1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
79#define ma_mnode_ptr(x) ((struct maple_node *)(x))
80#define ma_enode_ptr(x) ((struct maple_enode *)(x))
81static struct kmem_cache *maple_node_cache;
82
83#ifdef CONFIG_DEBUG_MAPLE_TREE
84static const unsigned long mt_max[] = {
85 [maple_dense] = MAPLE_NODE_SLOTS,
86 [maple_leaf_64] = ULONG_MAX,
87 [maple_range_64] = ULONG_MAX,
88 [maple_arange_64] = ULONG_MAX,
89};
90#define mt_node_max(x) mt_max[mte_node_type(x)]
91#endif
92
93static const unsigned char mt_slots[] = {
94 [maple_dense] = MAPLE_NODE_SLOTS,
95 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
96 [maple_range_64] = MAPLE_RANGE64_SLOTS,
97 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98};
99#define mt_slot_count(x) mt_slots[mte_node_type(x)]
100
101static const unsigned char mt_pivots[] = {
102 [maple_dense] = 0,
103 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
105 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106};
107#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108
109static const unsigned char mt_min_slots[] = {
110 [maple_dense] = MAPLE_NODE_SLOTS / 2,
111 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
113 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114};
115#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116
117#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
118#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119
120struct maple_big_node {
121 struct maple_pnode *parent;
122 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 union {
124 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 struct {
126 unsigned long padding[MAPLE_BIG_NODE_GAPS];
127 unsigned long gap[MAPLE_BIG_NODE_GAPS];
128 };
129 };
130 unsigned char b_end;
131 enum maple_type type;
132};
133
134/*
135 * The maple_subtree_state is used to build a tree to replace a segment of an
136 * existing tree in a more atomic way. Any walkers of the older tree will hit a
137 * dead node and restart on updates.
138 */
139struct maple_subtree_state {
140 struct ma_state *orig_l; /* Original left side of subtree */
141 struct ma_state *orig_r; /* Original right side of subtree */
142 struct ma_state *l; /* New left side of subtree */
143 struct ma_state *m; /* New middle of subtree (rare) */
144 struct ma_state *r; /* New right side of subtree */
145 struct ma_topiary *free; /* nodes to be freed */
146 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
147 struct maple_big_node *bn;
148};
149
150#ifdef CONFIG_KASAN_STACK
151/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
152#define noinline_for_kasan noinline_for_stack
153#else
154#define noinline_for_kasan inline
155#endif
156
157/* Functions */
158static inline struct maple_node *mt_alloc_one(gfp_t gfp)
159{
160 return kmem_cache_alloc(cachep: maple_node_cache, flags: gfp);
161}
162
163static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
164{
165 return kmem_cache_alloc_bulk(s: maple_node_cache, flags: gfp, size, p: nodes);
166}
167
168static inline void mt_free_bulk(size_t size, void __rcu **nodes)
169{
170 kmem_cache_free_bulk(s: maple_node_cache, size, p: (void **)nodes);
171}
172
173static void mt_free_rcu(struct rcu_head *head)
174{
175 struct maple_node *node = container_of(head, struct maple_node, rcu);
176
177 kmem_cache_free(s: maple_node_cache, objp: node);
178}
179
180/*
181 * ma_free_rcu() - Use rcu callback to free a maple node
182 * @node: The node to free
183 *
184 * The maple tree uses the parent pointer to indicate this node is no longer in
185 * use and will be freed.
186 */
187static void ma_free_rcu(struct maple_node *node)
188{
189 WARN_ON(node->parent != ma_parent_ptr(node));
190 call_rcu(head: &node->rcu, func: mt_free_rcu);
191}
192
193static void mas_set_height(struct ma_state *mas)
194{
195 unsigned int new_flags = mas->tree->ma_flags;
196
197 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
198 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
199 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
200 mas->tree->ma_flags = new_flags;
201}
202
203static unsigned int mas_mt_height(struct ma_state *mas)
204{
205 return mt_height(mt: mas->tree);
206}
207
208static inline enum maple_type mte_node_type(const struct maple_enode *entry)
209{
210 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
211 MAPLE_NODE_TYPE_MASK;
212}
213
214static inline bool ma_is_dense(const enum maple_type type)
215{
216 return type < maple_leaf_64;
217}
218
219static inline bool ma_is_leaf(const enum maple_type type)
220{
221 return type < maple_range_64;
222}
223
224static inline bool mte_is_leaf(const struct maple_enode *entry)
225{
226 return ma_is_leaf(type: mte_node_type(entry));
227}
228
229/*
230 * We also reserve values with the bottom two bits set to '10' which are
231 * below 4096
232 */
233static inline bool mt_is_reserved(const void *entry)
234{
235 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
236 xa_is_internal(entry);
237}
238
239static inline void mas_set_err(struct ma_state *mas, long err)
240{
241 mas->node = MA_ERROR(err);
242}
243
244static inline bool mas_is_ptr(const struct ma_state *mas)
245{
246 return mas->node == MAS_ROOT;
247}
248
249static inline bool mas_is_start(const struct ma_state *mas)
250{
251 return mas->node == MAS_START;
252}
253
254bool mas_is_err(struct ma_state *mas)
255{
256 return xa_is_err(entry: mas->node);
257}
258
259static __always_inline bool mas_is_overflow(struct ma_state *mas)
260{
261 if (unlikely(mas->node == MAS_OVERFLOW))
262 return true;
263
264 return false;
265}
266
267static __always_inline bool mas_is_underflow(struct ma_state *mas)
268{
269 if (unlikely(mas->node == MAS_UNDERFLOW))
270 return true;
271
272 return false;
273}
274
275static inline bool mas_searchable(struct ma_state *mas)
276{
277 if (mas_is_none(mas))
278 return false;
279
280 if (mas_is_ptr(mas))
281 return false;
282
283 return true;
284}
285
286static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
287{
288 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
289}
290
291/*
292 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
293 * @entry: The maple encoded node
294 *
295 * Return: a maple topiary pointer
296 */
297static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
298{
299 return (struct maple_topiary *)
300 ((unsigned long)entry & ~MAPLE_NODE_MASK);
301}
302
303/*
304 * mas_mn() - Get the maple state node.
305 * @mas: The maple state
306 *
307 * Return: the maple node (not encoded - bare pointer).
308 */
309static inline struct maple_node *mas_mn(const struct ma_state *mas)
310{
311 return mte_to_node(entry: mas->node);
312}
313
314/*
315 * mte_set_node_dead() - Set a maple encoded node as dead.
316 * @mn: The maple encoded node.
317 */
318static inline void mte_set_node_dead(struct maple_enode *mn)
319{
320 mte_to_node(entry: mn)->parent = ma_parent_ptr(mte_to_node(mn));
321 smp_wmb(); /* Needed for RCU */
322}
323
324/* Bit 1 indicates the root is a node */
325#define MAPLE_ROOT_NODE 0x02
326/* maple_type stored bit 3-6 */
327#define MAPLE_ENODE_TYPE_SHIFT 0x03
328/* Bit 2 means a NULL somewhere below */
329#define MAPLE_ENODE_NULL 0x04
330
331static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
332 enum maple_type type)
333{
334 return (void *)((unsigned long)node |
335 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
336}
337
338static inline void *mte_mk_root(const struct maple_enode *node)
339{
340 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
341}
342
343static inline void *mte_safe_root(const struct maple_enode *node)
344{
345 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
346}
347
348static inline void *mte_set_full(const struct maple_enode *node)
349{
350 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
351}
352
353static inline void *mte_clear_full(const struct maple_enode *node)
354{
355 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
356}
357
358static inline bool mte_has_null(const struct maple_enode *node)
359{
360 return (unsigned long)node & MAPLE_ENODE_NULL;
361}
362
363static inline bool ma_is_root(struct maple_node *node)
364{
365 return ((unsigned long)node->parent & MA_ROOT_PARENT);
366}
367
368static inline bool mte_is_root(const struct maple_enode *node)
369{
370 return ma_is_root(node: mte_to_node(entry: node));
371}
372
373static inline bool mas_is_root_limits(const struct ma_state *mas)
374{
375 return !mas->min && mas->max == ULONG_MAX;
376}
377
378static inline bool mt_is_alloc(struct maple_tree *mt)
379{
380 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
381}
382
383/*
384 * The Parent Pointer
385 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
386 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
387 * bit values need an extra bit to store the offset. This extra bit comes from
388 * a reuse of the last bit in the node type. This is possible by using bit 1 to
389 * indicate if bit 2 is part of the type or the slot.
390 *
391 * Note types:
392 * 0x??1 = Root
393 * 0x?00 = 16 bit nodes
394 * 0x010 = 32 bit nodes
395 * 0x110 = 64 bit nodes
396 *
397 * Slot size and alignment
398 * 0b??1 : Root
399 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
400 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
401 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
402 */
403
404#define MAPLE_PARENT_ROOT 0x01
405
406#define MAPLE_PARENT_SLOT_SHIFT 0x03
407#define MAPLE_PARENT_SLOT_MASK 0xF8
408
409#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
410#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
411
412#define MAPLE_PARENT_RANGE64 0x06
413#define MAPLE_PARENT_RANGE32 0x04
414#define MAPLE_PARENT_NOT_RANGE16 0x02
415
416/*
417 * mte_parent_shift() - Get the parent shift for the slot storage.
418 * @parent: The parent pointer cast as an unsigned long
419 * Return: The shift into that pointer to the star to of the slot
420 */
421static inline unsigned long mte_parent_shift(unsigned long parent)
422{
423 /* Note bit 1 == 0 means 16B */
424 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
425 return MAPLE_PARENT_SLOT_SHIFT;
426
427 return MAPLE_PARENT_16B_SLOT_SHIFT;
428}
429
430/*
431 * mte_parent_slot_mask() - Get the slot mask for the parent.
432 * @parent: The parent pointer cast as an unsigned long.
433 * Return: The slot mask for that parent.
434 */
435static inline unsigned long mte_parent_slot_mask(unsigned long parent)
436{
437 /* Note bit 1 == 0 means 16B */
438 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
439 return MAPLE_PARENT_SLOT_MASK;
440
441 return MAPLE_PARENT_16B_SLOT_MASK;
442}
443
444/*
445 * mas_parent_type() - Return the maple_type of the parent from the stored
446 * parent type.
447 * @mas: The maple state
448 * @enode: The maple_enode to extract the parent's enum
449 * Return: The node->parent maple_type
450 */
451static inline
452enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
453{
454 unsigned long p_type;
455
456 p_type = (unsigned long)mte_to_node(entry: enode)->parent;
457 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
458 return 0;
459
460 p_type &= MAPLE_NODE_MASK;
461 p_type &= ~mte_parent_slot_mask(parent: p_type);
462 switch (p_type) {
463 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
464 if (mt_is_alloc(mt: mas->tree))
465 return maple_arange_64;
466 return maple_range_64;
467 }
468
469 return 0;
470}
471
472/*
473 * mas_set_parent() - Set the parent node and encode the slot
474 * @enode: The encoded maple node.
475 * @parent: The encoded maple node that is the parent of @enode.
476 * @slot: The slot that @enode resides in @parent.
477 *
478 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
479 * parent type.
480 */
481static inline
482void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
483 const struct maple_enode *parent, unsigned char slot)
484{
485 unsigned long val = (unsigned long)parent;
486 unsigned long shift;
487 unsigned long type;
488 enum maple_type p_type = mte_node_type(entry: parent);
489
490 MAS_BUG_ON(mas, p_type == maple_dense);
491 MAS_BUG_ON(mas, p_type == maple_leaf_64);
492
493 switch (p_type) {
494 case maple_range_64:
495 case maple_arange_64:
496 shift = MAPLE_PARENT_SLOT_SHIFT;
497 type = MAPLE_PARENT_RANGE64;
498 break;
499 default:
500 case maple_dense:
501 case maple_leaf_64:
502 shift = type = 0;
503 break;
504 }
505
506 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
507 val |= (slot << shift) | type;
508 mte_to_node(entry: enode)->parent = ma_parent_ptr(val);
509}
510
511/*
512 * mte_parent_slot() - get the parent slot of @enode.
513 * @enode: The encoded maple node.
514 *
515 * Return: The slot in the parent node where @enode resides.
516 */
517static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
518{
519 unsigned long val = (unsigned long)mte_to_node(entry: enode)->parent;
520
521 if (val & MA_ROOT_PARENT)
522 return 0;
523
524 /*
525 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
526 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
527 */
528 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(parent: val);
529}
530
531/*
532 * mte_parent() - Get the parent of @node.
533 * @node: The encoded maple node.
534 *
535 * Return: The parent maple node.
536 */
537static inline struct maple_node *mte_parent(const struct maple_enode *enode)
538{
539 return (void *)((unsigned long)
540 (mte_to_node(entry: enode)->parent) & ~MAPLE_NODE_MASK);
541}
542
543/*
544 * ma_dead_node() - check if the @enode is dead.
545 * @enode: The encoded maple node
546 *
547 * Return: true if dead, false otherwise.
548 */
549static inline bool ma_dead_node(const struct maple_node *node)
550{
551 struct maple_node *parent;
552
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
555 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
556 return (parent == node);
557}
558
559/*
560 * mte_dead_node() - check if the @enode is dead.
561 * @enode: The encoded maple node
562 *
563 * Return: true if dead, false otherwise.
564 */
565static inline bool mte_dead_node(const struct maple_enode *enode)
566{
567 struct maple_node *parent, *node;
568
569 node = mte_to_node(entry: enode);
570 /* Do not reorder reads from the node prior to the parent check */
571 smp_rmb();
572 parent = mte_parent(enode);
573 return (parent == node);
574}
575
576/*
577 * mas_allocated() - Get the number of nodes allocated in a maple state.
578 * @mas: The maple state
579 *
580 * The ma_state alloc member is overloaded to hold a pointer to the first
581 * allocated node or to the number of requested nodes to allocate. If bit 0 is
582 * set, then the alloc contains the number of requested nodes. If there is an
583 * allocated node, then the total allocated nodes is in that node.
584 *
585 * Return: The total number of nodes allocated
586 */
587static inline unsigned long mas_allocated(const struct ma_state *mas)
588{
589 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
590 return 0;
591
592 return mas->alloc->total;
593}
594
595/*
596 * mas_set_alloc_req() - Set the requested number of allocations.
597 * @mas: the maple state
598 * @count: the number of allocations.
599 *
600 * The requested number of allocations is either in the first allocated node,
601 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
602 * no allocated node. Set the request either in the node or do the necessary
603 * encoding to store in @mas->alloc directly.
604 */
605static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
606{
607 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
608 if (!count)
609 mas->alloc = NULL;
610 else
611 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
612 return;
613 }
614
615 mas->alloc->request_count = count;
616}
617
618/*
619 * mas_alloc_req() - get the requested number of allocations.
620 * @mas: The maple state
621 *
622 * The alloc count is either stored directly in @mas, or in
623 * @mas->alloc->request_count if there is at least one node allocated. Decode
624 * the request count if it's stored directly in @mas->alloc.
625 *
626 * Return: The allocation request count.
627 */
628static inline unsigned int mas_alloc_req(const struct ma_state *mas)
629{
630 if ((unsigned long)mas->alloc & 0x1)
631 return (unsigned long)(mas->alloc) >> 1;
632 else if (mas->alloc)
633 return mas->alloc->request_count;
634 return 0;
635}
636
637/*
638 * ma_pivots() - Get a pointer to the maple node pivots.
639 * @node - the maple node
640 * @type - the node type
641 *
642 * In the event of a dead node, this array may be %NULL
643 *
644 * Return: A pointer to the maple node pivots
645 */
646static inline unsigned long *ma_pivots(struct maple_node *node,
647 enum maple_type type)
648{
649 switch (type) {
650 case maple_arange_64:
651 return node->ma64.pivot;
652 case maple_range_64:
653 case maple_leaf_64:
654 return node->mr64.pivot;
655 case maple_dense:
656 return NULL;
657 }
658 return NULL;
659}
660
661/*
662 * ma_gaps() - Get a pointer to the maple node gaps.
663 * @node - the maple node
664 * @type - the node type
665 *
666 * Return: A pointer to the maple node gaps
667 */
668static inline unsigned long *ma_gaps(struct maple_node *node,
669 enum maple_type type)
670{
671 switch (type) {
672 case maple_arange_64:
673 return node->ma64.gap;
674 case maple_range_64:
675 case maple_leaf_64:
676 case maple_dense:
677 return NULL;
678 }
679 return NULL;
680}
681
682/*
683 * mas_pivot() - Get the pivot at @piv of the maple encoded node.
684 * @mas: The maple state.
685 * @piv: The pivot.
686 *
687 * Return: the pivot at @piv of @mn.
688 */
689static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
690{
691 struct maple_node *node = mas_mn(mas);
692 enum maple_type type = mte_node_type(entry: mas->node);
693
694 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
695 mas_set_err(mas, err: -EIO);
696 return 0;
697 }
698
699 switch (type) {
700 case maple_arange_64:
701 return node->ma64.pivot[piv];
702 case maple_range_64:
703 case maple_leaf_64:
704 return node->mr64.pivot[piv];
705 case maple_dense:
706 return 0;
707 }
708 return 0;
709}
710
711/*
712 * mas_safe_pivot() - get the pivot at @piv or mas->max.
713 * @mas: The maple state
714 * @pivots: The pointer to the maple node pivots
715 * @piv: The pivot to fetch
716 * @type: The maple node type
717 *
718 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
719 * otherwise.
720 */
721static inline unsigned long
722mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
723 unsigned char piv, enum maple_type type)
724{
725 if (piv >= mt_pivots[type])
726 return mas->max;
727
728 return pivots[piv];
729}
730
731/*
732 * mas_safe_min() - Return the minimum for a given offset.
733 * @mas: The maple state
734 * @pivots: The pointer to the maple node pivots
735 * @offset: The offset into the pivot array
736 *
737 * Return: The minimum range value that is contained in @offset.
738 */
739static inline unsigned long
740mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
741{
742 if (likely(offset))
743 return pivots[offset - 1] + 1;
744
745 return mas->min;
746}
747
748/*
749 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
750 * @mn: The encoded maple node
751 * @piv: The pivot offset
752 * @val: The value of the pivot
753 */
754static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
755 unsigned long val)
756{
757 struct maple_node *node = mte_to_node(entry: mn);
758 enum maple_type type = mte_node_type(entry: mn);
759
760 BUG_ON(piv >= mt_pivots[type]);
761 switch (type) {
762 default:
763 case maple_range_64:
764 case maple_leaf_64:
765 node->mr64.pivot[piv] = val;
766 break;
767 case maple_arange_64:
768 node->ma64.pivot[piv] = val;
769 break;
770 case maple_dense:
771 break;
772 }
773
774}
775
776/*
777 * ma_slots() - Get a pointer to the maple node slots.
778 * @mn: The maple node
779 * @mt: The maple node type
780 *
781 * Return: A pointer to the maple node slots
782 */
783static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
784{
785 switch (mt) {
786 default:
787 case maple_arange_64:
788 return mn->ma64.slot;
789 case maple_range_64:
790 case maple_leaf_64:
791 return mn->mr64.slot;
792 case maple_dense:
793 return mn->slot;
794 }
795}
796
797static inline bool mt_write_locked(const struct maple_tree *mt)
798{
799 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
800 lockdep_is_held(&mt->ma_lock);
801}
802
803static inline bool mt_locked(const struct maple_tree *mt)
804{
805 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
806 lockdep_is_held(&mt->ma_lock);
807}
808
809static inline void *mt_slot(const struct maple_tree *mt,
810 void __rcu **slots, unsigned char offset)
811{
812 return rcu_dereference_check(slots[offset], mt_locked(mt));
813}
814
815static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
816 unsigned char offset)
817{
818 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
819}
820/*
821 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
822 * @mas: The maple state
823 * @slots: The pointer to the slots
824 * @offset: The offset into the slots array to fetch
825 *
826 * Return: The entry stored in @slots at the @offset.
827 */
828static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
829 unsigned char offset)
830{
831 return mt_slot_locked(mt: mas->tree, slots, offset);
832}
833
834/*
835 * mas_slot() - Get the slot value when not holding the maple tree lock.
836 * @mas: The maple state
837 * @slots: The pointer to the slots
838 * @offset: The offset into the slots array to fetch
839 *
840 * Return: The entry stored in @slots at the @offset
841 */
842static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
843 unsigned char offset)
844{
845 return mt_slot(mt: mas->tree, slots, offset);
846}
847
848/*
849 * mas_root() - Get the maple tree root.
850 * @mas: The maple state.
851 *
852 * Return: The pointer to the root of the tree
853 */
854static inline void *mas_root(struct ma_state *mas)
855{
856 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
857}
858
859static inline void *mt_root_locked(struct maple_tree *mt)
860{
861 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
862}
863
864/*
865 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
866 * @mas: The maple state.
867 *
868 * Return: The pointer to the root of the tree
869 */
870static inline void *mas_root_locked(struct ma_state *mas)
871{
872 return mt_root_locked(mt: mas->tree);
873}
874
875static inline struct maple_metadata *ma_meta(struct maple_node *mn,
876 enum maple_type mt)
877{
878 switch (mt) {
879 case maple_arange_64:
880 return &mn->ma64.meta;
881 default:
882 return &mn->mr64.meta;
883 }
884}
885
886/*
887 * ma_set_meta() - Set the metadata information of a node.
888 * @mn: The maple node
889 * @mt: The maple node type
890 * @offset: The offset of the highest sub-gap in this node.
891 * @end: The end of the data in this node.
892 */
893static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
894 unsigned char offset, unsigned char end)
895{
896 struct maple_metadata *meta = ma_meta(mn, mt);
897
898 meta->gap = offset;
899 meta->end = end;
900}
901
902/*
903 * mt_clear_meta() - clear the metadata information of a node, if it exists
904 * @mt: The maple tree
905 * @mn: The maple node
906 * @type: The maple node type
907 * @offset: The offset of the highest sub-gap in this node.
908 * @end: The end of the data in this node.
909 */
910static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
911 enum maple_type type)
912{
913 struct maple_metadata *meta;
914 unsigned long *pivots;
915 void __rcu **slots;
916 void *next;
917
918 switch (type) {
919 case maple_range_64:
920 pivots = mn->mr64.pivot;
921 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
922 slots = mn->mr64.slot;
923 next = mt_slot_locked(mt, slots,
924 MAPLE_RANGE64_SLOTS - 1);
925 if (unlikely((mte_to_node(next) &&
926 mte_node_type(next))))
927 return; /* no metadata, could be node */
928 }
929 fallthrough;
930 case maple_arange_64:
931 meta = ma_meta(mn, mt: type);
932 break;
933 default:
934 return;
935 }
936
937 meta->gap = 0;
938 meta->end = 0;
939}
940
941/*
942 * ma_meta_end() - Get the data end of a node from the metadata
943 * @mn: The maple node
944 * @mt: The maple node type
945 */
946static inline unsigned char ma_meta_end(struct maple_node *mn,
947 enum maple_type mt)
948{
949 struct maple_metadata *meta = ma_meta(mn, mt);
950
951 return meta->end;
952}
953
954/*
955 * ma_meta_gap() - Get the largest gap location of a node from the metadata
956 * @mn: The maple node
957 * @mt: The maple node type
958 */
959static inline unsigned char ma_meta_gap(struct maple_node *mn,
960 enum maple_type mt)
961{
962 return mn->ma64.meta.gap;
963}
964
965/*
966 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
967 * @mn: The maple node
968 * @mn: The maple node type
969 * @offset: The location of the largest gap.
970 */
971static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
972 unsigned char offset)
973{
974
975 struct maple_metadata *meta = ma_meta(mn, mt);
976
977 meta->gap = offset;
978}
979
980/*
981 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
982 * @mat - the ma_topiary, a linked list of dead nodes.
983 * @dead_enode - the node to be marked as dead and added to the tail of the list
984 *
985 * Add the @dead_enode to the linked list in @mat.
986 */
987static inline void mat_add(struct ma_topiary *mat,
988 struct maple_enode *dead_enode)
989{
990 mte_set_node_dead(mn: dead_enode);
991 mte_to_mat(entry: dead_enode)->next = NULL;
992 if (!mat->tail) {
993 mat->tail = mat->head = dead_enode;
994 return;
995 }
996
997 mte_to_mat(entry: mat->tail)->next = dead_enode;
998 mat->tail = dead_enode;
999}
1000
1001static void mt_free_walk(struct rcu_head *head);
1002static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
1003 bool free);
1004/*
1005 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1006 * @mas - the maple state
1007 * @mat - the ma_topiary linked list of dead nodes to free.
1008 *
1009 * Destroy walk a dead list.
1010 */
1011static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1012{
1013 struct maple_enode *next;
1014 struct maple_node *node;
1015 bool in_rcu = mt_in_rcu(mt: mas->tree);
1016
1017 while (mat->head) {
1018 next = mte_to_mat(entry: mat->head)->next;
1019 node = mte_to_node(entry: mat->head);
1020 mt_destroy_walk(enode: mat->head, mt: mas->tree, free: !in_rcu);
1021 if (in_rcu)
1022 call_rcu(head: &node->rcu, func: mt_free_walk);
1023 mat->head = next;
1024 }
1025}
1026/*
1027 * mas_descend() - Descend into the slot stored in the ma_state.
1028 * @mas - the maple state.
1029 *
1030 * Note: Not RCU safe, only use in write side or debug code.
1031 */
1032static inline void mas_descend(struct ma_state *mas)
1033{
1034 enum maple_type type;
1035 unsigned long *pivots;
1036 struct maple_node *node;
1037 void __rcu **slots;
1038
1039 node = mas_mn(mas);
1040 type = mte_node_type(entry: mas->node);
1041 pivots = ma_pivots(node, type);
1042 slots = ma_slots(mn: node, mt: type);
1043
1044 if (mas->offset)
1045 mas->min = pivots[mas->offset - 1] + 1;
1046 mas->max = mas_safe_pivot(mas, pivots, piv: mas->offset, type);
1047 mas->node = mas_slot(mas, slots, offset: mas->offset);
1048}
1049
1050/*
1051 * mte_set_gap() - Set a maple node gap.
1052 * @mn: The encoded maple node
1053 * @gap: The offset of the gap to set
1054 * @val: The gap value
1055 */
1056static inline void mte_set_gap(const struct maple_enode *mn,
1057 unsigned char gap, unsigned long val)
1058{
1059 switch (mte_node_type(entry: mn)) {
1060 default:
1061 break;
1062 case maple_arange_64:
1063 mte_to_node(entry: mn)->ma64.gap[gap] = val;
1064 break;
1065 }
1066}
1067
1068/*
1069 * mas_ascend() - Walk up a level of the tree.
1070 * @mas: The maple state
1071 *
1072 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1073 * may cause several levels of walking up to find the correct min and max.
1074 * May find a dead node which will cause a premature return.
1075 * Return: 1 on dead node, 0 otherwise
1076 */
1077static int mas_ascend(struct ma_state *mas)
1078{
1079 struct maple_enode *p_enode; /* parent enode. */
1080 struct maple_enode *a_enode; /* ancestor enode. */
1081 struct maple_node *a_node; /* ancestor node. */
1082 struct maple_node *p_node; /* parent node. */
1083 unsigned char a_slot;
1084 enum maple_type a_type;
1085 unsigned long min, max;
1086 unsigned long *pivots;
1087 bool set_max = false, set_min = false;
1088
1089 a_node = mas_mn(mas);
1090 if (ma_is_root(node: a_node)) {
1091 mas->offset = 0;
1092 return 0;
1093 }
1094
1095 p_node = mte_parent(enode: mas->node);
1096 if (unlikely(a_node == p_node))
1097 return 1;
1098
1099 a_type = mas_parent_type(mas, enode: mas->node);
1100 mas->offset = mte_parent_slot(enode: mas->node);
1101 a_enode = mt_mk_node(node: p_node, type: a_type);
1102
1103 /* Check to make sure all parent information is still accurate */
1104 if (p_node != mte_parent(enode: mas->node))
1105 return 1;
1106
1107 mas->node = a_enode;
1108
1109 if (mte_is_root(node: a_enode)) {
1110 mas->max = ULONG_MAX;
1111 mas->min = 0;
1112 return 0;
1113 }
1114
1115 if (!mas->min)
1116 set_min = true;
1117
1118 if (mas->max == ULONG_MAX)
1119 set_max = true;
1120
1121 min = 0;
1122 max = ULONG_MAX;
1123 do {
1124 p_enode = a_enode;
1125 a_type = mas_parent_type(mas, enode: p_enode);
1126 a_node = mte_parent(enode: p_enode);
1127 a_slot = mte_parent_slot(enode: p_enode);
1128 a_enode = mt_mk_node(node: a_node, type: a_type);
1129 pivots = ma_pivots(node: a_node, type: a_type);
1130
1131 if (unlikely(ma_dead_node(a_node)))
1132 return 1;
1133
1134 if (!set_min && a_slot) {
1135 set_min = true;
1136 min = pivots[a_slot - 1] + 1;
1137 }
1138
1139 if (!set_max && a_slot < mt_pivots[a_type]) {
1140 set_max = true;
1141 max = pivots[a_slot];
1142 }
1143
1144 if (unlikely(ma_dead_node(a_node)))
1145 return 1;
1146
1147 if (unlikely(ma_is_root(a_node)))
1148 break;
1149
1150 } while (!set_min || !set_max);
1151
1152 mas->max = max;
1153 mas->min = min;
1154 return 0;
1155}
1156
1157/*
1158 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1159 * @mas: The maple state
1160 *
1161 * Return: A pointer to a maple node.
1162 */
1163static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1164{
1165 struct maple_alloc *ret, *node = mas->alloc;
1166 unsigned long total = mas_allocated(mas);
1167 unsigned int req = mas_alloc_req(mas);
1168
1169 /* nothing or a request pending. */
1170 if (WARN_ON(!total))
1171 return NULL;
1172
1173 if (total == 1) {
1174 /* single allocation in this ma_state */
1175 mas->alloc = NULL;
1176 ret = node;
1177 goto single_node;
1178 }
1179
1180 if (node->node_count == 1) {
1181 /* Single allocation in this node. */
1182 mas->alloc = node->slot[0];
1183 mas->alloc->total = node->total - 1;
1184 ret = node;
1185 goto new_head;
1186 }
1187 node->total--;
1188 ret = node->slot[--node->node_count];
1189 node->slot[node->node_count] = NULL;
1190
1191single_node:
1192new_head:
1193 if (req) {
1194 req++;
1195 mas_set_alloc_req(mas, count: req);
1196 }
1197
1198 memset(ret, 0, sizeof(*ret));
1199 return (struct maple_node *)ret;
1200}
1201
1202/*
1203 * mas_push_node() - Push a node back on the maple state allocation.
1204 * @mas: The maple state
1205 * @used: The used maple node
1206 *
1207 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1208 * requested node count as necessary.
1209 */
1210static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1211{
1212 struct maple_alloc *reuse = (struct maple_alloc *)used;
1213 struct maple_alloc *head = mas->alloc;
1214 unsigned long count;
1215 unsigned int requested = mas_alloc_req(mas);
1216
1217 count = mas_allocated(mas);
1218
1219 reuse->request_count = 0;
1220 reuse->node_count = 0;
1221 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1222 head->slot[head->node_count++] = reuse;
1223 head->total++;
1224 goto done;
1225 }
1226
1227 reuse->total = 1;
1228 if ((head) && !((unsigned long)head & 0x1)) {
1229 reuse->slot[0] = head;
1230 reuse->node_count = 1;
1231 reuse->total += head->total;
1232 }
1233
1234 mas->alloc = reuse;
1235done:
1236 if (requested > 1)
1237 mas_set_alloc_req(mas, count: requested - 1);
1238}
1239
1240/*
1241 * mas_alloc_nodes() - Allocate nodes into a maple state
1242 * @mas: The maple state
1243 * @gfp: The GFP Flags
1244 */
1245static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1246{
1247 struct maple_alloc *node;
1248 unsigned long allocated = mas_allocated(mas);
1249 unsigned int requested = mas_alloc_req(mas);
1250 unsigned int count;
1251 void **slots = NULL;
1252 unsigned int max_req = 0;
1253
1254 if (!requested)
1255 return;
1256
1257 mas_set_alloc_req(mas, count: 0);
1258 if (mas->mas_flags & MA_STATE_PREALLOC) {
1259 if (allocated)
1260 return;
1261 WARN_ON(!allocated);
1262 }
1263
1264 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1265 node = (struct maple_alloc *)mt_alloc_one(gfp);
1266 if (!node)
1267 goto nomem_one;
1268
1269 if (allocated) {
1270 node->slot[0] = mas->alloc;
1271 node->node_count = 1;
1272 } else {
1273 node->node_count = 0;
1274 }
1275
1276 mas->alloc = node;
1277 node->total = ++allocated;
1278 requested--;
1279 }
1280
1281 node = mas->alloc;
1282 node->request_count = 0;
1283 while (requested) {
1284 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1285 slots = (void **)&node->slot[node->node_count];
1286 max_req = min(requested, max_req);
1287 count = mt_alloc_bulk(gfp, size: max_req, nodes: slots);
1288 if (!count)
1289 goto nomem_bulk;
1290
1291 if (node->node_count == 0) {
1292 node->slot[0]->node_count = 0;
1293 node->slot[0]->request_count = 0;
1294 }
1295
1296 node->node_count += count;
1297 allocated += count;
1298 node = node->slot[0];
1299 requested -= count;
1300 }
1301 mas->alloc->total = allocated;
1302 return;
1303
1304nomem_bulk:
1305 /* Clean up potential freed allocations on bulk failure */
1306 memset(slots, 0, max_req * sizeof(unsigned long));
1307nomem_one:
1308 mas_set_alloc_req(mas, count: requested);
1309 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1310 mas->alloc->total = allocated;
1311 mas_set_err(mas, err: -ENOMEM);
1312}
1313
1314/*
1315 * mas_free() - Free an encoded maple node
1316 * @mas: The maple state
1317 * @used: The encoded maple node to free.
1318 *
1319 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1320 * otherwise.
1321 */
1322static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1323{
1324 struct maple_node *tmp = mte_to_node(entry: used);
1325
1326 if (mt_in_rcu(mt: mas->tree))
1327 ma_free_rcu(node: tmp);
1328 else
1329 mas_push_node(mas, used: tmp);
1330}
1331
1332/*
1333 * mas_node_count() - Check if enough nodes are allocated and request more if
1334 * there is not enough nodes.
1335 * @mas: The maple state
1336 * @count: The number of nodes needed
1337 * @gfp: the gfp flags
1338 */
1339static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1340{
1341 unsigned long allocated = mas_allocated(mas);
1342
1343 if (allocated < count) {
1344 mas_set_alloc_req(mas, count: count - allocated);
1345 mas_alloc_nodes(mas, gfp);
1346 }
1347}
1348
1349/*
1350 * mas_node_count() - Check if enough nodes are allocated and request more if
1351 * there is not enough nodes.
1352 * @mas: The maple state
1353 * @count: The number of nodes needed
1354 *
1355 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1356 */
1357static void mas_node_count(struct ma_state *mas, int count)
1358{
1359 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1360}
1361
1362/*
1363 * mas_start() - Sets up maple state for operations.
1364 * @mas: The maple state.
1365 *
1366 * If mas->node == MAS_START, then set the min, max and depth to
1367 * defaults.
1368 *
1369 * Return:
1370 * - If mas->node is an error or not MAS_START, return NULL.
1371 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1372 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1373 * - If it's a tree: NULL & mas->node == safe root node.
1374 */
1375static inline struct maple_enode *mas_start(struct ma_state *mas)
1376{
1377 if (likely(mas_is_start(mas))) {
1378 struct maple_enode *root;
1379
1380 mas->min = 0;
1381 mas->max = ULONG_MAX;
1382
1383retry:
1384 mas->depth = 0;
1385 root = mas_root(mas);
1386 /* Tree with nodes */
1387 if (likely(xa_is_node(root))) {
1388 mas->depth = 1;
1389 mas->node = mte_safe_root(node: root);
1390 mas->offset = 0;
1391 if (mte_dead_node(enode: mas->node))
1392 goto retry;
1393
1394 return NULL;
1395 }
1396
1397 /* empty tree */
1398 if (unlikely(!root)) {
1399 mas->node = MAS_NONE;
1400 mas->offset = MAPLE_NODE_SLOTS;
1401 return NULL;
1402 }
1403
1404 /* Single entry tree */
1405 mas->node = MAS_ROOT;
1406 mas->offset = MAPLE_NODE_SLOTS;
1407
1408 /* Single entry tree. */
1409 if (mas->index > 0)
1410 return NULL;
1411
1412 return root;
1413 }
1414
1415 return NULL;
1416}
1417
1418/*
1419 * ma_data_end() - Find the end of the data in a node.
1420 * @node: The maple node
1421 * @type: The maple node type
1422 * @pivots: The array of pivots in the node
1423 * @max: The maximum value in the node
1424 *
1425 * Uses metadata to find the end of the data when possible.
1426 * Return: The zero indexed last slot with data (may be null).
1427 */
1428static inline unsigned char ma_data_end(struct maple_node *node,
1429 enum maple_type type,
1430 unsigned long *pivots,
1431 unsigned long max)
1432{
1433 unsigned char offset;
1434
1435 if (!pivots)
1436 return 0;
1437
1438 if (type == maple_arange_64)
1439 return ma_meta_end(mn: node, mt: type);
1440
1441 offset = mt_pivots[type] - 1;
1442 if (likely(!pivots[offset]))
1443 return ma_meta_end(mn: node, mt: type);
1444
1445 if (likely(pivots[offset] == max))
1446 return offset;
1447
1448 return mt_pivots[type];
1449}
1450
1451/*
1452 * mas_data_end() - Find the end of the data (slot).
1453 * @mas: the maple state
1454 *
1455 * This method is optimized to check the metadata of a node if the node type
1456 * supports data end metadata.
1457 *
1458 * Return: The zero indexed last slot with data (may be null).
1459 */
1460static inline unsigned char mas_data_end(struct ma_state *mas)
1461{
1462 enum maple_type type;
1463 struct maple_node *node;
1464 unsigned char offset;
1465 unsigned long *pivots;
1466
1467 type = mte_node_type(entry: mas->node);
1468 node = mas_mn(mas);
1469 if (type == maple_arange_64)
1470 return ma_meta_end(mn: node, mt: type);
1471
1472 pivots = ma_pivots(node, type);
1473 if (unlikely(ma_dead_node(node)))
1474 return 0;
1475
1476 offset = mt_pivots[type] - 1;
1477 if (likely(!pivots[offset]))
1478 return ma_meta_end(mn: node, mt: type);
1479
1480 if (likely(pivots[offset] == mas->max))
1481 return offset;
1482
1483 return mt_pivots[type];
1484}
1485
1486/*
1487 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1488 * @mas - the maple state
1489 *
1490 * Return: The maximum gap in the leaf.
1491 */
1492static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1493{
1494 enum maple_type mt;
1495 unsigned long pstart, gap, max_gap;
1496 struct maple_node *mn;
1497 unsigned long *pivots;
1498 void __rcu **slots;
1499 unsigned char i;
1500 unsigned char max_piv;
1501
1502 mt = mte_node_type(entry: mas->node);
1503 mn = mas_mn(mas);
1504 slots = ma_slots(mn, mt);
1505 max_gap = 0;
1506 if (unlikely(ma_is_dense(mt))) {
1507 gap = 0;
1508 for (i = 0; i < mt_slots[mt]; i++) {
1509 if (slots[i]) {
1510 if (gap > max_gap)
1511 max_gap = gap;
1512 gap = 0;
1513 } else {
1514 gap++;
1515 }
1516 }
1517 if (gap > max_gap)
1518 max_gap = gap;
1519 return max_gap;
1520 }
1521
1522 /*
1523 * Check the first implied pivot optimizes the loop below and slot 1 may
1524 * be skipped if there is a gap in slot 0.
1525 */
1526 pivots = ma_pivots(node: mn, type: mt);
1527 if (likely(!slots[0])) {
1528 max_gap = pivots[0] - mas->min + 1;
1529 i = 2;
1530 } else {
1531 i = 1;
1532 }
1533
1534 /* reduce max_piv as the special case is checked before the loop */
1535 max_piv = ma_data_end(node: mn, type: mt, pivots, max: mas->max) - 1;
1536 /*
1537 * Check end implied pivot which can only be a gap on the right most
1538 * node.
1539 */
1540 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1541 gap = ULONG_MAX - pivots[max_piv];
1542 if (gap > max_gap)
1543 max_gap = gap;
1544 }
1545
1546 for (; i <= max_piv; i++) {
1547 /* data == no gap. */
1548 if (likely(slots[i]))
1549 continue;
1550
1551 pstart = pivots[i - 1];
1552 gap = pivots[i] - pstart;
1553 if (gap > max_gap)
1554 max_gap = gap;
1555
1556 /* There cannot be two gaps in a row. */
1557 i++;
1558 }
1559 return max_gap;
1560}
1561
1562/*
1563 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1564 * @node: The maple node
1565 * @gaps: The pointer to the gaps
1566 * @mt: The maple node type
1567 * @*off: Pointer to store the offset location of the gap.
1568 *
1569 * Uses the metadata data end to scan backwards across set gaps.
1570 *
1571 * Return: The maximum gap value
1572 */
1573static inline unsigned long
1574ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1575 unsigned char *off)
1576{
1577 unsigned char offset, i;
1578 unsigned long max_gap = 0;
1579
1580 i = offset = ma_meta_end(mn: node, mt);
1581 do {
1582 if (gaps[i] > max_gap) {
1583 max_gap = gaps[i];
1584 offset = i;
1585 }
1586 } while (i--);
1587
1588 *off = offset;
1589 return max_gap;
1590}
1591
1592/*
1593 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1594 * @mas: The maple state.
1595 *
1596 * Return: The gap value.
1597 */
1598static inline unsigned long mas_max_gap(struct ma_state *mas)
1599{
1600 unsigned long *gaps;
1601 unsigned char offset;
1602 enum maple_type mt;
1603 struct maple_node *node;
1604
1605 mt = mte_node_type(entry: mas->node);
1606 if (ma_is_leaf(type: mt))
1607 return mas_leaf_max_gap(mas);
1608
1609 node = mas_mn(mas);
1610 MAS_BUG_ON(mas, mt != maple_arange_64);
1611 offset = ma_meta_gap(mn: node, mt);
1612 gaps = ma_gaps(node, type: mt);
1613 return gaps[offset];
1614}
1615
1616/*
1617 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1618 * @mas: The maple state
1619 * @offset: The gap offset in the parent to set
1620 * @new: The new gap value.
1621 *
1622 * Set the parent gap then continue to set the gap upwards, using the metadata
1623 * of the parent to see if it is necessary to check the node above.
1624 */
1625static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1626 unsigned long new)
1627{
1628 unsigned long meta_gap = 0;
1629 struct maple_node *pnode;
1630 struct maple_enode *penode;
1631 unsigned long *pgaps;
1632 unsigned char meta_offset;
1633 enum maple_type pmt;
1634
1635 pnode = mte_parent(enode: mas->node);
1636 pmt = mas_parent_type(mas, enode: mas->node);
1637 penode = mt_mk_node(node: pnode, type: pmt);
1638 pgaps = ma_gaps(node: pnode, type: pmt);
1639
1640ascend:
1641 MAS_BUG_ON(mas, pmt != maple_arange_64);
1642 meta_offset = ma_meta_gap(mn: pnode, mt: pmt);
1643 meta_gap = pgaps[meta_offset];
1644
1645 pgaps[offset] = new;
1646
1647 if (meta_gap == new)
1648 return;
1649
1650 if (offset != meta_offset) {
1651 if (meta_gap > new)
1652 return;
1653
1654 ma_set_meta_gap(mn: pnode, mt: pmt, offset);
1655 } else if (new < meta_gap) {
1656 new = ma_max_gap(node: pnode, gaps: pgaps, mt: pmt, off: &meta_offset);
1657 ma_set_meta_gap(mn: pnode, mt: pmt, offset: meta_offset);
1658 }
1659
1660 if (ma_is_root(node: pnode))
1661 return;
1662
1663 /* Go to the parent node. */
1664 pnode = mte_parent(enode: penode);
1665 pmt = mas_parent_type(mas, enode: penode);
1666 pgaps = ma_gaps(node: pnode, type: pmt);
1667 offset = mte_parent_slot(enode: penode);
1668 penode = mt_mk_node(node: pnode, type: pmt);
1669 goto ascend;
1670}
1671
1672/*
1673 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1674 * @mas - the maple state.
1675 */
1676static inline void mas_update_gap(struct ma_state *mas)
1677{
1678 unsigned char pslot;
1679 unsigned long p_gap;
1680 unsigned long max_gap;
1681
1682 if (!mt_is_alloc(mt: mas->tree))
1683 return;
1684
1685 if (mte_is_root(node: mas->node))
1686 return;
1687
1688 max_gap = mas_max_gap(mas);
1689
1690 pslot = mte_parent_slot(enode: mas->node);
1691 p_gap = ma_gaps(node: mte_parent(enode: mas->node),
1692 type: mas_parent_type(mas, enode: mas->node))[pslot];
1693
1694 if (p_gap != max_gap)
1695 mas_parent_gap(mas, offset: pslot, new: max_gap);
1696}
1697
1698/*
1699 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1700 * @parent with the slot encoded.
1701 * @mas - the maple state (for the tree)
1702 * @parent - the maple encoded node containing the children.
1703 */
1704static inline void mas_adopt_children(struct ma_state *mas,
1705 struct maple_enode *parent)
1706{
1707 enum maple_type type = mte_node_type(entry: parent);
1708 struct maple_node *node = mte_to_node(entry: parent);
1709 void __rcu **slots = ma_slots(mn: node, mt: type);
1710 unsigned long *pivots = ma_pivots(node, type);
1711 struct maple_enode *child;
1712 unsigned char offset;
1713
1714 offset = ma_data_end(node, type, pivots, max: mas->max);
1715 do {
1716 child = mas_slot_locked(mas, slots, offset);
1717 mas_set_parent(mas, enode: child, parent, slot: offset);
1718 } while (offset--);
1719}
1720
1721/*
1722 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1723 * node as dead.
1724 * @mas - the maple state with the new node
1725 * @old_enode - The old maple encoded node to replace.
1726 */
1727static inline void mas_put_in_tree(struct ma_state *mas,
1728 struct maple_enode *old_enode)
1729 __must_hold(mas->tree->ma_lock)
1730{
1731 unsigned char offset;
1732 void __rcu **slots;
1733
1734 if (mte_is_root(node: mas->node)) {
1735 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1736 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1737 mas_set_height(mas);
1738 } else {
1739
1740 offset = mte_parent_slot(enode: mas->node);
1741 slots = ma_slots(mn: mte_parent(enode: mas->node),
1742 mt: mas_parent_type(mas, enode: mas->node));
1743 rcu_assign_pointer(slots[offset], mas->node);
1744 }
1745
1746 mte_set_node_dead(mn: old_enode);
1747}
1748
1749/*
1750 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1751 * dead, and freeing it.
1752 * the parent encoding to locate the maple node in the tree.
1753 * @mas - the ma_state with @mas->node pointing to the new node.
1754 * @old_enode - The old maple encoded node.
1755 */
1756static inline void mas_replace_node(struct ma_state *mas,
1757 struct maple_enode *old_enode)
1758 __must_hold(mas->tree->ma_lock)
1759{
1760 mas_put_in_tree(mas, old_enode);
1761 mas_free(mas, used: old_enode);
1762}
1763
1764/*
1765 * mas_find_child() - Find a child who has the parent @mas->node.
1766 * @mas: the maple state with the parent.
1767 * @child: the maple state to store the child.
1768 */
1769static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1770 __must_hold(mas->tree->ma_lock)
1771{
1772 enum maple_type mt;
1773 unsigned char offset;
1774 unsigned char end;
1775 unsigned long *pivots;
1776 struct maple_enode *entry;
1777 struct maple_node *node;
1778 void __rcu **slots;
1779
1780 mt = mte_node_type(entry: mas->node);
1781 node = mas_mn(mas);
1782 slots = ma_slots(mn: node, mt);
1783 pivots = ma_pivots(node, type: mt);
1784 end = ma_data_end(node, type: mt, pivots, max: mas->max);
1785 for (offset = mas->offset; offset <= end; offset++) {
1786 entry = mas_slot_locked(mas, slots, offset);
1787 if (mte_parent(enode: entry) == node) {
1788 *child = *mas;
1789 mas->offset = offset + 1;
1790 child->offset = offset;
1791 mas_descend(mas: child);
1792 child->offset = 0;
1793 return true;
1794 }
1795 }
1796 return false;
1797}
1798
1799/*
1800 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1801 * old data or set b_node->b_end.
1802 * @b_node: the maple_big_node
1803 * @shift: the shift count
1804 */
1805static inline void mab_shift_right(struct maple_big_node *b_node,
1806 unsigned char shift)
1807{
1808 unsigned long size = b_node->b_end * sizeof(unsigned long);
1809
1810 memmove(b_node->pivot + shift, b_node->pivot, size);
1811 memmove(b_node->slot + shift, b_node->slot, size);
1812 if (b_node->type == maple_arange_64)
1813 memmove(b_node->gap + shift, b_node->gap, size);
1814}
1815
1816/*
1817 * mab_middle_node() - Check if a middle node is needed (unlikely)
1818 * @b_node: the maple_big_node that contains the data.
1819 * @size: the amount of data in the b_node
1820 * @split: the potential split location
1821 * @slot_count: the size that can be stored in a single node being considered.
1822 *
1823 * Return: true if a middle node is required.
1824 */
1825static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1826 unsigned char slot_count)
1827{
1828 unsigned char size = b_node->b_end;
1829
1830 if (size >= 2 * slot_count)
1831 return true;
1832
1833 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1834 return true;
1835
1836 return false;
1837}
1838
1839/*
1840 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1841 * @b_node: the maple_big_node with the data
1842 * @split: the suggested split location
1843 * @slot_count: the number of slots in the node being considered.
1844 *
1845 * Return: the split location.
1846 */
1847static inline int mab_no_null_split(struct maple_big_node *b_node,
1848 unsigned char split, unsigned char slot_count)
1849{
1850 if (!b_node->slot[split]) {
1851 /*
1852 * If the split is less than the max slot && the right side will
1853 * still be sufficient, then increment the split on NULL.
1854 */
1855 if ((split < slot_count - 1) &&
1856 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1857 split++;
1858 else
1859 split--;
1860 }
1861 return split;
1862}
1863
1864/*
1865 * mab_calc_split() - Calculate the split location and if there needs to be two
1866 * splits.
1867 * @bn: The maple_big_node with the data
1868 * @mid_split: The second split, if required. 0 otherwise.
1869 *
1870 * Return: The first split location. The middle split is set in @mid_split.
1871 */
1872static inline int mab_calc_split(struct ma_state *mas,
1873 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1874{
1875 unsigned char b_end = bn->b_end;
1876 int split = b_end / 2; /* Assume equal split. */
1877 unsigned char slot_min, slot_count = mt_slots[bn->type];
1878
1879 /*
1880 * To support gap tracking, all NULL entries are kept together and a node cannot
1881 * end on a NULL entry, with the exception of the left-most leaf. The
1882 * limitation means that the split of a node must be checked for this condition
1883 * and be able to put more data in one direction or the other.
1884 */
1885 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1886 *mid_split = 0;
1887 split = b_end - mt_min_slots[bn->type];
1888
1889 if (!ma_is_leaf(type: bn->type))
1890 return split;
1891
1892 mas->mas_flags |= MA_STATE_REBALANCE;
1893 if (!bn->slot[split])
1894 split--;
1895 return split;
1896 }
1897
1898 /*
1899 * Although extremely rare, it is possible to enter what is known as the 3-way
1900 * split scenario. The 3-way split comes about by means of a store of a range
1901 * that overwrites the end and beginning of two full nodes. The result is a set
1902 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1903 * also be located in different parent nodes which are also full. This can
1904 * carry upwards all the way to the root in the worst case.
1905 */
1906 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1907 split = b_end / 3;
1908 *mid_split = split * 2;
1909 } else {
1910 slot_min = mt_min_slots[bn->type];
1911
1912 *mid_split = 0;
1913 /*
1914 * Avoid having a range less than the slot count unless it
1915 * causes one node to be deficient.
1916 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1917 */
1918 while ((split < slot_count - 1) &&
1919 ((bn->pivot[split] - min) < slot_count - 1) &&
1920 (b_end - split > slot_min))
1921 split++;
1922 }
1923
1924 /* Avoid ending a node on a NULL entry */
1925 split = mab_no_null_split(b_node: bn, split, slot_count);
1926
1927 if (unlikely(*mid_split))
1928 *mid_split = mab_no_null_split(b_node: bn, split: *mid_split, slot_count);
1929
1930 return split;
1931}
1932
1933/*
1934 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1935 * and set @b_node->b_end to the next free slot.
1936 * @mas: The maple state
1937 * @mas_start: The starting slot to copy
1938 * @mas_end: The end slot to copy (inclusively)
1939 * @b_node: The maple_big_node to place the data
1940 * @mab_start: The starting location in maple_big_node to store the data.
1941 */
1942static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1943 unsigned char mas_end, struct maple_big_node *b_node,
1944 unsigned char mab_start)
1945{
1946 enum maple_type mt;
1947 struct maple_node *node;
1948 void __rcu **slots;
1949 unsigned long *pivots, *gaps;
1950 int i = mas_start, j = mab_start;
1951 unsigned char piv_end;
1952
1953 node = mas_mn(mas);
1954 mt = mte_node_type(entry: mas->node);
1955 pivots = ma_pivots(node, type: mt);
1956 if (!i) {
1957 b_node->pivot[j] = pivots[i++];
1958 if (unlikely(i > mas_end))
1959 goto complete;
1960 j++;
1961 }
1962
1963 piv_end = min(mas_end, mt_pivots[mt]);
1964 for (; i < piv_end; i++, j++) {
1965 b_node->pivot[j] = pivots[i];
1966 if (unlikely(!b_node->pivot[j]))
1967 break;
1968
1969 if (unlikely(mas->max == b_node->pivot[j]))
1970 goto complete;
1971 }
1972
1973 if (likely(i <= mas_end))
1974 b_node->pivot[j] = mas_safe_pivot(mas, pivots, piv: i, type: mt);
1975
1976complete:
1977 b_node->b_end = ++j;
1978 j -= mab_start;
1979 slots = ma_slots(mn: node, mt);
1980 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1981 if (!ma_is_leaf(type: mt) && mt_is_alloc(mt: mas->tree)) {
1982 gaps = ma_gaps(node, type: mt);
1983 memcpy(b_node->gap + mab_start, gaps + mas_start,
1984 sizeof(unsigned long) * j);
1985 }
1986}
1987
1988/*
1989 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1990 * @mas: The maple state
1991 * @node: The maple node
1992 * @pivots: pointer to the maple node pivots
1993 * @mt: The maple type
1994 * @end: The assumed end
1995 *
1996 * Note, end may be incremented within this function but not modified at the
1997 * source. This is fine since the metadata is the last thing to be stored in a
1998 * node during a write.
1999 */
2000static inline void mas_leaf_set_meta(struct ma_state *mas,
2001 struct maple_node *node, unsigned long *pivots,
2002 enum maple_type mt, unsigned char end)
2003{
2004 /* There is no room for metadata already */
2005 if (mt_pivots[mt] <= end)
2006 return;
2007
2008 if (pivots[end] && pivots[end] < mas->max)
2009 end++;
2010
2011 if (end < mt_slots[mt] - 1)
2012 ma_set_meta(mn: node, mt, offset: 0, end);
2013}
2014
2015/*
2016 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2017 * @b_node: the maple_big_node that has the data
2018 * @mab_start: the start location in @b_node.
2019 * @mab_end: The end location in @b_node (inclusively)
2020 * @mas: The maple state with the maple encoded node.
2021 */
2022static inline void mab_mas_cp(struct maple_big_node *b_node,
2023 unsigned char mab_start, unsigned char mab_end,
2024 struct ma_state *mas, bool new_max)
2025{
2026 int i, j = 0;
2027 enum maple_type mt = mte_node_type(entry: mas->node);
2028 struct maple_node *node = mte_to_node(entry: mas->node);
2029 void __rcu **slots = ma_slots(mn: node, mt);
2030 unsigned long *pivots = ma_pivots(node, type: mt);
2031 unsigned long *gaps = NULL;
2032 unsigned char end;
2033
2034 if (mab_end - mab_start > mt_pivots[mt])
2035 mab_end--;
2036
2037 if (!pivots[mt_pivots[mt] - 1])
2038 slots[mt_pivots[mt]] = NULL;
2039
2040 i = mab_start;
2041 do {
2042 pivots[j++] = b_node->pivot[i++];
2043 } while (i <= mab_end && likely(b_node->pivot[i]));
2044
2045 memcpy(slots, b_node->slot + mab_start,
2046 sizeof(void *) * (i - mab_start));
2047
2048 if (new_max)
2049 mas->max = b_node->pivot[i - 1];
2050
2051 end = j - 1;
2052 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2053 unsigned long max_gap = 0;
2054 unsigned char offset = 0;
2055
2056 gaps = ma_gaps(node, type: mt);
2057 do {
2058 gaps[--j] = b_node->gap[--i];
2059 if (gaps[j] > max_gap) {
2060 offset = j;
2061 max_gap = gaps[j];
2062 }
2063 } while (j);
2064
2065 ma_set_meta(mn: node, mt, offset, end);
2066 } else {
2067 mas_leaf_set_meta(mas, node, pivots, mt, end);
2068 }
2069}
2070
2071/*
2072 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2073 * @mas: The maple state
2074 * @end: The maple node end
2075 * @mt: The maple node type
2076 */
2077static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2078 enum maple_type mt)
2079{
2080 if (!(mas->mas_flags & MA_STATE_BULK))
2081 return;
2082
2083 if (mte_is_root(node: mas->node))
2084 return;
2085
2086 if (end > mt_min_slots[mt]) {
2087 mas->mas_flags &= ~MA_STATE_REBALANCE;
2088 return;
2089 }
2090}
2091
2092/*
2093 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2094 * data from a maple encoded node.
2095 * @wr_mas: the maple write state
2096 * @b_node: the maple_big_node to fill with data
2097 * @offset_end: the offset to end copying
2098 *
2099 * Return: The actual end of the data stored in @b_node
2100 */
2101static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2102 struct maple_big_node *b_node, unsigned char offset_end)
2103{
2104 unsigned char slot;
2105 unsigned char b_end;
2106 /* Possible underflow of piv will wrap back to 0 before use. */
2107 unsigned long piv;
2108 struct ma_state *mas = wr_mas->mas;
2109
2110 b_node->type = wr_mas->type;
2111 b_end = 0;
2112 slot = mas->offset;
2113 if (slot) {
2114 /* Copy start data up to insert. */
2115 mas_mab_cp(mas, mas_start: 0, mas_end: slot - 1, b_node, mab_start: 0);
2116 b_end = b_node->b_end;
2117 piv = b_node->pivot[b_end - 1];
2118 } else
2119 piv = mas->min - 1;
2120
2121 if (piv + 1 < mas->index) {
2122 /* Handle range starting after old range */
2123 b_node->slot[b_end] = wr_mas->content;
2124 if (!wr_mas->content)
2125 b_node->gap[b_end] = mas->index - 1 - piv;
2126 b_node->pivot[b_end++] = mas->index - 1;
2127 }
2128
2129 /* Store the new entry. */
2130 mas->offset = b_end;
2131 b_node->slot[b_end] = wr_mas->entry;
2132 b_node->pivot[b_end] = mas->last;
2133
2134 /* Appended. */
2135 if (mas->last >= mas->max)
2136 goto b_end;
2137
2138 /* Handle new range ending before old range ends */
2139 piv = mas_safe_pivot(mas, pivots: wr_mas->pivots, piv: offset_end, type: wr_mas->type);
2140 if (piv > mas->last) {
2141 if (piv == ULONG_MAX)
2142 mas_bulk_rebalance(mas, end: b_node->b_end, mt: wr_mas->type);
2143
2144 if (offset_end != slot)
2145 wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots,
2146 offset: offset_end);
2147
2148 b_node->slot[++b_end] = wr_mas->content;
2149 if (!wr_mas->content)
2150 b_node->gap[b_end] = piv - mas->last + 1;
2151 b_node->pivot[b_end] = piv;
2152 }
2153
2154 slot = offset_end + 1;
2155 if (slot > wr_mas->node_end)
2156 goto b_end;
2157
2158 /* Copy end data to the end of the node. */
2159 mas_mab_cp(mas, mas_start: slot, mas_end: wr_mas->node_end + 1, b_node, mab_start: ++b_end);
2160 b_node->b_end--;
2161 return;
2162
2163b_end:
2164 b_node->b_end = b_end;
2165}
2166
2167/*
2168 * mas_prev_sibling() - Find the previous node with the same parent.
2169 * @mas: the maple state
2170 *
2171 * Return: True if there is a previous sibling, false otherwise.
2172 */
2173static inline bool mas_prev_sibling(struct ma_state *mas)
2174{
2175 unsigned int p_slot = mte_parent_slot(enode: mas->node);
2176
2177 if (mte_is_root(node: mas->node))
2178 return false;
2179
2180 if (!p_slot)
2181 return false;
2182
2183 mas_ascend(mas);
2184 mas->offset = p_slot - 1;
2185 mas_descend(mas);
2186 return true;
2187}
2188
2189/*
2190 * mas_next_sibling() - Find the next node with the same parent.
2191 * @mas: the maple state
2192 *
2193 * Return: true if there is a next sibling, false otherwise.
2194 */
2195static inline bool mas_next_sibling(struct ma_state *mas)
2196{
2197 MA_STATE(parent, mas->tree, mas->index, mas->last);
2198
2199 if (mte_is_root(node: mas->node))
2200 return false;
2201
2202 parent = *mas;
2203 mas_ascend(mas: &parent);
2204 parent.offset = mte_parent_slot(enode: mas->node) + 1;
2205 if (parent.offset > mas_data_end(mas: &parent))
2206 return false;
2207
2208 *mas = parent;
2209 mas_descend(mas);
2210 return true;
2211}
2212
2213/*
2214 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2215 * @enode: The encoded maple node.
2216 *
2217 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2218 *
2219 * Return: @enode or MAS_NONE
2220 */
2221static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2222{
2223 if (enode)
2224 return enode;
2225
2226 return ma_enode_ptr(MAS_NONE);
2227}
2228
2229/*
2230 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2231 * @wr_mas: The maple write state
2232 *
2233 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2234 */
2235static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2236{
2237 struct ma_state *mas = wr_mas->mas;
2238 unsigned char count, offset;
2239
2240 if (unlikely(ma_is_dense(wr_mas->type))) {
2241 wr_mas->r_max = wr_mas->r_min = mas->index;
2242 mas->offset = mas->index = mas->min;
2243 return;
2244 }
2245
2246 wr_mas->node = mas_mn(mas: wr_mas->mas);
2247 wr_mas->pivots = ma_pivots(node: wr_mas->node, type: wr_mas->type);
2248 count = wr_mas->node_end = ma_data_end(node: wr_mas->node, type: wr_mas->type,
2249 pivots: wr_mas->pivots, max: mas->max);
2250 offset = mas->offset;
2251
2252 while (offset < count && mas->index > wr_mas->pivots[offset])
2253 offset++;
2254
2255 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2256 wr_mas->r_min = mas_safe_min(mas, pivots: wr_mas->pivots, offset);
2257 wr_mas->offset_end = mas->offset = offset;
2258}
2259
2260/*
2261 * mast_rebalance_next() - Rebalance against the next node
2262 * @mast: The maple subtree state
2263 * @old_r: The encoded maple node to the right (next node).
2264 */
2265static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2266{
2267 unsigned char b_end = mast->bn->b_end;
2268
2269 mas_mab_cp(mas: mast->orig_r, mas_start: 0, mt_slot_count(mast->orig_r->node),
2270 b_node: mast->bn, mab_start: b_end);
2271 mast->orig_r->last = mast->orig_r->max;
2272}
2273
2274/*
2275 * mast_rebalance_prev() - Rebalance against the previous node
2276 * @mast: The maple subtree state
2277 * @old_l: The encoded maple node to the left (previous node)
2278 */
2279static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2280{
2281 unsigned char end = mas_data_end(mas: mast->orig_l) + 1;
2282 unsigned char b_end = mast->bn->b_end;
2283
2284 mab_shift_right(b_node: mast->bn, shift: end);
2285 mas_mab_cp(mas: mast->orig_l, mas_start: 0, mas_end: end - 1, b_node: mast->bn, mab_start: 0);
2286 mast->l->min = mast->orig_l->min;
2287 mast->orig_l->index = mast->orig_l->min;
2288 mast->bn->b_end = end + b_end;
2289 mast->l->offset += end;
2290}
2291
2292/*
2293 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2294 * the node to the right. Checking the nodes to the right then the left at each
2295 * level upwards until root is reached.
2296 * Data is copied into the @mast->bn.
2297 * @mast: The maple_subtree_state.
2298 */
2299static inline
2300bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2301{
2302 struct ma_state r_tmp = *mast->orig_r;
2303 struct ma_state l_tmp = *mast->orig_l;
2304 unsigned char depth = 0;
2305
2306 r_tmp = *mast->orig_r;
2307 l_tmp = *mast->orig_l;
2308 do {
2309 mas_ascend(mas: mast->orig_r);
2310 mas_ascend(mas: mast->orig_l);
2311 depth++;
2312 if (mast->orig_r->offset < mas_data_end(mas: mast->orig_r)) {
2313 mast->orig_r->offset++;
2314 do {
2315 mas_descend(mas: mast->orig_r);
2316 mast->orig_r->offset = 0;
2317 } while (--depth);
2318
2319 mast_rebalance_next(mast);
2320 *mast->orig_l = l_tmp;
2321 return true;
2322 } else if (mast->orig_l->offset != 0) {
2323 mast->orig_l->offset--;
2324 do {
2325 mas_descend(mas: mast->orig_l);
2326 mast->orig_l->offset =
2327 mas_data_end(mas: mast->orig_l);
2328 } while (--depth);
2329
2330 mast_rebalance_prev(mast);
2331 *mast->orig_r = r_tmp;
2332 return true;
2333 }
2334 } while (!mte_is_root(node: mast->orig_r->node));
2335
2336 *mast->orig_r = r_tmp;
2337 *mast->orig_l = l_tmp;
2338 return false;
2339}
2340
2341/*
2342 * mast_ascend() - Ascend the original left and right maple states.
2343 * @mast: the maple subtree state.
2344 *
2345 * Ascend the original left and right sides. Set the offsets to point to the
2346 * data already in the new tree (@mast->l and @mast->r).
2347 */
2348static inline void mast_ascend(struct maple_subtree_state *mast)
2349{
2350 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2351 mas_ascend(mas: mast->orig_l);
2352 mas_ascend(mas: mast->orig_r);
2353
2354 mast->orig_r->offset = 0;
2355 mast->orig_r->index = mast->r->max;
2356 /* last should be larger than or equal to index */
2357 if (mast->orig_r->last < mast->orig_r->index)
2358 mast->orig_r->last = mast->orig_r->index;
2359
2360 wr_mas.type = mte_node_type(entry: mast->orig_r->node);
2361 mas_wr_node_walk(wr_mas: &wr_mas);
2362 /* Set up the left side of things */
2363 mast->orig_l->offset = 0;
2364 mast->orig_l->index = mast->l->min;
2365 wr_mas.mas = mast->orig_l;
2366 wr_mas.type = mte_node_type(entry: mast->orig_l->node);
2367 mas_wr_node_walk(wr_mas: &wr_mas);
2368
2369 mast->bn->type = wr_mas.type;
2370}
2371
2372/*
2373 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2374 * @mas: the maple state with the allocations.
2375 * @b_node: the maple_big_node with the type encoding.
2376 *
2377 * Use the node type from the maple_big_node to allocate a new node from the
2378 * ma_state. This function exists mainly for code readability.
2379 *
2380 * Return: A new maple encoded node
2381 */
2382static inline struct maple_enode
2383*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2384{
2385 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), type: b_node->type);
2386}
2387
2388/*
2389 * mas_mab_to_node() - Set up right and middle nodes
2390 *
2391 * @mas: the maple state that contains the allocations.
2392 * @b_node: the node which contains the data.
2393 * @left: The pointer which will have the left node
2394 * @right: The pointer which may have the right node
2395 * @middle: the pointer which may have the middle node (rare)
2396 * @mid_split: the split location for the middle node
2397 *
2398 * Return: the split of left.
2399 */
2400static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2401 struct maple_big_node *b_node, struct maple_enode **left,
2402 struct maple_enode **right, struct maple_enode **middle,
2403 unsigned char *mid_split, unsigned long min)
2404{
2405 unsigned char split = 0;
2406 unsigned char slot_count = mt_slots[b_node->type];
2407
2408 *left = mas_new_ma_node(mas, b_node);
2409 *right = NULL;
2410 *middle = NULL;
2411 *mid_split = 0;
2412
2413 if (b_node->b_end < slot_count) {
2414 split = b_node->b_end;
2415 } else {
2416 split = mab_calc_split(mas, bn: b_node, mid_split, min);
2417 *right = mas_new_ma_node(mas, b_node);
2418 }
2419
2420 if (*mid_split)
2421 *middle = mas_new_ma_node(mas, b_node);
2422
2423 return split;
2424
2425}
2426
2427/*
2428 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2429 * pointer.
2430 * @b_node - the big node to add the entry
2431 * @mas - the maple state to get the pivot (mas->max)
2432 * @entry - the entry to add, if NULL nothing happens.
2433 */
2434static inline void mab_set_b_end(struct maple_big_node *b_node,
2435 struct ma_state *mas,
2436 void *entry)
2437{
2438 if (!entry)
2439 return;
2440
2441 b_node->slot[b_node->b_end] = entry;
2442 if (mt_is_alloc(mt: mas->tree))
2443 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2444 b_node->pivot[b_node->b_end++] = mas->max;
2445}
2446
2447/*
2448 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2449 * of @mas->node to either @left or @right, depending on @slot and @split
2450 *
2451 * @mas - the maple state with the node that needs a parent
2452 * @left - possible parent 1
2453 * @right - possible parent 2
2454 * @slot - the slot the mas->node was placed
2455 * @split - the split location between @left and @right
2456 */
2457static inline void mas_set_split_parent(struct ma_state *mas,
2458 struct maple_enode *left,
2459 struct maple_enode *right,
2460 unsigned char *slot, unsigned char split)
2461{
2462 if (mas_is_none(mas))
2463 return;
2464
2465 if ((*slot) <= split)
2466 mas_set_parent(mas, enode: mas->node, parent: left, slot: *slot);
2467 else if (right)
2468 mas_set_parent(mas, enode: mas->node, parent: right, slot: (*slot) - split - 1);
2469
2470 (*slot)++;
2471}
2472
2473/*
2474 * mte_mid_split_check() - Check if the next node passes the mid-split
2475 * @**l: Pointer to left encoded maple node.
2476 * @**m: Pointer to middle encoded maple node.
2477 * @**r: Pointer to right encoded maple node.
2478 * @slot: The offset
2479 * @*split: The split location.
2480 * @mid_split: The middle split.
2481 */
2482static inline void mte_mid_split_check(struct maple_enode **l,
2483 struct maple_enode **r,
2484 struct maple_enode *right,
2485 unsigned char slot,
2486 unsigned char *split,
2487 unsigned char mid_split)
2488{
2489 if (*r == right)
2490 return;
2491
2492 if (slot < mid_split)
2493 return;
2494
2495 *l = *r;
2496 *r = right;
2497 *split = mid_split;
2498}
2499
2500/*
2501 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2502 * is taken from @mast->l.
2503 * @mast - the maple subtree state
2504 * @left - the left node
2505 * @right - the right node
2506 * @split - the split location.
2507 */
2508static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2509 struct maple_enode *left,
2510 struct maple_enode *middle,
2511 struct maple_enode *right,
2512 unsigned char split,
2513 unsigned char mid_split)
2514{
2515 unsigned char slot;
2516 struct maple_enode *l = left;
2517 struct maple_enode *r = right;
2518
2519 if (mas_is_none(mas: mast->l))
2520 return;
2521
2522 if (middle)
2523 r = middle;
2524
2525 slot = mast->l->offset;
2526
2527 mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split);
2528 mas_set_split_parent(mas: mast->l, left: l, right: r, slot: &slot, split);
2529
2530 mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split);
2531 mas_set_split_parent(mas: mast->m, left: l, right: r, slot: &slot, split);
2532
2533 mte_mid_split_check(l: &l, r: &r, right, slot, split: &split, mid_split);
2534 mas_set_split_parent(mas: mast->r, left: l, right: r, slot: &slot, split);
2535}
2536
2537/*
2538 * mas_topiary_node() - Dispose of a singe node
2539 * @mas: The maple state for pushing nodes
2540 * @enode: The encoded maple node
2541 * @in_rcu: If the tree is in rcu mode
2542 *
2543 * The node will either be RCU freed or pushed back on the maple state.
2544 */
2545static inline void mas_topiary_node(struct ma_state *mas,
2546 struct maple_enode *enode, bool in_rcu)
2547{
2548 struct maple_node *tmp;
2549
2550 if (enode == MAS_NONE)
2551 return;
2552
2553 tmp = mte_to_node(entry: enode);
2554 mte_set_node_dead(mn: enode);
2555 if (in_rcu)
2556 ma_free_rcu(node: tmp);
2557 else
2558 mas_push_node(mas, used: tmp);
2559}
2560
2561/*
2562 * mas_topiary_replace() - Replace the data with new data, then repair the
2563 * parent links within the new tree. Iterate over the dead sub-tree and collect
2564 * the dead subtrees and topiary the nodes that are no longer of use.
2565 *
2566 * The new tree will have up to three children with the correct parent. Keep
2567 * track of the new entries as they need to be followed to find the next level
2568 * of new entries.
2569 *
2570 * The old tree will have up to three children with the old parent. Keep track
2571 * of the old entries as they may have more nodes below replaced. Nodes within
2572 * [index, last] are dead subtrees, others need to be freed and followed.
2573 *
2574 * @mas: The maple state pointing at the new data
2575 * @old_enode: The maple encoded node being replaced
2576 *
2577 */
2578static inline void mas_topiary_replace(struct ma_state *mas,
2579 struct maple_enode *old_enode)
2580{
2581 struct ma_state tmp[3], tmp_next[3];
2582 MA_TOPIARY(subtrees, mas->tree);
2583 bool in_rcu;
2584 int i, n;
2585
2586 /* Place data in tree & then mark node as old */
2587 mas_put_in_tree(mas, old_enode);
2588
2589 /* Update the parent pointers in the tree */
2590 tmp[0] = *mas;
2591 tmp[0].offset = 0;
2592 tmp[1].node = MAS_NONE;
2593 tmp[2].node = MAS_NONE;
2594 while (!mte_is_leaf(entry: tmp[0].node)) {
2595 n = 0;
2596 for (i = 0; i < 3; i++) {
2597 if (mas_is_none(mas: &tmp[i]))
2598 continue;
2599
2600 while (n < 3) {
2601 if (!mas_find_child(mas: &tmp[i], child: &tmp_next[n]))
2602 break;
2603 n++;
2604 }
2605
2606 mas_adopt_children(mas: &tmp[i], parent: tmp[i].node);
2607 }
2608
2609 if (MAS_WARN_ON(mas, n == 0))
2610 break;
2611
2612 while (n < 3)
2613 tmp_next[n++].node = MAS_NONE;
2614
2615 for (i = 0; i < 3; i++)
2616 tmp[i] = tmp_next[i];
2617 }
2618
2619 /* Collect the old nodes that need to be discarded */
2620 if (mte_is_leaf(entry: old_enode))
2621 return mas_free(mas, used: old_enode);
2622
2623 tmp[0] = *mas;
2624 tmp[0].offset = 0;
2625 tmp[0].node = old_enode;
2626 tmp[1].node = MAS_NONE;
2627 tmp[2].node = MAS_NONE;
2628 in_rcu = mt_in_rcu(mt: mas->tree);
2629 do {
2630 n = 0;
2631 for (i = 0; i < 3; i++) {
2632 if (mas_is_none(mas: &tmp[i]))
2633 continue;
2634
2635 while (n < 3) {
2636 if (!mas_find_child(mas: &tmp[i], child: &tmp_next[n]))
2637 break;
2638
2639 if ((tmp_next[n].min >= tmp_next->index) &&
2640 (tmp_next[n].max <= tmp_next->last)) {
2641 mat_add(mat: &subtrees, dead_enode: tmp_next[n].node);
2642 tmp_next[n].node = MAS_NONE;
2643 } else {
2644 n++;
2645 }
2646 }
2647 }
2648
2649 if (MAS_WARN_ON(mas, n == 0))
2650 break;
2651
2652 while (n < 3)
2653 tmp_next[n++].node = MAS_NONE;
2654
2655 for (i = 0; i < 3; i++) {
2656 mas_topiary_node(mas, enode: tmp[i].node, in_rcu);
2657 tmp[i] = tmp_next[i];
2658 }
2659 } while (!mte_is_leaf(entry: tmp[0].node));
2660
2661 for (i = 0; i < 3; i++)
2662 mas_topiary_node(mas, enode: tmp[i].node, in_rcu);
2663
2664 mas_mat_destroy(mas, mat: &subtrees);
2665}
2666
2667/*
2668 * mas_wmb_replace() - Write memory barrier and replace
2669 * @mas: The maple state
2670 * @old: The old maple encoded node that is being replaced.
2671 *
2672 * Updates gap as necessary.
2673 */
2674static inline void mas_wmb_replace(struct ma_state *mas,
2675 struct maple_enode *old_enode)
2676{
2677 /* Insert the new data in the tree */
2678 mas_topiary_replace(mas, old_enode);
2679
2680 if (mte_is_leaf(entry: mas->node))
2681 return;
2682
2683 mas_update_gap(mas);
2684}
2685
2686/*
2687 * mast_cp_to_nodes() - Copy data out to nodes.
2688 * @mast: The maple subtree state
2689 * @left: The left encoded maple node
2690 * @middle: The middle encoded maple node
2691 * @right: The right encoded maple node
2692 * @split: The location to split between left and (middle ? middle : right)
2693 * @mid_split: The location to split between middle and right.
2694 */
2695static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2696 struct maple_enode *left, struct maple_enode *middle,
2697 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2698{
2699 bool new_lmax = true;
2700
2701 mast->l->node = mte_node_or_none(enode: left);
2702 mast->m->node = mte_node_or_none(enode: middle);
2703 mast->r->node = mte_node_or_none(enode: right);
2704
2705 mast->l->min = mast->orig_l->min;
2706 if (split == mast->bn->b_end) {
2707 mast->l->max = mast->orig_r->max;
2708 new_lmax = false;
2709 }
2710
2711 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: split, mas: mast->l, new_max: new_lmax);
2712
2713 if (middle) {
2714 mab_mas_cp(b_node: mast->bn, mab_start: 1 + split, mab_end: mid_split, mas: mast->m, new_max: true);
2715 mast->m->min = mast->bn->pivot[split] + 1;
2716 split = mid_split;
2717 }
2718
2719 mast->r->max = mast->orig_r->max;
2720 if (right) {
2721 mab_mas_cp(b_node: mast->bn, mab_start: 1 + split, mab_end: mast->bn->b_end, mas: mast->r, new_max: false);
2722 mast->r->min = mast->bn->pivot[split] + 1;
2723 }
2724}
2725
2726/*
2727 * mast_combine_cp_left - Copy in the original left side of the tree into the
2728 * combined data set in the maple subtree state big node.
2729 * @mast: The maple subtree state
2730 */
2731static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2732{
2733 unsigned char l_slot = mast->orig_l->offset;
2734
2735 if (!l_slot)
2736 return;
2737
2738 mas_mab_cp(mas: mast->orig_l, mas_start: 0, mas_end: l_slot - 1, b_node: mast->bn, mab_start: 0);
2739}
2740
2741/*
2742 * mast_combine_cp_right: Copy in the original right side of the tree into the
2743 * combined data set in the maple subtree state big node.
2744 * @mast: The maple subtree state
2745 */
2746static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2747{
2748 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2749 return;
2750
2751 mas_mab_cp(mas: mast->orig_r, mas_start: mast->orig_r->offset + 1,
2752 mt_slot_count(mast->orig_r->node), b_node: mast->bn,
2753 mab_start: mast->bn->b_end);
2754 mast->orig_r->last = mast->orig_r->max;
2755}
2756
2757/*
2758 * mast_sufficient: Check if the maple subtree state has enough data in the big
2759 * node to create at least one sufficient node
2760 * @mast: the maple subtree state
2761 */
2762static inline bool mast_sufficient(struct maple_subtree_state *mast)
2763{
2764 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2765 return true;
2766
2767 return false;
2768}
2769
2770/*
2771 * mast_overflow: Check if there is too much data in the subtree state for a
2772 * single node.
2773 * @mast: The maple subtree state
2774 */
2775static inline bool mast_overflow(struct maple_subtree_state *mast)
2776{
2777 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2778 return true;
2779
2780 return false;
2781}
2782
2783static inline void *mtree_range_walk(struct ma_state *mas)
2784{
2785 unsigned long *pivots;
2786 unsigned char offset;
2787 struct maple_node *node;
2788 struct maple_enode *next, *last;
2789 enum maple_type type;
2790 void __rcu **slots;
2791 unsigned char end;
2792 unsigned long max, min;
2793 unsigned long prev_max, prev_min;
2794
2795 next = mas->node;
2796 min = mas->min;
2797 max = mas->max;
2798 do {
2799 offset = 0;
2800 last = next;
2801 node = mte_to_node(entry: next);
2802 type = mte_node_type(entry: next);
2803 pivots = ma_pivots(node, type);
2804 end = ma_data_end(node, type, pivots, max);
2805 if (unlikely(ma_dead_node(node)))
2806 goto dead_node;
2807
2808 if (pivots[offset] >= mas->index) {
2809 prev_max = max;
2810 prev_min = min;
2811 max = pivots[offset];
2812 goto next;
2813 }
2814
2815 do {
2816 offset++;
2817 } while ((offset < end) && (pivots[offset] < mas->index));
2818
2819 prev_min = min;
2820 min = pivots[offset - 1] + 1;
2821 prev_max = max;
2822 if (likely(offset < end && pivots[offset]))
2823 max = pivots[offset];
2824
2825next:
2826 slots = ma_slots(mn: node, mt: type);
2827 next = mt_slot(mt: mas->tree, slots, offset);
2828 if (unlikely(ma_dead_node(node)))
2829 goto dead_node;
2830 } while (!ma_is_leaf(type));
2831
2832 mas->offset = offset;
2833 mas->index = min;
2834 mas->last = max;
2835 mas->min = prev_min;
2836 mas->max = prev_max;
2837 mas->node = last;
2838 return (void *)next;
2839
2840dead_node:
2841 mas_reset(mas);
2842 return NULL;
2843}
2844
2845/*
2846 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2847 * @mas: The starting maple state
2848 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2849 * @count: The estimated count of iterations needed.
2850 *
2851 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2852 * is hit. First @b_node is split into two entries which are inserted into the
2853 * next iteration of the loop. @b_node is returned populated with the final
2854 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2855 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2856 * to account of what has been copied into the new sub-tree. The update of
2857 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2858 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2859 * the new sub-tree in case the sub-tree becomes the full tree.
2860 *
2861 * Return: the number of elements in b_node during the last loop.
2862 */
2863static int mas_spanning_rebalance(struct ma_state *mas,
2864 struct maple_subtree_state *mast, unsigned char count)
2865{
2866 unsigned char split, mid_split;
2867 unsigned char slot = 0;
2868 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2869 struct maple_enode *old_enode;
2870
2871 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2872 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2873 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2874
2875 /*
2876 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2877 * Rebalancing is done by use of the ``struct maple_topiary``.
2878 */
2879 mast->l = &l_mas;
2880 mast->m = &m_mas;
2881 mast->r = &r_mas;
2882 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2883
2884 /* Check if this is not root and has sufficient data. */
2885 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2886 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2887 mast_spanning_rebalance(mast);
2888
2889 l_mas.depth = 0;
2890
2891 /*
2892 * Each level of the tree is examined and balanced, pushing data to the left or
2893 * right, or rebalancing against left or right nodes is employed to avoid
2894 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2895 * the tree is created, there may be a mix of new and old nodes. The old nodes
2896 * will have the incorrect parent pointers and currently be in two trees: the
2897 * original tree and the partially new tree. To remedy the parent pointers in
2898 * the old tree, the new data is swapped into the active tree and a walk down
2899 * the tree is performed and the parent pointers are updated.
2900 * See mas_topiary_replace() for more information.
2901 */
2902 while (count--) {
2903 mast->bn->b_end--;
2904 mast->bn->type = mte_node_type(entry: mast->orig_l->node);
2905 split = mas_mab_to_node(mas, b_node: mast->bn, left: &left, right: &right, middle: &middle,
2906 mid_split: &mid_split, min: mast->orig_l->min);
2907 mast_set_split_parents(mast, left, middle, right, split,
2908 mid_split);
2909 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2910
2911 /*
2912 * Copy data from next level in the tree to mast->bn from next
2913 * iteration
2914 */
2915 memset(mast->bn, 0, sizeof(struct maple_big_node));
2916 mast->bn->type = mte_node_type(entry: left);
2917 l_mas.depth++;
2918
2919 /* Root already stored in l->node. */
2920 if (mas_is_root_limits(mas: mast->l))
2921 goto new_root;
2922
2923 mast_ascend(mast);
2924 mast_combine_cp_left(mast);
2925 l_mas.offset = mast->bn->b_end;
2926 mab_set_b_end(b_node: mast->bn, mas: &l_mas, entry: left);
2927 mab_set_b_end(b_node: mast->bn, mas: &m_mas, entry: middle);
2928 mab_set_b_end(b_node: mast->bn, mas: &r_mas, entry: right);
2929
2930 /* Copy anything necessary out of the right node. */
2931 mast_combine_cp_right(mast);
2932 mast->orig_l->last = mast->orig_l->max;
2933
2934 if (mast_sufficient(mast))
2935 continue;
2936
2937 if (mast_overflow(mast))
2938 continue;
2939
2940 /* May be a new root stored in mast->bn */
2941 if (mas_is_root_limits(mas: mast->orig_l))
2942 break;
2943
2944 mast_spanning_rebalance(mast);
2945
2946 /* rebalancing from other nodes may require another loop. */
2947 if (!count)
2948 count++;
2949 }
2950
2951 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2952 type: mte_node_type(entry: mast->orig_l->node));
2953 l_mas.depth++;
2954 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: mt_slots[mast->bn->type] - 1, mas: &l_mas, new_max: true);
2955 mas_set_parent(mas, enode: left, parent: l_mas.node, slot);
2956 if (middle)
2957 mas_set_parent(mas, enode: middle, parent: l_mas.node, slot: ++slot);
2958
2959 if (right)
2960 mas_set_parent(mas, enode: right, parent: l_mas.node, slot: ++slot);
2961
2962 if (mas_is_root_limits(mas: mast->l)) {
2963new_root:
2964 mas_mn(mas: mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2965 while (!mte_is_root(node: mast->orig_l->node))
2966 mast_ascend(mast);
2967 } else {
2968 mas_mn(mas: &l_mas)->parent = mas_mn(mas: mast->orig_l)->parent;
2969 }
2970
2971 old_enode = mast->orig_l->node;
2972 mas->depth = l_mas.depth;
2973 mas->node = l_mas.node;
2974 mas->min = l_mas.min;
2975 mas->max = l_mas.max;
2976 mas->offset = l_mas.offset;
2977 mas_wmb_replace(mas, old_enode);
2978 mtree_range_walk(mas);
2979 return mast->bn->b_end;
2980}
2981
2982/*
2983 * mas_rebalance() - Rebalance a given node.
2984 * @mas: The maple state
2985 * @b_node: The big maple node.
2986 *
2987 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2988 * Continue upwards until tree is sufficient.
2989 *
2990 * Return: the number of elements in b_node during the last loop.
2991 */
2992static inline int mas_rebalance(struct ma_state *mas,
2993 struct maple_big_node *b_node)
2994{
2995 char empty_count = mas_mt_height(mas);
2996 struct maple_subtree_state mast;
2997 unsigned char shift, b_end = ++b_node->b_end;
2998
2999 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3000 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3001
3002 trace_ma_op(fn: __func__, mas);
3003
3004 /*
3005 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3006 * against the node to the right if it exists, otherwise the node to the
3007 * left of this node is rebalanced against this node. If rebalancing
3008 * causes just one node to be produced instead of two, then the parent
3009 * is also examined and rebalanced if it is insufficient. Every level
3010 * tries to combine the data in the same way. If one node contains the
3011 * entire range of the tree, then that node is used as a new root node.
3012 */
3013 mas_node_count(mas, count: empty_count * 2 - 1);
3014 if (mas_is_err(mas))
3015 return 0;
3016
3017 mast.orig_l = &l_mas;
3018 mast.orig_r = &r_mas;
3019 mast.bn = b_node;
3020 mast.bn->type = mte_node_type(entry: mas->node);
3021
3022 l_mas = r_mas = *mas;
3023
3024 if (mas_next_sibling(mas: &r_mas)) {
3025 mas_mab_cp(mas: &r_mas, mas_start: 0, mt_slot_count(r_mas.node), b_node, mab_start: b_end);
3026 r_mas.last = r_mas.index = r_mas.max;
3027 } else {
3028 mas_prev_sibling(mas: &l_mas);
3029 shift = mas_data_end(mas: &l_mas) + 1;
3030 mab_shift_right(b_node, shift);
3031 mas->offset += shift;
3032 mas_mab_cp(mas: &l_mas, mas_start: 0, mas_end: shift - 1, b_node, mab_start: 0);
3033 b_node->b_end = shift + b_end;
3034 l_mas.index = l_mas.last = l_mas.min;
3035 }
3036
3037 return mas_spanning_rebalance(mas, mast: &mast, count: empty_count);
3038}
3039
3040/*
3041 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3042 * state.
3043 * @mas: The maple state
3044 * @end: The end of the left-most node.
3045 *
3046 * During a mass-insert event (such as forking), it may be necessary to
3047 * rebalance the left-most node when it is not sufficient.
3048 */
3049static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3050{
3051 enum maple_type mt = mte_node_type(entry: mas->node);
3052 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3053 struct maple_enode *eparent, *old_eparent;
3054 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3055 void __rcu **l_slots, **slots;
3056 unsigned long *l_pivs, *pivs, gap;
3057 bool in_rcu = mt_in_rcu(mt: mas->tree);
3058
3059 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3060
3061 l_mas = *mas;
3062 mas_prev_sibling(mas: &l_mas);
3063
3064 /* set up node. */
3065 if (in_rcu) {
3066 /* Allocate for both left and right as well as parent. */
3067 mas_node_count(mas, count: 3);
3068 if (mas_is_err(mas))
3069 return;
3070
3071 newnode = mas_pop_node(mas);
3072 } else {
3073 newnode = &reuse;
3074 }
3075
3076 node = mas_mn(mas);
3077 newnode->parent = node->parent;
3078 slots = ma_slots(mn: newnode, mt);
3079 pivs = ma_pivots(node: newnode, type: mt);
3080 left = mas_mn(mas: &l_mas);
3081 l_slots = ma_slots(mn: left, mt);
3082 l_pivs = ma_pivots(node: left, type: mt);
3083 if (!l_slots[split])
3084 split++;
3085 tmp = mas_data_end(mas: &l_mas) - split;
3086
3087 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3088 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3089 pivs[tmp] = l_mas.max;
3090 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3091 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3092
3093 l_mas.max = l_pivs[split];
3094 mas->min = l_mas.max + 1;
3095 old_eparent = mt_mk_node(node: mte_parent(enode: l_mas.node),
3096 type: mas_parent_type(mas: &l_mas, enode: l_mas.node));
3097 tmp += end;
3098 if (!in_rcu) {
3099 unsigned char max_p = mt_pivots[mt];
3100 unsigned char max_s = mt_slots[mt];
3101
3102 if (tmp < max_p)
3103 memset(pivs + tmp, 0,
3104 sizeof(unsigned long) * (max_p - tmp));
3105
3106 if (tmp < mt_slots[mt])
3107 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3108
3109 memcpy(node, newnode, sizeof(struct maple_node));
3110 ma_set_meta(mn: node, mt, offset: 0, end: tmp - 1);
3111 mte_set_pivot(mn: old_eparent, piv: mte_parent_slot(enode: l_mas.node),
3112 val: l_pivs[split]);
3113
3114 /* Remove data from l_pivs. */
3115 tmp = split + 1;
3116 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3117 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3118 ma_set_meta(mn: left, mt, offset: 0, end: split);
3119 eparent = old_eparent;
3120
3121 goto done;
3122 }
3123
3124 /* RCU requires replacing both l_mas, mas, and parent. */
3125 mas->node = mt_mk_node(node: newnode, type: mt);
3126 ma_set_meta(mn: newnode, mt, offset: 0, end: tmp);
3127
3128 new_left = mas_pop_node(mas);
3129 new_left->parent = left->parent;
3130 mt = mte_node_type(entry: l_mas.node);
3131 slots = ma_slots(mn: new_left, mt);
3132 pivs = ma_pivots(node: new_left, type: mt);
3133 memcpy(slots, l_slots, sizeof(void *) * split);
3134 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3135 ma_set_meta(mn: new_left, mt, offset: 0, end: split);
3136 l_mas.node = mt_mk_node(node: new_left, type: mt);
3137
3138 /* replace parent. */
3139 offset = mte_parent_slot(enode: mas->node);
3140 mt = mas_parent_type(mas: &l_mas, enode: l_mas.node);
3141 parent = mas_pop_node(mas);
3142 slots = ma_slots(mn: parent, mt);
3143 pivs = ma_pivots(node: parent, type: mt);
3144 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3145 rcu_assign_pointer(slots[offset], mas->node);
3146 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3147 pivs[offset - 1] = l_mas.max;
3148 eparent = mt_mk_node(node: parent, type: mt);
3149done:
3150 gap = mas_leaf_max_gap(mas);
3151 mte_set_gap(mn: eparent, gap: mte_parent_slot(enode: mas->node), val: gap);
3152 gap = mas_leaf_max_gap(mas: &l_mas);
3153 mte_set_gap(mn: eparent, gap: mte_parent_slot(enode: l_mas.node), val: gap);
3154 mas_ascend(mas);
3155
3156 if (in_rcu) {
3157 mas_replace_node(mas, old_enode: old_eparent);
3158 mas_adopt_children(mas, parent: mas->node);
3159 }
3160
3161 mas_update_gap(mas);
3162}
3163
3164/*
3165 * mas_split_final_node() - Split the final node in a subtree operation.
3166 * @mast: the maple subtree state
3167 * @mas: The maple state
3168 * @height: The height of the tree in case it's a new root.
3169 */
3170static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3171 struct ma_state *mas, int height)
3172{
3173 struct maple_enode *ancestor;
3174
3175 if (mte_is_root(node: mas->node)) {
3176 if (mt_is_alloc(mt: mas->tree))
3177 mast->bn->type = maple_arange_64;
3178 else
3179 mast->bn->type = maple_range_64;
3180 mas->depth = height;
3181 }
3182 /*
3183 * Only a single node is used here, could be root.
3184 * The Big_node data should just fit in a single node.
3185 */
3186 ancestor = mas_new_ma_node(mas, b_node: mast->bn);
3187 mas_set_parent(mas, enode: mast->l->node, parent: ancestor, slot: mast->l->offset);
3188 mas_set_parent(mas, enode: mast->r->node, parent: ancestor, slot: mast->r->offset);
3189 mte_to_node(entry: ancestor)->parent = mas_mn(mas)->parent;
3190
3191 mast->l->node = ancestor;
3192 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: mt_slots[mast->bn->type] - 1, mas: mast->l, new_max: true);
3193 mas->offset = mast->bn->b_end - 1;
3194 return true;
3195}
3196
3197/*
3198 * mast_fill_bnode() - Copy data into the big node in the subtree state
3199 * @mast: The maple subtree state
3200 * @mas: the maple state
3201 * @skip: The number of entries to skip for new nodes insertion.
3202 */
3203static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3204 struct ma_state *mas,
3205 unsigned char skip)
3206{
3207 bool cp = true;
3208 unsigned char split;
3209
3210 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3211 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3212 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3213 mast->bn->b_end = 0;
3214
3215 if (mte_is_root(node: mas->node)) {
3216 cp = false;
3217 } else {
3218 mas_ascend(mas);
3219 mas->offset = mte_parent_slot(enode: mas->node);
3220 }
3221
3222 if (cp && mast->l->offset)
3223 mas_mab_cp(mas, mas_start: 0, mas_end: mast->l->offset - 1, b_node: mast->bn, mab_start: 0);
3224
3225 split = mast->bn->b_end;
3226 mab_set_b_end(b_node: mast->bn, mas: mast->l, entry: mast->l->node);
3227 mast->r->offset = mast->bn->b_end;
3228 mab_set_b_end(b_node: mast->bn, mas: mast->r, entry: mast->r->node);
3229 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3230 cp = false;
3231
3232 if (cp)
3233 mas_mab_cp(mas, mas_start: split + skip, mt_slot_count(mas->node) - 1,
3234 b_node: mast->bn, mab_start: mast->bn->b_end);
3235
3236 mast->bn->b_end--;
3237 mast->bn->type = mte_node_type(entry: mas->node);
3238}
3239
3240/*
3241 * mast_split_data() - Split the data in the subtree state big node into regular
3242 * nodes.
3243 * @mast: The maple subtree state
3244 * @mas: The maple state
3245 * @split: The location to split the big node
3246 */
3247static inline void mast_split_data(struct maple_subtree_state *mast,
3248 struct ma_state *mas, unsigned char split)
3249{
3250 unsigned char p_slot;
3251
3252 mab_mas_cp(b_node: mast->bn, mab_start: 0, mab_end: split, mas: mast->l, new_max: true);
3253 mte_set_pivot(mn: mast->r->node, piv: 0, val: mast->r->max);
3254 mab_mas_cp(b_node: mast->bn, mab_start: split + 1, mab_end: mast->bn->b_end, mas: mast->r, new_max: false);
3255 mast->l->offset = mte_parent_slot(enode: mas->node);
3256 mast->l->max = mast->bn->pivot[split];
3257 mast->r->min = mast->l->max + 1;
3258 if (mte_is_leaf(entry: mas->node))
3259 return;
3260
3261 p_slot = mast->orig_l->offset;
3262 mas_set_split_parent(mas: mast->orig_l, left: mast->l->node, right: mast->r->node,
3263 slot: &p_slot, split);
3264 mas_set_split_parent(mas: mast->orig_r, left: mast->l->node, right: mast->r->node,
3265 slot: &p_slot, split);
3266}
3267
3268/*
3269 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3270 * data to the right or left node if there is room.
3271 * @mas: The maple state
3272 * @height: The current height of the maple state
3273 * @mast: The maple subtree state
3274 * @left: Push left or not.
3275 *
3276 * Keeping the height of the tree low means faster lookups.
3277 *
3278 * Return: True if pushed, false otherwise.
3279 */
3280static inline bool mas_push_data(struct ma_state *mas, int height,
3281 struct maple_subtree_state *mast, bool left)
3282{
3283 unsigned char slot_total = mast->bn->b_end;
3284 unsigned char end, space, split;
3285
3286 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3287 tmp_mas = *mas;
3288 tmp_mas.depth = mast->l->depth;
3289
3290 if (left && !mas_prev_sibling(mas: &tmp_mas))
3291 return false;
3292 else if (!left && !mas_next_sibling(mas: &tmp_mas))
3293 return false;
3294
3295 end = mas_data_end(mas: &tmp_mas);
3296 slot_total += end;
3297 space = 2 * mt_slot_count(mas->node) - 2;
3298 /* -2 instead of -1 to ensure there isn't a triple split */
3299 if (ma_is_leaf(type: mast->bn->type))
3300 space--;
3301
3302 if (mas->max == ULONG_MAX)
3303 space--;
3304
3305 if (slot_total >= space)
3306 return false;
3307
3308 /* Get the data; Fill mast->bn */
3309 mast->bn->b_end++;
3310 if (left) {
3311 mab_shift_right(b_node: mast->bn, shift: end + 1);
3312 mas_mab_cp(mas: &tmp_mas, mas_start: 0, mas_end: end, b_node: mast->bn, mab_start: 0);
3313 mast->bn->b_end = slot_total + 1;
3314 } else {
3315 mas_mab_cp(mas: &tmp_mas, mas_start: 0, mas_end: end, b_node: mast->bn, mab_start: mast->bn->b_end);
3316 }
3317
3318 /* Configure mast for splitting of mast->bn */
3319 split = mt_slots[mast->bn->type] - 2;
3320 if (left) {
3321 /* Switch mas to prev node */
3322 *mas = tmp_mas;
3323 /* Start using mast->l for the left side. */
3324 tmp_mas.node = mast->l->node;
3325 *mast->l = tmp_mas;
3326 } else {
3327 tmp_mas.node = mast->r->node;
3328 *mast->r = tmp_mas;
3329 split = slot_total - split;
3330 }
3331 split = mab_no_null_split(b_node: mast->bn, split, slot_count: mt_slots[mast->bn->type]);
3332 /* Update parent slot for split calculation. */
3333 if (left)
3334 mast->orig_l->offset += end + 1;
3335
3336 mast_split_data(mast, mas, split);
3337 mast_fill_bnode(mast, mas, skip: 2);
3338 mas_split_final_node(mast, mas, height: height + 1);
3339 return true;
3340}
3341
3342/*
3343 * mas_split() - Split data that is too big for one node into two.
3344 * @mas: The maple state
3345 * @b_node: The maple big node
3346 * Return: 1 on success, 0 on failure.
3347 */
3348static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3349{
3350 struct maple_subtree_state mast;
3351 int height = 0;
3352 unsigned char mid_split, split = 0;
3353 struct maple_enode *old;
3354
3355 /*
3356 * Splitting is handled differently from any other B-tree; the Maple
3357 * Tree splits upwards. Splitting up means that the split operation
3358 * occurs when the walk of the tree hits the leaves and not on the way
3359 * down. The reason for splitting up is that it is impossible to know
3360 * how much space will be needed until the leaf is (or leaves are)
3361 * reached. Since overwriting data is allowed and a range could
3362 * overwrite more than one range or result in changing one entry into 3
3363 * entries, it is impossible to know if a split is required until the
3364 * data is examined.
3365 *
3366 * Splitting is a balancing act between keeping allocations to a minimum
3367 * and avoiding a 'jitter' event where a tree is expanded to make room
3368 * for an entry followed by a contraction when the entry is removed. To
3369 * accomplish the balance, there are empty slots remaining in both left
3370 * and right nodes after a split.
3371 */
3372 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3373 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3374 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3375 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3376
3377 trace_ma_op(fn: __func__, mas);
3378 mas->depth = mas_mt_height(mas);
3379 /* Allocation failures will happen early. */
3380 mas_node_count(mas, count: 1 + mas->depth * 2);
3381 if (mas_is_err(mas))
3382 return 0;
3383
3384 mast.l = &l_mas;
3385 mast.r = &r_mas;
3386 mast.orig_l = &prev_l_mas;
3387 mast.orig_r = &prev_r_mas;
3388 mast.bn = b_node;
3389
3390 while (height++ <= mas->depth) {
3391 if (mt_slots[b_node->type] > b_node->b_end) {
3392 mas_split_final_node(mast: &mast, mas, height);
3393 break;
3394 }
3395
3396 l_mas = r_mas = *mas;
3397 l_mas.node = mas_new_ma_node(mas, b_node);
3398 r_mas.node = mas_new_ma_node(mas, b_node);
3399 /*
3400 * Another way that 'jitter' is avoided is to terminate a split up early if the
3401 * left or right node has space to spare. This is referred to as "pushing left"
3402 * or "pushing right" and is similar to the B* tree, except the nodes left or
3403 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3404 * is a significant savings.
3405 */
3406 /* Try to push left. */
3407 if (mas_push_data(mas, height, mast: &mast, left: true))
3408 break;
3409
3410 /* Try to push right. */
3411 if (mas_push_data(mas, height, mast: &mast, left: false))
3412 break;
3413
3414 split = mab_calc_split(mas, bn: b_node, mid_split: &mid_split, min: prev_l_mas.min);
3415 mast_split_data(mast: &mast, mas, split);
3416 /*
3417 * Usually correct, mab_mas_cp in the above call overwrites
3418 * r->max.
3419 */
3420 mast.r->max = mas->max;
3421 mast_fill_bnode(mast: &mast, mas, skip: 1);
3422 prev_l_mas = *mast.l;
3423 prev_r_mas = *mast.r;
3424 }
3425
3426 /* Set the original node as dead */
3427 old = mas->node;
3428 mas->node = l_mas.node;
3429 mas_wmb_replace(mas, old_enode: old);
3430 mtree_range_walk(mas);
3431 return 1;
3432}
3433
3434/*
3435 * mas_reuse_node() - Reuse the node to store the data.
3436 * @wr_mas: The maple write state
3437 * @bn: The maple big node
3438 * @end: The end of the data.
3439 *
3440 * Will always return false in RCU mode.
3441 *
3442 * Return: True if node was reused, false otherwise.
3443 */
3444static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3445 struct maple_big_node *bn, unsigned char end)
3446{
3447 /* Need to be rcu safe. */
3448 if (mt_in_rcu(mt: wr_mas->mas->tree))
3449 return false;
3450
3451 if (end > bn->b_end) {
3452 int clear = mt_slots[wr_mas->type] - bn->b_end;
3453
3454 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3455 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3456 }
3457 mab_mas_cp(b_node: bn, mab_start: 0, mab_end: bn->b_end, mas: wr_mas->mas, new_max: false);
3458 return true;
3459}
3460
3461/*
3462 * mas_commit_b_node() - Commit the big node into the tree.
3463 * @wr_mas: The maple write state
3464 * @b_node: The maple big node
3465 * @end: The end of the data.
3466 */
3467static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3468 struct maple_big_node *b_node, unsigned char end)
3469{
3470 struct maple_node *node;
3471 struct maple_enode *old_enode;
3472 unsigned char b_end = b_node->b_end;
3473 enum maple_type b_type = b_node->type;
3474
3475 old_enode = wr_mas->mas->node;
3476 if ((b_end < mt_min_slots[b_type]) &&
3477 (!mte_is_root(node: old_enode)) &&
3478 (mas_mt_height(mas: wr_mas->mas) > 1))
3479 return mas_rebalance(mas: wr_mas->mas, b_node);
3480
3481 if (b_end >= mt_slots[b_type])
3482 return mas_split(mas: wr_mas->mas, b_node);
3483
3484 if (mas_reuse_node(wr_mas, bn: b_node, end))
3485 goto reuse_node;
3486
3487 mas_node_count(mas: wr_mas->mas, count: 1);
3488 if (mas_is_err(mas: wr_mas->mas))
3489 return 0;
3490
3491 node = mas_pop_node(mas: wr_mas->mas);
3492 node->parent = mas_mn(mas: wr_mas->mas)->parent;
3493 wr_mas->mas->node = mt_mk_node(node, type: b_type);
3494 mab_mas_cp(b_node, mab_start: 0, mab_end: b_end, mas: wr_mas->mas, new_max: false);
3495 mas_replace_node(mas: wr_mas->mas, old_enode);
3496reuse_node:
3497 mas_update_gap(mas: wr_mas->mas);
3498 return 1;
3499}
3500
3501/*
3502 * mas_root_expand() - Expand a root to a node
3503 * @mas: The maple state
3504 * @entry: The entry to store into the tree
3505 */
3506static inline int mas_root_expand(struct ma_state *mas, void *entry)
3507{
3508 void *contents = mas_root_locked(mas);
3509 enum maple_type type = maple_leaf_64;
3510 struct maple_node *node;
3511 void __rcu **slots;
3512 unsigned long *pivots;
3513 int slot = 0;
3514
3515 mas_node_count(mas, count: 1);
3516 if (unlikely(mas_is_err(mas)))
3517 return 0;
3518
3519 node = mas_pop_node(mas);
3520 pivots = ma_pivots(node, type);
3521 slots = ma_slots(mn: node, mt: type);
3522 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3523 mas->node = mt_mk_node(node, type);
3524
3525 if (mas->index) {
3526 if (contents) {
3527 rcu_assign_pointer(slots[slot], contents);
3528 if (likely(mas->index > 1))
3529 slot++;
3530 }
3531 pivots[slot++] = mas->index - 1;
3532 }
3533
3534 rcu_assign_pointer(slots[slot], entry);
3535 mas->offset = slot;
3536 pivots[slot] = mas->last;
3537 if (mas->last != ULONG_MAX)
3538 pivots[++slot] = ULONG_MAX;
3539
3540 mas->depth = 1;
3541 mas_set_height(mas);
3542 ma_set_meta(mn: node, mt: maple_leaf_64, offset: 0, end: slot);
3543 /* swap the new root into the tree */
3544 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3545 return slot;
3546}
3547
3548static inline void mas_store_root(struct ma_state *mas, void *entry)
3549{
3550 if (likely((mas->last != 0) || (mas->index != 0)))
3551 mas_root_expand(mas, entry);
3552 else if (((unsigned long) (entry) & 3) == 2)
3553 mas_root_expand(mas, entry);
3554 else {
3555 rcu_assign_pointer(mas->tree->ma_root, entry);
3556 mas->node = MAS_START;
3557 }
3558}
3559
3560/*
3561 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3562 * spans the node.
3563 * @mas: The maple state
3564 * @piv: The pivot value being written
3565 * @type: The maple node type
3566 * @entry: The data to write
3567 *
3568 * Spanning writes are writes that start in one node and end in another OR if
3569 * the write of a %NULL will cause the node to end with a %NULL.
3570 *
3571 * Return: True if this is a spanning write, false otherwise.
3572 */
3573static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3574{
3575 unsigned long max = wr_mas->r_max;
3576 unsigned long last = wr_mas->mas->last;
3577 enum maple_type type = wr_mas->type;
3578 void *entry = wr_mas->entry;
3579
3580 /* Contained in this pivot, fast path */
3581 if (last < max)
3582 return false;
3583
3584 if (ma_is_leaf(type)) {
3585 max = wr_mas->mas->max;
3586 if (last < max)
3587 return false;
3588 }
3589
3590 if (last == max) {
3591 /*
3592 * The last entry of leaf node cannot be NULL unless it is the
3593 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3594 */
3595 if (entry || last == ULONG_MAX)
3596 return false;
3597 }
3598
3599 trace_ma_write(fn: __func__, mas: wr_mas->mas, piv: wr_mas->r_max, val: entry);
3600 return true;
3601}
3602
3603static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3604{
3605 wr_mas->type = mte_node_type(entry: wr_mas->mas->node);
3606 mas_wr_node_walk(wr_mas);
3607 wr_mas->slots = ma_slots(mn: wr_mas->node, mt: wr_mas->type);
3608}
3609
3610static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3611{
3612 wr_mas->mas->max = wr_mas->r_max;
3613 wr_mas->mas->min = wr_mas->r_min;
3614 wr_mas->mas->node = wr_mas->content;
3615 wr_mas->mas->offset = 0;
3616 wr_mas->mas->depth++;
3617}
3618/*
3619 * mas_wr_walk() - Walk the tree for a write.
3620 * @wr_mas: The maple write state
3621 *
3622 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3623 *
3624 * Return: True if it's contained in a node, false on spanning write.
3625 */
3626static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3627{
3628 struct ma_state *mas = wr_mas->mas;
3629
3630 while (true) {
3631 mas_wr_walk_descend(wr_mas);
3632 if (unlikely(mas_is_span_wr(wr_mas)))
3633 return false;
3634
3635 wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots,
3636 offset: mas->offset);
3637 if (ma_is_leaf(type: wr_mas->type))
3638 return true;
3639
3640 mas_wr_walk_traverse(wr_mas);
3641 }
3642
3643 return true;
3644}
3645
3646static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3647{
3648 struct ma_state *mas = wr_mas->mas;
3649
3650 while (true) {
3651 mas_wr_walk_descend(wr_mas);
3652 wr_mas->content = mas_slot_locked(mas, slots: wr_mas->slots,
3653 offset: mas->offset);
3654 if (ma_is_leaf(type: wr_mas->type))
3655 return true;
3656 mas_wr_walk_traverse(wr_mas);
3657
3658 }
3659 return true;
3660}
3661/*
3662 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3663 * @l_wr_mas: The left maple write state
3664 * @r_wr_mas: The right maple write state
3665 */
3666static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3667 struct ma_wr_state *r_wr_mas)
3668{
3669 struct ma_state *r_mas = r_wr_mas->mas;
3670 struct ma_state *l_mas = l_wr_mas->mas;
3671 unsigned char l_slot;
3672
3673 l_slot = l_mas->offset;
3674 if (!l_wr_mas->content)
3675 l_mas->index = l_wr_mas->r_min;
3676
3677 if ((l_mas->index == l_wr_mas->r_min) &&
3678 (l_slot &&
3679 !mas_slot_locked(mas: l_mas, slots: l_wr_mas->slots, offset: l_slot - 1))) {
3680 if (l_slot > 1)
3681 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3682 else
3683 l_mas->index = l_mas->min;
3684
3685 l_mas->offset = l_slot - 1;
3686 }
3687
3688 if (!r_wr_mas->content) {
3689 if (r_mas->last < r_wr_mas->r_max)
3690 r_mas->last = r_wr_mas->r_max;
3691 r_mas->offset++;
3692 } else if ((r_mas->last == r_wr_mas->r_max) &&
3693 (r_mas->last < r_mas->max) &&
3694 !mas_slot_locked(mas: r_mas, slots: r_wr_mas->slots, offset: r_mas->offset + 1)) {
3695 r_mas->last = mas_safe_pivot(mas: r_mas, pivots: r_wr_mas->pivots,
3696 piv: r_wr_mas->type, type: r_mas->offset + 1);
3697 r_mas->offset++;
3698 }
3699}
3700
3701static inline void *mas_state_walk(struct ma_state *mas)
3702{
3703 void *entry;
3704
3705 entry = mas_start(mas);
3706 if (mas_is_none(mas))
3707 return NULL;
3708
3709 if (mas_is_ptr(mas))
3710 return entry;
3711
3712 return mtree_range_walk(mas);
3713}
3714
3715/*
3716 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3717 * to date.
3718 *
3719 * @mas: The maple state.
3720 *
3721 * Note: Leaves mas in undesirable state.
3722 * Return: The entry for @mas->index or %NULL on dead node.
3723 */
3724static inline void *mtree_lookup_walk(struct ma_state *mas)
3725{
3726 unsigned long *pivots;
3727 unsigned char offset;
3728 struct maple_node *node;
3729 struct maple_enode *next;
3730 enum maple_type type;
3731 void __rcu **slots;
3732 unsigned char end;
3733 unsigned long max;
3734
3735 next = mas->node;
3736 max = ULONG_MAX;
3737 do {
3738 offset = 0;
3739 node = mte_to_node(entry: next);
3740 type = mte_node_type(entry: next);
3741 pivots = ma_pivots(node, type);
3742 end = ma_data_end(node, type, pivots, max);
3743 if (unlikely(ma_dead_node(node)))
3744 goto dead_node;
3745 do {
3746 if (pivots[offset] >= mas->index) {
3747 max = pivots[offset];
3748 break;
3749 }
3750 } while (++offset < end);
3751
3752 slots = ma_slots(mn: node, mt: type);
3753 next = mt_slot(mt: mas->tree, slots, offset);
3754 if (unlikely(ma_dead_node(node)))
3755 goto dead_node;
3756 } while (!ma_is_leaf(type));
3757
3758 return (void *)next;
3759
3760dead_node:
3761 mas_reset(mas);
3762 return NULL;
3763}
3764
3765static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3766/*
3767 * mas_new_root() - Create a new root node that only contains the entry passed
3768 * in.
3769 * @mas: The maple state
3770 * @entry: The entry to store.
3771 *
3772 * Only valid when the index == 0 and the last == ULONG_MAX
3773 *
3774 * Return 0 on error, 1 on success.
3775 */
3776static inline int mas_new_root(struct ma_state *mas, void *entry)
3777{
3778 struct maple_enode *root = mas_root_locked(mas);
3779 enum maple_type type = maple_leaf_64;
3780 struct maple_node *node;
3781 void __rcu **slots;
3782 unsigned long *pivots;
3783
3784 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3785 mas->depth = 0;
3786 mas_set_height(mas);
3787 rcu_assign_pointer(mas->tree->ma_root, entry);
3788 mas->node = MAS_START;
3789 goto done;
3790 }
3791
3792 mas_node_count(mas, count: 1);
3793 if (mas_is_err(mas))
3794 return 0;
3795
3796 node = mas_pop_node(mas);
3797 pivots = ma_pivots(node, type);
3798 slots = ma_slots(mn: node, mt: type);
3799 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3800 mas->node = mt_mk_node(node, type);
3801 rcu_assign_pointer(slots[0], entry);
3802 pivots[0] = mas->last;
3803 mas->depth = 1;
3804 mas_set_height(mas);
3805 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3806
3807done:
3808 if (xa_is_node(entry: root))
3809 mte_destroy_walk(root, mas->tree);
3810
3811 return 1;
3812}
3813/*
3814 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3815 * and new nodes where necessary, then place the sub-tree in the actual tree.
3816 * Note that mas is expected to point to the node which caused the store to
3817 * span.
3818 * @wr_mas: The maple write state
3819 *
3820 * Return: 0 on error, positive on success.
3821 */
3822static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3823{
3824 struct maple_subtree_state mast;
3825 struct maple_big_node b_node;
3826 struct ma_state *mas;
3827 unsigned char height;
3828
3829 /* Left and Right side of spanning store */
3830 MA_STATE(l_mas, NULL, 0, 0);
3831 MA_STATE(r_mas, NULL, 0, 0);
3832 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3833 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3834
3835 /*
3836 * A store operation that spans multiple nodes is called a spanning
3837 * store and is handled early in the store call stack by the function
3838 * mas_is_span_wr(). When a spanning store is identified, the maple
3839 * state is duplicated. The first maple state walks the left tree path
3840 * to ``index``, the duplicate walks the right tree path to ``last``.
3841 * The data in the two nodes are combined into a single node, two nodes,
3842 * or possibly three nodes (see the 3-way split above). A ``NULL``
3843 * written to the last entry of a node is considered a spanning store as
3844 * a rebalance is required for the operation to complete and an overflow
3845 * of data may happen.
3846 */
3847 mas = wr_mas->mas;
3848 trace_ma_op(fn: __func__, mas);
3849
3850 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3851 return mas_new_root(mas, entry: wr_mas->entry);
3852 /*
3853 * Node rebalancing may occur due to this store, so there may be three new
3854 * entries per level plus a new root.
3855 */
3856 height = mas_mt_height(mas);
3857 mas_node_count(mas, count: 1 + height * 3);
3858 if (mas_is_err(mas))
3859 return 0;
3860
3861 /*
3862 * Set up right side. Need to get to the next offset after the spanning
3863 * store to ensure it's not NULL and to combine both the next node and
3864 * the node with the start together.
3865 */
3866 r_mas = *mas;
3867 /* Avoid overflow, walk to next slot in the tree. */
3868 if (r_mas.last + 1)
3869 r_mas.last++;
3870
3871 r_mas.index = r_mas.last;
3872 mas_wr_walk_index(wr_mas: &r_wr_mas);
3873 r_mas.last = r_mas.index = mas->last;
3874
3875 /* Set up left side. */
3876 l_mas = *mas;
3877 mas_wr_walk_index(wr_mas: &l_wr_mas);
3878
3879 if (!wr_mas->entry) {
3880 mas_extend_spanning_null(l_wr_mas: &l_wr_mas, r_wr_mas: &r_wr_mas);
3881 mas->offset = l_mas.offset;
3882 mas->index = l_mas.index;
3883 mas->last = l_mas.last = r_mas.last;
3884 }
3885
3886 /* expanding NULLs may make this cover the entire range */
3887 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3888 mas_set_range(mas, start: 0, ULONG_MAX);
3889 return mas_new_root(mas, entry: wr_mas->entry);
3890 }
3891
3892 memset(&b_node, 0, sizeof(struct maple_big_node));
3893 /* Copy l_mas and store the value in b_node. */
3894 mas_store_b_node(wr_mas: &l_wr_mas, b_node: &b_node, offset_end: l_wr_mas.node_end);
3895 /* Copy r_mas into b_node. */
3896 if (r_mas.offset <= r_wr_mas.node_end)
3897 mas_mab_cp(mas: &r_mas, mas_start: r_mas.offset, mas_end: r_wr_mas.node_end,
3898 b_node: &b_node, mab_start: b_node.b_end + 1);
3899 else
3900 b_node.b_end++;
3901
3902 /* Stop spanning searches by searching for just index. */
3903 l_mas.index = l_mas.last = mas->index;
3904
3905 mast.bn = &b_node;
3906 mast.orig_l = &l_mas;
3907 mast.orig_r = &r_mas;
3908 /* Combine l_mas and r_mas and split them up evenly again. */
3909 return mas_spanning_rebalance(mas, mast: &mast, count: height + 1);
3910}
3911
3912/*
3913 * mas_wr_node_store() - Attempt to store the value in a node
3914 * @wr_mas: The maple write state
3915 *
3916 * Attempts to reuse the node, but may allocate.
3917 *
3918 * Return: True if stored, false otherwise
3919 */
3920static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
3921 unsigned char new_end)
3922{
3923 struct ma_state *mas = wr_mas->mas;
3924 void __rcu **dst_slots;
3925 unsigned long *dst_pivots;
3926 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3927 struct maple_node reuse, *newnode;
3928 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3929 bool in_rcu = mt_in_rcu(mt: mas->tree);
3930
3931 /* Check if there is enough data. The room is enough. */
3932 if (!mte_is_root(node: mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
3933 !(mas->mas_flags & MA_STATE_BULK))
3934 return false;
3935
3936 if (mas->last == wr_mas->end_piv)
3937 offset_end++; /* don't copy this offset */
3938 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3939 mas_bulk_rebalance(mas, end: wr_mas->node_end, mt: wr_mas->type);
3940
3941 /* set up node. */
3942 if (in_rcu) {
3943 mas_node_count(mas, count: 1);
3944 if (mas_is_err(mas))
3945 return false;
3946
3947 newnode = mas_pop_node(mas);
3948 } else {
3949 memset(&reuse, 0, sizeof(struct maple_node));
3950 newnode = &reuse;
3951 }
3952
3953 newnode->parent = mas_mn(mas)->parent;
3954 dst_pivots = ma_pivots(node: newnode, type: wr_mas->type);
3955 dst_slots = ma_slots(mn: newnode, mt: wr_mas->type);
3956 /* Copy from start to insert point */
3957 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3958 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3959
3960 /* Handle insert of new range starting after old range */
3961 if (wr_mas->r_min < mas->index) {
3962 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3963 dst_pivots[mas->offset++] = mas->index - 1;
3964 }
3965
3966 /* Store the new entry and range end. */
3967 if (mas->offset < node_pivots)
3968 dst_pivots[mas->offset] = mas->last;
3969 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3970
3971 /*
3972 * this range wrote to the end of the node or it overwrote the rest of
3973 * the data
3974 */
3975 if (offset_end > wr_mas->node_end)
3976 goto done;
3977
3978 dst_offset = mas->offset + 1;
3979 /* Copy to the end of node if necessary. */
3980 copy_size = wr_mas->node_end - offset_end + 1;
3981 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3982 sizeof(void *) * copy_size);
3983 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3984 sizeof(unsigned long) * (copy_size - 1));
3985
3986 if (new_end < node_pivots)
3987 dst_pivots[new_end] = mas->max;
3988
3989done:
3990 mas_leaf_set_meta(mas, node: newnode, pivots: dst_pivots, mt: maple_leaf_64, end: new_end);
3991 if (in_rcu) {
3992 struct maple_enode *old_enode = mas->node;
3993
3994 mas->node = mt_mk_node(node: newnode, type: wr_mas->type);
3995 mas_replace_node(mas, old_enode);
3996 } else {
3997 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3998 }
3999 trace_ma_write(fn: __func__, mas, piv: 0, val: wr_mas->entry);
4000 mas_update_gap(mas);
4001 return true;
4002}
4003
4004/*
4005 * mas_wr_slot_store: Attempt to store a value in a slot.
4006 * @wr_mas: the maple write state
4007 *
4008 * Return: True if stored, false otherwise
4009 */
4010static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4011{
4012 struct ma_state *mas = wr_mas->mas;
4013 unsigned char offset = mas->offset;
4014 void __rcu **slots = wr_mas->slots;
4015 bool gap = false;
4016
4017 gap |= !mt_slot_locked(mt: mas->tree, slots, offset);
4018 gap |= !mt_slot_locked(mt: mas->tree, slots, offset: offset + 1);
4019
4020 if (wr_mas->offset_end - offset == 1) {
4021 if (mas->index == wr_mas->r_min) {
4022 /* Overwriting the range and a part of the next one */
4023 rcu_assign_pointer(slots[offset], wr_mas->entry);
4024 wr_mas->pivots[offset] = mas->last;
4025 } else {
4026 /* Overwriting a part of the range and the next one */
4027 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4028 wr_mas->pivots[offset] = mas->index - 1;
4029 mas->offset++; /* Keep mas accurate. */
4030 }
4031 } else if (!mt_in_rcu(mt: mas->tree)) {
4032 /*
4033 * Expand the range, only partially overwriting the previous and
4034 * next ranges
4035 */
4036 gap |= !mt_slot_locked(mt: mas->tree, slots, offset: offset + 2);
4037 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4038 wr_mas->pivots[offset] = mas->index - 1;
4039 wr_mas->pivots[offset + 1] = mas->last;
4040 mas->offset++; /* Keep mas accurate. */
4041 } else {
4042 return false;
4043 }
4044
4045 trace_ma_write(fn: __func__, mas, piv: 0, val: wr_mas->entry);
4046 /*
4047 * Only update gap when the new entry is empty or there is an empty
4048 * entry in the original two ranges.
4049 */
4050 if (!wr_mas->entry || gap)
4051 mas_update_gap(mas);
4052
4053 return true;
4054}
4055
4056static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4057{
4058 struct ma_state *mas = wr_mas->mas;
4059
4060 if (!wr_mas->slots[wr_mas->offset_end]) {
4061 /* If this one is null, the next and prev are not */
4062 mas->last = wr_mas->end_piv;
4063 } else {
4064 /* Check next slot(s) if we are overwriting the end */
4065 if ((mas->last == wr_mas->end_piv) &&
4066 (wr_mas->node_end != wr_mas->offset_end) &&
4067 !wr_mas->slots[wr_mas->offset_end + 1]) {
4068 wr_mas->offset_end++;
4069 if (wr_mas->offset_end == wr_mas->node_end)
4070 mas->last = mas->max;
4071 else
4072 mas->last = wr_mas->pivots[wr_mas->offset_end];
4073 wr_mas->end_piv = mas->last;
4074 }
4075 }
4076
4077 if (!wr_mas->content) {
4078 /* If this one is null, the next and prev are not */
4079 mas->index = wr_mas->r_min;
4080 } else {
4081 /* Check prev slot if we are overwriting the start */
4082 if (mas->index == wr_mas->r_min && mas->offset &&
4083 !wr_mas->slots[mas->offset - 1]) {
4084 mas->offset--;
4085 wr_mas->r_min = mas->index =
4086 mas_safe_min(mas, pivots: wr_mas->pivots, offset: mas->offset);
4087 wr_mas->r_max = wr_mas->pivots[mas->offset];
4088 }
4089 }
4090}
4091
4092static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4093{
4094 while ((wr_mas->offset_end < wr_mas->node_end) &&
4095 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4096 wr_mas->offset_end++;
4097
4098 if (wr_mas->offset_end < wr_mas->node_end)
4099 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4100 else
4101 wr_mas->end_piv = wr_mas->mas->max;
4102
4103 if (!wr_mas->entry)
4104 mas_wr_extend_null(wr_mas);
4105}
4106
4107static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4108{
4109 struct ma_state *mas = wr_mas->mas;
4110 unsigned char new_end = wr_mas->node_end + 2;
4111
4112 new_end -= wr_mas->offset_end - mas->offset;
4113 if (wr_mas->r_min == mas->index)
4114 new_end--;
4115
4116 if (wr_mas->end_piv == mas->last)
4117 new_end--;
4118
4119 return new_end;
4120}
4121
4122/*
4123 * mas_wr_append: Attempt to append
4124 * @wr_mas: the maple write state
4125 * @new_end: The end of the node after the modification
4126 *
4127 * This is currently unsafe in rcu mode since the end of the node may be cached
4128 * by readers while the node contents may be updated which could result in
4129 * inaccurate information.
4130 *
4131 * Return: True if appended, false otherwise
4132 */
4133static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4134 unsigned char new_end)
4135{
4136 struct ma_state *mas;
4137 void __rcu **slots;
4138 unsigned char end;
4139
4140 mas = wr_mas->mas;
4141 if (mt_in_rcu(mt: mas->tree))
4142 return false;
4143
4144 if (mas->offset != wr_mas->node_end)
4145 return false;
4146
4147 end = wr_mas->node_end;
4148 if (mas->offset != end)
4149 return false;
4150
4151 if (new_end < mt_pivots[wr_mas->type]) {
4152 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4153 ma_set_meta(mn: wr_mas->node, mt: wr_mas->type, offset: 0, end: new_end);
4154 }
4155
4156 slots = wr_mas->slots;
4157 if (new_end == end + 1) {
4158 if (mas->last == wr_mas->r_max) {
4159 /* Append to end of range */
4160 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4161 wr_mas->pivots[end] = mas->index - 1;
4162 mas->offset = new_end;
4163 } else {
4164 /* Append to start of range */
4165 rcu_assign_pointer(slots[new_end], wr_mas->content);
4166 wr_mas->pivots[end] = mas->last;
4167 rcu_assign_pointer(slots[end], wr_mas->entry);
4168 }
4169 } else {
4170 /* Append to the range without touching any boundaries. */
4171 rcu_assign_pointer(slots[new_end], wr_mas->content);
4172 wr_mas->pivots[end + 1] = mas->last;
4173 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4174 wr_mas->pivots[end] = mas->index - 1;
4175 mas->offset = end + 1;
4176 }
4177
4178 if (!wr_mas->content || !wr_mas->entry)
4179 mas_update_gap(mas);
4180
4181 trace_ma_write(fn: __func__, mas, piv: new_end, val: wr_mas->entry);
4182 return true;
4183}
4184
4185/*
4186 * mas_wr_bnode() - Slow path for a modification.
4187 * @wr_mas: The write maple state
4188 *
4189 * This is where split, rebalance end up.
4190 */
4191static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4192{
4193 struct maple_big_node b_node;
4194
4195 trace_ma_write(fn: __func__, mas: wr_mas->mas, piv: 0, val: wr_mas->entry);
4196 memset(&b_node, 0, sizeof(struct maple_big_node));
4197 mas_store_b_node(wr_mas, b_node: &b_node, offset_end: wr_mas->offset_end);
4198 mas_commit_b_node(wr_mas, b_node: &b_node, end: wr_mas->node_end);
4199}
4200
4201static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4202{
4203 struct ma_state *mas = wr_mas->mas;
4204 unsigned char new_end;
4205
4206 /* Direct replacement */
4207 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4208 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4209 if (!!wr_mas->entry ^ !!wr_mas->content)
4210 mas_update_gap(mas);
4211 return;
4212 }
4213
4214 /*
4215 * new_end exceeds the size of the maple node and cannot enter the fast
4216 * path.
4217 */
4218 new_end = mas_wr_new_end(wr_mas);
4219 if (new_end >= mt_slots[wr_mas->type])
4220 goto slow_path;
4221
4222 /* Attempt to append */
4223 if (mas_wr_append(wr_mas, new_end))
4224 return;
4225
4226 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
4227 return;
4228
4229 if (mas_wr_node_store(wr_mas, new_end))
4230 return;
4231
4232 if (mas_is_err(mas))
4233 return;
4234
4235slow_path:
4236 mas_wr_bnode(wr_mas);
4237}
4238
4239/*
4240 * mas_wr_store_entry() - Internal call to store a value
4241 * @mas: The maple state
4242 * @entry: The entry to store.
4243 *
4244 * Return: The contents that was stored at the index.
4245 */
4246static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4247{
4248 struct ma_state *mas = wr_mas->mas;
4249
4250 wr_mas->content = mas_start(mas);
4251 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4252 mas_store_root(mas, entry: wr_mas->entry);
4253 return wr_mas->content;
4254 }
4255
4256 if (unlikely(!mas_wr_walk(wr_mas))) {
4257 mas_wr_spanning_store(wr_mas);
4258 return wr_mas->content;
4259 }
4260
4261 /* At this point, we are at the leaf node that needs to be altered. */
4262 mas_wr_end_piv(wr_mas);
4263 /* New root for a single pointer */
4264 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4265 mas_new_root(mas, entry: wr_mas->entry);
4266 return wr_mas->content;
4267 }
4268
4269 mas_wr_modify(wr_mas);
4270 return wr_mas->content;
4271}
4272
4273/**
4274 * mas_insert() - Internal call to insert a value
4275 * @mas: The maple state
4276 * @entry: The entry to store
4277 *
4278 * Return: %NULL or the contents that already exists at the requested index
4279 * otherwise. The maple state needs to be checked for error conditions.
4280 */
4281static inline void *mas_insert(struct ma_state *mas, void *entry)
4282{
4283 MA_WR_STATE(wr_mas, mas, entry);
4284
4285 /*
4286 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4287 * tree. If the insert fits exactly into an existing gap with a value
4288 * of NULL, then the slot only needs to be written with the new value.
4289 * If the range being inserted is adjacent to another range, then only a
4290 * single pivot needs to be inserted (as well as writing the entry). If
4291 * the new range is within a gap but does not touch any other ranges,
4292 * then two pivots need to be inserted: the start - 1, and the end. As
4293 * usual, the entry must be written. Most operations require a new node
4294 * to be allocated and replace an existing node to ensure RCU safety,
4295 * when in RCU mode. The exception to requiring a newly allocated node
4296 * is when inserting at the end of a node (appending). When done
4297 * carefully, appending can reuse the node in place.
4298 */
4299 wr_mas.content = mas_start(mas);
4300 if (wr_mas.content)
4301 goto exists;
4302
4303 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4304 mas_store_root(mas, entry);
4305 return NULL;
4306 }
4307
4308 /* spanning writes always overwrite something */
4309 if (!mas_wr_walk(wr_mas: &wr_mas))
4310 goto exists;
4311
4312 /* At this point, we are at the leaf node that needs to be altered. */
4313 wr_mas.offset_end = mas->offset;
4314 wr_mas.end_piv = wr_mas.r_max;
4315
4316 if (wr_mas.content || (mas->last > wr_mas.r_max))
4317 goto exists;
4318
4319 if (!entry)
4320 return NULL;
4321
4322 mas_wr_modify(wr_mas: &wr_mas);
4323 return wr_mas.content;
4324
4325exists:
4326 mas_set_err(mas, err: -EEXIST);
4327 return wr_mas.content;
4328
4329}
4330
4331static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4332{
4333retry:
4334 mas_set(mas, index);
4335 mas_state_walk(mas);
4336 if (mas_is_start(mas))
4337 goto retry;
4338}
4339
4340static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4341 struct maple_node *node, const unsigned long index)
4342{
4343 if (unlikely(ma_dead_node(node))) {
4344 mas_rewalk(mas, index);
4345 return true;
4346 }
4347 return false;
4348}
4349
4350/*
4351 * mas_prev_node() - Find the prev non-null entry at the same level in the
4352 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4353 * @mas: The maple state
4354 * @min: The lower limit to search
4355 *
4356 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4357 * Return: 1 if the node is dead, 0 otherwise.
4358 */
4359static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4360{
4361 enum maple_type mt;
4362 int offset, level;
4363 void __rcu **slots;
4364 struct maple_node *node;
4365 unsigned long *pivots;
4366 unsigned long max;
4367
4368 node = mas_mn(mas);
4369 if (!mas->min)
4370 goto no_entry;
4371
4372 max = mas->min - 1;
4373 if (max < min)
4374 goto no_entry;
4375
4376 level = 0;
4377 do {
4378 if (ma_is_root(node))
4379 goto no_entry;
4380
4381 /* Walk up. */
4382 if (unlikely(mas_ascend(mas)))
4383 return 1;
4384 offset = mas->offset;
4385 level++;
4386 node = mas_mn(mas);
4387 } while (!offset);
4388
4389 offset--;
4390 mt = mte_node_type(entry: mas->node);
4391 while (level > 1) {
4392 level--;
4393 slots = ma_slots(mn: node, mt);
4394 mas->node = mas_slot(mas, slots, offset);
4395 if (unlikely(ma_dead_node(node)))
4396 return 1;
4397
4398 mt = mte_node_type(entry: mas->node);
4399 node = mas_mn(mas);
4400 pivots = ma_pivots(node, type: mt);
4401 offset = ma_data_end(node, type: mt, pivots, max);
4402 if (unlikely(ma_dead_node(node)))
4403 return 1;
4404 }
4405
4406 slots = ma_slots(mn: node, mt);
4407 mas->node = mas_slot(mas, slots, offset);
4408 pivots = ma_pivots(node, type: mt);
4409 if (unlikely(ma_dead_node(node)))
4410 return 1;
4411
4412 if (likely(offset))
4413 mas->min = pivots[offset - 1] + 1;
4414 mas->max = max;
4415 mas->offset = mas_data_end(mas);
4416 if (unlikely(mte_dead_node(mas->node)))
4417 return 1;
4418
4419 return 0;
4420
4421no_entry:
4422 if (unlikely(ma_dead_node(node)))
4423 return 1;
4424
4425 mas->node = MAS_NONE;
4426 return 0;
4427}
4428
4429/*
4430 * mas_prev_slot() - Get the entry in the previous slot
4431 *
4432 * @mas: The maple state
4433 * @max: The minimum starting range
4434 * @empty: Can be empty
4435 * @set_underflow: Set the @mas->node to underflow state on limit.
4436 *
4437 * Return: The entry in the previous slot which is possibly NULL
4438 */
4439static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty,
4440 bool set_underflow)
4441{
4442 void *entry;
4443 void __rcu **slots;
4444 unsigned long pivot;
4445 enum maple_type type;
4446 unsigned long *pivots;
4447 struct maple_node *node;
4448 unsigned long save_point = mas->index;
4449
4450retry:
4451 node = mas_mn(mas);
4452 type = mte_node_type(entry: mas->node);
4453 pivots = ma_pivots(node, type);
4454 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4455 goto retry;
4456
4457 if (mas->min <= min) {
4458 pivot = mas_safe_min(mas, pivots, offset: mas->offset);
4459
4460 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4461 goto retry;
4462
4463 if (pivot <= min)
4464 goto underflow;
4465 }
4466
4467again:
4468 if (likely(mas->offset)) {
4469 mas->offset--;
4470 mas->last = mas->index - 1;
4471 mas->index = mas_safe_min(mas, pivots, offset: mas->offset);
4472 } else {
4473 if (mas_prev_node(mas, min)) {
4474 mas_rewalk(mas, index: save_point);
4475 goto retry;
4476 }
4477
4478 if (mas_is_none(mas))
4479 goto underflow;
4480
4481 mas->last = mas->max;
4482 node = mas_mn(mas);
4483 type = mte_node_type(entry: mas->node);
4484 pivots = ma_pivots(node, type);
4485 mas->index = pivots[mas->offset - 1] + 1;
4486 }
4487
4488 slots = ma_slots(mn: node, mt: type);
4489 entry = mas_slot(mas, slots, offset: mas->offset);
4490 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4491 goto retry;
4492
4493 if (likely(entry))
4494 return entry;
4495
4496 if (!empty) {
4497 if (mas->index <= min)
4498 goto underflow;
4499
4500 goto again;
4501 }
4502
4503 return entry;
4504
4505underflow:
4506 if (set_underflow)
4507 mas->node = MAS_UNDERFLOW;
4508 return NULL;
4509}
4510
4511/*
4512 * mas_next_node() - Get the next node at the same level in the tree.
4513 * @mas: The maple state
4514 * @max: The maximum pivot value to check.
4515 *
4516 * The next value will be mas->node[mas->offset] or MAS_NONE.
4517 * Return: 1 on dead node, 0 otherwise.
4518 */
4519static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4520 unsigned long max)
4521{
4522 unsigned long min;
4523 unsigned long *pivots;
4524 struct maple_enode *enode;
4525 int level = 0;
4526 unsigned char node_end;
4527 enum maple_type mt;
4528 void __rcu **slots;
4529
4530 if (mas->max >= max)
4531 goto no_entry;
4532
4533 min = mas->max + 1;
4534 level = 0;
4535 do {
4536 if (ma_is_root(node))
4537 goto no_entry;
4538
4539 /* Walk up. */
4540 if (unlikely(mas_ascend(mas)))
4541 return 1;
4542
4543 level++;
4544 node = mas_mn(mas);
4545 mt = mte_node_type(entry: mas->node);
4546 pivots = ma_pivots(node, type: mt);
4547 node_end = ma_data_end(node, type: mt, pivots, max: mas->max);
4548 if (unlikely(ma_dead_node(node)))
4549 return 1;
4550
4551 } while (unlikely(mas->offset == node_end));
4552
4553 slots = ma_slots(mn: node, mt);
4554 mas->offset++;
4555 enode = mas_slot(mas, slots, offset: mas->offset);
4556 if (unlikely(ma_dead_node(node)))
4557 return 1;
4558
4559 if (level > 1)
4560 mas->offset = 0;
4561
4562 while (unlikely(level > 1)) {
4563 level--;
4564 mas->node = enode;
4565 node = mas_mn(mas);
4566 mt = mte_node_type(entry: mas->node);
4567 slots = ma_slots(mn: node, mt);
4568 enode = mas_slot(mas, slots, offset: 0);
4569 if (unlikely(ma_dead_node(node)))
4570 return 1;
4571 }
4572
4573 if (!mas->offset)
4574 pivots = ma_pivots(node, type: mt);
4575
4576 mas->max = mas_safe_pivot(mas, pivots, piv: mas->offset, type: mt);
4577 if (unlikely(ma_dead_node(node)))
4578 return 1;
4579
4580 mas->node = enode;
4581 mas->min = min;
4582 return 0;
4583
4584no_entry:
4585 if (unlikely(ma_dead_node(node)))
4586 return 1;
4587
4588 mas->node = MAS_NONE;
4589 return 0;
4590}
4591
4592/*
4593 * mas_next_slot() - Get the entry in the next slot
4594 *
4595 * @mas: The maple state
4596 * @max: The maximum starting range
4597 * @empty: Can be empty
4598 * @set_overflow: Should @mas->node be set to overflow when the limit is
4599 * reached.
4600 *
4601 * Return: The entry in the next slot which is possibly NULL
4602 */
4603static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty,
4604 bool set_overflow)
4605{
4606 void __rcu **slots;
4607 unsigned long *pivots;
4608 unsigned long pivot;
4609 enum maple_type type;
4610 struct maple_node *node;
4611 unsigned char data_end;
4612 unsigned long save_point = mas->last;
4613 void *entry;
4614
4615retry:
4616 node = mas_mn(mas);
4617 type = mte_node_type(entry: mas->node);
4618 pivots = ma_pivots(node, type);
4619 data_end = ma_data_end(node, type, pivots, max: mas->max);
4620 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4621 goto retry;
4622
4623 if (mas->max >= max) {
4624 if (likely(mas->offset < data_end))
4625 pivot = pivots[mas->offset];
4626 else
4627 goto overflow;
4628
4629 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4630 goto retry;
4631
4632 if (pivot >= max)
4633 goto overflow;
4634 }
4635
4636 if (likely(mas->offset < data_end)) {
4637 mas->index = pivots[mas->offset] + 1;
4638again:
4639 mas->offset++;
4640 if (likely(mas->offset < data_end))
4641 mas->last = pivots[mas->offset];
4642 else
4643 mas->last = mas->max;
4644 } else {
4645 if (mas_next_node(mas, node, max)) {
4646 mas_rewalk(mas, index: save_point);
4647 goto retry;
4648 }
4649
4650 if (WARN_ON_ONCE(mas_is_none(mas))) {
4651 mas->node = MAS_OVERFLOW;
4652 return NULL;
4653 goto overflow;
4654 }
4655
4656 mas->offset = 0;
4657 mas->index = mas->min;
4658 node = mas_mn(mas);
4659 type = mte_node_type(entry: mas->node);
4660 pivots = ma_pivots(node, type);
4661 mas->last = pivots[0];
4662 }
4663
4664 slots = ma_slots(mn: node, mt: type);
4665 entry = mt_slot(mt: mas->tree, slots, offset: mas->offset);
4666 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4667 goto retry;
4668
4669 if (entry)
4670 return entry;
4671
4672 if (!empty) {
4673 if (mas->last >= max)
4674 goto overflow;
4675
4676 mas->index = mas->last + 1;
4677 /* Node cannot end on NULL, so it's safe to short-cut here */
4678 goto again;
4679 }
4680
4681 return entry;
4682
4683overflow:
4684 if (set_overflow)
4685 mas->node = MAS_OVERFLOW;
4686 return NULL;
4687}
4688
4689/*
4690 * mas_next_entry() - Internal function to get the next entry.
4691 * @mas: The maple state
4692 * @limit: The maximum range start.
4693 *
4694 * Set the @mas->node to the next entry and the range_start to
4695 * the beginning value for the entry. Does not check beyond @limit.
4696 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4697 * @mas->last on overflow.
4698 * Restarts on dead nodes.
4699 *
4700 * Return: the next entry or %NULL.
4701 */
4702static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4703{
4704 if (mas->last >= limit) {
4705 mas->node = MAS_OVERFLOW;
4706 return NULL;
4707 }
4708
4709 return mas_next_slot(mas, max: limit, empty: false, set_overflow: true);
4710}
4711
4712/*
4713 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4714 * highest gap address of a given size in a given node and descend.
4715 * @mas: The maple state
4716 * @size: The needed size.
4717 *
4718 * Return: True if found in a leaf, false otherwise.
4719 *
4720 */
4721static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4722 unsigned long *gap_min, unsigned long *gap_max)
4723{
4724 enum maple_type type = mte_node_type(entry: mas->node);
4725 struct maple_node *node = mas_mn(mas);
4726 unsigned long *pivots, *gaps;
4727 void __rcu **slots;
4728 unsigned long gap = 0;
4729 unsigned long max, min;
4730 unsigned char offset;
4731
4732 if (unlikely(mas_is_err(mas)))
4733 return true;
4734
4735 if (ma_is_dense(type)) {
4736 /* dense nodes. */
4737 mas->offset = (unsigned char)(mas->index - mas->min);
4738 return true;
4739 }
4740
4741 pivots = ma_pivots(node, type);
4742 slots = ma_slots(mn: node, mt: type);
4743 gaps = ma_gaps(node, type);
4744 offset = mas->offset;
4745 min = mas_safe_min(mas, pivots, offset);
4746 /* Skip out of bounds. */
4747 while (mas->last < min)
4748 min = mas_safe_min(mas, pivots, offset: --offset);
4749
4750 max = mas_safe_pivot(mas, pivots, piv: offset, type);
4751 while (mas->index <= max) {
4752 gap = 0;
4753 if (gaps)
4754 gap = gaps[offset];
4755 else if (!mas_slot(mas, slots, offset))
4756 gap = max - min + 1;
4757
4758 if (gap) {
4759 if ((size <= gap) && (size <= mas->last - min + 1))
4760 break;
4761
4762 if (!gaps) {
4763 /* Skip the next slot, it cannot be a gap. */
4764 if (offset < 2)
4765 goto ascend;
4766
4767 offset -= 2;
4768 max = pivots[offset];
4769 min = mas_safe_min(mas, pivots, offset);
4770 continue;
4771 }
4772 }
4773
4774 if (!offset)
4775 goto ascend;
4776
4777 offset--;
4778 max = min - 1;
4779 min = mas_safe_min(mas, pivots, offset);
4780 }
4781
4782 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4783 goto no_space;
4784
4785 if (unlikely(ma_is_leaf(type))) {
4786 mas->offset = offset;
4787 *gap_min = min;
4788 *gap_max = min + gap - 1;
4789 return true;
4790 }
4791
4792 /* descend, only happens under lock. */
4793 mas->node = mas_slot(mas, slots, offset);
4794 mas->min = min;
4795 mas->max = max;
4796 mas->offset = mas_data_end(mas);
4797 return false;
4798
4799ascend:
4800 if (!mte_is_root(node: mas->node))
4801 return false;
4802
4803no_space:
4804 mas_set_err(mas, err: -EBUSY);
4805 return false;
4806}
4807
4808static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4809{
4810 enum maple_type type = mte_node_type(entry: mas->node);
4811 unsigned long pivot, min, gap = 0;
4812 unsigned char offset, data_end;
4813 unsigned long *gaps, *pivots;
4814 void __rcu **slots;
4815 struct maple_node *node;
4816 bool found = false;
4817
4818 if (ma_is_dense(type)) {
4819 mas->offset = (unsigned char)(mas->index - mas->min);
4820 return true;
4821 }
4822
4823 node = mas_mn(mas);
4824 pivots = ma_pivots(node, type);
4825 slots = ma_slots(mn: node, mt: type);
4826 gaps = ma_gaps(node, type);
4827 offset = mas->offset;
4828 min = mas_safe_min(mas, pivots, offset);
4829 data_end = ma_data_end(node, type, pivots, max: mas->max);
4830 for (; offset <= data_end; offset++) {
4831 pivot = mas_safe_pivot(mas, pivots, piv: offset, type);
4832
4833 /* Not within lower bounds */
4834 if (mas->index > pivot)
4835 goto next_slot;
4836
4837 if (gaps)
4838 gap = gaps[offset];
4839 else if (!mas_slot(mas, slots, offset))
4840 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4841 else
4842 goto next_slot;
4843
4844 if (gap >= size) {
4845 if (ma_is_leaf(type)) {
4846 found = true;
4847 goto done;
4848 }
4849 if (mas->index <= pivot) {
4850 mas->node = mas_slot(mas, slots, offset);
4851 mas->min = min;
4852 mas->max = pivot;
4853 offset = 0;
4854 break;
4855 }
4856 }
4857next_slot:
4858 min = pivot + 1;
4859 if (mas->last <= pivot) {
4860 mas_set_err(mas, err: -EBUSY);
4861 return true;
4862 }
4863 }
4864
4865 if (mte_is_root(node: mas->node))
4866 found = true;
4867done:
4868 mas->offset = offset;
4869 return found;
4870}
4871
4872/**
4873 * mas_walk() - Search for @mas->index in the tree.
4874 * @mas: The maple state.
4875 *
4876 * mas->index and mas->last will be set to the range if there is a value. If
4877 * mas->node is MAS_NONE, reset to MAS_START.
4878 *
4879 * Return: the entry at the location or %NULL.
4880 */
4881void *mas_walk(struct ma_state *mas)
4882{
4883 void *entry;
4884
4885 if (!mas_is_active(mas) || !mas_is_start(mas))
4886 mas->node = MAS_START;
4887retry:
4888 entry = mas_state_walk(mas);
4889 if (mas_is_start(mas)) {
4890 goto retry;
4891 } else if (mas_is_none(mas)) {
4892 mas->index = 0;
4893 mas->last = ULONG_MAX;
4894 } else if (mas_is_ptr(mas)) {
4895 if (!mas->index) {
4896 mas->last = 0;
4897 return entry;
4898 }
4899
4900 mas->index = 1;
4901 mas->last = ULONG_MAX;
4902 mas->node = MAS_NONE;
4903 return NULL;
4904 }
4905
4906 return entry;
4907}
4908EXPORT_SYMBOL_GPL(mas_walk);
4909
4910static inline bool mas_rewind_node(struct ma_state *mas)
4911{
4912 unsigned char slot;
4913
4914 do {
4915 if (mte_is_root(node: mas->node)) {
4916 slot = mas->offset;
4917 if (!slot)
4918 return false;
4919 } else {
4920 mas_ascend(mas);
4921 slot = mas->offset;
4922 }
4923 } while (!slot);
4924
4925 mas->offset = --slot;
4926 return true;
4927}
4928
4929/*
4930 * mas_skip_node() - Internal function. Skip over a node.
4931 * @mas: The maple state.
4932 *
4933 * Return: true if there is another node, false otherwise.
4934 */
4935static inline bool mas_skip_node(struct ma_state *mas)
4936{
4937 if (mas_is_err(mas))
4938 return false;
4939
4940 do {
4941 if (mte_is_root(node: mas->node)) {
4942 if (mas->offset >= mas_data_end(mas)) {
4943 mas_set_err(mas, err: -EBUSY);
4944 return false;
4945 }
4946 } else {
4947 mas_ascend(mas);
4948 }
4949 } while (mas->offset >= mas_data_end(mas));
4950
4951 mas->offset++;
4952 return true;
4953}
4954
4955/*
4956 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
4957 * @size
4958 * @mas: The maple state
4959 * @size: The size of the gap required
4960 *
4961 * Search between @mas->index and @mas->last for a gap of @size.
4962 */
4963static inline void mas_awalk(struct ma_state *mas, unsigned long size)
4964{
4965 struct maple_enode *last = NULL;
4966
4967 /*
4968 * There are 4 options:
4969 * go to child (descend)
4970 * go back to parent (ascend)
4971 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
4972 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
4973 */
4974 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
4975 if (last == mas->node)
4976 mas_skip_node(mas);
4977 else
4978 last = mas->node;
4979 }
4980}
4981
4982/*
4983 * mas_sparse_area() - Internal function. Return upper or lower limit when
4984 * searching for a gap in an empty tree.
4985 * @mas: The maple state
4986 * @min: the minimum range
4987 * @max: The maximum range
4988 * @size: The size of the gap
4989 * @fwd: Searching forward or back
4990 */
4991static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
4992 unsigned long max, unsigned long size, bool fwd)
4993{
4994 if (!unlikely(mas_is_none(mas)) && min == 0) {
4995 min++;
4996 /*
4997 * At this time, min is increased, we need to recheck whether
4998 * the size is satisfied.
4999 */
5000 if (min > max || max - min + 1 < size)
5001 return -EBUSY;
5002 }
5003 /* mas_is_ptr */
5004
5005 if (fwd) {
5006 mas->index = min;
5007 mas->last = min + size - 1;
5008 } else {
5009 mas->last = max;
5010 mas->index = max - size + 1;
5011 }
5012 return 0;
5013}
5014
5015/*
5016 * mas_empty_area() - Get the lowest address within the range that is
5017 * sufficient for the size requested.
5018 * @mas: The maple state
5019 * @min: The lowest value of the range
5020 * @max: The highest value of the range
5021 * @size: The size needed
5022 */
5023int mas_empty_area(struct ma_state *mas, unsigned long min,
5024 unsigned long max, unsigned long size)
5025{
5026 unsigned char offset;
5027 unsigned long *pivots;
5028 enum maple_type mt;
5029
5030 if (min > max)
5031 return -EINVAL;
5032
5033 if (size == 0 || max - min < size - 1)
5034 return -EINVAL;
5035
5036 if (mas_is_start(mas))
5037 mas_start(mas);
5038 else if (mas->offset >= 2)
5039 mas->offset -= 2;
5040 else if (!mas_skip_node(mas))
5041 return -EBUSY;
5042
5043 /* Empty set */
5044 if (mas_is_none(mas) || mas_is_ptr(mas))
5045 return mas_sparse_area(mas, min, max, size, fwd: true);
5046
5047 /* The start of the window can only be within these values */
5048 mas->index = min;
5049 mas->last = max;
5050 mas_awalk(mas, size);
5051
5052 if (unlikely(mas_is_err(mas)))
5053 return xa_err(entry: mas->node);
5054
5055 offset = mas->offset;
5056 if (unlikely(offset == MAPLE_NODE_SLOTS))
5057 return -EBUSY;
5058
5059 mt = mte_node_type(entry: mas->node);
5060 pivots = ma_pivots(node: mas_mn(mas), type: mt);
5061 min = mas_safe_min(mas, pivots, offset);
5062 if (mas->index < min)
5063 mas->index = min;
5064 mas->last = mas->index + size - 1;
5065 return 0;
5066}
5067EXPORT_SYMBOL_GPL(mas_empty_area);
5068
5069/*
5070 * mas_empty_area_rev() - Get the highest address within the range that is
5071 * sufficient for the size requested.
5072 * @mas: The maple state
5073 * @min: The lowest value of the range
5074 * @max: The highest value of the range
5075 * @size: The size needed
5076 */
5077int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5078 unsigned long max, unsigned long size)
5079{
5080 struct maple_enode *last = mas->node;
5081
5082 if (min > max)
5083 return -EINVAL;
5084
5085 if (size == 0 || max - min < size - 1)
5086 return -EINVAL;
5087
5088 if (mas_is_start(mas)) {
5089 mas_start(mas);
5090 mas->offset = mas_data_end(mas);
5091 } else if (mas->offset >= 2) {
5092 mas->offset -= 2;
5093 } else if (!mas_rewind_node(mas)) {
5094 return -EBUSY;
5095 }
5096
5097 /* Empty set. */
5098 if (mas_is_none(mas) || mas_is_ptr(mas))
5099 return mas_sparse_area(mas, min, max, size, fwd: false);
5100
5101 /* The start of the window can only be within these values. */
5102 mas->index = min;
5103 mas->last = max;
5104
5105 while (!mas_rev_awalk(mas, size, gap_min: &min, gap_max: &max)) {
5106 if (last == mas->node) {
5107 if (!mas_rewind_node(mas))
5108 return -EBUSY;
5109 } else {
5110 last = mas->node;
5111 }
5112 }
5113
5114 if (mas_is_err(mas))
5115 return xa_err(entry: mas->node);
5116
5117 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5118 return -EBUSY;
5119
5120 /* Trim the upper limit to the max. */
5121 if (max < mas->last)
5122 mas->last = max;
5123
5124 mas->index = mas->last - size + 1;
5125 return 0;
5126}
5127EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5128
5129/*
5130 * mte_dead_leaves() - Mark all leaves of a node as dead.
5131 * @mas: The maple state
5132 * @slots: Pointer to the slot array
5133 * @type: The maple node type
5134 *
5135 * Must hold the write lock.
5136 *
5137 * Return: The number of leaves marked as dead.
5138 */
5139static inline
5140unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5141 void __rcu **slots)
5142{
5143 struct maple_node *node;
5144 enum maple_type type;
5145 void *entry;
5146 int offset;
5147
5148 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5149 entry = mt_slot(mt, slots, offset);
5150 type = mte_node_type(entry);
5151 node = mte_to_node(entry);
5152 /* Use both node and type to catch LE & BE metadata */
5153 if (!node || !type)
5154 break;
5155
5156 mte_set_node_dead(mn: entry);
5157 node->type = type;
5158 rcu_assign_pointer(slots[offset], node);
5159 }
5160
5161 return offset;
5162}
5163
5164/**
5165 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5166 * @enode: The maple encoded node
5167 * @offset: The starting offset
5168 *
5169 * Note: This can only be used from the RCU callback context.
5170 */
5171static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5172{
5173 struct maple_node *node, *next;
5174 void __rcu **slots = NULL;
5175
5176 next = mte_to_node(entry: *enode);
5177 do {
5178 *enode = ma_enode_ptr(next);
5179 node = mte_to_node(entry: *enode);
5180 slots = ma_slots(mn: node, mt: node->type);
5181 next = rcu_dereference_protected(slots[offset],
5182 lock_is_held(&rcu_callback_map));
5183 offset = 0;
5184 } while (!ma_is_leaf(type: next->type));
5185
5186 return slots;
5187}
5188
5189/**
5190 * mt_free_walk() - Walk & free a tree in the RCU callback context
5191 * @head: The RCU head that's within the node.
5192 *
5193 * Note: This can only be used from the RCU callback context.
5194 */
5195static void mt_free_walk(struct rcu_head *head)
5196{
5197 void __rcu **slots;
5198 struct maple_node *node, *start;
5199 struct maple_enode *enode;
5200 unsigned char offset;
5201 enum maple_type type;
5202
5203 node = container_of(head, struct maple_node, rcu);
5204
5205 if (ma_is_leaf(type: node->type))
5206 goto free_leaf;
5207
5208 start = node;
5209 enode = mt_mk_node(node, type: node->type);
5210 slots = mte_dead_walk(enode: &enode, offset: 0);
5211 node = mte_to_node(entry: enode);
5212 do {
5213 mt_free_bulk(size: node->slot_len, nodes: slots);
5214 offset = node->parent_slot + 1;
5215 enode = node->piv_parent;
5216 if (mte_to_node(entry: enode) == node)
5217 goto free_leaf;
5218
5219 type = mte_node_type(entry: enode);
5220 slots = ma_slots(mn: mte_to_node(entry: enode), mt: type);
5221 if ((offset < mt_slots[type]) &&
5222 rcu_dereference_protected(slots[offset],
5223 lock_is_held(&rcu_callback_map)))
5224 slots = mte_dead_walk(enode: &enode, offset);
5225 node = mte_to_node(entry: enode);
5226 } while ((node != start) || (node->slot_len < offset));
5227
5228 slots = ma_slots(mn: node, mt: node->type);
5229 mt_free_bulk(size: node->slot_len, nodes: slots);
5230
5231free_leaf:
5232 mt_free_rcu(head: &node->rcu);
5233}
5234
5235static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5236 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5237{
5238 struct maple_node *node;
5239 struct maple_enode *next = *enode;
5240 void __rcu **slots = NULL;
5241 enum maple_type type;
5242 unsigned char next_offset = 0;
5243
5244 do {
5245 *enode = next;
5246 node = mte_to_node(entry: *enode);
5247 type = mte_node_type(entry: *enode);
5248 slots = ma_slots(mn: node, mt: type);
5249 next = mt_slot_locked(mt, slots, offset: next_offset);
5250 if ((mte_dead_node(enode: next)))
5251 next = mt_slot_locked(mt, slots, offset: ++next_offset);
5252
5253 mte_set_node_dead(mn: *enode);
5254 node->type = type;
5255 node->piv_parent = prev;
5256 node->parent_slot = offset;
5257 offset = next_offset;
5258 next_offset = 0;
5259 prev = *enode;
5260 } while (!mte_is_leaf(entry: next));
5261
5262 return slots;
5263}
5264
5265static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5266 bool free)
5267{
5268 void __rcu **slots;
5269 struct maple_node *node = mte_to_node(entry: enode);
5270 struct maple_enode *start;
5271
5272 if (mte_is_leaf(entry: enode)) {
5273 node->type = mte_node_type(entry: enode);
5274 goto free_leaf;
5275 }
5276
5277 start = enode;
5278 slots = mte_destroy_descend(enode: &enode, mt, prev: start, offset: 0);
5279 node = mte_to_node(entry: enode); // Updated in the above call.
5280 do {
5281 enum maple_type type;
5282 unsigned char offset;
5283 struct maple_enode *parent, *tmp;
5284
5285 node->slot_len = mte_dead_leaves(enode, mt, slots);
5286 if (free)
5287 mt_free_bulk(size: node->slot_len, nodes: slots);
5288 offset = node->parent_slot + 1;
5289 enode = node->piv_parent;
5290 if (mte_to_node(entry: enode) == node)
5291 goto free_leaf;
5292
5293 type = mte_node_type(entry: enode);
5294 slots = ma_slots(mn: mte_to_node(entry: enode), mt: type);
5295 if (offset >= mt_slots[type])
5296 goto next;
5297
5298 tmp = mt_slot_locked(mt, slots, offset);
5299 if (mte_node_type(entry: tmp) && mte_to_node(entry: tmp)) {
5300 parent = enode;
5301 enode = tmp;
5302 slots = mte_destroy_descend(enode: &enode, mt, prev: parent, offset);
5303 }
5304next:
5305 node = mte_to_node(entry: enode);
5306 } while (start != enode);
5307
5308 node = mte_to_node(entry: enode);
5309 node->slot_len = mte_dead_leaves(enode, mt, slots);
5310 if (free)
5311 mt_free_bulk(size: node->slot_len, nodes: slots);
5312
5313free_leaf:
5314 if (free)
5315 mt_free_rcu(head: &node->rcu);
5316 else
5317 mt_clear_meta(mt, mn: node, type: node->type);
5318}
5319
5320/*
5321 * mte_destroy_walk() - Free a tree or sub-tree.
5322 * @enode: the encoded maple node (maple_enode) to start
5323 * @mt: the tree to free - needed for node types.
5324 *
5325 * Must hold the write lock.
5326 */
5327static inline void mte_destroy_walk(struct maple_enode *enode,
5328 struct maple_tree *mt)
5329{
5330 struct maple_node *node = mte_to_node(entry: enode);
5331
5332 if (mt_in_rcu(mt)) {
5333 mt_destroy_walk(enode, mt, free: false);
5334 call_rcu(head: &node->rcu, func: mt_free_walk);
5335 } else {
5336 mt_destroy_walk(enode, mt, free: true);
5337 }
5338}
5339
5340static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5341{
5342 if (!mas_is_active(mas: wr_mas->mas)) {
5343 if (mas_is_start(mas: wr_mas->mas))
5344 return;
5345
5346 if (unlikely(mas_is_paused(wr_mas->mas)))
5347 goto reset;
5348
5349 if (unlikely(mas_is_none(wr_mas->mas)))
5350 goto reset;
5351
5352 if (unlikely(mas_is_overflow(wr_mas->mas)))
5353 goto reset;
5354
5355 if (unlikely(mas_is_underflow(wr_mas->mas)))
5356 goto reset;
5357 }
5358
5359 /*
5360 * A less strict version of mas_is_span_wr() where we allow spanning
5361 * writes within this node. This is to stop partial walks in
5362 * mas_prealloc() from being reset.
5363 */
5364 if (wr_mas->mas->last > wr_mas->mas->max)
5365 goto reset;
5366
5367 if (wr_mas->entry)
5368 return;
5369
5370 if (mte_is_leaf(entry: wr_mas->mas->node) &&
5371 wr_mas->mas->last == wr_mas->mas->max)
5372 goto reset;
5373
5374 return;
5375
5376reset:
5377 mas_reset(mas: wr_mas->mas);
5378}
5379
5380/* Interface */
5381
5382/**
5383 * mas_store() - Store an @entry.
5384 * @mas: The maple state.
5385 * @entry: The entry to store.
5386 *
5387 * The @mas->index and @mas->last is used to set the range for the @entry.
5388 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5389 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5390 *
5391 * Return: the first entry between mas->index and mas->last or %NULL.
5392 */
5393void *mas_store(struct ma_state *mas, void *entry)
5394{
5395 MA_WR_STATE(wr_mas, mas, entry);
5396
5397 trace_ma_write(fn: __func__, mas, piv: 0, val: entry);
5398#ifdef CONFIG_DEBUG_MAPLE_TREE
5399 if (MAS_WARN_ON(mas, mas->index > mas->last))
5400 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
5401
5402 if (mas->index > mas->last) {
5403 mas_set_err(mas, err: -EINVAL);
5404 return NULL;
5405 }
5406
5407#endif
5408
5409 /*
5410 * Storing is the same operation as insert with the added caveat that it
5411 * can overwrite entries. Although this seems simple enough, one may
5412 * want to examine what happens if a single store operation was to
5413 * overwrite multiple entries within a self-balancing B-Tree.
5414 */
5415 mas_wr_store_setup(wr_mas: &wr_mas);
5416 mas_wr_store_entry(wr_mas: &wr_mas);
5417 return wr_mas.content;
5418}
5419EXPORT_SYMBOL_GPL(mas_store);
5420
5421/**
5422 * mas_store_gfp() - Store a value into the tree.
5423 * @mas: The maple state
5424 * @entry: The entry to store
5425 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5426 *
5427 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5428 * be allocated.
5429 */
5430int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5431{
5432 MA_WR_STATE(wr_mas, mas, entry);
5433
5434 mas_wr_store_setup(wr_mas: &wr_mas);
5435 trace_ma_write(fn: __func__, mas, piv: 0, val: entry);
5436retry:
5437 mas_wr_store_entry(wr_mas: &wr_mas);
5438 if (unlikely(mas_nomem(mas, gfp)))
5439 goto retry;
5440
5441 if (unlikely(mas_is_err(mas)))
5442 return xa_err(entry: mas->node);
5443
5444 return 0;
5445}
5446EXPORT_SYMBOL_GPL(mas_store_gfp);
5447
5448/**
5449 * mas_store_prealloc() - Store a value into the tree using memory
5450 * preallocated in the maple state.
5451 * @mas: The maple state
5452 * @entry: The entry to store.
5453 */
5454void mas_store_prealloc(struct ma_state *mas, void *entry)
5455{
5456 MA_WR_STATE(wr_mas, mas, entry);
5457
5458 mas_wr_store_setup(wr_mas: &wr_mas);
5459 trace_ma_write(fn: __func__, mas, piv: 0, val: entry);
5460 mas_wr_store_entry(wr_mas: &wr_mas);
5461 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5462 mas_destroy(mas);
5463}
5464EXPORT_SYMBOL_GPL(mas_store_prealloc);
5465
5466/**
5467 * mas_preallocate() - Preallocate enough nodes for a store operation
5468 * @mas: The maple state
5469 * @entry: The entry that will be stored
5470 * @gfp: The GFP_FLAGS to use for allocations.
5471 *
5472 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5473 */
5474int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5475{
5476 MA_WR_STATE(wr_mas, mas, entry);
5477 unsigned char node_size;
5478 int request = 1;
5479 int ret;
5480
5481
5482 if (unlikely(!mas->index && mas->last == ULONG_MAX))
5483 goto ask_now;
5484
5485 mas_wr_store_setup(wr_mas: &wr_mas);
5486 wr_mas.content = mas_start(mas);
5487 /* Root expand */
5488 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5489 goto ask_now;
5490
5491 if (unlikely(!mas_wr_walk(&wr_mas))) {
5492 /* Spanning store, use worst case for now */
5493 request = 1 + mas_mt_height(mas) * 3;
5494 goto ask_now;
5495 }
5496
5497 /* At this point, we are at the leaf node that needs to be altered. */
5498 /* Exact fit, no nodes needed. */
5499 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5500 return 0;
5501
5502 mas_wr_end_piv(wr_mas: &wr_mas);
5503 node_size = mas_wr_new_end(wr_mas: &wr_mas);
5504 if (node_size >= mt_slots[wr_mas.type]) {
5505 /* Split, worst case for now. */
5506 request = 1 + mas_mt_height(mas) * 2;
5507 goto ask_now;
5508 }
5509
5510 /* New root needs a singe node */
5511 if (unlikely(mte_is_root(mas->node)))
5512 goto ask_now;
5513
5514 /* Potential spanning rebalance collapsing a node, use worst-case */
5515 if (node_size - 1 <= mt_min_slots[wr_mas.type])
5516 request = mas_mt_height(mas) * 2 - 1;
5517
5518 /* node store, slot store needs one node */
5519ask_now:
5520 mas_node_count_gfp(mas, count: request, gfp);
5521 mas->mas_flags |= MA_STATE_PREALLOC;
5522 if (likely(!mas_is_err(mas)))
5523 return 0;
5524
5525 mas_set_alloc_req(mas, count: 0);
5526 ret = xa_err(entry: mas->node);
5527 mas_reset(mas);
5528 mas_destroy(mas);
5529 mas_reset(mas);
5530 return ret;
5531}
5532EXPORT_SYMBOL_GPL(mas_preallocate);
5533
5534/*
5535 * mas_destroy() - destroy a maple state.
5536 * @mas: The maple state
5537 *
5538 * Upon completion, check the left-most node and rebalance against the node to
5539 * the right if necessary. Frees any allocated nodes associated with this maple
5540 * state.
5541 */
5542void mas_destroy(struct ma_state *mas)
5543{
5544 struct maple_alloc *node;
5545 unsigned long total;
5546
5547 /*
5548 * When using mas_for_each() to insert an expected number of elements,
5549 * it is possible that the number inserted is less than the expected
5550 * number. To fix an invalid final node, a check is performed here to
5551 * rebalance the previous node with the final node.
5552 */
5553 if (mas->mas_flags & MA_STATE_REBALANCE) {
5554 unsigned char end;
5555
5556 mas_start(mas);
5557 mtree_range_walk(mas);
5558 end = mas_data_end(mas) + 1;
5559 if (end < mt_min_slot_count(mas->node) - 1)
5560 mas_destroy_rebalance(mas, end);
5561
5562 mas->mas_flags &= ~MA_STATE_REBALANCE;
5563 }
5564 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5565
5566 total = mas_allocated(mas);
5567 while (total) {
5568 node = mas->alloc;
5569 mas->alloc = node->slot[0];
5570 if (node->node_count > 1) {
5571 size_t count = node->node_count - 1;
5572
5573 mt_free_bulk(size: count, nodes: (void __rcu **)&node->slot[1]);
5574 total -= count;
5575 }
5576 kmem_cache_free(s: maple_node_cache, objp: node);
5577 total--;
5578 }
5579
5580 mas->alloc = NULL;
5581}
5582EXPORT_SYMBOL_GPL(mas_destroy);
5583
5584/*
5585 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5586 * @mas: The maple state
5587 * @nr_entries: The number of expected entries.
5588 *
5589 * This will attempt to pre-allocate enough nodes to store the expected number
5590 * of entries. The allocations will occur using the bulk allocator interface
5591 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5592 * to ensure any unused nodes are freed.
5593 *
5594 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5595 */
5596int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5597{
5598 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5599 struct maple_enode *enode = mas->node;
5600 int nr_nodes;
5601 int ret;
5602
5603 /*
5604 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5605 * forking a process and duplicating the VMAs from one tree to a new
5606 * tree. When such a situation arises, it is known that the new tree is
5607 * not going to be used until the entire tree is populated. For
5608 * performance reasons, it is best to use a bulk load with RCU disabled.
5609 * This allows for optimistic splitting that favours the left and reuse
5610 * of nodes during the operation.
5611 */
5612
5613 /* Optimize splitting for bulk insert in-order */
5614 mas->mas_flags |= MA_STATE_BULK;
5615
5616 /*
5617 * Avoid overflow, assume a gap between each entry and a trailing null.
5618 * If this is wrong, it just means allocation can happen during
5619 * insertion of entries.
5620 */
5621 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5622 if (!mt_is_alloc(mt: mas->tree))
5623 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5624
5625 /* Leaves; reduce slots to keep space for expansion */
5626 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5627 /* Internal nodes */
5628 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5629 /* Add working room for split (2 nodes) + new parents */
5630 mas_node_count_gfp(mas, count: nr_nodes + 3, GFP_KERNEL);
5631
5632 /* Detect if allocations run out */
5633 mas->mas_flags |= MA_STATE_PREALLOC;
5634
5635 if (!mas_is_err(mas))
5636 return 0;
5637
5638 ret = xa_err(entry: mas->node);
5639 mas->node = enode;
5640 mas_destroy(mas);
5641 return ret;
5642
5643}
5644EXPORT_SYMBOL_GPL(mas_expected_entries);
5645
5646static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5647 void **entry)
5648{
5649 bool was_none = mas_is_none(mas);
5650
5651 if (unlikely(mas->last >= max)) {
5652 mas->node = MAS_OVERFLOW;
5653 return true;
5654 }
5655
5656 if (mas_is_active(mas))
5657 return false;
5658
5659 if (mas_is_none(mas) || mas_is_paused(mas)) {
5660 mas->node = MAS_START;
5661 } else if (mas_is_overflow(mas)) {
5662 /* Overflowed before, but the max changed */
5663 mas->node = MAS_START;
5664 } else if (mas_is_underflow(mas)) {
5665 mas->node = MAS_START;
5666 *entry = mas_walk(mas);
5667 if (*entry)
5668 return true;
5669 }
5670
5671 if (mas_is_start(mas))
5672 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5673
5674 if (mas_is_ptr(mas)) {
5675 *entry = NULL;
5676 if (was_none && mas->index == 0) {
5677 mas->index = mas->last = 0;
5678 return true;
5679 }
5680 mas->index = 1;
5681 mas->last = ULONG_MAX;
5682 mas->node = MAS_NONE;
5683 return true;
5684 }
5685
5686 if (mas_is_none(mas))
5687 return true;
5688
5689 return false;
5690}
5691
5692/**
5693 * mas_next() - Get the next entry.
5694 * @mas: The maple state
5695 * @max: The maximum index to check.
5696 *
5697 * Returns the next entry after @mas->index.
5698 * Must hold rcu_read_lock or the write lock.
5699 * Can return the zero entry.
5700 *
5701 * Return: The next entry or %NULL
5702 */
5703void *mas_next(struct ma_state *mas, unsigned long max)
5704{
5705 void *entry = NULL;
5706
5707 if (mas_next_setup(mas, max, entry: &entry))
5708 return entry;
5709
5710 /* Retries on dead nodes handled by mas_next_slot */
5711 return mas_next_slot(mas, max, empty: false, set_overflow: true);
5712}
5713EXPORT_SYMBOL_GPL(mas_next);
5714
5715/**
5716 * mas_next_range() - Advance the maple state to the next range
5717 * @mas: The maple state
5718 * @max: The maximum index to check.
5719 *
5720 * Sets @mas->index and @mas->last to the range.
5721 * Must hold rcu_read_lock or the write lock.
5722 * Can return the zero entry.
5723 *
5724 * Return: The next entry or %NULL
5725 */
5726void *mas_next_range(struct ma_state *mas, unsigned long max)
5727{
5728 void *entry = NULL;
5729
5730 if (mas_next_setup(mas, max, entry: &entry))
5731 return entry;
5732
5733 /* Retries on dead nodes handled by mas_next_slot */
5734 return mas_next_slot(mas, max, empty: true, set_overflow: true);
5735}
5736EXPORT_SYMBOL_GPL(mas_next_range);
5737
5738/**
5739 * mt_next() - get the next value in the maple tree
5740 * @mt: The maple tree
5741 * @index: The start index
5742 * @max: The maximum index to check
5743 *
5744 * Takes RCU read lock internally to protect the search, which does not
5745 * protect the returned pointer after dropping RCU read lock.
5746 * See also: Documentation/core-api/maple_tree.rst
5747 *
5748 * Return: The entry higher than @index or %NULL if nothing is found.
5749 */
5750void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5751{
5752 void *entry = NULL;
5753 MA_STATE(mas, mt, index, index);
5754
5755 rcu_read_lock();
5756 entry = mas_next(&mas, max);
5757 rcu_read_unlock();
5758 return entry;
5759}
5760EXPORT_SYMBOL_GPL(mt_next);
5761
5762static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5763 void **entry)
5764{
5765 if (unlikely(mas->index <= min)) {
5766 mas->node = MAS_UNDERFLOW;
5767 return true;
5768 }
5769
5770 if (mas_is_active(mas))
5771 return false;
5772
5773 if (mas_is_overflow(mas)) {
5774 mas->node = MAS_START;
5775 *entry = mas_walk(mas);
5776 if (*entry)
5777 return true;
5778 }
5779
5780 if (mas_is_none(mas) || mas_is_paused(mas)) {
5781 mas->node = MAS_START;
5782 } else if (mas_is_underflow(mas)) {
5783 /* underflowed before but the min changed */
5784 mas->node = MAS_START;
5785 }
5786
5787 if (mas_is_start(mas))
5788 mas_walk(mas);
5789
5790 if (unlikely(mas_is_ptr(mas))) {
5791 if (!mas->index)
5792 goto none;
5793 mas->index = mas->last = 0;
5794 *entry = mas_root(mas);
5795 return true;
5796 }
5797
5798 if (mas_is_none(mas)) {
5799 if (mas->index) {
5800 /* Walked to out-of-range pointer? */
5801 mas->index = mas->last = 0;
5802 mas->node = MAS_ROOT;
5803 *entry = mas_root(mas);
5804 return true;
5805 }
5806 return true;
5807 }
5808
5809 return false;
5810
5811none:
5812 mas->node = MAS_NONE;
5813 return true;
5814}
5815
5816/**
5817 * mas_prev() - Get the previous entry
5818 * @mas: The maple state
5819 * @min: The minimum value to check.
5820 *
5821 * Must hold rcu_read_lock or the write lock.
5822 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5823 * searchable nodes.
5824 *
5825 * Return: the previous value or %NULL.
5826 */
5827void *mas_prev(struct ma_state *mas, unsigned long min)
5828{
5829 void *entry = NULL;
5830
5831 if (mas_prev_setup(mas, min, entry: &entry))
5832 return entry;
5833
5834 return mas_prev_slot(mas, min, empty: false, set_underflow: true);
5835}
5836EXPORT_SYMBOL_GPL(mas_prev);
5837
5838/**
5839 * mas_prev_range() - Advance to the previous range
5840 * @mas: The maple state
5841 * @min: The minimum value to check.
5842 *
5843 * Sets @mas->index and @mas->last to the range.
5844 * Must hold rcu_read_lock or the write lock.
5845 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5846 * searchable nodes.
5847 *
5848 * Return: the previous value or %NULL.
5849 */
5850void *mas_prev_range(struct ma_state *mas, unsigned long min)
5851{
5852 void *entry = NULL;
5853
5854 if (mas_prev_setup(mas, min, entry: &entry))
5855 return entry;
5856
5857 return mas_prev_slot(mas, min, empty: true, set_underflow: true);
5858}
5859EXPORT_SYMBOL_GPL(mas_prev_range);
5860
5861/**
5862 * mt_prev() - get the previous value in the maple tree
5863 * @mt: The maple tree
5864 * @index: The start index
5865 * @min: The minimum index to check
5866 *
5867 * Takes RCU read lock internally to protect the search, which does not
5868 * protect the returned pointer after dropping RCU read lock.
5869 * See also: Documentation/core-api/maple_tree.rst
5870 *
5871 * Return: The entry before @index or %NULL if nothing is found.
5872 */
5873void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5874{
5875 void *entry = NULL;
5876 MA_STATE(mas, mt, index, index);
5877
5878 rcu_read_lock();
5879 entry = mas_prev(&mas, min);
5880 rcu_read_unlock();
5881 return entry;
5882}
5883EXPORT_SYMBOL_GPL(mt_prev);
5884
5885/**
5886 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5887 * @mas: The maple state to pause
5888 *
5889 * Some users need to pause a walk and drop the lock they're holding in
5890 * order to yield to a higher priority thread or carry out an operation
5891 * on an entry. Those users should call this function before they drop
5892 * the lock. It resets the @mas to be suitable for the next iteration
5893 * of the loop after the user has reacquired the lock. If most entries
5894 * found during a walk require you to call mas_pause(), the mt_for_each()
5895 * iterator may be more appropriate.
5896 *
5897 */
5898void mas_pause(struct ma_state *mas)
5899{
5900 mas->node = MAS_PAUSE;
5901}
5902EXPORT_SYMBOL_GPL(mas_pause);
5903
5904/**
5905 * mas_find_setup() - Internal function to set up mas_find*().
5906 * @mas: The maple state
5907 * @max: The maximum index
5908 * @entry: Pointer to the entry
5909 *
5910 * Returns: True if entry is the answer, false otherwise.
5911 */
5912static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5913 void **entry)
5914{
5915 if (mas_is_active(mas)) {
5916 if (mas->last < max)
5917 return false;
5918
5919 return true;
5920 }
5921
5922 if (mas_is_paused(mas)) {
5923 if (unlikely(mas->last >= max))
5924 return true;
5925
5926 mas->index = ++mas->last;
5927 mas->node = MAS_START;
5928 } else if (mas_is_none(mas)) {
5929 if (unlikely(mas->last >= max))
5930 return true;
5931
5932 mas->index = mas->last;
5933 mas->node = MAS_START;
5934 } else if (mas_is_overflow(mas) || mas_is_underflow(mas)) {
5935 if (mas->index > max) {
5936 mas->node = MAS_OVERFLOW;
5937 return true;
5938 }
5939
5940 mas->node = MAS_START;
5941 }
5942
5943 if (mas_is_start(mas)) {
5944 /* First run or continue */
5945 if (mas->index > max)
5946 return true;
5947
5948 *entry = mas_walk(mas);
5949 if (*entry)
5950 return true;
5951
5952 }
5953
5954 if (unlikely(!mas_searchable(mas))) {
5955 if (unlikely(mas_is_ptr(mas)))
5956 goto ptr_out_of_range;
5957
5958 return true;
5959 }
5960
5961 if (mas->index == max)
5962 return true;
5963
5964 return false;
5965
5966ptr_out_of_range:
5967 mas->node = MAS_NONE;
5968 mas->index = 1;
5969 mas->last = ULONG_MAX;
5970 return true;
5971}
5972
5973/**
5974 * mas_find() - On the first call, find the entry at or after mas->index up to
5975 * %max. Otherwise, find the entry after mas->index.
5976 * @mas: The maple state
5977 * @max: The maximum value to check.
5978 *
5979 * Must hold rcu_read_lock or the write lock.
5980 * If an entry exists, last and index are updated accordingly.
5981 * May set @mas->node to MAS_NONE.
5982 *
5983 * Return: The entry or %NULL.
5984 */
5985void *mas_find(struct ma_state *mas, unsigned long max)
5986{
5987 void *entry = NULL;
5988
5989 if (mas_find_setup(mas, max, entry: &entry))
5990 return entry;
5991
5992 /* Retries on dead nodes handled by mas_next_slot */
5993 return mas_next_slot(mas, max, empty: false, set_overflow: false);
5994}
5995EXPORT_SYMBOL_GPL(mas_find);
5996
5997/**
5998 * mas_find_range() - On the first call, find the entry at or after
5999 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6000 * @mas: The maple state
6001 * @max: The maximum value to check.
6002 *
6003 * Must hold rcu_read_lock or the write lock.
6004 * If an entry exists, last and index are updated accordingly.
6005 * May set @mas->node to MAS_NONE.
6006 *
6007 * Return: The entry or %NULL.
6008 */
6009void *mas_find_range(struct ma_state *mas, unsigned long max)
6010{
6011 void *entry = NULL;
6012
6013 if (mas_find_setup(mas, max, entry: &entry))
6014 return entry;
6015
6016 /* Retries on dead nodes handled by mas_next_slot */
6017 return mas_next_slot(mas, max, empty: true, set_overflow: false);
6018}
6019EXPORT_SYMBOL_GPL(mas_find_range);
6020
6021/**
6022 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6023 * @mas: The maple state
6024 * @min: The minimum index
6025 * @entry: Pointer to the entry
6026 *
6027 * Returns: True if entry is the answer, false otherwise.
6028 */
6029static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6030 void **entry)
6031{
6032 if (mas_is_active(mas)) {
6033 if (mas->index > min)
6034 return false;
6035
6036 return true;
6037 }
6038
6039 if (mas_is_paused(mas)) {
6040 if (unlikely(mas->index <= min)) {
6041 mas->node = MAS_NONE;
6042 return true;
6043 }
6044 mas->node = MAS_START;
6045 mas->last = --mas->index;
6046 } else if (mas_is_none(mas)) {
6047 if (mas->index <= min)
6048 goto none;
6049
6050 mas->last = mas->index;
6051 mas->node = MAS_START;
6052 } else if (mas_is_underflow(mas) || mas_is_overflow(mas)) {
6053 if (mas->last <= min) {
6054 mas->node = MAS_UNDERFLOW;
6055 return true;
6056 }
6057
6058 mas->node = MAS_START;
6059 }
6060
6061 if (mas_is_start(mas)) {
6062 /* First run or continue */
6063 if (mas->index < min)
6064 return true;
6065
6066 *entry = mas_walk(mas);
6067 if (*entry)
6068 return true;
6069 }
6070
6071 if (unlikely(!mas_searchable(mas))) {
6072 if (mas_is_ptr(mas))
6073 goto none;
6074
6075 if (mas_is_none(mas)) {
6076 /*
6077 * Walked to the location, and there was nothing so the
6078 * previous location is 0.
6079 */
6080 mas->last = mas->index = 0;
6081 mas->node = MAS_ROOT;
6082 *entry = mas_root(mas);
6083 return true;
6084 }
6085 }
6086
6087 if (mas->index < min)
6088 return true;
6089
6090 return false;
6091
6092none:
6093 mas->node = MAS_NONE;
6094 return true;
6095}
6096
6097/**
6098 * mas_find_rev: On the first call, find the first non-null entry at or below
6099 * mas->index down to %min. Otherwise find the first non-null entry below
6100 * mas->index down to %min.
6101 * @mas: The maple state
6102 * @min: The minimum value to check.
6103 *
6104 * Must hold rcu_read_lock or the write lock.
6105 * If an entry exists, last and index are updated accordingly.
6106 * May set @mas->node to MAS_NONE.
6107 *
6108 * Return: The entry or %NULL.
6109 */
6110void *mas_find_rev(struct ma_state *mas, unsigned long min)
6111{
6112 void *entry = NULL;
6113
6114 if (mas_find_rev_setup(mas, min, entry: &entry))
6115 return entry;
6116
6117 /* Retries on dead nodes handled by mas_prev_slot */
6118 return mas_prev_slot(mas, min, empty: false, set_underflow: false);
6119
6120}
6121EXPORT_SYMBOL_GPL(mas_find_rev);
6122
6123/**
6124 * mas_find_range_rev: On the first call, find the first non-null entry at or
6125 * below mas->index down to %min. Otherwise advance to the previous slot after
6126 * mas->index down to %min.
6127 * @mas: The maple state
6128 * @min: The minimum value to check.
6129 *
6130 * Must hold rcu_read_lock or the write lock.
6131 * If an entry exists, last and index are updated accordingly.
6132 * May set @mas->node to MAS_NONE.
6133 *
6134 * Return: The entry or %NULL.
6135 */
6136void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6137{
6138 void *entry = NULL;
6139
6140 if (mas_find_rev_setup(mas, min, entry: &entry))
6141 return entry;
6142
6143 /* Retries on dead nodes handled by mas_prev_slot */
6144 return mas_prev_slot(mas, min, empty: true, set_underflow: false);
6145}
6146EXPORT_SYMBOL_GPL(mas_find_range_rev);
6147
6148/**
6149 * mas_erase() - Find the range in which index resides and erase the entire
6150 * range.
6151 * @mas: The maple state
6152 *
6153 * Must hold the write lock.
6154 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6155 * erases that range.
6156 *
6157 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6158 */
6159void *mas_erase(struct ma_state *mas)
6160{
6161 void *entry;
6162 MA_WR_STATE(wr_mas, mas, NULL);
6163
6164 if (mas_is_none(mas) || mas_is_paused(mas))
6165 mas->node = MAS_START;
6166
6167 /* Retry unnecessary when holding the write lock. */
6168 entry = mas_state_walk(mas);
6169 if (!entry)
6170 return NULL;
6171
6172write_retry:
6173 /* Must reset to ensure spanning writes of last slot are detected */
6174 mas_reset(mas);
6175 mas_wr_store_setup(wr_mas: &wr_mas);
6176 mas_wr_store_entry(wr_mas: &wr_mas);
6177 if (mas_nomem(mas, GFP_KERNEL))
6178 goto write_retry;
6179
6180 return entry;
6181}
6182EXPORT_SYMBOL_GPL(mas_erase);
6183
6184/**
6185 * mas_nomem() - Check if there was an error allocating and do the allocation
6186 * if necessary If there are allocations, then free them.
6187 * @mas: The maple state
6188 * @gfp: The GFP_FLAGS to use for allocations
6189 * Return: true on allocation, false otherwise.
6190 */
6191bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6192 __must_hold(mas->tree->ma_lock)
6193{
6194 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6195 mas_destroy(mas);
6196 return false;
6197 }
6198
6199 if (gfpflags_allow_blocking(gfp_flags: gfp) && !mt_external_lock(mt: mas->tree)) {
6200 mtree_unlock(mas->tree);
6201 mas_alloc_nodes(mas, gfp);
6202 mtree_lock(mas->tree);
6203 } else {
6204 mas_alloc_nodes(mas, gfp);
6205 }
6206
6207 if (!mas_allocated(mas))
6208 return false;
6209
6210 mas->node = MAS_START;
6211 return true;
6212}
6213
6214void __init maple_tree_init(void)
6215{
6216 maple_node_cache = kmem_cache_create(name: "maple_node",
6217 size: sizeof(struct maple_node), align: sizeof(struct maple_node),
6218 SLAB_PANIC, NULL);
6219}
6220
6221/**
6222 * mtree_load() - Load a value stored in a maple tree
6223 * @mt: The maple tree
6224 * @index: The index to load
6225 *
6226 * Return: the entry or %NULL
6227 */
6228void *mtree_load(struct maple_tree *mt, unsigned long index)
6229{
6230 MA_STATE(mas, mt, index, index);
6231 void *entry;
6232
6233 trace_ma_read(fn: __func__, mas: &mas);
6234 rcu_read_lock();
6235retry:
6236 entry = mas_start(mas: &mas);
6237 if (unlikely(mas_is_none(&mas)))
6238 goto unlock;
6239
6240 if (unlikely(mas_is_ptr(&mas))) {
6241 if (index)
6242 entry = NULL;
6243
6244 goto unlock;
6245 }
6246
6247 entry = mtree_lookup_walk(mas: &mas);
6248 if (!entry && unlikely(mas_is_start(&mas)))
6249 goto retry;
6250unlock:
6251 rcu_read_unlock();
6252 if (xa_is_zero(entry))
6253 return NULL;
6254
6255 return entry;
6256}
6257EXPORT_SYMBOL(mtree_load);
6258
6259/**
6260 * mtree_store_range() - Store an entry at a given range.
6261 * @mt: The maple tree
6262 * @index: The start of the range
6263 * @last: The end of the range
6264 * @entry: The entry to store
6265 * @gfp: The GFP_FLAGS to use for allocations
6266 *
6267 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6268 * be allocated.
6269 */
6270int mtree_store_range(struct maple_tree *mt, unsigned long index,
6271 unsigned long last, void *entry, gfp_t gfp)
6272{
6273 MA_STATE(mas, mt, index, last);
6274 MA_WR_STATE(wr_mas, &mas, entry);
6275
6276 trace_ma_write(fn: __func__, mas: &mas, piv: 0, val: entry);
6277 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6278 return -EINVAL;
6279
6280 if (index > last)
6281 return -EINVAL;
6282
6283 mtree_lock(mt);
6284retry:
6285 mas_wr_store_entry(wr_mas: &wr_mas);
6286 if (mas_nomem(mas: &mas, gfp))
6287 goto retry;
6288
6289 mtree_unlock(mt);
6290 if (mas_is_err(mas: &mas))
6291 return xa_err(entry: mas.node);
6292
6293 return 0;
6294}
6295EXPORT_SYMBOL(mtree_store_range);
6296
6297/**
6298 * mtree_store() - Store an entry at a given index.
6299 * @mt: The maple tree
6300 * @index: The index to store the value
6301 * @entry: The entry to store
6302 * @gfp: The GFP_FLAGS to use for allocations
6303 *
6304 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6305 * be allocated.
6306 */
6307int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6308 gfp_t gfp)
6309{
6310 return mtree_store_range(mt, index, index, entry, gfp);
6311}
6312EXPORT_SYMBOL(mtree_store);
6313
6314/**
6315 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6316 * @mt: The maple tree
6317 * @first: The start of the range
6318 * @last: The end of the range
6319 * @entry: The entry to store
6320 * @gfp: The GFP_FLAGS to use for allocations.
6321 *
6322 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6323 * request, -ENOMEM if memory could not be allocated.
6324 */
6325int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6326 unsigned long last, void *entry, gfp_t gfp)
6327{
6328 MA_STATE(ms, mt, first, last);
6329
6330 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6331 return -EINVAL;
6332
6333 if (first > last)
6334 return -EINVAL;
6335
6336 mtree_lock(mt);
6337retry:
6338 mas_insert(mas: &ms, entry);
6339 if (mas_nomem(mas: &ms, gfp))
6340 goto retry;
6341
6342 mtree_unlock(mt);
6343 if (mas_is_err(mas: &ms))
6344 return xa_err(entry: ms.node);
6345
6346 return 0;
6347}
6348EXPORT_SYMBOL(mtree_insert_range);
6349
6350/**
6351 * mtree_insert() - Insert an entry at a given index if there is no value.
6352 * @mt: The maple tree
6353 * @index : The index to store the value
6354 * @entry: The entry to store
6355 * @gfp: The GFP_FLAGS to use for allocations.
6356 *
6357 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6358 * request, -ENOMEM if memory could not be allocated.
6359 */
6360int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6361 gfp_t gfp)
6362{
6363 return mtree_insert_range(mt, index, index, entry, gfp);
6364}
6365EXPORT_SYMBOL(mtree_insert);
6366
6367int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6368 void *entry, unsigned long size, unsigned long min,
6369 unsigned long max, gfp_t gfp)
6370{
6371 int ret = 0;
6372
6373 MA_STATE(mas, mt, 0, 0);
6374 if (!mt_is_alloc(mt))
6375 return -EINVAL;
6376
6377 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6378 return -EINVAL;
6379
6380 mtree_lock(mt);
6381retry:
6382 ret = mas_empty_area(&mas, min, max, size);
6383 if (ret)
6384 goto unlock;
6385
6386 mas_insert(mas: &mas, entry);
6387 /*
6388 * mas_nomem() may release the lock, causing the allocated area
6389 * to be unavailable, so try to allocate a free area again.
6390 */
6391 if (mas_nomem(mas: &mas, gfp))
6392 goto retry;
6393
6394 if (mas_is_err(mas: &mas))
6395 ret = xa_err(entry: mas.node);
6396 else
6397 *startp = mas.index;
6398
6399unlock:
6400 mtree_unlock(mt);
6401 return ret;
6402}
6403EXPORT_SYMBOL(mtree_alloc_range);
6404
6405int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6406 void *entry, unsigned long size, unsigned long min,
6407 unsigned long max, gfp_t gfp)
6408{
6409 int ret = 0;
6410
6411 MA_STATE(mas, mt, 0, 0);
6412 if (!mt_is_alloc(mt))
6413 return -EINVAL;
6414
6415 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6416 return -EINVAL;
6417
6418 mtree_lock(mt);
6419retry:
6420 ret = mas_empty_area_rev(&mas, min, max, size);
6421 if (ret)
6422 goto unlock;
6423
6424 mas_insert(mas: &mas, entry);
6425 /*
6426 * mas_nomem() may release the lock, causing the allocated area
6427 * to be unavailable, so try to allocate a free area again.
6428 */
6429 if (mas_nomem(mas: &mas, gfp))
6430 goto retry;
6431
6432 if (mas_is_err(mas: &mas))
6433 ret = xa_err(entry: mas.node);
6434 else
6435 *startp = mas.index;
6436
6437unlock:
6438 mtree_unlock(mt);
6439 return ret;
6440}
6441EXPORT_SYMBOL(mtree_alloc_rrange);
6442
6443/**
6444 * mtree_erase() - Find an index and erase the entire range.
6445 * @mt: The maple tree
6446 * @index: The index to erase
6447 *
6448 * Erasing is the same as a walk to an entry then a store of a NULL to that
6449 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6450 *
6451 * Return: The entry stored at the @index or %NULL
6452 */
6453void *mtree_erase(struct maple_tree *mt, unsigned long index)
6454{
6455 void *entry = NULL;
6456
6457 MA_STATE(mas, mt, index, index);
6458 trace_ma_op(fn: __func__, mas: &mas);
6459
6460 mtree_lock(mt);
6461 entry = mas_erase(&mas);
6462 mtree_unlock(mt);
6463
6464 return entry;
6465}
6466EXPORT_SYMBOL(mtree_erase);
6467
6468/**
6469 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6470 * @mt: The maple tree
6471 *
6472 * Note: Does not handle locking.
6473 */
6474void __mt_destroy(struct maple_tree *mt)
6475{
6476 void *root = mt_root_locked(mt);
6477
6478 rcu_assign_pointer(mt->ma_root, NULL);
6479 if (xa_is_node(entry: root))
6480 mte_destroy_walk(enode: root, mt);
6481
6482 mt->ma_flags = 0;
6483}
6484EXPORT_SYMBOL_GPL(__mt_destroy);
6485
6486/**
6487 * mtree_destroy() - Destroy a maple tree
6488 * @mt: The maple tree
6489 *
6490 * Frees all resources used by the tree. Handles locking.
6491 */
6492void mtree_destroy(struct maple_tree *mt)
6493{
6494 mtree_lock(mt);
6495 __mt_destroy(mt);
6496 mtree_unlock(mt);
6497}
6498EXPORT_SYMBOL(mtree_destroy);
6499
6500/**
6501 * mt_find() - Search from the start up until an entry is found.
6502 * @mt: The maple tree
6503 * @index: Pointer which contains the start location of the search
6504 * @max: The maximum value of the search range
6505 *
6506 * Takes RCU read lock internally to protect the search, which does not
6507 * protect the returned pointer after dropping RCU read lock.
6508 * See also: Documentation/core-api/maple_tree.rst
6509 *
6510 * In case that an entry is found @index is updated to point to the next
6511 * possible entry independent whether the found entry is occupying a
6512 * single index or a range if indices.
6513 *
6514 * Return: The entry at or after the @index or %NULL
6515 */
6516void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6517{
6518 MA_STATE(mas, mt, *index, *index);
6519 void *entry;
6520#ifdef CONFIG_DEBUG_MAPLE_TREE
6521 unsigned long copy = *index;
6522#endif
6523
6524 trace_ma_read(fn: __func__, mas: &mas);
6525
6526 if ((*index) > max)
6527 return NULL;
6528
6529 rcu_read_lock();
6530retry:
6531 entry = mas_state_walk(mas: &mas);
6532 if (mas_is_start(mas: &mas))
6533 goto retry;
6534
6535 if (unlikely(xa_is_zero(entry)))
6536 entry = NULL;
6537
6538 if (entry)
6539 goto unlock;
6540
6541 while (mas_searchable(mas: &mas) && (mas.last < max)) {
6542 entry = mas_next_entry(mas: &mas, limit: max);
6543 if (likely(entry && !xa_is_zero(entry)))
6544 break;
6545 }
6546
6547 if (unlikely(xa_is_zero(entry)))
6548 entry = NULL;
6549unlock:
6550 rcu_read_unlock();
6551 if (likely(entry)) {
6552 *index = mas.last + 1;
6553#ifdef CONFIG_DEBUG_MAPLE_TREE
6554 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6555 pr_err("index not increased! %lx <= %lx\n",
6556 *index, copy);
6557#endif
6558 }
6559
6560 return entry;
6561}
6562EXPORT_SYMBOL(mt_find);
6563
6564/**
6565 * mt_find_after() - Search from the start up until an entry is found.
6566 * @mt: The maple tree
6567 * @index: Pointer which contains the start location of the search
6568 * @max: The maximum value to check
6569 *
6570 * Same as mt_find() except that it checks @index for 0 before
6571 * searching. If @index == 0, the search is aborted. This covers a wrap
6572 * around of @index to 0 in an iterator loop.
6573 *
6574 * Return: The entry at or after the @index or %NULL
6575 */
6576void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6577 unsigned long max)
6578{
6579 if (!(*index))
6580 return NULL;
6581
6582 return mt_find(mt, index, max);
6583}
6584EXPORT_SYMBOL(mt_find_after);
6585
6586#ifdef CONFIG_DEBUG_MAPLE_TREE
6587atomic_t maple_tree_tests_run;
6588EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6589atomic_t maple_tree_tests_passed;
6590EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6591
6592#ifndef __KERNEL__
6593extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6594void mt_set_non_kernel(unsigned int val)
6595{
6596 kmem_cache_set_non_kernel(maple_node_cache, val);
6597}
6598
6599extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6600unsigned long mt_get_alloc_size(void)
6601{
6602 return kmem_cache_get_alloc(maple_node_cache);
6603}
6604
6605extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6606void mt_zero_nr_tallocated(void)
6607{
6608 kmem_cache_zero_nr_tallocated(maple_node_cache);
6609}
6610
6611extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6612unsigned int mt_nr_tallocated(void)
6613{
6614 return kmem_cache_nr_tallocated(maple_node_cache);
6615}
6616
6617extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6618unsigned int mt_nr_allocated(void)
6619{
6620 return kmem_cache_nr_allocated(maple_node_cache);
6621}
6622
6623/*
6624 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6625 * @mas: The maple state
6626 * @index: The index to restore in @mas.
6627 *
6628 * Used in test code.
6629 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6630 */
6631static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6632{
6633 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6634 return 0;
6635
6636 if (likely(!mte_dead_node(mas->node)))
6637 return 0;
6638
6639 mas_rewalk(mas, index);
6640 return 1;
6641}
6642
6643void mt_cache_shrink(void)
6644{
6645}
6646#else
6647/*
6648 * mt_cache_shrink() - For testing, don't use this.
6649 *
6650 * Certain testcases can trigger an OOM when combined with other memory
6651 * debugging configuration options. This function is used to reduce the
6652 * possibility of an out of memory even due to kmem_cache objects remaining
6653 * around for longer than usual.
6654 */
6655void mt_cache_shrink(void)
6656{
6657 kmem_cache_shrink(s: maple_node_cache);
6658
6659}
6660EXPORT_SYMBOL_GPL(mt_cache_shrink);
6661
6662#endif /* not defined __KERNEL__ */
6663/*
6664 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6665 * @mas: The maple state
6666 * @offset: The offset into the slot array to fetch.
6667 *
6668 * Return: The entry stored at @offset.
6669 */
6670static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6671 unsigned char offset)
6672{
6673 return mas_slot(mas, slots: ma_slots(mn: mas_mn(mas), mt: mte_node_type(entry: mas->node)),
6674 offset);
6675}
6676
6677/* Depth first search, post-order */
6678static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6679{
6680
6681 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6682 unsigned long p_min, p_max;
6683
6684 mas_next_node(mas, node: mas_mn(mas), max);
6685 if (!mas_is_none(mas))
6686 return;
6687
6688 if (mte_is_root(node: mn))
6689 return;
6690
6691 mas->node = mn;
6692 mas_ascend(mas);
6693 do {
6694 p = mas->node;
6695 p_min = mas->min;
6696 p_max = mas->max;
6697 mas_prev_node(mas, min: 0);
6698 } while (!mas_is_none(mas));
6699
6700 mas->node = p;
6701 mas->max = p_max;
6702 mas->min = p_min;
6703}
6704
6705/* Tree validations */
6706static void mt_dump_node(const struct maple_tree *mt, void *entry,
6707 unsigned long min, unsigned long max, unsigned int depth,
6708 enum mt_dump_format format);
6709static void mt_dump_range(unsigned long min, unsigned long max,
6710 unsigned int depth, enum mt_dump_format format)
6711{
6712 static const char spaces[] = " ";
6713
6714 switch(format) {
6715 case mt_dump_hex:
6716 if (min == max)
6717 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6718 else
6719 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6720 break;
6721 default:
6722 case mt_dump_dec:
6723 if (min == max)
6724 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6725 else
6726 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6727 }
6728}
6729
6730static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6731 unsigned int depth, enum mt_dump_format format)
6732{
6733 mt_dump_range(min, max, depth, format);
6734
6735 if (xa_is_value(entry))
6736 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6737 xa_to_value(entry), entry);
6738 else if (xa_is_zero(entry))
6739 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6740 else if (mt_is_reserved(entry))
6741 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6742 else
6743 pr_cont("%p\n", entry);
6744}
6745
6746static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6747 unsigned long min, unsigned long max, unsigned int depth,
6748 enum mt_dump_format format)
6749{
6750 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6751 bool leaf = mte_is_leaf(entry);
6752 unsigned long first = min;
6753 int i;
6754
6755 pr_cont(" contents: ");
6756 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6757 switch(format) {
6758 case mt_dump_hex:
6759 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6760 break;
6761 default:
6762 case mt_dump_dec:
6763 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6764 }
6765 }
6766 pr_cont("%p\n", node->slot[i]);
6767 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6768 unsigned long last = max;
6769
6770 if (i < (MAPLE_RANGE64_SLOTS - 1))
6771 last = node->pivot[i];
6772 else if (!node->slot[i] && max != mt_node_max(entry))
6773 break;
6774 if (last == 0 && i > 0)
6775 break;
6776 if (leaf)
6777 mt_dump_entry(entry: mt_slot(mt, slots: node->slot, offset: i),
6778 min: first, max: last, depth: depth + 1, format);
6779 else if (node->slot[i])
6780 mt_dump_node(mt, entry: mt_slot(mt, slots: node->slot, offset: i),
6781 min: first, max: last, depth: depth + 1, format);
6782
6783 if (last == max)
6784 break;
6785 if (last > max) {
6786 switch(format) {
6787 case mt_dump_hex:
6788 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
6789 node, last, max, i);
6790 break;
6791 default:
6792 case mt_dump_dec:
6793 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6794 node, last, max, i);
6795 }
6796 }
6797 first = last + 1;
6798 }
6799}
6800
6801static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6802 unsigned long min, unsigned long max, unsigned int depth,
6803 enum mt_dump_format format)
6804{
6805 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6806 bool leaf = mte_is_leaf(entry);
6807 unsigned long first = min;
6808 int i;
6809
6810 pr_cont(" contents: ");
6811 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6812 switch (format) {
6813 case mt_dump_hex:
6814 pr_cont("%lx ", node->gap[i]);
6815 break;
6816 default:
6817 case mt_dump_dec:
6818 pr_cont("%lu ", node->gap[i]);
6819 }
6820 }
6821 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6822 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
6823 switch (format) {
6824 case mt_dump_hex:
6825 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6826 break;
6827 default:
6828 case mt_dump_dec:
6829 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6830 }
6831 }
6832 pr_cont("%p\n", node->slot[i]);
6833 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6834 unsigned long last = max;
6835
6836 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6837 last = node->pivot[i];
6838 else if (!node->slot[i])
6839 break;
6840 if (last == 0 && i > 0)
6841 break;
6842 if (leaf)
6843 mt_dump_entry(entry: mt_slot(mt, slots: node->slot, offset: i),
6844 min: first, max: last, depth: depth + 1, format);
6845 else if (node->slot[i])
6846 mt_dump_node(mt, entry: mt_slot(mt, slots: node->slot, offset: i),
6847 min: first, max: last, depth: depth + 1, format);
6848
6849 if (last == max)
6850 break;
6851 if (last > max) {
6852 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6853 node, last, max, i);
6854 break;
6855 }
6856 first = last + 1;
6857 }
6858}
6859
6860static void mt_dump_node(const struct maple_tree *mt, void *entry,
6861 unsigned long min, unsigned long max, unsigned int depth,
6862 enum mt_dump_format format)
6863{
6864 struct maple_node *node = mte_to_node(entry);
6865 unsigned int type = mte_node_type(entry);
6866 unsigned int i;
6867
6868 mt_dump_range(min, max, depth, format);
6869
6870 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6871 node ? node->parent : NULL);
6872 switch (type) {
6873 case maple_dense:
6874 pr_cont("\n");
6875 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6876 if (min + i > max)
6877 pr_cont("OUT OF RANGE: ");
6878 mt_dump_entry(entry: mt_slot(mt, slots: node->slot, offset: i),
6879 min: min + i, max: min + i, depth, format);
6880 }
6881 break;
6882 case maple_leaf_64:
6883 case maple_range_64:
6884 mt_dump_range64(mt, entry, min, max, depth, format);
6885 break;
6886 case maple_arange_64:
6887 mt_dump_arange64(mt, entry, min, max, depth, format);
6888 break;
6889
6890 default:
6891 pr_cont(" UNKNOWN TYPE\n");
6892 }
6893}
6894
6895void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
6896{
6897 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6898
6899 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6900 mt, mt->ma_flags, mt_height(mt), entry);
6901 if (!xa_is_node(entry))
6902 mt_dump_entry(entry, min: 0, max: 0, depth: 0, format);
6903 else if (entry)
6904 mt_dump_node(mt, entry, min: 0, mt_node_max(entry), depth: 0, format);
6905}
6906EXPORT_SYMBOL_GPL(mt_dump);
6907
6908/*
6909 * Calculate the maximum gap in a node and check if that's what is reported in
6910 * the parent (unless root).
6911 */
6912static void mas_validate_gaps(struct ma_state *mas)
6913{
6914 struct maple_enode *mte = mas->node;
6915 struct maple_node *p_mn, *node = mte_to_node(entry: mte);
6916 enum maple_type mt = mte_node_type(entry: mas->node);
6917 unsigned long gap = 0, max_gap = 0;
6918 unsigned long p_end, p_start = mas->min;
6919 unsigned char p_slot, offset;
6920 unsigned long *gaps = NULL;
6921 unsigned long *pivots = ma_pivots(node, type: mt);
6922 unsigned int i;
6923
6924 if (ma_is_dense(type: mt)) {
6925 for (i = 0; i < mt_slot_count(mte); i++) {
6926 if (mas_get_slot(mas, offset: i)) {
6927 if (gap > max_gap)
6928 max_gap = gap;
6929 gap = 0;
6930 continue;
6931 }
6932 gap++;
6933 }
6934 goto counted;
6935 }
6936
6937 gaps = ma_gaps(node, type: mt);
6938 for (i = 0; i < mt_slot_count(mte); i++) {
6939 p_end = mas_safe_pivot(mas, pivots, piv: i, type: mt);
6940
6941 if (!gaps) {
6942 if (!mas_get_slot(mas, offset: i))
6943 gap = p_end - p_start + 1;
6944 } else {
6945 void *entry = mas_get_slot(mas, offset: i);
6946
6947 gap = gaps[i];
6948 MT_BUG_ON(mas->tree, !entry);
6949
6950 if (gap > p_end - p_start + 1) {
6951 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6952 mas_mn(mas), i, gap, p_end, p_start,
6953 p_end - p_start + 1);
6954 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
6955 }
6956 }
6957
6958 if (gap > max_gap)
6959 max_gap = gap;
6960
6961 p_start = p_end + 1;
6962 if (p_end >= mas->max)
6963 break;
6964 }
6965
6966counted:
6967 if (mt == maple_arange_64) {
6968 offset = ma_meta_gap(mn: node, mt);
6969 if (offset > i) {
6970 pr_err("gap offset %p[%u] is invalid\n", node, offset);
6971 MT_BUG_ON(mas->tree, 1);
6972 }
6973
6974 if (gaps[offset] != max_gap) {
6975 pr_err("gap %p[%u] is not the largest gap %lu\n",
6976 node, offset, max_gap);
6977 MT_BUG_ON(mas->tree, 1);
6978 }
6979
6980 MT_BUG_ON(mas->tree, !gaps);
6981 for (i++ ; i < mt_slot_count(mte); i++) {
6982 if (gaps[i] != 0) {
6983 pr_err("gap %p[%u] beyond node limit != 0\n",
6984 node, i);
6985 MT_BUG_ON(mas->tree, 1);
6986 }
6987 }
6988 }
6989
6990 if (mte_is_root(node: mte))
6991 return;
6992
6993 p_slot = mte_parent_slot(enode: mas->node);
6994 p_mn = mte_parent(enode: mte);
6995 MT_BUG_ON(mas->tree, max_gap > mas->max);
6996 if (ma_gaps(node: p_mn, type: mas_parent_type(mas, enode: mte))[p_slot] != max_gap) {
6997 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6998 mt_dump(mas->tree, mt_dump_hex);
6999 MT_BUG_ON(mas->tree, 1);
7000 }
7001}
7002
7003static void mas_validate_parent_slot(struct ma_state *mas)
7004{
7005 struct maple_node *parent;
7006 struct maple_enode *node;
7007 enum maple_type p_type;
7008 unsigned char p_slot;
7009 void __rcu **slots;
7010 int i;
7011
7012 if (mte_is_root(node: mas->node))
7013 return;
7014
7015 p_slot = mte_parent_slot(enode: mas->node);
7016 p_type = mas_parent_type(mas, enode: mas->node);
7017 parent = mte_parent(enode: mas->node);
7018 slots = ma_slots(mn: parent, mt: p_type);
7019 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7020
7021 /* Check prev/next parent slot for duplicate node entry */
7022
7023 for (i = 0; i < mt_slots[p_type]; i++) {
7024 node = mas_slot(mas, slots, offset: i);
7025 if (i == p_slot) {
7026 if (node != mas->node)
7027 pr_err("parent %p[%u] does not have %p\n",
7028 parent, i, mas_mn(mas));
7029 MT_BUG_ON(mas->tree, node != mas->node);
7030 } else if (node == mas->node) {
7031 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7032 mas_mn(mas), parent, i, p_slot);
7033 MT_BUG_ON(mas->tree, node == mas->node);
7034 }
7035 }
7036}
7037
7038static void mas_validate_child_slot(struct ma_state *mas)
7039{
7040 enum maple_type type = mte_node_type(entry: mas->node);
7041 void __rcu **slots = ma_slots(mn: mte_to_node(entry: mas->node), mt: type);
7042 unsigned long *pivots = ma_pivots(node: mte_to_node(entry: mas->node), type);
7043 struct maple_enode *child;
7044 unsigned char i;
7045
7046 if (mte_is_leaf(entry: mas->node))
7047 return;
7048
7049 for (i = 0; i < mt_slots[type]; i++) {
7050 child = mas_slot(mas, slots, offset: i);
7051
7052 if (!child) {
7053 pr_err("Non-leaf node lacks child at %p[%u]\n",
7054 mas_mn(mas), i);
7055 MT_BUG_ON(mas->tree, 1);
7056 }
7057
7058 if (mte_parent_slot(enode: child) != i) {
7059 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7060 mas_mn(mas), i, mte_to_node(child),
7061 mte_parent_slot(child));
7062 MT_BUG_ON(mas->tree, 1);
7063 }
7064
7065 if (mte_parent(enode: child) != mte_to_node(entry: mas->node)) {
7066 pr_err("child %p has parent %p not %p\n",
7067 mte_to_node(child), mte_parent(child),
7068 mte_to_node(mas->node));
7069 MT_BUG_ON(mas->tree, 1);
7070 }
7071
7072 if (i < mt_pivots[type] && pivots[i] == mas->max)
7073 break;
7074 }
7075}
7076
7077/*
7078 * Validate all pivots are within mas->min and mas->max, check metadata ends
7079 * where the maximum ends and ensure there is no slots or pivots set outside of
7080 * the end of the data.
7081 */
7082static void mas_validate_limits(struct ma_state *mas)
7083{
7084 int i;
7085 unsigned long prev_piv = 0;
7086 enum maple_type type = mte_node_type(entry: mas->node);
7087 void __rcu **slots = ma_slots(mn: mte_to_node(entry: mas->node), mt: type);
7088 unsigned long *pivots = ma_pivots(node: mas_mn(mas), type);
7089
7090 for (i = 0; i < mt_slots[type]; i++) {
7091 unsigned long piv;
7092
7093 piv = mas_safe_pivot(mas, pivots, piv: i, type);
7094
7095 if (!piv && (i != 0)) {
7096 pr_err("Missing node limit pivot at %p[%u]",
7097 mas_mn(mas), i);
7098 MAS_WARN_ON(mas, 1);
7099 }
7100
7101 if (prev_piv > piv) {
7102 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7103 mas_mn(mas), i, piv, prev_piv);
7104 MAS_WARN_ON(mas, piv < prev_piv);
7105 }
7106
7107 if (piv < mas->min) {
7108 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7109 piv, mas->min);
7110 MAS_WARN_ON(mas, piv < mas->min);
7111 }
7112 if (piv > mas->max) {
7113 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7114 piv, mas->max);
7115 MAS_WARN_ON(mas, piv > mas->max);
7116 }
7117 prev_piv = piv;
7118 if (piv == mas->max)
7119 break;
7120 }
7121
7122 if (mas_data_end(mas) != i) {
7123 pr_err("node%p: data_end %u != the last slot offset %u\n",
7124 mas_mn(mas), mas_data_end(mas), i);
7125 MT_BUG_ON(mas->tree, 1);
7126 }
7127
7128 for (i += 1; i < mt_slots[type]; i++) {
7129 void *entry = mas_slot(mas, slots, offset: i);
7130
7131 if (entry && (i != mt_slots[type] - 1)) {
7132 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7133 i, entry);
7134 MT_BUG_ON(mas->tree, entry != NULL);
7135 }
7136
7137 if (i < mt_pivots[type]) {
7138 unsigned long piv = pivots[i];
7139
7140 if (!piv)
7141 continue;
7142
7143 pr_err("%p[%u] should not have piv %lu\n",
7144 mas_mn(mas), i, piv);
7145 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7146 }
7147 }
7148}
7149
7150static void mt_validate_nulls(struct maple_tree *mt)
7151{
7152 void *entry, *last = (void *)1;
7153 unsigned char offset = 0;
7154 void __rcu **slots;
7155 MA_STATE(mas, mt, 0, 0);
7156
7157 mas_start(mas: &mas);
7158 if (mas_is_none(mas: &mas) || (mas.node == MAS_ROOT))
7159 return;
7160
7161 while (!mte_is_leaf(entry: mas.node))
7162 mas_descend(mas: &mas);
7163
7164 slots = ma_slots(mn: mte_to_node(entry: mas.node), mt: mte_node_type(entry: mas.node));
7165 do {
7166 entry = mas_slot(mas: &mas, slots, offset);
7167 if (!last && !entry) {
7168 pr_err("Sequential nulls end at %p[%u]\n",
7169 mas_mn(&mas), offset);
7170 }
7171 MT_BUG_ON(mt, !last && !entry);
7172 last = entry;
7173 if (offset == mas_data_end(mas: &mas)) {
7174 mas_next_node(mas: &mas, node: mas_mn(mas: &mas), ULONG_MAX);
7175 if (mas_is_none(mas: &mas))
7176 return;
7177 offset = 0;
7178 slots = ma_slots(mn: mte_to_node(entry: mas.node),
7179 mt: mte_node_type(entry: mas.node));
7180 } else {
7181 offset++;
7182 }
7183
7184 } while (!mas_is_none(mas: &mas));
7185}
7186
7187/*
7188 * validate a maple tree by checking:
7189 * 1. The limits (pivots are within mas->min to mas->max)
7190 * 2. The gap is correctly set in the parents
7191 */
7192void mt_validate(struct maple_tree *mt)
7193{
7194 unsigned char end;
7195
7196 MA_STATE(mas, mt, 0, 0);
7197 rcu_read_lock();
7198 mas_start(mas: &mas);
7199 if (!mas_searchable(mas: &mas))
7200 goto done;
7201
7202 while (!mte_is_leaf(entry: mas.node))
7203 mas_descend(mas: &mas);
7204
7205 while (!mas_is_none(mas: &mas)) {
7206 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7207 end = mas_data_end(mas: &mas);
7208 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7209 (mas.max != ULONG_MAX))) {
7210 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
7211 }
7212
7213 mas_validate_parent_slot(mas: &mas);
7214 mas_validate_limits(mas: &mas);
7215 mas_validate_child_slot(mas: &mas);
7216 if (mt_is_alloc(mt))
7217 mas_validate_gaps(mas: &mas);
7218 mas_dfs_postorder(mas: &mas, ULONG_MAX);
7219 }
7220 mt_validate_nulls(mt);
7221done:
7222 rcu_read_unlock();
7223
7224}
7225EXPORT_SYMBOL_GPL(mt_validate);
7226
7227void mas_dump(const struct ma_state *mas)
7228{
7229 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7230 if (mas_is_none(mas))
7231 pr_err("(MAS_NONE) ");
7232 else if (mas_is_ptr(mas))
7233 pr_err("(MAS_ROOT) ");
7234 else if (mas_is_start(mas))
7235 pr_err("(MAS_START) ");
7236 else if (mas_is_paused(mas))
7237 pr_err("(MAS_PAUSED) ");
7238
7239 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7240 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7241 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7242 if (mas->index > mas->last)
7243 pr_err("Check index & last\n");
7244}
7245EXPORT_SYMBOL_GPL(mas_dump);
7246
7247void mas_wr_dump(const struct ma_wr_state *wr_mas)
7248{
7249 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7250 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7251 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7252 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7253 wr_mas->end_piv);
7254}
7255EXPORT_SYMBOL_GPL(mas_wr_dump);
7256
7257#endif /* CONFIG_DEBUG_MAPLE_TREE */
7258

source code of linux/lib/maple_tree.c