 millisecond) for highspeed
1472 * and SuperSpeed devices.
1473 * @error_count: Returns the number of ISO transfers that reported errors.
1474 * @context: For use in completion functions. This normally points to
1475 * request-specific driver context.
1476 * @complete: Completion handler. This URB is passed as the parameter to the
1477 * completion function. The completion function may then do what
1478 * it likes with the URB, including resubmitting or freeing it.
1479 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1480 * collect the transfer status for each buffer.
1481 *
1482 * This structure identifies USB transfer requests. URBs must be allocated by
1483 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1484 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1485 * are submitted using usb_submit_urb(), and pending requests may be canceled
1486 * using usb_unlink_urb() or usb_kill_urb().
1487 *
1488 * Data Transfer Buffers:
1489 *
1490 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1491 * taken from the general page pool. That is provided by transfer_buffer
1492 * (control requests also use setup_packet), and host controller drivers
1493 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1494 * mapping operations can be expensive on some platforms (perhaps using a dma
1495 * bounce buffer or talking to an IOMMU),
1496 * although they're cheap on commodity x86 and ppc hardware.
1497 *
1498 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1499 * which tells the host controller driver that no such mapping is needed for
1500 * the transfer_buffer since
1501 * the device driver is DMA-aware. For example, a device driver might
1502 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1503 * When this transfer flag is provided, host controller drivers will
1504 * attempt to use the dma address found in the transfer_dma
1505 * field rather than determining a dma address themselves.
1506 *
1507 * Note that transfer_buffer must still be set if the controller
1508 * does not support DMA (as indicated by hcd_uses_dma()) and when talking
1509 * to root hub. If you have to transfer between highmem zone and the device
1510 * on such controller, create a bounce buffer or bail out with an error.
1511 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1512 * capable, assign NULL to it, so that usbmon knows not to use the value.
1513 * The setup_packet must always be set, so it cannot be located in highmem.
1514 *
1515 * Initialization:
1516 *
1517 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1518 * zero), and complete fields. All URBs must also initialize
1519 * transfer_buffer and transfer_buffer_length. They may provide the
1520 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1521 * to be treated as errors; that flag is invalid for write requests.
1522 *
1523 * Bulk URBs may
1524 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1525 * should always terminate with a short packet, even if it means adding an
1526 * extra zero length packet.
1527 *
1528 * Control URBs must provide a valid pointer in the setup_packet field.
1529 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1530 * beforehand.
1531 *
1532 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1533 * or, for highspeed devices, 125 microsecond units)
1534 * to poll for transfers. After the URB has been submitted, the interval
1535 * field reflects how the transfer was actually scheduled.
1536 * The polling interval may be more frequent than requested.
1537 * For example, some controllers have a maximum interval of 32 milliseconds,
1538 * while others support intervals of up to 1024 milliseconds.
1539 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1540 * endpoints, as well as high speed interrupt endpoints, the encoding of
1541 * the transfer interval in the endpoint descriptor is logarithmic.
1542 * Device drivers must convert that value to linear units themselves.)
1543 *
1544 * If an isochronous endpoint queue isn't already running, the host
1545 * controller will schedule a new URB to start as soon as bandwidth
1546 * utilization allows. If the queue is running then a new URB will be
1547 * scheduled to start in the first transfer slot following the end of the
1548 * preceding URB, if that slot has not already expired. If the slot has
1549 * expired (which can happen when IRQ delivery is delayed for a long time),
1550 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag
1551 * is clear then the URB will be scheduled to start in the expired slot,
1552 * implying that some of its packets will not be transferred; if the flag
1553 * is set then the URB will be scheduled in the first unexpired slot,
1554 * breaking the queue's synchronization. Upon URB completion, the
1555 * start_frame field will be set to the (micro)frame number in which the
1556 * transfer was scheduled. Ranges for frame counter values are HC-specific
1557 * and can go from as low as 256 to as high as 65536 frames.
1558 *
1559 * Isochronous URBs have a different data transfer model, in part because
1560 * the quality of service is only "best effort". Callers provide specially
1561 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1562 * at the end. Each such packet is an individual ISO transfer. Isochronous
1563 * URBs are normally queued, submitted by drivers to arrange that
1564 * transfers are at least double buffered, and then explicitly resubmitted
1565 * in completion handlers, so
1566 * that data (such as audio or video) streams at as constant a rate as the
1567 * host controller scheduler can support.
1568 *
1569 * Completion Callbacks:
1570 *
1571 * The completion callback is made in_interrupt(), and one of the first
1572 * things that a completion handler should do is check the status field.
1573 * The status field is provided for all URBs. It is used to report
1574 * unlinked URBs, and status for all non-ISO transfers. It should not
1575 * be examined before the URB is returned to the completion handler.
1576 *
1577 * The context field is normally used to link URBs back to the relevant
1578 * driver or request state.
1579 *
1580 * When the completion callback is invoked for non-isochronous URBs, the
1581 * actual_length field tells how many bytes were transferred. This field
1582 * is updated even when the URB terminated with an error or was unlinked.
1583 *
1584 * ISO transfer status is reported in the status and actual_length fields
1585 * of the iso_frame_desc array, and the number of errors is reported in
1586 * error_count. Completion callbacks for ISO transfers will normally
1587 * (re)submit URBs to ensure a constant transfer rate.
1588 *
1589 * Note that even fields marked "public" should not be touched by the driver
1590 * when the urb is owned by the hcd, that is, since the call to
1591 * usb_submit_urb() till the entry into the completion routine.
1592 */
1593struct urb {
1594 /* private: usb core and host controller only fields in the urb */
1595 struct kref kref; /* reference count of the URB */
1596 int unlinked; /* unlink error code */
1597 void *hcpriv; /* private data for host controller */
1598 atomic_t use_count; /* concurrent submissions counter */
1599 atomic_t reject; /* submissions will fail */
1600
1601 /* public: documented fields in the urb that can be used by drivers */
1602 struct list_head urb_list; /* list head for use by the urb's
1603 * current owner */
1604 struct list_head anchor_list; /* the URB may be anchored */
1605 struct usb_anchor *anchor;
1606 struct usb_device *dev; /* (in) pointer to associated device */
1607 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1608 unsigned int pipe; /* (in) pipe information */
1609 unsigned int stream_id; /* (in) stream ID */
1610 int status; /* (return) non-ISO status */
1611 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1612 void *transfer_buffer; /* (in) associated data buffer */
1613 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1614 struct scatterlist *sg; /* (in) scatter gather buffer list */
1615 int num_mapped_sgs; /* (internal) mapped sg entries */
1616 int num_sgs; /* (in) number of entries in the sg list */
1617 u32 transfer_buffer_length; /* (in) data buffer length */
1618 u32 actual_length; /* (return) actual transfer length */
1619 unsigned char *setup_packet; /* (in) setup packet (control only) */
1620 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1621 int start_frame; /* (modify) start frame (ISO) */
1622 int number_of_packets; /* (in) number of ISO packets */
1623 int interval; /* (modify) transfer interval
1624 * (INT/ISO) */
1625 int error_count; /* (return) number of ISO errors */
1626 void *context; /* (in) context for completion */
1627 usb_complete_t complete; /* (in) completion routine */
1628 struct usb_iso_packet_descriptor iso_frame_desc[];
1629 /* (in) ISO ONLY */
1630};
1631
1632/* ----------------------------------------------------------------------- */
1633
1634/**
1635 * usb_fill_control_urb - initializes a control urb
1636 * @urb: pointer to the urb to initialize.
1637 * @dev: pointer to the struct usb_device for this urb.
1638 * @pipe: the endpoint pipe
1639 * @setup_packet: pointer to the setup_packet buffer. The buffer must be
1640 * suitable for DMA.
1641 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1642 * suitable for DMA.
1643 * @buffer_length: length of the transfer buffer
1644 * @complete_fn: pointer to the usb_complete_t function
1645 * @context: what to set the urb context to.
1646 *
1647 * Initializes a control urb with the proper information needed to submit
1648 * it to a device.
1649 *
1650 * The transfer buffer and the setup_packet buffer will most likely be filled
1651 * or read via DMA. The simplest way to get a buffer that can be DMAed to is
1652 * allocating it via kmalloc() or equivalent, even for very small buffers.
1653 * If the buffers are embedded in a bigger structure, there is a risk that
1654 * the buffer itself, the previous fields and/or the next fields are corrupted
1655 * due to cache incoherencies; or slowed down if they are evicted from the
1656 * cache. For more information, check &struct urb.
1657 *
1658 */
1659static inline void usb_fill_control_urb(struct urb *urb,
1660 struct usb_device *dev,
1661 unsigned int pipe,
1662 unsigned char *setup_packet,
1663 void *transfer_buffer,
1664 int buffer_length,
1665 usb_complete_t complete_fn,
1666 void *context)
1667{
1668 urb->dev = dev;
1669 urb->pipe = pipe;
1670 urb->setup_packet = setup_packet;
1671 urb->transfer_buffer = transfer_buffer;
1672 urb->transfer_buffer_length = buffer_length;
1673 urb->complete = complete_fn;
1674 urb->context = context;
1675}
1676
1677/**
1678 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1679 * @urb: pointer to the urb to initialize.
1680 * @dev: pointer to the struct usb_device for this urb.
1681 * @pipe: the endpoint pipe
1682 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1683 * suitable for DMA.
1684 * @buffer_length: length of the transfer buffer
1685 * @complete_fn: pointer to the usb_complete_t function
1686 * @context: what to set the urb context to.
1687 *
1688 * Initializes a bulk urb with the proper information needed to submit it
1689 * to a device.
1690 *
1691 * Refer to usb_fill_control_urb() for a description of the requirements for
1692 * transfer_buffer.
1693 */
1694static inline void usb_fill_bulk_urb(struct urb *urb,
1695 struct usb_device *dev,
1696 unsigned int pipe,
1697 void *transfer_buffer,
1698 int buffer_length,
1699 usb_complete_t complete_fn,
1700 void *context)
1701{
1702 urb->dev = dev;
1703 urb->pipe = pipe;
1704 urb->transfer_buffer = transfer_buffer;
1705 urb->transfer_buffer_length = buffer_length;
1706 urb->complete = complete_fn;
1707 urb->context = context;
1708}
1709
1710/**
1711 * usb_fill_int_urb - macro to help initialize a interrupt urb
1712 * @urb: pointer to the urb to initialize.
1713 * @dev: pointer to the struct usb_device for this urb.
1714 * @pipe: the endpoint pipe
1715 * @transfer_buffer: pointer to the transfer buffer. The buffer must be
1716 * suitable for DMA.
1717 * @buffer_length: length of the transfer buffer
1718 * @complete_fn: pointer to the usb_complete_t function
1719 * @context: what to set the urb context to.
1720 * @interval: what to set the urb interval to, encoded like
1721 * the endpoint descriptor's bInterval value.
1722 *
1723 * Initializes a interrupt urb with the proper information needed to submit
1724 * it to a device.
1725 *
1726 * Refer to usb_fill_control_urb() for a description of the requirements for
1727 * transfer_buffer.
1728 *
1729 * Note that High Speed and SuperSpeed(+) interrupt endpoints use a logarithmic
1730 * encoding of the endpoint interval, and express polling intervals in
1731 * microframes (eight per millisecond) rather than in frames (one per
1732 * millisecond).
1733 */
1734static inline void usb_fill_int_urb(struct urb *urb,
1735 struct usb_device *dev,
1736 unsigned int pipe,
1737 void *transfer_buffer,
1738 int buffer_length,
1739 usb_complete_t complete_fn,
1740 void *context,
1741 int interval)
1742{
1743 urb->dev = dev;
1744 urb->pipe = pipe;
1745 urb->transfer_buffer = transfer_buffer;
1746 urb->transfer_buffer_length = buffer_length;
1747 urb->complete = complete_fn;
1748 urb->context = context;
1749
1750 if (dev->speed == USB_SPEED_HIGH || dev->speed >= USB_SPEED_SUPER) {
1751 /* make sure interval is within allowed range */
1752 interval = clamp(interval, 1, 16);
1753
1754 urb->interval = 1 << (interval - 1);
1755 } else {
1756 urb->interval = interval;
1757 }
1758
1759 urb->start_frame = -1;
1760}
1761
1762extern void usb_init_urb(struct urb *urb);
1763extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1764extern void usb_free_urb(struct urb *urb);
1765#define usb_put_urb usb_free_urb
1766extern struct urb *usb_get_urb(struct urb *urb);
1767extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1768extern int usb_unlink_urb(struct urb *urb);
1769extern void usb_kill_urb(struct urb *urb);
1770extern void usb_poison_urb(struct urb *urb);
1771extern void usb_unpoison_urb(struct urb *urb);
1772extern void usb_block_urb(struct urb *urb);
1773extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1774extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1775extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1776extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1777extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor);
1778extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor);
1779extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1780extern void usb_unanchor_urb(struct urb *urb);
1781extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1782 unsigned int timeout);
1783extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1784extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1785extern int usb_anchor_empty(struct usb_anchor *anchor);
1786
1787#define usb_unblock_urb usb_unpoison_urb
1788
1789/**
1790 * usb_urb_dir_in - check if an URB describes an IN transfer
1791 * @urb: URB to be checked
1792 *
1793 * Return: 1 if @urb describes an IN transfer (device-to-host),
1794 * otherwise 0.
1795 */
1796static inline int usb_urb_dir_in(struct urb *urb)
1797{
1798 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1799}
1800
1801/**
1802 * usb_urb_dir_out - check if an URB describes an OUT transfer
1803 * @urb: URB to be checked
1804 *
1805 * Return: 1 if @urb describes an OUT transfer (host-to-device),
1806 * otherwise 0.
1807 */
1808static inline int usb_urb_dir_out(struct urb *urb)
1809{
1810 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1811}
1812
1813int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe);
1814int usb_urb_ep_type_check(const struct urb *urb);
1815
1816void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1817 gfp_t mem_flags, dma_addr_t *dma);
1818void usb_free_coherent(struct usb_device *dev, size_t size,
1819 void *addr, dma_addr_t dma);
1820
1821/*-------------------------------------------------------------------*
1822 * SYNCHRONOUS CALL SUPPORT *
1823 *-------------------------------------------------------------------*/
1824
1825extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1826 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1827 void *data, __u16 size, int timeout);
1828extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1829 void *data, int len, int *actual_length, int timeout);
1830extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1831 void *data, int len, int *actual_length,
1832 int timeout);
1833
1834/* wrappers around usb_control_msg() for the most common standard requests */
1835int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
1836 __u8 requesttype, __u16 value, __u16 index,
1837 const void *data, __u16 size, int timeout,
1838 gfp_t memflags);
1839int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
1840 __u8 requesttype, __u16 value, __u16 index,
1841 void *data, __u16 size, int timeout,
1842 gfp_t memflags);
1843extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1844 unsigned char descindex, void *buf, int size);
1845extern int usb_get_status(struct usb_device *dev,
1846 int recip, int type, int target, void *data);
1847
1848static inline int usb_get_std_status(struct usb_device *dev,
1849 int recip, int target, void *data)
1850{
1851 return usb_get_status(dev, recip, USB_STATUS_TYPE_STANDARD, target,
1852 data);
1853}
1854
1855static inline int usb_get_ptm_status(struct usb_device *dev, void *data)
1856{
1857 return usb_get_status(dev, USB_RECIP_DEVICE, USB_STATUS_TYPE_PTM,
1858 target: 0, data);
1859}
1860
1861extern int usb_string(struct usb_device *dev, int index,
1862 char *buf, size_t size);
1863extern char *usb_cache_string(struct usb_device *udev, int index);
1864
1865/* wrappers that also update important state inside usbcore */
1866extern int usb_clear_halt(struct usb_device *dev, int pipe);
1867extern int usb_reset_configuration(struct usb_device *dev);
1868extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1869extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1870
1871/* this request isn't really synchronous, but it belongs with the others */
1872extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1873
1874/* choose and set configuration for device */
1875extern int usb_choose_configuration(struct usb_device *udev);
1876extern int usb_set_configuration(struct usb_device *dev, int configuration);
1877
1878/*
1879 * timeouts, in milliseconds, used for sending/receiving control messages
1880 * they typically complete within a few frames (msec) after they're issued
1881 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1882 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1883 */
1884#define USB_CTRL_GET_TIMEOUT 5000
1885#define USB_CTRL_SET_TIMEOUT 5000
1886
1887
1888/**
1889 * struct usb_sg_request - support for scatter/gather I/O
1890 * @status: zero indicates success, else negative errno
1891 * @bytes: counts bytes transferred.
1892 *
1893 * These requests are initialized using usb_sg_init(), and then are used
1894 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1895 * members of the request object aren't for driver access.
1896 *
1897 * The status and bytecount values are valid only after usb_sg_wait()
1898 * returns. If the status is zero, then the bytecount matches the total
1899 * from the request.
1900 *
1901 * After an error completion, drivers may need to clear a halt condition
1902 * on the endpoint.
1903 */
1904struct usb_sg_request {
1905 int status;
1906 size_t bytes;
1907
1908 /* private:
1909 * members below are private to usbcore,
1910 * and are not provided for driver access!
1911 */
1912 spinlock_t lock;
1913
1914 struct usb_device *dev;
1915 int pipe;
1916
1917 int entries;
1918 struct urb **urbs;
1919
1920 int count;
1921 struct completion complete;
1922};
1923
1924int usb_sg_init(
1925 struct usb_sg_request *io,
1926 struct usb_device *dev,
1927 unsigned pipe,
1928 unsigned period,
1929 struct scatterlist *sg,
1930 int nents,
1931 size_t length,
1932 gfp_t mem_flags
1933);
1934void usb_sg_cancel(struct usb_sg_request *io);
1935void usb_sg_wait(struct usb_sg_request *io);
1936
1937
1938/* ----------------------------------------------------------------------- */
1939
1940/*
1941 * For various legacy reasons, Linux has a small cookie that's paired with
1942 * a struct usb_device to identify an endpoint queue. Queue characteristics
1943 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1944 * an unsigned int encoded as:
1945 *
1946 * - direction: bit 7 (0 = Host-to-Device [Out],
1947 * 1 = Device-to-Host [In] ...
1948 * like endpoint bEndpointAddress)
1949 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1950 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1951 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1952 * 10 = control, 11 = bulk)
1953 *
1954 * Given the device address and endpoint descriptor, pipes are redundant.
1955 */
1956
1957/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1958/* (yet ... they're the values used by usbfs) */
1959#define PIPE_ISOCHRONOUS 0
1960#define PIPE_INTERRUPT 1
1961#define PIPE_CONTROL 2
1962#define PIPE_BULK 3
1963
1964#define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1965#define usb_pipeout(pipe) (!usb_pipein(pipe))
1966
1967#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1968#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1969
1970#define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1971#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1972#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1973#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1974#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1975
1976static inline unsigned int __create_pipe(struct usb_device *dev,
1977 unsigned int endpoint)
1978{
1979 return (dev->devnum << 8) | (endpoint << 15);
1980}
1981
1982/* Create various pipes... */
1983#define usb_sndctrlpipe(dev, endpoint) \
1984 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1985#define usb_rcvctrlpipe(dev, endpoint) \
1986 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1987#define usb_sndisocpipe(dev, endpoint) \
1988 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1989#define usb_rcvisocpipe(dev, endpoint) \
1990 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1991#define usb_sndbulkpipe(dev, endpoint) \
1992 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1993#define usb_rcvbulkpipe(dev, endpoint) \
1994 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1995#define usb_sndintpipe(dev, endpoint) \
1996 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1997#define usb_rcvintpipe(dev, endpoint) \
1998 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1999
2000static inline struct usb_host_endpoint *
2001usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
2002{
2003 struct usb_host_endpoint **eps;
2004 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
2005 return eps[usb_pipeendpoint(pipe)];
2006}
2007
2008static inline u16 usb_maxpacket(struct usb_device *udev, int pipe)
2009{
2010 struct usb_host_endpoint *ep = usb_pipe_endpoint(dev: udev, pipe);
2011
2012 if (!ep)
2013 return 0;
2014
2015 /* NOTE: only 0x07ff bits are for packet size... */
2016 return usb_endpoint_maxp(epd: &ep->desc);
2017}
2018
2019/* translate USB error codes to codes user space understands */
2020static inline int usb_translate_errors(int error_code)
2021{
2022 switch (error_code) {
2023 case 0:
2024 case -ENOMEM:
2025 case -ENODEV:
2026 case -EOPNOTSUPP:
2027 return error_code;
2028 default:
2029 return -EIO;
2030 }
2031}
2032
2033/* Events from the usb core */
2034#define USB_DEVICE_ADD 0x0001
2035#define USB_DEVICE_REMOVE 0x0002
2036#define USB_BUS_ADD 0x0003
2037#define USB_BUS_REMOVE 0x0004
2038extern void usb_register_notify(struct notifier_block *nb);
2039extern void usb_unregister_notify(struct notifier_block *nb);
2040
2041/* debugfs stuff */
2042extern struct dentry *usb_debug_root;
2043
2044/* LED triggers */
2045enum usb_led_event {
2046 USB_LED_EVENT_HOST = 0,
2047 USB_LED_EVENT_GADGET = 1,
2048};
2049
2050#ifdef CONFIG_USB_LED_TRIG
2051extern void usb_led_activity(enum usb_led_event ev);
2052#else
2053static inline void usb_led_activity(enum usb_led_event ev) {}
2054#endif
2055
2056#endif /* __KERNEL__ */
2057
2058#endif
2059

source code of linux/include/linux/usb.h