1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * If TRACE_SYSTEM is defined, that will be the directory created
4 * in the ftrace directory under /sys/kernel/tracing/events/<system>
5 *
6 * The define_trace.h below will also look for a file name of
7 * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
8 * In this case, it would look for sample-trace.h
9 *
10 * If the header name will be different than the system name
11 * (as in this case), then you can override the header name that
12 * define_trace.h will look up by defining TRACE_INCLUDE_FILE
13 *
14 * This file is called trace-events-sample.h but we want the system
15 * to be called "sample-trace". Therefore we must define the name of this
16 * file:
17 *
18 * #define TRACE_INCLUDE_FILE trace-events-sample
19 *
20 * As we do an the bottom of this file.
21 *
22 * Notice that TRACE_SYSTEM should be defined outside of #if
23 * protection, just like TRACE_INCLUDE_FILE.
24 */
25#undef TRACE_SYSTEM
26#define TRACE_SYSTEM sample-trace
27
28/*
29 * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
30 * and underscore), although it may start with numbers. If for some
31 * reason it is not, you need to add the following lines:
32 */
33#undef TRACE_SYSTEM_VAR
34#define TRACE_SYSTEM_VAR sample_trace
35/*
36 * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
37 * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
38 * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
39 * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
40 * only alpha-numeric and underscores.
41 *
42 * The TRACE_SYSTEM_VAR is only used internally and not visible to
43 * user space.
44 */
45
46/*
47 * Notice that this file is not protected like a normal header.
48 * We also must allow for rereading of this file. The
49 *
50 * || defined(TRACE_HEADER_MULTI_READ)
51 *
52 * serves this purpose.
53 */
54#if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
55#define _TRACE_EVENT_SAMPLE_H
56
57/*
58 * All trace headers should include tracepoint.h, until we finally
59 * make it into a standard header.
60 */
61#include <linux/tracepoint.h>
62
63/*
64 * The TRACE_EVENT macro is broken up into 5 parts.
65 *
66 * name: name of the trace point. This is also how to enable the tracepoint.
67 * A function called trace_foo_bar() will be created.
68 *
69 * proto: the prototype of the function trace_foo_bar()
70 * Here it is trace_foo_bar(char *foo, int bar).
71 *
72 * args: must match the arguments in the prototype.
73 * Here it is simply "foo, bar".
74 *
75 * struct: This defines the way the data will be stored in the ring buffer.
76 * The items declared here become part of a special structure
77 * called "__entry", which can be used in the fast_assign part of the
78 * TRACE_EVENT macro.
79 *
80 * Here are the currently defined types you can use:
81 *
82 * __field : Is broken up into type and name. Where type can be any
83 * primitive type (integer, long or pointer).
84 *
85 * __field(int, foo)
86 *
87 * __entry->foo = 5;
88 *
89 * __field_struct : This can be any static complex data type (struct, union
90 * but not an array). Be careful using complex types, as each
91 * event is limited in size, and copying large amounts of data
92 * into the ring buffer can slow things down.
93 *
94 * __field_struct(struct bar, foo)
95 *
96 * __entry->bar.x = y;
97
98 * __array: There are three fields (type, name, size). The type is the
99 * type of elements in the array, the name is the name of the array.
100 * size is the number of items in the array (not the total size).
101 *
102 * __array( char, foo, 10) is the same as saying: char foo[10];
103 *
104 * Assigning arrays can be done like any array:
105 *
106 * __entry->foo[0] = 'a';
107 *
108 * memcpy(__entry->foo, bar, 10);
109 *
110 * __dynamic_array: This is similar to array, but can vary its size from
111 * instance to instance of the tracepoint being called.
112 * Like __array, this too has three elements (type, name, size);
113 * type is the type of the element, name is the name of the array.
114 * The size is different than __array. It is not a static number,
115 * but the algorithm to figure out the length of the array for the
116 * specific instance of tracepoint. Again, size is the number of
117 * items in the array, not the total length in bytes.
118 *
119 * __dynamic_array( int, foo, bar) is similar to: int foo[bar];
120 *
121 * Note, unlike arrays, you must use the __get_dynamic_array() macro
122 * to access the array.
123 *
124 * memcpy(__get_dynamic_array(foo), bar, 10);
125 *
126 * Notice, that "__entry" is not needed here.
127 *
128 * __string: This is a special kind of __dynamic_array. It expects to
129 * have a null terminated character array passed to it (it allows
130 * for NULL too, which would be converted into "(null)"). __string
131 * takes two parameter (name, src), where name is the name of
132 * the string saved, and src is the string to copy into the
133 * ring buffer.
134 *
135 * __string(foo, bar) is similar to: strcpy(foo, bar)
136 *
137 * To assign a string, use the helper macro __assign_str().
138 *
139 * __assign_str(foo, bar);
140 *
141 * In most cases, the __assign_str() macro will take the same
142 * parameters as the __string() macro had to declare the string.
143 *
144 * __vstring: This is similar to __string() but instead of taking a
145 * dynamic length, it takes a variable list va_list 'va' variable.
146 * Some event callers already have a message from parameters saved
147 * in a va_list. Passing in the format and the va_list variable
148 * will save just enough on the ring buffer for that string.
149 * Note, the va variable used is a pointer to a va_list, not
150 * to the va_list directly.
151 *
152 * (va_list *va)
153 *
154 * __vstring(foo, fmt, va) is similar to: vsnprintf(foo, fmt, va)
155 *
156 * To assign the string, use the helper macro __assign_vstr().
157 *
158 * __assign_vstr(foo, fmt, va);
159 *
160 * In most cases, the __assign_vstr() macro will take the same
161 * parameters as the __vstring() macro had to declare the string.
162 * Use __get_str() to retrieve the __vstring() just like it would for
163 * __string().
164 *
165 * __string_len: This is a helper to a __dynamic_array, but it understands
166 * that the array has characters in it, it will allocate 'len' + 1 bytes
167 * in the ring buffer and add a '\0' to the string. This is
168 * useful if the string being saved has no terminating '\0' byte.
169 * It requires that the length of the string is known as it acts
170 * like a memcpy().
171 *
172 * Declared with:
173 *
174 * __string_len(foo, bar, len)
175 *
176 * To assign this string, use the helper macro __assign_str().
177 * The length is saved via the __string_len() and is retrieved in
178 * __assign_str().
179 *
180 * __assign_str(foo, bar);
181 *
182 * Then len + 1 is allocated to the ring buffer, and a nul terminating
183 * byte is added. This is similar to:
184 *
185 * memcpy(__get_str(foo), bar, len);
186 * __get_str(foo)[len] = 0;
187 *
188 * The advantage of using this over __dynamic_array, is that it
189 * takes care of allocating the extra byte on the ring buffer
190 * for the '\0' terminating byte, and __get_str(foo) can be used
191 * in the TP_printk().
192 *
193 * __bitmask: This is another kind of __dynamic_array, but it expects
194 * an array of longs, and the number of bits to parse. It takes
195 * two parameters (name, nr_bits), where name is the name of the
196 * bitmask to save, and the nr_bits is the number of bits to record.
197 *
198 * __bitmask(target_cpu, nr_cpumask_bits)
199 *
200 * To assign a bitmask, use the __assign_bitmask() helper macro.
201 *
202 * __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
203 *
204 * __cpumask: This is pretty much the same as __bitmask but is specific for
205 * CPU masks. The type displayed to the user via the format files will
206 * be "cpumaks_t" such that user space may deal with them differently
207 * if they choose to do so, and the bits is always set to nr_cpumask_bits.
208 *
209 * __cpumask(target_cpu)
210 *
211 * To assign a cpumask, use the __assign_cpumask() helper macro.
212 *
213 * __assign_cpumask(target_cpus, cpumask_bits(bar));
214 *
215 * fast_assign: This is a C like function that is used to store the items
216 * into the ring buffer. A special variable called "__entry" will be the
217 * structure that points into the ring buffer and has the same fields as
218 * described by the struct part of TRACE_EVENT above.
219 *
220 * printk: This is a way to print out the data in pretty print. This is
221 * useful if the system crashes and you are logging via a serial line,
222 * the data can be printed to the console using this "printk" method.
223 * This is also used to print out the data from the trace files.
224 * Again, the __entry macro is used to access the data from the ring buffer.
225 *
226 * Note, __dynamic_array, __string, __bitmask and __cpumask require special
227 * helpers to access the data.
228 *
229 * For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
230 * Use __get_dynamic_array_len(foo) to get the length of the array
231 * saved. Note, __get_dynamic_array_len() returns the total allocated
232 * length of the dynamic array; __print_array() expects the second
233 * parameter to be the number of elements. To get that, the array length
234 * needs to be divided by the element size.
235 *
236 * For __string(foo, bar) use __get_str(foo)
237 *
238 * For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
239 *
240 * For __cpumask(target_cpus) use __get_cpumask(target_cpus)
241 *
242 *
243 * Note, that for both the assign and the printk, __entry is the handler
244 * to the data structure in the ring buffer, and is defined by the
245 * TP_STRUCT__entry.
246 */
247
248/*
249 * It is OK to have helper functions in the file, but they need to be protected
250 * from being defined more than once. Remember, this file gets included more
251 * than once.
252 */
253#ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
254#define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
255static inline int __length_of(const int *list)
256{
257 int i;
258
259 if (!list)
260 return 0;
261
262 for (i = 0; list[i]; i++)
263 ;
264 return i;
265}
266
267enum {
268 TRACE_SAMPLE_FOO = 2,
269 TRACE_SAMPLE_BAR = 4,
270 TRACE_SAMPLE_ZOO = 8,
271};
272#endif
273
274/*
275 * If enums are used in the TP_printk(), their names will be shown in
276 * format files and not their values. This can cause problems with user
277 * space programs that parse the format files to know how to translate
278 * the raw binary trace output into human readable text.
279 *
280 * To help out user space programs, any enum that is used in the TP_printk()
281 * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
282 * be done is to add this macro with the enum within it in the trace
283 * header file, and it will be converted in the output.
284 */
285
286TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
287TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
288TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
289
290TRACE_EVENT(foo_bar,
291
292 TP_PROTO(const char *foo, int bar, const int *lst,
293 const char *string, const struct cpumask *mask,
294 const char *fmt, va_list *va),
295
296 TP_ARGS(foo, bar, lst, string, mask, fmt, va),
297
298 TP_STRUCT__entry(
299 __array( char, foo, 10 )
300 __field( int, bar )
301 __dynamic_array(int, list, __length_of(lst))
302 __string( str, string )
303 __bitmask( cpus, num_possible_cpus() )
304 __cpumask( cpum )
305 __vstring( vstr, fmt, va )
306 __string_len( lstr, foo, bar / 2 < strlen(foo) ? bar / 2 : strlen(foo) )
307 ),
308
309 TP_fast_assign(
310 strscpy(__entry->foo, foo, 10);
311 __entry->bar = bar;
312 memcpy(__get_dynamic_array(list), lst,
313 __length_of(lst) * sizeof(int));
314 __assign_str(str, string);
315 __assign_str(lstr, foo);
316 __assign_vstr(vstr, fmt, va);
317 __assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
318 __assign_cpumask(cpum, cpumask_bits(mask));
319 ),
320
321 TP_printk("foo %s %d %s %s %s %s %s (%s) (%s) %s", __entry->foo, __entry->bar,
322
323/*
324 * Notice here the use of some helper functions. This includes:
325 *
326 * __print_symbolic( variable, { value, "string" }, ... ),
327 *
328 * The variable is tested against each value of the { } pair. If
329 * the variable matches one of the values, then it will print the
330 * string in that pair. If non are matched, it returns a string
331 * version of the number (if __entry->bar == 7 then "7" is returned).
332 */
333 __print_symbolic(__entry->bar,
334 { 0, "zero" },
335 { TRACE_SAMPLE_FOO, "TWO" },
336 { TRACE_SAMPLE_BAR, "FOUR" },
337 { TRACE_SAMPLE_ZOO, "EIGHT" },
338 { 10, "TEN" }
339 ),
340
341/*
342 * __print_flags( variable, "delim", { value, "flag" }, ... ),
343 *
344 * This is similar to __print_symbolic, except that it tests the bits
345 * of the value. If ((FLAG & variable) == FLAG) then the string is
346 * printed. If more than one flag matches, then each one that does is
347 * also printed with delim in between them.
348 * If not all bits are accounted for, then the not found bits will be
349 * added in hex format: 0x506 will show BIT2|BIT4|0x500
350 */
351 __print_flags(__entry->bar, "|",
352 { 1, "BIT1" },
353 { 2, "BIT2" },
354 { 4, "BIT3" },
355 { 8, "BIT4" }
356 ),
357/*
358 * __print_array( array, len, element_size )
359 *
360 * This prints out the array that is defined by __array in a nice format.
361 */
362 __print_array(__get_dynamic_array(list),
363 __get_dynamic_array_len(list) / sizeof(int),
364 sizeof(int)),
365 __get_str(str), __get_str(lstr),
366 __get_bitmask(cpus), __get_cpumask(cpum),
367 __get_str(vstr))
368);
369
370/*
371 * There may be a case where a tracepoint should only be called if
372 * some condition is set. Otherwise the tracepoint should not be called.
373 * But to do something like:
374 *
375 * if (cond)
376 * trace_foo();
377 *
378 * Would cause a little overhead when tracing is not enabled, and that
379 * overhead, even if small, is not something we want. As tracepoints
380 * use static branch (aka jump_labels), where no branch is taken to
381 * skip the tracepoint when not enabled, and a jmp is placed to jump
382 * to the tracepoint code when it is enabled, having a if statement
383 * nullifies that optimization. It would be nice to place that
384 * condition within the static branch. This is where TRACE_EVENT_CONDITION
385 * comes in.
386 *
387 * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
388 * parameter just after args. Where TRACE_EVENT has:
389 *
390 * TRACE_EVENT(name, proto, args, struct, assign, printk)
391 *
392 * the CONDITION version has:
393 *
394 * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
395 *
396 * Everything is the same as TRACE_EVENT except for the new cond. Think
397 * of the cond variable as:
398 *
399 * if (cond)
400 * trace_foo_bar_with_cond();
401 *
402 * Except that the logic for the if branch is placed after the static branch.
403 * That is, the if statement that processes the condition will not be
404 * executed unless that traecpoint is enabled. Otherwise it still remains
405 * a nop.
406 */
407TRACE_EVENT_CONDITION(foo_bar_with_cond,
408
409 TP_PROTO(const char *foo, int bar),
410
411 TP_ARGS(foo, bar),
412
413 TP_CONDITION(!(bar % 10)),
414
415 TP_STRUCT__entry(
416 __string( foo, foo )
417 __field( int, bar )
418 ),
419
420 TP_fast_assign(
421 __assign_str(foo, foo);
422 __entry->bar = bar;
423 ),
424
425 TP_printk("foo %s %d", __get_str(foo), __entry->bar)
426);
427
428int foo_bar_reg(void);
429void foo_bar_unreg(void);
430
431/*
432 * Now in the case that some function needs to be called when the
433 * tracepoint is enabled and/or when it is disabled, the
434 * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
435 * but adds two more parameters at the end:
436 *
437 * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
438 *
439 * reg and unreg are functions with the prototype of:
440 *
441 * void reg(void)
442 *
443 * The reg function gets called before the tracepoint is enabled, and
444 * the unreg function gets called after the tracepoint is disabled.
445 *
446 * Note, reg and unreg are allowed to be NULL. If you only need to
447 * call a function before enabling, or after disabling, just set one
448 * function and pass in NULL for the other parameter.
449 */
450TRACE_EVENT_FN(foo_bar_with_fn,
451
452 TP_PROTO(const char *foo, int bar),
453
454 TP_ARGS(foo, bar),
455
456 TP_STRUCT__entry(
457 __string( foo, foo )
458 __field( int, bar )
459 ),
460
461 TP_fast_assign(
462 __assign_str(foo, foo);
463 __entry->bar = bar;
464 ),
465
466 TP_printk("foo %s %d", __get_str(foo), __entry->bar),
467
468 foo_bar_reg, foo_bar_unreg
469);
470
471/*
472 * Each TRACE_EVENT macro creates several helper functions to produce
473 * the code to add the tracepoint, create the files in the trace
474 * directory, hook it to perf, assign the values and to print out
475 * the raw data from the ring buffer. To prevent too much bloat,
476 * if there are more than one tracepoint that uses the same format
477 * for the proto, args, struct, assign and printk, and only the name
478 * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
479 *
480 * DECLARE_EVENT_CLASS() macro creates most of the functions for the
481 * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
482 * functions. This DEFINE_EVENT() is an instance of the class and can
483 * be enabled and disabled separately from other events (either TRACE_EVENT
484 * or other DEFINE_EVENT()s).
485 *
486 * Note, TRACE_EVENT() itself is simply defined as:
487 *
488 * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk) \
489 * DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
490 * DEFINE_EVENT(name, name, proto, args)
491 *
492 * The DEFINE_EVENT() also can be declared with conditions and reg functions:
493 *
494 * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
495 * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
496 */
497DECLARE_EVENT_CLASS(foo_template,
498
499 TP_PROTO(const char *foo, int bar),
500
501 TP_ARGS(foo, bar),
502
503 TP_STRUCT__entry(
504 __string( foo, foo )
505 __field( int, bar )
506 ),
507
508 TP_fast_assign(
509 __assign_str(foo, foo);
510 __entry->bar = bar;
511 ),
512
513 TP_printk("foo %s %d", __get_str(foo), __entry->bar)
514);
515
516/*
517 * Here's a better way for the previous samples (except, the first
518 * example had more fields and could not be used here).
519 */
520DEFINE_EVENT(foo_template, foo_with_template_simple,
521 TP_PROTO(const char *foo, int bar),
522 TP_ARGS(foo, bar));
523
524DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
525 TP_PROTO(const char *foo, int bar),
526 TP_ARGS(foo, bar),
527 TP_CONDITION(!(bar % 8)));
528
529
530DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
531 TP_PROTO(const char *foo, int bar),
532 TP_ARGS(foo, bar),
533 foo_bar_reg, foo_bar_unreg);
534
535/*
536 * Anytime two events share basically the same values and have
537 * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
538 * when ever possible.
539 */
540
541/*
542 * If the event is similar to the DECLARE_EVENT_CLASS, but you need
543 * to have a different output, then use DEFINE_EVENT_PRINT() which
544 * lets you override the TP_printk() of the class.
545 */
546
547DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
548 TP_PROTO(const char *foo, int bar),
549 TP_ARGS(foo, bar),
550 TP_printk("bar %s %d", __get_str(foo), __entry->bar));
551
552/*
553 * There are yet another __rel_loc dynamic data attribute. If you
554 * use __rel_dynamic_array() and __rel_string() etc. macros, you
555 * can use this attribute. There is no difference from the viewpoint
556 * of functionality with/without 'rel' but the encoding is a bit
557 * different. This is expected to be used with user-space event,
558 * there is no reason that the kernel event use this, but only for
559 * testing.
560 */
561
562TRACE_EVENT(foo_rel_loc,
563
564 TP_PROTO(const char *foo, int bar, unsigned long *mask, const cpumask_t *cpus),
565
566 TP_ARGS(foo, bar, mask, cpus),
567
568 TP_STRUCT__entry(
569 __rel_string( foo, foo )
570 __field( int, bar )
571 __rel_bitmask( bitmask,
572 BITS_PER_BYTE * sizeof(unsigned long) )
573 __rel_cpumask( cpumask )
574 ),
575
576 TP_fast_assign(
577 __assign_rel_str(foo);
578 __entry->bar = bar;
579 __assign_rel_bitmask(bitmask, mask,
580 BITS_PER_BYTE * sizeof(unsigned long));
581 __assign_rel_cpumask(cpumask, cpus);
582 ),
583
584 TP_printk("foo_rel_loc %s, %d, %s, %s", __get_rel_str(foo), __entry->bar,
585 __get_rel_bitmask(bitmask),
586 __get_rel_cpumask(cpumask))
587);
588#endif
589
590/***** NOTICE! The #if protection ends here. *****/
591
592
593/*
594 * There are several ways I could have done this. If I left out the
595 * TRACE_INCLUDE_PATH, then it would default to the kernel source
596 * include/trace/events directory.
597 *
598 * I could specify a path from the define_trace.h file back to this
599 * file.
600 *
601 * #define TRACE_INCLUDE_PATH ../../samples/trace_events
602 *
603 * But the safest and easiest way to simply make it use the directory
604 * that the file is in is to add in the Makefile:
605 *
606 * CFLAGS_trace-events-sample.o := -I$(src)
607 *
608 * This will make sure the current path is part of the include
609 * structure for our file so that define_trace.h can find it.
610 *
611 * I could have made only the top level directory the include:
612 *
613 * CFLAGS_trace-events-sample.o := -I$(PWD)
614 *
615 * And then let the path to this directory be the TRACE_INCLUDE_PATH:
616 *
617 * #define TRACE_INCLUDE_PATH samples/trace_events
618 *
619 * But then if something defines "samples" or "trace_events" as a macro
620 * then we could risk that being converted too, and give us an unexpected
621 * result.
622 */
623#undef TRACE_INCLUDE_PATH
624#undef TRACE_INCLUDE_FILE
625#define TRACE_INCLUDE_PATH .
626/*
627 * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
628 */
629#define TRACE_INCLUDE_FILE trace-events-sample
630#include <trace/define_trace.h>
631

source code of linux/samples/trace_events/trace-events-sample.h