1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5 */
6
7/* Does not work. Warning may block system in capture mode */
8/* #define USE_VAR48KRATE */
9
10#include <linux/io.h>
11#include <linux/delay.h>
12#include <linux/interrupt.h>
13#include <linux/init.h>
14#include <linux/pci.h>
15#include <linux/slab.h>
16#include <linux/gameport.h>
17#include <linux/module.h>
18#include <linux/mutex.h>
19#include <sound/core.h>
20#include <sound/info.h>
21#include <sound/control.h>
22#include <sound/pcm.h>
23#include <sound/rawmidi.h>
24#include <sound/mpu401.h>
25#include <sound/opl3.h>
26#include <sound/sb.h>
27#include <sound/asoundef.h>
28#include <sound/initval.h>
29
30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32MODULE_LICENSE("GPL");
33
34#if IS_REACHABLE(CONFIG_GAMEPORT)
35#define SUPPORT_JOYSTICK 1
36#endif
37
38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */
41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44#ifdef SUPPORT_JOYSTICK
45static int joystick_port[SNDRV_CARDS];
46#endif
47
48module_param_array(index, int, NULL, 0444);
49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50module_param_array(id, charp, NULL, 0444);
51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52module_param_array(enable, bool, NULL, 0444);
53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57MODULE_PARM_DESC(fm_port, "FM port.");
58module_param_array(soft_ac3, bool, NULL, 0444);
59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60#ifdef SUPPORT_JOYSTICK
61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63#endif
64
65/*
66 * CM8x38 registers definition
67 */
68
69#define CM_REG_FUNCTRL0 0x00
70#define CM_RST_CH1 0x00080000
71#define CM_RST_CH0 0x00040000
72#define CM_CHEN1 0x00020000 /* ch1: enable */
73#define CM_CHEN0 0x00010000 /* ch0: enable */
74#define CM_PAUSE1 0x00000008 /* ch1: pause */
75#define CM_PAUSE0 0x00000004 /* ch0: pause */
76#define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */
77#define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */
78
79#define CM_REG_FUNCTRL1 0x04
80#define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */
81#define CM_DSFC_SHIFT 13
82#define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */
83#define CM_ASFC_SHIFT 10
84#define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */
85#define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */
86#define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */
87#define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */
88#define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */
89#define CM_BREQ 0x00000010 /* bus master enabled */
90#define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */
91#define CM_UART_EN 0x00000004 /* legacy UART */
92#define CM_JYSTK_EN 0x00000002 /* legacy joystick */
93#define CM_ZVPORT 0x00000001 /* ZVPORT */
94
95#define CM_REG_CHFORMAT 0x08
96
97#define CM_CHB3D5C 0x80000000 /* 5,6 channels */
98#define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */
99#define CM_CHB3D 0x20000000 /* 4 channels */
100
101#define CM_CHIP_MASK1 0x1f000000
102#define CM_CHIP_037 0x01000000
103#define CM_SETLAT48 0x00800000 /* set latency timer 48h */
104#define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */
105#define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */
106#define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */
107#define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */
108#define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */
109/* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */
110
111#define CM_ADCBITLEN_MASK 0x0000C000
112#define CM_ADCBITLEN_16 0x00000000
113#define CM_ADCBITLEN_15 0x00004000
114#define CM_ADCBITLEN_14 0x00008000
115#define CM_ADCBITLEN_13 0x0000C000
116
117#define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */
118#define CM_ADCDACLEN_060 0x00000000
119#define CM_ADCDACLEN_066 0x00001000
120#define CM_ADCDACLEN_130 0x00002000
121#define CM_ADCDACLEN_280 0x00003000
122
123#define CM_ADCDLEN_MASK 0x00003000 /* model 039 */
124#define CM_ADCDLEN_ORIGINAL 0x00000000
125#define CM_ADCDLEN_EXTRA 0x00001000
126#define CM_ADCDLEN_24K 0x00002000
127#define CM_ADCDLEN_WEIGHT 0x00003000
128
129#define CM_CH1_SRATE_176K 0x00000800
130#define CM_CH1_SRATE_96K 0x00000800 /* model 055? */
131#define CM_CH1_SRATE_88K 0x00000400
132#define CM_CH0_SRATE_176K 0x00000200
133#define CM_CH0_SRATE_96K 0x00000200 /* model 055? */
134#define CM_CH0_SRATE_88K 0x00000100
135#define CM_CH0_SRATE_128K 0x00000300
136#define CM_CH0_SRATE_MASK 0x00000300
137
138#define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */
139#define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */
140#define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */
141#define CM_SPDLOCKED 0x00000010
142
143#define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */
144#define CM_CH1FMT_SHIFT 2
145#define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */
146#define CM_CH0FMT_SHIFT 0
147
148#define CM_REG_INT_HLDCLR 0x0C
149#define CM_CHIP_MASK2 0xff000000
150#define CM_CHIP_8768 0x20000000
151#define CM_CHIP_055 0x08000000
152#define CM_CHIP_039 0x04000000
153#define CM_CHIP_039_6CH 0x01000000
154#define CM_UNKNOWN_INT_EN 0x00080000 /* ? */
155#define CM_TDMA_INT_EN 0x00040000
156#define CM_CH1_INT_EN 0x00020000
157#define CM_CH0_INT_EN 0x00010000
158
159#define CM_REG_INT_STATUS 0x10
160#define CM_INTR 0x80000000
161#define CM_VCO 0x08000000 /* Voice Control? CMI8738 */
162#define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */
163#define CM_UARTINT 0x00010000
164#define CM_LTDMAINT 0x00008000
165#define CM_HTDMAINT 0x00004000
166#define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */
167#define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */
168#define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */
169#define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */
170#define CM_CH1BUSY 0x00000008
171#define CM_CH0BUSY 0x00000004
172#define CM_CHINT1 0x00000002
173#define CM_CHINT0 0x00000001
174
175#define CM_REG_LEGACY_CTRL 0x14
176#define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */
177#define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */
178#define CM_VMPU_330 0x00000000
179#define CM_VMPU_320 0x20000000
180#define CM_VMPU_310 0x40000000
181#define CM_VMPU_300 0x60000000
182#define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */
183#define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */
184#define CM_VSBSEL_220 0x00000000
185#define CM_VSBSEL_240 0x04000000
186#define CM_VSBSEL_260 0x08000000
187#define CM_VSBSEL_280 0x0C000000
188#define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */
189#define CM_FMSEL_388 0x00000000
190#define CM_FMSEL_3C8 0x01000000
191#define CM_FMSEL_3E0 0x02000000
192#define CM_FMSEL_3E8 0x03000000
193#define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */
194#define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */
195#define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */
196#define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */
197#define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198#define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */
199#define CM_C_EECS 0x00040000
200#define CM_C_EEDI46 0x00020000
201#define CM_C_EECK46 0x00010000
202#define CM_CHB3D6C 0x00008000 /* 5.1 channels support */
203#define CM_CENTR2LIN 0x00004000 /* line-in as center out */
204#define CM_BASE2LIN 0x00002000 /* line-in as bass out */
205#define CM_EXBASEN 0x00001000 /* external bass input enable */
206
207#define CM_REG_MISC_CTRL 0x18
208#define CM_PWD 0x80000000 /* power down */
209#define CM_RESET 0x40000000
210#define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */
211#define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */
212#define CM_TXVX 0x08000000 /* model 037? */
213#define CM_N4SPK3D 0x04000000 /* copy front to rear */
214#define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */
215#define CM_SPDIF48K 0x01000000 /* write */
216#define CM_SPATUS48K 0x01000000 /* read */
217#define CM_ENDBDAC 0x00800000 /* enable double dac */
218#define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */
219#define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */
220#define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */
221#define CM_FM_EN 0x00080000 /* enable legacy FM */
222#define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */
223#define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */
224#define CM_VIDWPDSB 0x00010000 /* model 037? */
225#define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */
226#define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */
227#define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */
228#define CM_VIDWPPRT 0x00002000 /* model 037? */
229#define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */
230#define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */
231#define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */
232#define CM_ENCENTER 0x00000080
233#define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */
234#define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */
235#define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */
236#define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */
237#define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */
238#define CM_UPDDMA_2048 0x00000000
239#define CM_UPDDMA_1024 0x00000004
240#define CM_UPDDMA_512 0x00000008
241#define CM_UPDDMA_256 0x0000000C
242#define CM_TWAIT_MASK 0x00000003 /* model 037 */
243#define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244#define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */
245
246#define CM_REG_TDMA_POSITION 0x1C
247#define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */
248#define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */
249
250 /* byte */
251#define CM_REG_MIXER0 0x20
252#define CM_REG_SBVR 0x20 /* write: sb16 version */
253#define CM_REG_DEV 0x20 /* read: hardware device version */
254
255#define CM_REG_MIXER21 0x21
256#define CM_UNKNOWN_21_MASK 0x78 /* ? */
257#define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */
258#define CM_PROINV 0x02 /* SBPro left/right channel switching */
259#define CM_X_SB16 0x01 /* SB16 compatible */
260
261#define CM_REG_SB16_DATA 0x22
262#define CM_REG_SB16_ADDR 0x23
263
264#define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */
265#define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266#define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */
267#define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */
268
269#define CM_REG_MIXER1 0x24
270#define CM_FMMUTE 0x80 /* mute FM */
271#define CM_FMMUTE_SHIFT 7
272#define CM_WSMUTE 0x40 /* mute PCM */
273#define CM_WSMUTE_SHIFT 6
274#define CM_REAR2LIN 0x20 /* lin-in -> rear line out */
275#define CM_REAR2LIN_SHIFT 5
276#define CM_REAR2FRONT 0x10 /* exchange rear/front */
277#define CM_REAR2FRONT_SHIFT 4
278#define CM_WAVEINL 0x08 /* digital wave rec. left chan */
279#define CM_WAVEINL_SHIFT 3
280#define CM_WAVEINR 0x04 /* digical wave rec. right */
281#define CM_WAVEINR_SHIFT 2
282#define CM_X3DEN 0x02 /* 3D surround enable */
283#define CM_X3DEN_SHIFT 1
284#define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */
285#define CM_CDPLAY_SHIFT 0
286
287#define CM_REG_MIXER2 0x25
288#define CM_RAUXREN 0x80 /* AUX right capture */
289#define CM_RAUXREN_SHIFT 7
290#define CM_RAUXLEN 0x40 /* AUX left capture */
291#define CM_RAUXLEN_SHIFT 6
292#define CM_VAUXRM 0x20 /* AUX right mute */
293#define CM_VAUXRM_SHIFT 5
294#define CM_VAUXLM 0x10 /* AUX left mute */
295#define CM_VAUXLM_SHIFT 4
296#define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */
297#define CM_VADMIC_SHIFT 1
298#define CM_MICGAINZ 0x01 /* mic boost */
299#define CM_MICGAINZ_SHIFT 0
300
301#define CM_REG_AUX_VOL 0x26
302#define CM_VAUXL_MASK 0xf0
303#define CM_VAUXR_MASK 0x0f
304
305#define CM_REG_MISC 0x27
306#define CM_UNKNOWN_27_MASK 0xd8 /* ? */
307#define CM_XGPO1 0x20
308// #define CM_XGPBIO 0x04
309#define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */
310#define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */
311#define CM_SPDVALID 0x02 /* spdif input valid check */
312#define CM_DMAUTO 0x01 /* SB16 DMA auto detect */
313
314#define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */
315/*
316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
317 * or identical with AC97 codec?
318 */
319#define CM_REG_EXTERN_CODEC CM_REG_AC97
320
321/*
322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
323 */
324#define CM_REG_MPU_PCI 0x40
325
326/*
327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
328 */
329#define CM_REG_FM_PCI 0x50
330
331/*
332 * access from SB-mixer port
333 */
334#define CM_REG_EXTENT_IND 0xf0
335#define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */
336#define CM_VPHONE_SHIFT 5
337#define CM_VPHOM 0x10 /* Phone mute control */
338#define CM_VSPKM 0x08 /* Speaker mute control, default high */
339#define CM_RLOOPREN 0x04 /* Rec. R-channel enable */
340#define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */
341#define CM_VADMIC3 0x01 /* Mic record boost */
342
343/*
344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
346 * unit (readonly?).
347 */
348#define CM_REG_PLL 0xf8
349
350/*
351 * extended registers
352 */
353#define CM_REG_CH0_FRAME1 0x80 /* write: base address */
354#define CM_REG_CH0_FRAME2 0x84 /* read: current address */
355#define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */
356#define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */
357
358#define CM_REG_EXT_MISC 0x90
359#define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */
360#define CM_CHB3D8C 0x00200000 /* 7.1 channels support */
361#define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */
362#define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */
363#define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */
364#define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */
365#define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */
366#define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */
367
368/*
369 * size of i/o region
370 */
371#define CM_EXTENT_CODEC 0x100
372#define CM_EXTENT_MIDI 0x2
373#define CM_EXTENT_SYNTH 0x4
374
375
376/*
377 * channels for playback / capture
378 */
379#define CM_CH_PLAY 0
380#define CM_CH_CAPT 1
381
382/*
383 * flags to check device open/close
384 */
385#define CM_OPEN_NONE 0
386#define CM_OPEN_CH_MASK 0x01
387#define CM_OPEN_DAC 0x10
388#define CM_OPEN_ADC 0x20
389#define CM_OPEN_SPDIF 0x40
390#define CM_OPEN_MCHAN 0x80
391#define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC)
392#define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC)
393#define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
394#define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC)
395#define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
396#define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
397
398
399#if CM_CH_PLAY == 1
400#define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K
401#define CM_PLAYBACK_SPDF CM_SPDF_1
402#define CM_CAPTURE_SPDF CM_SPDF_0
403#else
404#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
405#define CM_PLAYBACK_SPDF CM_SPDF_0
406#define CM_CAPTURE_SPDF CM_SPDF_1
407#endif
408
409
410/*
411 * driver data
412 */
413
414struct cmipci_pcm {
415 struct snd_pcm_substream *substream;
416 u8 running; /* dac/adc running? */
417 u8 fmt; /* format bits */
418 u8 is_dac;
419 u8 needs_silencing;
420 unsigned int dma_size; /* in frames */
421 unsigned int shift;
422 unsigned int ch; /* channel (0/1) */
423 unsigned int offset; /* physical address of the buffer */
424};
425
426/* mixer elements toggled/resumed during ac3 playback */
427struct cmipci_mixer_auto_switches {
428 const char *name; /* switch to toggle */
429 int toggle_on; /* value to change when ac3 mode */
430};
431static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
432 {"PCM Playback Switch", 0},
433 {"IEC958 Output Switch", 1},
434 {"IEC958 Mix Analog", 0},
435 // {"IEC958 Out To DAC", 1}, // no longer used
436 {"IEC958 Loop", 0},
437};
438#define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer)
439
440struct cmipci {
441 struct snd_card *card;
442
443 struct pci_dev *pci;
444 unsigned int device; /* device ID */
445 int irq;
446
447 unsigned long iobase;
448 unsigned int ctrl; /* FUNCTRL0 current value */
449
450 struct snd_pcm *pcm; /* DAC/ADC PCM */
451 struct snd_pcm *pcm2; /* 2nd DAC */
452 struct snd_pcm *pcm_spdif; /* SPDIF */
453
454 int chip_version;
455 int max_channels;
456 unsigned int can_ac3_sw: 1;
457 unsigned int can_ac3_hw: 1;
458 unsigned int can_multi_ch: 1;
459 unsigned int can_96k: 1; /* samplerate above 48k */
460 unsigned int do_soft_ac3: 1;
461
462 unsigned int spdif_playback_avail: 1; /* spdif ready? */
463 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
464 int spdif_counter; /* for software AC3 */
465
466 unsigned int dig_status;
467 unsigned int dig_pcm_status;
468
469 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
470
471 int opened[2]; /* open mode */
472 struct mutex open_mutex;
473
474 unsigned int mixer_insensitive: 1;
475 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
476 int mixer_res_status[CM_SAVED_MIXERS];
477
478 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */
479
480 /* external MIDI */
481 struct snd_rawmidi *rmidi;
482
483#ifdef SUPPORT_JOYSTICK
484 struct gameport *gameport;
485#endif
486
487 spinlock_t reg_lock;
488
489 unsigned int saved_regs[0x20];
490 unsigned char saved_mixers[0x20];
491};
492
493
494/* read/write operations for dword register */
495static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
496{
497 outl(value: data, port: cm->iobase + cmd);
498}
499
500static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
501{
502 return inl(port: cm->iobase + cmd);
503}
504
505/* read/write operations for word register */
506static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
507{
508 outw(value: data, port: cm->iobase + cmd);
509}
510
511static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
512{
513 return inw(port: cm->iobase + cmd);
514}
515
516/* read/write operations for byte register */
517static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
518{
519 outb(value: data, port: cm->iobase + cmd);
520}
521
522static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
523{
524 return inb(port: cm->iobase + cmd);
525}
526
527/* bit operations for dword register */
528static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
529{
530 unsigned int val, oval;
531 val = oval = inl(port: cm->iobase + cmd);
532 val |= flag;
533 if (val == oval)
534 return 0;
535 outl(value: val, port: cm->iobase + cmd);
536 return 1;
537}
538
539static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
540{
541 unsigned int val, oval;
542 val = oval = inl(port: cm->iobase + cmd);
543 val &= ~flag;
544 if (val == oval)
545 return 0;
546 outl(value: val, port: cm->iobase + cmd);
547 return 1;
548}
549
550/* bit operations for byte register */
551static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
552{
553 unsigned char val, oval;
554 val = oval = inb(port: cm->iobase + cmd);
555 val |= flag;
556 if (val == oval)
557 return 0;
558 outb(value: val, port: cm->iobase + cmd);
559 return 1;
560}
561
562static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
563{
564 unsigned char val, oval;
565 val = oval = inb(port: cm->iobase + cmd);
566 val &= ~flag;
567 if (val == oval)
568 return 0;
569 outb(value: val, port: cm->iobase + cmd);
570 return 1;
571}
572
573
574/*
575 * PCM interface
576 */
577
578/*
579 * calculate frequency
580 */
581
582static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
583
584static unsigned int snd_cmipci_rate_freq(unsigned int rate)
585{
586 unsigned int i;
587
588 for (i = 0; i < ARRAY_SIZE(rates); i++) {
589 if (rates[i] == rate)
590 return i;
591 }
592 snd_BUG();
593 return 0;
594}
595
596#ifdef USE_VAR48KRATE
597/*
598 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
599 * does it this way .. maybe not. Never get any information from C-Media about
600 * that <werner@suse.de>.
601 */
602static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
603{
604 unsigned int delta, tolerance;
605 int xm, xn, xr;
606
607 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
608 rate <<= 1;
609 *n = -1;
610 if (*r > 0xff)
611 goto out;
612 tolerance = rate*CM_TOLERANCE_RATE;
613
614 for (xn = (1+2); xn < (0x1f+2); xn++) {
615 for (xm = (1+2); xm < (0xff+2); xm++) {
616 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
617
618 if (xr < rate)
619 delta = rate - xr;
620 else
621 delta = xr - rate;
622
623 /*
624 * If we found one, remember this,
625 * and try to find a closer one
626 */
627 if (delta < tolerance) {
628 tolerance = delta;
629 *m = xm - 2;
630 *n = xn - 2;
631 }
632 }
633 }
634out:
635 return (*n > -1);
636}
637
638/*
639 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
640 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
641 * at the register CM_REG_FUNCTRL1 (0x04).
642 * Problem: other ways are also possible (any information about that?)
643 */
644static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
645{
646 unsigned int reg = CM_REG_PLL + slot;
647 /*
648 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
649 * for DSFC/ASFC (000 up to 111).
650 */
651
652 /* FIXME: Init (Do we've to set an other register first before programming?) */
653
654 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
655 snd_cmipci_write_b(cm, reg, rate>>8);
656 snd_cmipci_write_b(cm, reg, rate&0xff);
657
658 /* FIXME: Setup (Do we've to set an other register first to enable this?) */
659}
660#endif /* USE_VAR48KRATE */
661
662static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
663 struct snd_pcm_hw_params *hw_params)
664{
665 struct cmipci *cm = snd_pcm_substream_chip(substream);
666 if (params_channels(p: hw_params) > 2) {
667 mutex_lock(&cm->open_mutex);
668 if (cm->opened[CM_CH_PLAY]) {
669 mutex_unlock(lock: &cm->open_mutex);
670 return -EBUSY;
671 }
672 /* reserve the channel A */
673 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
674 mutex_unlock(lock: &cm->open_mutex);
675 }
676 return 0;
677}
678
679static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
680{
681 int reset = CM_RST_CH0 << (cm->channel[ch].ch);
682 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl | reset);
683 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl & ~reset);
684 udelay(10);
685}
686
687
688/*
689 */
690
691static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
692static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
693 .count = 3,
694 .list = hw_channels,
695 .mask = 0,
696};
697static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
698 .count = 4,
699 .list = hw_channels,
700 .mask = 0,
701};
702static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
703 .count = 5,
704 .list = hw_channels,
705 .mask = 0,
706};
707
708static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
709{
710 if (channels > 2) {
711 if (!cm->can_multi_ch || !rec->ch)
712 return -EINVAL;
713 if (rec->fmt != 0x03) /* stereo 16bit only */
714 return -EINVAL;
715 }
716
717 if (cm->can_multi_ch) {
718 spin_lock_irq(lock: &cm->reg_lock);
719 if (channels > 2) {
720 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
721 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
722 } else {
723 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
724 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
725 }
726 if (channels == 8)
727 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
728 else
729 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
730 if (channels == 6) {
731 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
732 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
733 } else {
734 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
735 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
736 }
737 if (channels == 4)
738 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
739 else
740 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
741 spin_unlock_irq(lock: &cm->reg_lock);
742 }
743 return 0;
744}
745
746
747/*
748 * prepare playback/capture channel
749 * channel to be used must have been set in rec->ch.
750 */
751static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
752 struct snd_pcm_substream *substream)
753{
754 unsigned int reg, freq, freq_ext, val;
755 unsigned int period_size;
756 struct snd_pcm_runtime *runtime = substream->runtime;
757
758 rec->fmt = 0;
759 rec->shift = 0;
760 if (snd_pcm_format_width(format: runtime->format) >= 16) {
761 rec->fmt |= 0x02;
762 if (snd_pcm_format_width(format: runtime->format) > 16)
763 rec->shift++; /* 24/32bit */
764 }
765 if (runtime->channels > 1)
766 rec->fmt |= 0x01;
767 if (rec->is_dac && set_dac_channels(cm, rec, channels: runtime->channels) < 0) {
768 dev_dbg(cm->card->dev, "cannot set dac channels\n");
769 return -EINVAL;
770 }
771
772 rec->offset = runtime->dma_addr;
773 /* buffer and period sizes in frame */
774 rec->dma_size = runtime->buffer_size << rec->shift;
775 period_size = runtime->period_size << rec->shift;
776 if (runtime->channels > 2) {
777 /* multi-channels */
778 rec->dma_size = (rec->dma_size * runtime->channels) / 2;
779 period_size = (period_size * runtime->channels) / 2;
780 }
781
782 spin_lock_irq(lock: &cm->reg_lock);
783
784 /* set buffer address */
785 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
786 snd_cmipci_write(cm, cmd: reg, data: rec->offset);
787 /* program sample counts */
788 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
789 snd_cmipci_write_w(cm, cmd: reg, data: rec->dma_size - 1);
790 snd_cmipci_write_w(cm, cmd: reg + 2, data: period_size - 1);
791
792 /* set adc/dac flag */
793 val = rec->ch ? CM_CHADC1 : CM_CHADC0;
794 if (rec->is_dac)
795 cm->ctrl &= ~val;
796 else
797 cm->ctrl |= val;
798 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl);
799 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
800
801 /* set sample rate */
802 freq = 0;
803 freq_ext = 0;
804 if (runtime->rate > 48000)
805 switch (runtime->rate) {
806 case 88200: freq_ext = CM_CH0_SRATE_88K; break;
807 case 96000: freq_ext = CM_CH0_SRATE_96K; break;
808 case 128000: freq_ext = CM_CH0_SRATE_128K; break;
809 default: snd_BUG(); break;
810 }
811 else
812 freq = snd_cmipci_rate_freq(rate: runtime->rate);
813 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
814 if (rec->ch) {
815 val &= ~CM_DSFC_MASK;
816 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
817 } else {
818 val &= ~CM_ASFC_MASK;
819 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
820 }
821 snd_cmipci_write(cm, CM_REG_FUNCTRL1, data: val);
822 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
823
824 /* set format */
825 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
826 if (rec->ch) {
827 val &= ~CM_CH1FMT_MASK;
828 val |= rec->fmt << CM_CH1FMT_SHIFT;
829 } else {
830 val &= ~CM_CH0FMT_MASK;
831 val |= rec->fmt << CM_CH0FMT_SHIFT;
832 }
833 if (cm->can_96k) {
834 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
835 val |= freq_ext << (rec->ch * 2);
836 }
837 snd_cmipci_write(cm, CM_REG_CHFORMAT, data: val);
838 dev_dbg(cm->card->dev, "chformat = %08x\n", val);
839
840 if (!rec->is_dac && cm->chip_version) {
841 if (runtime->rate > 44100)
842 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
843 else
844 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
845 }
846
847 rec->running = 0;
848 spin_unlock_irq(lock: &cm->reg_lock);
849
850 return 0;
851}
852
853/*
854 * PCM trigger/stop
855 */
856static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
857 int cmd)
858{
859 unsigned int inthld, chen, reset, pause;
860 int result = 0;
861
862 inthld = CM_CH0_INT_EN << rec->ch;
863 chen = CM_CHEN0 << rec->ch;
864 reset = CM_RST_CH0 << rec->ch;
865 pause = CM_PAUSE0 << rec->ch;
866
867 spin_lock(lock: &cm->reg_lock);
868 switch (cmd) {
869 case SNDRV_PCM_TRIGGER_START:
870 rec->running = 1;
871 /* set interrupt */
872 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, flag: inthld);
873 cm->ctrl |= chen;
874 /* enable channel */
875 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl);
876 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
877 break;
878 case SNDRV_PCM_TRIGGER_STOP:
879 rec->running = 0;
880 /* disable interrupt */
881 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, flag: inthld);
882 /* reset */
883 cm->ctrl &= ~chen;
884 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl | reset);
885 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl & ~reset);
886 rec->needs_silencing = rec->is_dac;
887 break;
888 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
889 case SNDRV_PCM_TRIGGER_SUSPEND:
890 cm->ctrl |= pause;
891 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl);
892 break;
893 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
894 case SNDRV_PCM_TRIGGER_RESUME:
895 cm->ctrl &= ~pause;
896 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl);
897 break;
898 default:
899 result = -EINVAL;
900 break;
901 }
902 spin_unlock(lock: &cm->reg_lock);
903 return result;
904}
905
906/*
907 * return the current pointer
908 */
909static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
910 struct snd_pcm_substream *substream)
911{
912 size_t ptr;
913 unsigned int reg, rem, tries;
914
915 if (!rec->running)
916 return 0;
917#if 1 // this seems better..
918 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
919 for (tries = 0; tries < 3; tries++) {
920 rem = snd_cmipci_read_w(cm, cmd: reg);
921 if (rem < rec->dma_size)
922 goto ok;
923 }
924 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
925 return SNDRV_PCM_POS_XRUN;
926ok:
927 ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
928#else
929 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
930 ptr = snd_cmipci_read(cm, reg) - rec->offset;
931 ptr = bytes_to_frames(substream->runtime, ptr);
932#endif
933 if (substream->runtime->channels > 2)
934 ptr = (ptr * 2) / substream->runtime->channels;
935 return ptr;
936}
937
938/*
939 * playback
940 */
941
942static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
943 int cmd)
944{
945 struct cmipci *cm = snd_pcm_substream_chip(substream);
946 return snd_cmipci_pcm_trigger(cm, rec: &cm->channel[CM_CH_PLAY], cmd);
947}
948
949static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
950{
951 struct cmipci *cm = snd_pcm_substream_chip(substream);
952 return snd_cmipci_pcm_pointer(cm, rec: &cm->channel[CM_CH_PLAY], substream);
953}
954
955
956
957/*
958 * capture
959 */
960
961static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
962 int cmd)
963{
964 struct cmipci *cm = snd_pcm_substream_chip(substream);
965 return snd_cmipci_pcm_trigger(cm, rec: &cm->channel[CM_CH_CAPT], cmd);
966}
967
968static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
969{
970 struct cmipci *cm = snd_pcm_substream_chip(substream);
971 return snd_cmipci_pcm_pointer(cm, rec: &cm->channel[CM_CH_CAPT], substream);
972}
973
974
975/*
976 * hw preparation for spdif
977 */
978
979static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
980 struct snd_ctl_elem_info *uinfo)
981{
982 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
983 uinfo->count = 1;
984 return 0;
985}
986
987static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
988 struct snd_ctl_elem_value *ucontrol)
989{
990 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
991 int i;
992
993 spin_lock_irq(lock: &chip->reg_lock);
994 for (i = 0; i < 4; i++)
995 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
996 spin_unlock_irq(lock: &chip->reg_lock);
997 return 0;
998}
999
1000static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1001 struct snd_ctl_elem_value *ucontrol)
1002{
1003 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1004 int i, change;
1005 unsigned int val;
1006
1007 val = 0;
1008 spin_lock_irq(lock: &chip->reg_lock);
1009 for (i = 0; i < 4; i++)
1010 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1011 change = val != chip->dig_status;
1012 chip->dig_status = val;
1013 spin_unlock_irq(lock: &chip->reg_lock);
1014 return change;
1015}
1016
1017static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1018{
1019 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1020 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1021 .info = snd_cmipci_spdif_default_info,
1022 .get = snd_cmipci_spdif_default_get,
1023 .put = snd_cmipci_spdif_default_put
1024};
1025
1026static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1027 struct snd_ctl_elem_info *uinfo)
1028{
1029 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1030 uinfo->count = 1;
1031 return 0;
1032}
1033
1034static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1035 struct snd_ctl_elem_value *ucontrol)
1036{
1037 ucontrol->value.iec958.status[0] = 0xff;
1038 ucontrol->value.iec958.status[1] = 0xff;
1039 ucontrol->value.iec958.status[2] = 0xff;
1040 ucontrol->value.iec958.status[3] = 0xff;
1041 return 0;
1042}
1043
1044static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1045{
1046 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1047 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1048 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1049 .info = snd_cmipci_spdif_mask_info,
1050 .get = snd_cmipci_spdif_mask_get,
1051};
1052
1053static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1054 struct snd_ctl_elem_info *uinfo)
1055{
1056 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1057 uinfo->count = 1;
1058 return 0;
1059}
1060
1061static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1062 struct snd_ctl_elem_value *ucontrol)
1063{
1064 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1065 int i;
1066
1067 spin_lock_irq(lock: &chip->reg_lock);
1068 for (i = 0; i < 4; i++)
1069 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1070 spin_unlock_irq(lock: &chip->reg_lock);
1071 return 0;
1072}
1073
1074static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1075 struct snd_ctl_elem_value *ucontrol)
1076{
1077 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1078 int i, change;
1079 unsigned int val;
1080
1081 val = 0;
1082 spin_lock_irq(lock: &chip->reg_lock);
1083 for (i = 0; i < 4; i++)
1084 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1085 change = val != chip->dig_pcm_status;
1086 chip->dig_pcm_status = val;
1087 spin_unlock_irq(lock: &chip->reg_lock);
1088 return change;
1089}
1090
1091static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1092{
1093 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1094 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1095 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1096 .info = snd_cmipci_spdif_stream_info,
1097 .get = snd_cmipci_spdif_stream_get,
1098 .put = snd_cmipci_spdif_stream_put
1099};
1100
1101/*
1102 */
1103
1104/* save mixer setting and mute for AC3 playback */
1105static int save_mixer_state(struct cmipci *cm)
1106{
1107 if (! cm->mixer_insensitive) {
1108 struct snd_ctl_elem_value *val;
1109 unsigned int i;
1110
1111 val = kmalloc(size: sizeof(*val), GFP_KERNEL);
1112 if (!val)
1113 return -ENOMEM;
1114 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1115 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1116 if (ctl) {
1117 int event;
1118 memset(val, 0, sizeof(*val));
1119 ctl->get(ctl, val);
1120 cm->mixer_res_status[i] = val->value.integer.value[0];
1121 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1122 event = SNDRV_CTL_EVENT_MASK_INFO;
1123 if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1124 ctl->put(ctl, val); /* toggle */
1125 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1126 }
1127 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1128 snd_ctl_notify(card: cm->card, mask: event, id: &ctl->id);
1129 }
1130 }
1131 kfree(objp: val);
1132 cm->mixer_insensitive = 1;
1133 }
1134 return 0;
1135}
1136
1137
1138/* restore the previously saved mixer status */
1139static void restore_mixer_state(struct cmipci *cm)
1140{
1141 if (cm->mixer_insensitive) {
1142 struct snd_ctl_elem_value *val;
1143 unsigned int i;
1144
1145 val = kmalloc(size: sizeof(*val), GFP_KERNEL);
1146 if (!val)
1147 return;
1148 cm->mixer_insensitive = 0; /* at first clear this;
1149 otherwise the changes will be ignored */
1150 for (i = 0; i < CM_SAVED_MIXERS; i++) {
1151 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1152 if (ctl) {
1153 int event;
1154
1155 memset(val, 0, sizeof(*val));
1156 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1157 ctl->get(ctl, val);
1158 event = SNDRV_CTL_EVENT_MASK_INFO;
1159 if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1160 val->value.integer.value[0] = cm->mixer_res_status[i];
1161 ctl->put(ctl, val);
1162 event |= SNDRV_CTL_EVENT_MASK_VALUE;
1163 }
1164 snd_ctl_notify(card: cm->card, mask: event, id: &ctl->id);
1165 }
1166 }
1167 kfree(objp: val);
1168 }
1169}
1170
1171/* spinlock held! */
1172static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1173{
1174 if (do_ac3) {
1175 /* AC3EN for 037 */
1176 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1177 /* AC3EN for 039 */
1178 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1179
1180 if (cm->can_ac3_hw) {
1181 /* SPD24SEL for 037, 0x02 */
1182 /* SPD24SEL for 039, 0x20, but cannot be set */
1183 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1184 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1185 } else { /* can_ac3_sw */
1186 /* SPD32SEL for 037 & 039, 0x20 */
1187 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188 /* set 176K sample rate to fix 033 HW bug */
1189 if (cm->chip_version == 33) {
1190 if (rate >= 48000) {
1191 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1192 } else {
1193 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194 }
1195 }
1196 }
1197
1198 } else {
1199 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1201
1202 if (cm->can_ac3_hw) {
1203 /* chip model >= 37 */
1204 if (snd_pcm_format_width(format: subs->runtime->format) > 16) {
1205 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207 } else {
1208 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210 }
1211 } else {
1212 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215 }
1216 }
1217}
1218
1219static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1220{
1221 int rate, err;
1222
1223 rate = subs->runtime->rate;
1224
1225 if (up && do_ac3) {
1226 err = save_mixer_state(cm);
1227 if (err < 0)
1228 return err;
1229 }
1230
1231 spin_lock_irq(lock: &cm->reg_lock);
1232 cm->spdif_playback_avail = up;
1233 if (up) {
1234 /* they are controlled via "IEC958 Output Switch" */
1235 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1236 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1237 if (cm->spdif_playback_enabled)
1238 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1239 setup_ac3(cm, subs, do_ac3, rate);
1240
1241 if (rate == 48000 || rate == 96000)
1242 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1243 else
1244 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245 if (rate > 48000)
1246 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1247 else
1248 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249 } else {
1250 /* they are controlled via "IEC958 Output Switch" */
1251 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255 setup_ac3(cm, subs, do_ac3: 0, rate: 0);
1256 }
1257 spin_unlock_irq(lock: &cm->reg_lock);
1258 return 0;
1259}
1260
1261
1262/*
1263 * preparation
1264 */
1265
1266/* playback - enable spdif only on the certain condition */
1267static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1268{
1269 struct cmipci *cm = snd_pcm_substream_chip(substream);
1270 int rate = substream->runtime->rate;
1271 int err, do_spdif, do_ac3 = 0;
1272
1273 do_spdif = (rate >= 44100 && rate <= 96000 &&
1274 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1275 substream->runtime->channels == 2);
1276 if (do_spdif && cm->can_ac3_hw)
1277 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1278 err = setup_spdif_playback(cm, subs: substream, up: do_spdif, do_ac3);
1279 if (err < 0)
1280 return err;
1281 return snd_cmipci_pcm_prepare(cm, rec: &cm->channel[CM_CH_PLAY], substream);
1282}
1283
1284/* playback (via device #2) - enable spdif always */
1285static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1286{
1287 struct cmipci *cm = snd_pcm_substream_chip(substream);
1288 int err, do_ac3;
1289
1290 if (cm->can_ac3_hw)
1291 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1292 else
1293 do_ac3 = 1; /* doesn't matter */
1294 err = setup_spdif_playback(cm, subs: substream, up: 1, do_ac3);
1295 if (err < 0)
1296 return err;
1297 return snd_cmipci_pcm_prepare(cm, rec: &cm->channel[CM_CH_PLAY], substream);
1298}
1299
1300/*
1301 * Apparently, the samples last played on channel A stay in some buffer, even
1302 * after the channel is reset, and get added to the data for the rear DACs when
1303 * playing a multichannel stream on channel B. This is likely to generate
1304 * wraparounds and thus distortions.
1305 * To avoid this, we play at least one zero sample after the actual stream has
1306 * stopped.
1307 */
1308static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1309{
1310 struct snd_pcm_runtime *runtime = rec->substream->runtime;
1311 unsigned int reg, val;
1312
1313 if (rec->needs_silencing && runtime && runtime->dma_area) {
1314 /* set up a small silence buffer */
1315 memset(runtime->dma_area, 0, PAGE_SIZE);
1316 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1317 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1318 snd_cmipci_write(cm, cmd: reg, data: val);
1319
1320 /* configure for 16 bits, 2 channels, 8 kHz */
1321 if (runtime->channels > 2)
1322 set_dac_channels(cm, rec, channels: 2);
1323 spin_lock_irq(lock: &cm->reg_lock);
1324 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1325 val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1326 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1327 snd_cmipci_write(cm, CM_REG_FUNCTRL1, data: val);
1328 val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1329 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1330 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1331 if (cm->can_96k)
1332 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1333 snd_cmipci_write(cm, CM_REG_CHFORMAT, data: val);
1334
1335 /* start stream (we don't need interrupts) */
1336 cm->ctrl |= CM_CHEN0 << rec->ch;
1337 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl);
1338 spin_unlock_irq(lock: &cm->reg_lock);
1339
1340 msleep(msecs: 1);
1341
1342 /* stop and reset stream */
1343 spin_lock_irq(lock: &cm->reg_lock);
1344 cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1345 val = CM_RST_CH0 << rec->ch;
1346 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl | val);
1347 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: cm->ctrl & ~val);
1348 spin_unlock_irq(lock: &cm->reg_lock);
1349
1350 rec->needs_silencing = 0;
1351 }
1352}
1353
1354static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1355{
1356 struct cmipci *cm = snd_pcm_substream_chip(substream);
1357 setup_spdif_playback(cm, subs: substream, up: 0, do_ac3: 0);
1358 restore_mixer_state(cm);
1359 snd_cmipci_silence_hack(cm, rec: &cm->channel[0]);
1360 return 0;
1361}
1362
1363static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1364{
1365 struct cmipci *cm = snd_pcm_substream_chip(substream);
1366 snd_cmipci_silence_hack(cm, rec: &cm->channel[1]);
1367 return 0;
1368}
1369
1370/* capture */
1371static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1372{
1373 struct cmipci *cm = snd_pcm_substream_chip(substream);
1374 return snd_cmipci_pcm_prepare(cm, rec: &cm->channel[CM_CH_CAPT], substream);
1375}
1376
1377/* capture with spdif (via device #2) */
1378static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1379{
1380 struct cmipci *cm = snd_pcm_substream_chip(substream);
1381
1382 spin_lock_irq(lock: &cm->reg_lock);
1383 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1384 if (cm->can_96k) {
1385 if (substream->runtime->rate > 48000)
1386 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1387 else
1388 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389 }
1390 if (snd_pcm_format_width(format: substream->runtime->format) > 16)
1391 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1392 else
1393 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394
1395 spin_unlock_irq(lock: &cm->reg_lock);
1396
1397 return snd_cmipci_pcm_prepare(cm, rec: &cm->channel[CM_CH_CAPT], substream);
1398}
1399
1400static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1401{
1402 struct cmipci *cm = snd_pcm_substream_chip(subs);
1403
1404 spin_lock_irq(lock: &cm->reg_lock);
1405 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1406 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1407 spin_unlock_irq(lock: &cm->reg_lock);
1408
1409 return 0;
1410}
1411
1412
1413/*
1414 * interrupt handler
1415 */
1416static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1417{
1418 struct cmipci *cm = dev_id;
1419 unsigned int status, mask = 0;
1420
1421 /* fastpath out, to ease interrupt sharing */
1422 status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1423 if (!(status & CM_INTR))
1424 return IRQ_NONE;
1425
1426 /* acknowledge interrupt */
1427 spin_lock(lock: &cm->reg_lock);
1428 if (status & CM_CHINT0)
1429 mask |= CM_CH0_INT_EN;
1430 if (status & CM_CHINT1)
1431 mask |= CM_CH1_INT_EN;
1432 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, flag: mask);
1433 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, flag: mask);
1434 spin_unlock(lock: &cm->reg_lock);
1435
1436 if (cm->rmidi && (status & CM_UARTINT))
1437 snd_mpu401_uart_interrupt(irq, dev_id: cm->rmidi->private_data);
1438
1439 if (cm->pcm) {
1440 if ((status & CM_CHINT0) && cm->channel[0].running)
1441 snd_pcm_period_elapsed(substream: cm->channel[0].substream);
1442 if ((status & CM_CHINT1) && cm->channel[1].running)
1443 snd_pcm_period_elapsed(substream: cm->channel[1].substream);
1444 }
1445 return IRQ_HANDLED;
1446}
1447
1448/*
1449 * h/w infos
1450 */
1451
1452/* playback on channel A */
1453static const struct snd_pcm_hardware snd_cmipci_playback =
1454{
1455 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1456 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1457 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1458 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1459 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1460 .rate_min = 5512,
1461 .rate_max = 48000,
1462 .channels_min = 1,
1463 .channels_max = 2,
1464 .buffer_bytes_max = (128*1024),
1465 .period_bytes_min = 64,
1466 .period_bytes_max = (128*1024),
1467 .periods_min = 2,
1468 .periods_max = 1024,
1469 .fifo_size = 0,
1470};
1471
1472/* capture on channel B */
1473static const struct snd_pcm_hardware snd_cmipci_capture =
1474{
1475 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1476 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1477 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1478 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1479 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1480 .rate_min = 5512,
1481 .rate_max = 48000,
1482 .channels_min = 1,
1483 .channels_max = 2,
1484 .buffer_bytes_max = (128*1024),
1485 .period_bytes_min = 64,
1486 .period_bytes_max = (128*1024),
1487 .periods_min = 2,
1488 .periods_max = 1024,
1489 .fifo_size = 0,
1490};
1491
1492/* playback on channel B - stereo 16bit only? */
1493static const struct snd_pcm_hardware snd_cmipci_playback2 =
1494{
1495 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1496 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1497 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1498 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1499 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1500 .rate_min = 5512,
1501 .rate_max = 48000,
1502 .channels_min = 2,
1503 .channels_max = 2,
1504 .buffer_bytes_max = (128*1024),
1505 .period_bytes_min = 64,
1506 .period_bytes_max = (128*1024),
1507 .periods_min = 2,
1508 .periods_max = 1024,
1509 .fifo_size = 0,
1510};
1511
1512/* spdif playback on channel A */
1513static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1514{
1515 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1516 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1517 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1518 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1519 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1520 .rate_min = 44100,
1521 .rate_max = 48000,
1522 .channels_min = 2,
1523 .channels_max = 2,
1524 .buffer_bytes_max = (128*1024),
1525 .period_bytes_min = 64,
1526 .period_bytes_max = (128*1024),
1527 .periods_min = 2,
1528 .periods_max = 1024,
1529 .fifo_size = 0,
1530};
1531
1532/* spdif playback on channel A (32bit, IEC958 subframes) */
1533static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1534{
1535 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1536 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1537 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1538 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1539 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1540 .rate_min = 44100,
1541 .rate_max = 48000,
1542 .channels_min = 2,
1543 .channels_max = 2,
1544 .buffer_bytes_max = (128*1024),
1545 .period_bytes_min = 64,
1546 .period_bytes_max = (128*1024),
1547 .periods_min = 2,
1548 .periods_max = 1024,
1549 .fifo_size = 0,
1550};
1551
1552/* spdif capture on channel B */
1553static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1554{
1555 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1556 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1557 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1558 .formats = SNDRV_PCM_FMTBIT_S16_LE |
1559 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1560 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1561 .rate_min = 44100,
1562 .rate_max = 48000,
1563 .channels_min = 2,
1564 .channels_max = 2,
1565 .buffer_bytes_max = (128*1024),
1566 .period_bytes_min = 64,
1567 .period_bytes_max = (128*1024),
1568 .periods_min = 2,
1569 .periods_max = 1024,
1570 .fifo_size = 0,
1571};
1572
1573static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1574 32000, 44100, 48000, 88200, 96000, 128000 };
1575static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1576 .count = ARRAY_SIZE(rate_constraints),
1577 .list = rate_constraints,
1578 .mask = 0,
1579};
1580
1581/*
1582 * check device open/close
1583 */
1584static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1585{
1586 int ch = mode & CM_OPEN_CH_MASK;
1587
1588 /* FIXME: a file should wait until the device becomes free
1589 * when it's opened on blocking mode. however, since the current
1590 * pcm framework doesn't pass file pointer before actually opened,
1591 * we can't know whether blocking mode or not in open callback..
1592 */
1593 mutex_lock(&cm->open_mutex);
1594 if (cm->opened[ch]) {
1595 mutex_unlock(lock: &cm->open_mutex);
1596 return -EBUSY;
1597 }
1598 cm->opened[ch] = mode;
1599 cm->channel[ch].substream = subs;
1600 if (! (mode & CM_OPEN_DAC)) {
1601 /* disable dual DAC mode */
1602 cm->channel[ch].is_dac = 0;
1603 spin_lock_irq(lock: &cm->reg_lock);
1604 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1605 spin_unlock_irq(lock: &cm->reg_lock);
1606 }
1607 mutex_unlock(lock: &cm->open_mutex);
1608 return 0;
1609}
1610
1611static void close_device_check(struct cmipci *cm, int mode)
1612{
1613 int ch = mode & CM_OPEN_CH_MASK;
1614
1615 mutex_lock(&cm->open_mutex);
1616 if (cm->opened[ch] == mode) {
1617 if (cm->channel[ch].substream) {
1618 snd_cmipci_ch_reset(cm, ch);
1619 cm->channel[ch].running = 0;
1620 cm->channel[ch].substream = NULL;
1621 }
1622 cm->opened[ch] = 0;
1623 if (! cm->channel[ch].is_dac) {
1624 /* enable dual DAC mode again */
1625 cm->channel[ch].is_dac = 1;
1626 spin_lock_irq(lock: &cm->reg_lock);
1627 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1628 spin_unlock_irq(lock: &cm->reg_lock);
1629 }
1630 }
1631 mutex_unlock(lock: &cm->open_mutex);
1632}
1633
1634/*
1635 */
1636
1637static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1638{
1639 struct cmipci *cm = snd_pcm_substream_chip(substream);
1640 struct snd_pcm_runtime *runtime = substream->runtime;
1641 int err;
1642
1643 err = open_device_check(cm, CM_OPEN_PLAYBACK, subs: substream);
1644 if (err < 0)
1645 return err;
1646 runtime->hw = snd_cmipci_playback;
1647 if (cm->chip_version == 68) {
1648 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1649 SNDRV_PCM_RATE_96000;
1650 runtime->hw.rate_max = 96000;
1651 } else if (cm->chip_version == 55) {
1652 err = snd_pcm_hw_constraint_list(runtime, cond: 0,
1653 SNDRV_PCM_HW_PARAM_RATE, l: &hw_constraints_rates);
1654 if (err < 0)
1655 return err;
1656 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1657 runtime->hw.rate_max = 128000;
1658 }
1659 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, min: 0, max: 0x10000);
1660 cm->dig_pcm_status = cm->dig_status;
1661 return 0;
1662}
1663
1664static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1665{
1666 struct cmipci *cm = snd_pcm_substream_chip(substream);
1667 struct snd_pcm_runtime *runtime = substream->runtime;
1668 int err;
1669
1670 err = open_device_check(cm, CM_OPEN_CAPTURE, subs: substream);
1671 if (err < 0)
1672 return err;
1673 runtime->hw = snd_cmipci_capture;
1674 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording
1675 runtime->hw.rate_min = 41000;
1676 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1677 } else if (cm->chip_version == 55) {
1678 err = snd_pcm_hw_constraint_list(runtime, cond: 0,
1679 SNDRV_PCM_HW_PARAM_RATE, l: &hw_constraints_rates);
1680 if (err < 0)
1681 return err;
1682 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683 runtime->hw.rate_max = 128000;
1684 }
1685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, min: 0, max: 0x10000);
1686 return 0;
1687}
1688
1689static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1690{
1691 struct cmipci *cm = snd_pcm_substream_chip(substream);
1692 struct snd_pcm_runtime *runtime = substream->runtime;
1693 int err;
1694
1695 /* use channel B */
1696 err = open_device_check(cm, CM_OPEN_PLAYBACK2, subs: substream);
1697 if (err < 0)
1698 return err;
1699 runtime->hw = snd_cmipci_playback2;
1700 mutex_lock(&cm->open_mutex);
1701 if (! cm->opened[CM_CH_PLAY]) {
1702 if (cm->can_multi_ch) {
1703 runtime->hw.channels_max = cm->max_channels;
1704 if (cm->max_channels == 4)
1705 snd_pcm_hw_constraint_list(runtime, cond: 0, SNDRV_PCM_HW_PARAM_CHANNELS, l: &hw_constraints_channels_4);
1706 else if (cm->max_channels == 6)
1707 snd_pcm_hw_constraint_list(runtime, cond: 0, SNDRV_PCM_HW_PARAM_CHANNELS, l: &hw_constraints_channels_6);
1708 else if (cm->max_channels == 8)
1709 snd_pcm_hw_constraint_list(runtime, cond: 0, SNDRV_PCM_HW_PARAM_CHANNELS, l: &hw_constraints_channels_8);
1710 }
1711 }
1712 mutex_unlock(lock: &cm->open_mutex);
1713 if (cm->chip_version == 68) {
1714 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1715 SNDRV_PCM_RATE_96000;
1716 runtime->hw.rate_max = 96000;
1717 } else if (cm->chip_version == 55) {
1718 err = snd_pcm_hw_constraint_list(runtime, cond: 0,
1719 SNDRV_PCM_HW_PARAM_RATE, l: &hw_constraints_rates);
1720 if (err < 0)
1721 return err;
1722 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1723 runtime->hw.rate_max = 128000;
1724 }
1725 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, min: 0, max: 0x10000);
1726 return 0;
1727}
1728
1729static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1730{
1731 struct cmipci *cm = snd_pcm_substream_chip(substream);
1732 struct snd_pcm_runtime *runtime = substream->runtime;
1733 int err;
1734
1735 /* use channel A */
1736 err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, subs: substream);
1737 if (err < 0)
1738 return err;
1739 if (cm->can_ac3_hw) {
1740 runtime->hw = snd_cmipci_playback_spdif;
1741 if (cm->chip_version >= 37) {
1742 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1743 snd_pcm_hw_constraint_msbits(runtime, cond: 0, width: 32, msbits: 24);
1744 }
1745 if (cm->can_96k) {
1746 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1747 SNDRV_PCM_RATE_96000;
1748 runtime->hw.rate_max = 96000;
1749 }
1750 } else {
1751 runtime->hw = snd_cmipci_playback_iec958_subframe;
1752 }
1753 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, min: 0, max: 0x40000);
1754 cm->dig_pcm_status = cm->dig_status;
1755 return 0;
1756}
1757
1758static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1759{
1760 struct cmipci *cm = snd_pcm_substream_chip(substream);
1761 struct snd_pcm_runtime *runtime = substream->runtime;
1762 int err;
1763
1764 /* use channel B */
1765 err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, subs: substream);
1766 if (err < 0)
1767 return err;
1768 runtime->hw = snd_cmipci_capture_spdif;
1769 if (cm->can_96k && !(cm->chip_version == 68)) {
1770 runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1771 SNDRV_PCM_RATE_96000;
1772 runtime->hw.rate_max = 96000;
1773 }
1774 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, min: 0, max: 0x40000);
1775 return 0;
1776}
1777
1778
1779/*
1780 */
1781
1782static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1783{
1784 struct cmipci *cm = snd_pcm_substream_chip(substream);
1785 close_device_check(cm, CM_OPEN_PLAYBACK);
1786 return 0;
1787}
1788
1789static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1790{
1791 struct cmipci *cm = snd_pcm_substream_chip(substream);
1792 close_device_check(cm, CM_OPEN_CAPTURE);
1793 return 0;
1794}
1795
1796static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1797{
1798 struct cmipci *cm = snd_pcm_substream_chip(substream);
1799 close_device_check(cm, CM_OPEN_PLAYBACK2);
1800 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1801 return 0;
1802}
1803
1804static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1805{
1806 struct cmipci *cm = snd_pcm_substream_chip(substream);
1807 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1808 return 0;
1809}
1810
1811static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1812{
1813 struct cmipci *cm = snd_pcm_substream_chip(substream);
1814 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1815 return 0;
1816}
1817
1818
1819/*
1820 */
1821
1822static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1823 .open = snd_cmipci_playback_open,
1824 .close = snd_cmipci_playback_close,
1825 .hw_free = snd_cmipci_playback_hw_free,
1826 .prepare = snd_cmipci_playback_prepare,
1827 .trigger = snd_cmipci_playback_trigger,
1828 .pointer = snd_cmipci_playback_pointer,
1829};
1830
1831static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1832 .open = snd_cmipci_capture_open,
1833 .close = snd_cmipci_capture_close,
1834 .prepare = snd_cmipci_capture_prepare,
1835 .trigger = snd_cmipci_capture_trigger,
1836 .pointer = snd_cmipci_capture_pointer,
1837};
1838
1839static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1840 .open = snd_cmipci_playback2_open,
1841 .close = snd_cmipci_playback2_close,
1842 .hw_params = snd_cmipci_playback2_hw_params,
1843 .hw_free = snd_cmipci_playback2_hw_free,
1844 .prepare = snd_cmipci_capture_prepare, /* channel B */
1845 .trigger = snd_cmipci_capture_trigger, /* channel B */
1846 .pointer = snd_cmipci_capture_pointer, /* channel B */
1847};
1848
1849static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1850 .open = snd_cmipci_playback_spdif_open,
1851 .close = snd_cmipci_playback_spdif_close,
1852 .hw_free = snd_cmipci_playback_hw_free,
1853 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */
1854 .trigger = snd_cmipci_playback_trigger,
1855 .pointer = snd_cmipci_playback_pointer,
1856};
1857
1858static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1859 .open = snd_cmipci_capture_spdif_open,
1860 .close = snd_cmipci_capture_spdif_close,
1861 .hw_free = snd_cmipci_capture_spdif_hw_free,
1862 .prepare = snd_cmipci_capture_spdif_prepare,
1863 .trigger = snd_cmipci_capture_trigger,
1864 .pointer = snd_cmipci_capture_pointer,
1865};
1866
1867
1868/*
1869 */
1870
1871static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1872{
1873 struct snd_pcm *pcm;
1874 int err;
1875
1876 err = snd_pcm_new(card: cm->card, id: cm->card->driver, device, playback_count: 1, capture_count: 1, rpcm: &pcm);
1877 if (err < 0)
1878 return err;
1879
1880 snd_pcm_set_ops(pcm, direction: SNDRV_PCM_STREAM_PLAYBACK, ops: &snd_cmipci_playback_ops);
1881 snd_pcm_set_ops(pcm, direction: SNDRV_PCM_STREAM_CAPTURE, ops: &snd_cmipci_capture_ops);
1882
1883 pcm->private_data = cm;
1884 pcm->info_flags = 0;
1885 strcpy(p: pcm->name, q: "C-Media PCI DAC/ADC");
1886 cm->pcm = pcm;
1887
1888 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1889 data: &cm->pci->dev, size: 64*1024, max: 128*1024);
1890
1891 return 0;
1892}
1893
1894static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1895{
1896 struct snd_pcm *pcm;
1897 int err;
1898
1899 err = snd_pcm_new(card: cm->card, id: cm->card->driver, device, playback_count: 1, capture_count: 0, rpcm: &pcm);
1900 if (err < 0)
1901 return err;
1902
1903 snd_pcm_set_ops(pcm, direction: SNDRV_PCM_STREAM_PLAYBACK, ops: &snd_cmipci_playback2_ops);
1904
1905 pcm->private_data = cm;
1906 pcm->info_flags = 0;
1907 strcpy(p: pcm->name, q: "C-Media PCI 2nd DAC");
1908 cm->pcm2 = pcm;
1909
1910 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1911 data: &cm->pci->dev, size: 64*1024, max: 128*1024);
1912
1913 return 0;
1914}
1915
1916static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1917{
1918 struct snd_pcm *pcm;
1919 int err;
1920
1921 err = snd_pcm_new(card: cm->card, id: cm->card->driver, device, playback_count: 1, capture_count: 1, rpcm: &pcm);
1922 if (err < 0)
1923 return err;
1924
1925 snd_pcm_set_ops(pcm, direction: SNDRV_PCM_STREAM_PLAYBACK, ops: &snd_cmipci_playback_spdif_ops);
1926 snd_pcm_set_ops(pcm, direction: SNDRV_PCM_STREAM_CAPTURE, ops: &snd_cmipci_capture_spdif_ops);
1927
1928 pcm->private_data = cm;
1929 pcm->info_flags = 0;
1930 strcpy(p: pcm->name, q: "C-Media PCI IEC958");
1931 cm->pcm_spdif = pcm;
1932
1933 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1934 data: &cm->pci->dev, size: 64*1024, max: 128*1024);
1935
1936 err = snd_pcm_add_chmap_ctls(pcm, stream: SNDRV_PCM_STREAM_PLAYBACK,
1937 chmap: snd_pcm_alt_chmaps, max_channels: cm->max_channels, private_value: 0,
1938 NULL);
1939 if (err < 0)
1940 return err;
1941
1942 return 0;
1943}
1944
1945/*
1946 * mixer interface:
1947 * - CM8338/8738 has a compatible mixer interface with SB16, but
1948 * lack of some elements like tone control, i/o gain and AGC.
1949 * - Access to native registers:
1950 * - A 3D switch
1951 * - Output mute switches
1952 */
1953
1954static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1955{
1956 outb(value: idx, port: s->iobase + CM_REG_SB16_ADDR);
1957 outb(value: data, port: s->iobase + CM_REG_SB16_DATA);
1958}
1959
1960static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1961{
1962 unsigned char v;
1963
1964 outb(value: idx, port: s->iobase + CM_REG_SB16_ADDR);
1965 v = inb(port: s->iobase + CM_REG_SB16_DATA);
1966 return v;
1967}
1968
1969/*
1970 * general mixer element
1971 */
1972struct cmipci_sb_reg {
1973 unsigned int left_reg, right_reg;
1974 unsigned int left_shift, right_shift;
1975 unsigned int mask;
1976 unsigned int invert: 1;
1977 unsigned int stereo: 1;
1978};
1979
1980#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1981 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1982
1983#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1984{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1985 .info = snd_cmipci_info_volume, \
1986 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1987 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1988}
1989
1990#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1991#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1992#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1993#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1994
1995static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1996{
1997 r->left_reg = val & 0xff;
1998 r->right_reg = (val >> 8) & 0xff;
1999 r->left_shift = (val >> 16) & 0x07;
2000 r->right_shift = (val >> 19) & 0x07;
2001 r->invert = (val >> 22) & 1;
2002 r->stereo = (val >> 23) & 1;
2003 r->mask = (val >> 24) & 0xff;
2004}
2005
2006static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2007 struct snd_ctl_elem_info *uinfo)
2008{
2009 struct cmipci_sb_reg reg;
2010
2011 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2012 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2013 uinfo->count = reg.stereo + 1;
2014 uinfo->value.integer.min = 0;
2015 uinfo->value.integer.max = reg.mask;
2016 return 0;
2017}
2018
2019static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2020 struct snd_ctl_elem_value *ucontrol)
2021{
2022 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2023 struct cmipci_sb_reg reg;
2024 int val;
2025
2026 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2027 spin_lock_irq(lock: &cm->reg_lock);
2028 val = (snd_cmipci_mixer_read(s: cm, idx: reg.left_reg) >> reg.left_shift) & reg.mask;
2029 if (reg.invert)
2030 val = reg.mask - val;
2031 ucontrol->value.integer.value[0] = val;
2032 if (reg.stereo) {
2033 val = (snd_cmipci_mixer_read(s: cm, idx: reg.right_reg) >> reg.right_shift) & reg.mask;
2034 if (reg.invert)
2035 val = reg.mask - val;
2036 ucontrol->value.integer.value[1] = val;
2037 }
2038 spin_unlock_irq(lock: &cm->reg_lock);
2039 return 0;
2040}
2041
2042static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2043 struct snd_ctl_elem_value *ucontrol)
2044{
2045 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2046 struct cmipci_sb_reg reg;
2047 int change;
2048 int left, right, oleft, oright;
2049
2050 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2051 left = ucontrol->value.integer.value[0] & reg.mask;
2052 if (reg.invert)
2053 left = reg.mask - left;
2054 left <<= reg.left_shift;
2055 if (reg.stereo) {
2056 right = ucontrol->value.integer.value[1] & reg.mask;
2057 if (reg.invert)
2058 right = reg.mask - right;
2059 right <<= reg.right_shift;
2060 } else
2061 right = 0;
2062 spin_lock_irq(lock: &cm->reg_lock);
2063 oleft = snd_cmipci_mixer_read(s: cm, idx: reg.left_reg);
2064 left |= oleft & ~(reg.mask << reg.left_shift);
2065 change = left != oleft;
2066 if (reg.stereo) {
2067 if (reg.left_reg != reg.right_reg) {
2068 snd_cmipci_mixer_write(s: cm, idx: reg.left_reg, data: left);
2069 oright = snd_cmipci_mixer_read(s: cm, idx: reg.right_reg);
2070 } else
2071 oright = left;
2072 right |= oright & ~(reg.mask << reg.right_shift);
2073 change |= right != oright;
2074 snd_cmipci_mixer_write(s: cm, idx: reg.right_reg, data: right);
2075 } else
2076 snd_cmipci_mixer_write(s: cm, idx: reg.left_reg, data: left);
2077 spin_unlock_irq(lock: &cm->reg_lock);
2078 return change;
2079}
2080
2081/*
2082 * input route (left,right) -> (left,right)
2083 */
2084#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2085{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2086 .info = snd_cmipci_info_input_sw, \
2087 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2088 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2089}
2090
2091static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2092 struct snd_ctl_elem_info *uinfo)
2093{
2094 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2095 uinfo->count = 4;
2096 uinfo->value.integer.min = 0;
2097 uinfo->value.integer.max = 1;
2098 return 0;
2099}
2100
2101static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2102 struct snd_ctl_elem_value *ucontrol)
2103{
2104 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2105 struct cmipci_sb_reg reg;
2106 int val1, val2;
2107
2108 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2109 spin_lock_irq(lock: &cm->reg_lock);
2110 val1 = snd_cmipci_mixer_read(s: cm, idx: reg.left_reg);
2111 val2 = snd_cmipci_mixer_read(s: cm, idx: reg.right_reg);
2112 spin_unlock_irq(lock: &cm->reg_lock);
2113 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2114 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2115 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2116 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2117 return 0;
2118}
2119
2120static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2121 struct snd_ctl_elem_value *ucontrol)
2122{
2123 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2124 struct cmipci_sb_reg reg;
2125 int change;
2126 int val1, val2, oval1, oval2;
2127
2128 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2129 spin_lock_irq(lock: &cm->reg_lock);
2130 oval1 = snd_cmipci_mixer_read(s: cm, idx: reg.left_reg);
2131 oval2 = snd_cmipci_mixer_read(s: cm, idx: reg.right_reg);
2132 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2133 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2134 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2135 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2136 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2137 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2138 change = val1 != oval1 || val2 != oval2;
2139 snd_cmipci_mixer_write(s: cm, idx: reg.left_reg, data: val1);
2140 snd_cmipci_mixer_write(s: cm, idx: reg.right_reg, data: val2);
2141 spin_unlock_irq(lock: &cm->reg_lock);
2142 return change;
2143}
2144
2145/*
2146 * native mixer switches/volumes
2147 */
2148
2149#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2150{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2151 .info = snd_cmipci_info_native_mixer, \
2152 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2153 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2154}
2155
2156#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2157{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2158 .info = snd_cmipci_info_native_mixer, \
2159 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2160 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2161}
2162
2163#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2164{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2165 .info = snd_cmipci_info_native_mixer, \
2166 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2167 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2168}
2169
2170#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2171{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2172 .info = snd_cmipci_info_native_mixer, \
2173 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2174 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2175}
2176
2177static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2178 struct snd_ctl_elem_info *uinfo)
2179{
2180 struct cmipci_sb_reg reg;
2181
2182 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2183 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2184 uinfo->count = reg.stereo + 1;
2185 uinfo->value.integer.min = 0;
2186 uinfo->value.integer.max = reg.mask;
2187 return 0;
2188
2189}
2190
2191static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2192 struct snd_ctl_elem_value *ucontrol)
2193{
2194 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2195 struct cmipci_sb_reg reg;
2196 unsigned char oreg, val;
2197
2198 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2199 spin_lock_irq(lock: &cm->reg_lock);
2200 oreg = inb(port: cm->iobase + reg.left_reg);
2201 val = (oreg >> reg.left_shift) & reg.mask;
2202 if (reg.invert)
2203 val = reg.mask - val;
2204 ucontrol->value.integer.value[0] = val;
2205 if (reg.stereo) {
2206 val = (oreg >> reg.right_shift) & reg.mask;
2207 if (reg.invert)
2208 val = reg.mask - val;
2209 ucontrol->value.integer.value[1] = val;
2210 }
2211 spin_unlock_irq(lock: &cm->reg_lock);
2212 return 0;
2213}
2214
2215static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2216 struct snd_ctl_elem_value *ucontrol)
2217{
2218 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2219 struct cmipci_sb_reg reg;
2220 unsigned char oreg, nreg, val;
2221
2222 cmipci_sb_reg_decode(r: &reg, val: kcontrol->private_value);
2223 spin_lock_irq(lock: &cm->reg_lock);
2224 oreg = inb(port: cm->iobase + reg.left_reg);
2225 val = ucontrol->value.integer.value[0] & reg.mask;
2226 if (reg.invert)
2227 val = reg.mask - val;
2228 nreg = oreg & ~(reg.mask << reg.left_shift);
2229 nreg |= (val << reg.left_shift);
2230 if (reg.stereo) {
2231 val = ucontrol->value.integer.value[1] & reg.mask;
2232 if (reg.invert)
2233 val = reg.mask - val;
2234 nreg &= ~(reg.mask << reg.right_shift);
2235 nreg |= (val << reg.right_shift);
2236 }
2237 outb(value: nreg, port: cm->iobase + reg.left_reg);
2238 spin_unlock_irq(lock: &cm->reg_lock);
2239 return (nreg != oreg);
2240}
2241
2242/*
2243 * special case - check mixer sensitivity
2244 */
2245static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2246 struct snd_ctl_elem_value *ucontrol)
2247{
2248 //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2249 return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2250}
2251
2252static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2253 struct snd_ctl_elem_value *ucontrol)
2254{
2255 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2256 if (cm->mixer_insensitive) {
2257 /* ignored */
2258 return 0;
2259 }
2260 return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2261}
2262
2263
2264static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2265 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2266 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2267 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2268 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2269 { /* switch with sensitivity */
2270 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2271 .name = "PCM Playback Switch",
2272 .info = snd_cmipci_info_native_mixer,
2273 .get = snd_cmipci_get_native_mixer_sensitive,
2274 .put = snd_cmipci_put_native_mixer_sensitive,
2275 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2276 },
2277 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2278 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2279 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2280 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2281 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2282 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2283 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2284 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2285 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2286 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2287 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2288 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2289 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2290 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2291 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2292 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2293 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2294 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2295 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2296 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2297 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2298 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2299 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2300};
2301
2302/*
2303 * other switches
2304 */
2305
2306struct cmipci_switch_args {
2307 int reg; /* register index */
2308 unsigned int mask; /* mask bits */
2309 unsigned int mask_on; /* mask bits to turn on */
2310 unsigned int is_byte: 1; /* byte access? */
2311 unsigned int ac3_sensitive: 1; /* access forbidden during
2312 * non-audio operation?
2313 */
2314};
2315
2316#define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info
2317
2318static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2319 struct snd_ctl_elem_value *ucontrol,
2320 struct cmipci_switch_args *args)
2321{
2322 unsigned int val;
2323 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2324
2325 spin_lock_irq(lock: &cm->reg_lock);
2326 if (args->ac3_sensitive && cm->mixer_insensitive) {
2327 ucontrol->value.integer.value[0] = 0;
2328 spin_unlock_irq(lock: &cm->reg_lock);
2329 return 0;
2330 }
2331 if (args->is_byte)
2332 val = inb(port: cm->iobase + args->reg);
2333 else
2334 val = snd_cmipci_read(cm, cmd: args->reg);
2335 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2336 spin_unlock_irq(lock: &cm->reg_lock);
2337 return 0;
2338}
2339
2340static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2341 struct snd_ctl_elem_value *ucontrol)
2342{
2343 struct cmipci_switch_args *args;
2344 args = (struct cmipci_switch_args *)kcontrol->private_value;
2345 if (snd_BUG_ON(!args))
2346 return -EINVAL;
2347 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2348}
2349
2350static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2351 struct snd_ctl_elem_value *ucontrol,
2352 struct cmipci_switch_args *args)
2353{
2354 unsigned int val;
2355 int change;
2356 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2357
2358 spin_lock_irq(lock: &cm->reg_lock);
2359 if (args->ac3_sensitive && cm->mixer_insensitive) {
2360 /* ignored */
2361 spin_unlock_irq(lock: &cm->reg_lock);
2362 return 0;
2363 }
2364 if (args->is_byte)
2365 val = inb(port: cm->iobase + args->reg);
2366 else
2367 val = snd_cmipci_read(cm, cmd: args->reg);
2368 change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2369 args->mask_on : (args->mask & ~args->mask_on));
2370 if (change) {
2371 val &= ~args->mask;
2372 if (ucontrol->value.integer.value[0])
2373 val |= args->mask_on;
2374 else
2375 val |= (args->mask & ~args->mask_on);
2376 if (args->is_byte)
2377 outb(value: (unsigned char)val, port: cm->iobase + args->reg);
2378 else
2379 snd_cmipci_write(cm, cmd: args->reg, data: val);
2380 }
2381 spin_unlock_irq(lock: &cm->reg_lock);
2382 return change;
2383}
2384
2385static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2386 struct snd_ctl_elem_value *ucontrol)
2387{
2388 struct cmipci_switch_args *args;
2389 args = (struct cmipci_switch_args *)kcontrol->private_value;
2390 if (snd_BUG_ON(!args))
2391 return -EINVAL;
2392 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2393}
2394
2395#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2396static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2397 .reg = xreg, \
2398 .mask = xmask, \
2399 .mask_on = xmask_on, \
2400 .is_byte = xis_byte, \
2401 .ac3_sensitive = xac3, \
2402}
2403
2404#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2405 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2406
2407#if 0 /* these will be controlled in pcm device */
2408DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2409DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2410#endif
2411DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2413DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2414DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2415DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2416DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2417DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2418DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2419// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2420DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2421DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2422/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2423DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2424DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2425#if CM_CH_PLAY == 1
2426DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2427#else
2428DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2429#endif
2430DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2431// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2432// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2433// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2434DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2435
2436#define DEFINE_SWITCH(sname, stype, sarg) \
2437{ .name = sname, \
2438 .iface = stype, \
2439 .info = snd_cmipci_uswitch_info, \
2440 .get = snd_cmipci_uswitch_get, \
2441 .put = snd_cmipci_uswitch_put, \
2442 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2443}
2444
2445#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2446#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2447
2448
2449/*
2450 * callbacks for spdif output switch
2451 * needs toggle two registers..
2452 */
2453static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2454 struct snd_ctl_elem_value *ucontrol)
2455{
2456 int changed;
2457 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, args: &cmipci_switch_arg_spdif_enable);
2458 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, args: &cmipci_switch_arg_spdo2dac);
2459 return changed;
2460}
2461
2462static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2463 struct snd_ctl_elem_value *ucontrol)
2464{
2465 struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2466 int changed;
2467 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, args: &cmipci_switch_arg_spdif_enable);
2468 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, args: &cmipci_switch_arg_spdo2dac);
2469 if (changed) {
2470 if (ucontrol->value.integer.value[0]) {
2471 if (chip->spdif_playback_avail)
2472 snd_cmipci_set_bit(cm: chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2473 } else {
2474 if (chip->spdif_playback_avail)
2475 snd_cmipci_clear_bit(cm: chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2476 }
2477 }
2478 chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2479 return changed;
2480}
2481
2482
2483static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2484 struct snd_ctl_elem_info *uinfo)
2485{
2486 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2487 static const char *const texts[3] = {
2488 "Line-In", "Rear Output", "Bass Output"
2489 };
2490
2491 return snd_ctl_enum_info(info: uinfo, channels: 1,
2492 items: cm->chip_version >= 39 ? 3 : 2, names: texts);
2493}
2494
2495static inline unsigned int get_line_in_mode(struct cmipci *cm)
2496{
2497 unsigned int val;
2498 if (cm->chip_version >= 39) {
2499 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2500 if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2501 return 2;
2502 }
2503 val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2504 if (val & CM_REAR2LIN)
2505 return 1;
2506 return 0;
2507}
2508
2509static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2510 struct snd_ctl_elem_value *ucontrol)
2511{
2512 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2513
2514 spin_lock_irq(lock: &cm->reg_lock);
2515 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2516 spin_unlock_irq(lock: &cm->reg_lock);
2517 return 0;
2518}
2519
2520static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2521 struct snd_ctl_elem_value *ucontrol)
2522{
2523 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2524 int change;
2525
2526 spin_lock_irq(lock: &cm->reg_lock);
2527 if (ucontrol->value.enumerated.item[0] == 2)
2528 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2529 else
2530 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2531 if (ucontrol->value.enumerated.item[0] == 1)
2532 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2533 else
2534 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2535 spin_unlock_irq(lock: &cm->reg_lock);
2536 return change;
2537}
2538
2539static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2540 struct snd_ctl_elem_info *uinfo)
2541{
2542 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2543
2544 return snd_ctl_enum_info(info: uinfo, channels: 1, items: 2, names: texts);
2545}
2546
2547static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2548 struct snd_ctl_elem_value *ucontrol)
2549{
2550 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2551 /* same bit as spdi_phase */
2552 spin_lock_irq(lock: &cm->reg_lock);
2553 ucontrol->value.enumerated.item[0] =
2554 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2555 spin_unlock_irq(lock: &cm->reg_lock);
2556 return 0;
2557}
2558
2559static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2560 struct snd_ctl_elem_value *ucontrol)
2561{
2562 struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2563 int change;
2564
2565 spin_lock_irq(lock: &cm->reg_lock);
2566 if (ucontrol->value.enumerated.item[0])
2567 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2568 else
2569 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2570 spin_unlock_irq(lock: &cm->reg_lock);
2571 return change;
2572}
2573
2574/* both for CM8338/8738 */
2575static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2576 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2577 {
2578 .name = "Line-In Mode",
2579 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2580 .info = snd_cmipci_line_in_mode_info,
2581 .get = snd_cmipci_line_in_mode_get,
2582 .put = snd_cmipci_line_in_mode_put,
2583 },
2584};
2585
2586/* for non-multichannel chips */
2587static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2588DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2589
2590/* only for CM8738 */
2591static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2592#if 0 /* controlled in pcm device */
2593 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2594 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2595 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2596#endif
2597 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2598 { .name = "IEC958 Output Switch",
2599 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2600 .info = snd_cmipci_uswitch_info,
2601 .get = snd_cmipci_spdout_enable_get,
2602 .put = snd_cmipci_spdout_enable_put,
2603 },
2604 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2605 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2606 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2607// DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2608 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2609 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2610};
2611
2612/* only for model 033/037 */
2613static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2614 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2615 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2616 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2617};
2618
2619/* only for model 039 or later */
2620static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2621 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2622 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2623 {
2624 .name = "Mic-In Mode",
2625 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2626 .info = snd_cmipci_mic_in_mode_info,
2627 .get = snd_cmipci_mic_in_mode_get,
2628 .put = snd_cmipci_mic_in_mode_put,
2629 }
2630};
2631
2632/* card control switches */
2633static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2634DEFINE_CARD_SWITCH("Modem", modem);
2635
2636
2637static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2638{
2639 struct snd_card *card;
2640 const struct snd_kcontrol_new *sw;
2641 struct snd_kcontrol *kctl;
2642 unsigned int idx;
2643 int err;
2644
2645 if (snd_BUG_ON(!cm || !cm->card))
2646 return -EINVAL;
2647
2648 card = cm->card;
2649
2650 strcpy(p: card->mixername, q: "CMedia PCI");
2651
2652 spin_lock_irq(lock: &cm->reg_lock);
2653 snd_cmipci_mixer_write(s: cm, idx: 0x00, data: 0x00); /* mixer reset */
2654 spin_unlock_irq(lock: &cm->reg_lock);
2655
2656 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2657 if (cm->chip_version == 68) { // 8768 has no PCM volume
2658 if (!strcmp(snd_cmipci_mixers[idx].name,
2659 "PCM Playback Volume"))
2660 continue;
2661 }
2662 err = snd_ctl_add(card, kcontrol: snd_ctl_new1(kcontrolnew: &snd_cmipci_mixers[idx], private_data: cm));
2663 if (err < 0)
2664 return err;
2665 }
2666
2667 /* mixer switches */
2668 sw = snd_cmipci_mixer_switches;
2669 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2670 err = snd_ctl_add(card: cm->card, kcontrol: snd_ctl_new1(kcontrolnew: sw, private_data: cm));
2671 if (err < 0)
2672 return err;
2673 }
2674 if (! cm->can_multi_ch) {
2675 err = snd_ctl_add(card: cm->card, kcontrol: snd_ctl_new1(kcontrolnew: &snd_cmipci_nomulti_switch, private_data: cm));
2676 if (err < 0)
2677 return err;
2678 }
2679 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2680 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2681 sw = snd_cmipci_8738_mixer_switches;
2682 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2683 err = snd_ctl_add(card: cm->card, kcontrol: snd_ctl_new1(kcontrolnew: sw, private_data: cm));
2684 if (err < 0)
2685 return err;
2686 }
2687 if (cm->can_ac3_hw) {
2688 kctl = snd_ctl_new1(kcontrolnew: &snd_cmipci_spdif_default, private_data: cm);
2689 kctl->id.device = pcm_spdif_device;
2690 err = snd_ctl_add(card, kcontrol: kctl);
2691 if (err < 0)
2692 return err;
2693 kctl = snd_ctl_new1(kcontrolnew: &snd_cmipci_spdif_mask, private_data: cm);
2694 kctl->id.device = pcm_spdif_device;
2695 err = snd_ctl_add(card, kcontrol: kctl);
2696 if (err < 0)
2697 return err;
2698 kctl = snd_ctl_new1(kcontrolnew: &snd_cmipci_spdif_stream, private_data: cm);
2699 kctl->id.device = pcm_spdif_device;
2700 err = snd_ctl_add(card, kcontrol: kctl);
2701 if (err < 0)
2702 return err;
2703 }
2704 if (cm->chip_version <= 37) {
2705 sw = snd_cmipci_old_mixer_switches;
2706 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2707 err = snd_ctl_add(card: cm->card, kcontrol: snd_ctl_new1(kcontrolnew: sw, private_data: cm));
2708 if (err < 0)
2709 return err;
2710 }
2711 }
2712 }
2713 if (cm->chip_version >= 39) {
2714 sw = snd_cmipci_extra_mixer_switches;
2715 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2716 err = snd_ctl_add(card: cm->card, kcontrol: snd_ctl_new1(kcontrolnew: sw, private_data: cm));
2717 if (err < 0)
2718 return err;
2719 }
2720 }
2721
2722 /* card switches */
2723 /*
2724 * newer chips don't have the register bits to force modem link
2725 * detection; the bit that was FLINKON now mutes CH1
2726 */
2727 if (cm->chip_version < 39) {
2728 err = snd_ctl_add(card: cm->card,
2729 kcontrol: snd_ctl_new1(kcontrolnew: &snd_cmipci_modem_switch, private_data: cm));
2730 if (err < 0)
2731 return err;
2732 }
2733
2734 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2735 struct snd_kcontrol *ctl;
2736 ctl = snd_ctl_find_id_mixer(card: cm->card, name: cm_saved_mixer[idx].name);
2737 if (ctl)
2738 cm->mixer_res_ctl[idx] = ctl;
2739 }
2740
2741 return 0;
2742}
2743
2744
2745/*
2746 * proc interface
2747 */
2748
2749static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2750 struct snd_info_buffer *buffer)
2751{
2752 struct cmipci *cm = entry->private_data;
2753 int i, v;
2754
2755 snd_iprintf(buffer, "%s\n", cm->card->longname);
2756 for (i = 0; i < 0x94; i++) {
2757 if (i == 0x28)
2758 i = 0x90;
2759 v = inb(port: cm->iobase + i);
2760 if (i % 4 == 0)
2761 snd_iprintf(buffer, "\n%02x:", i);
2762 snd_iprintf(buffer, " %02x", v);
2763 }
2764 snd_iprintf(buffer, "\n");
2765}
2766
2767static void snd_cmipci_proc_init(struct cmipci *cm)
2768{
2769 snd_card_ro_proc_new(card: cm->card, name: "cmipci", private_data: cm, read: snd_cmipci_proc_read);
2770}
2771
2772static const struct pci_device_id snd_cmipci_ids[] = {
2773 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2774 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2775 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2776 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2777 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2778 {0,},
2779};
2780
2781
2782/*
2783 * check chip version and capabilities
2784 * driver name is modified according to the chip model
2785 */
2786static void query_chip(struct cmipci *cm)
2787{
2788 unsigned int detect;
2789
2790 /* check reg 0Ch, bit 24-31 */
2791 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2792 if (! detect) {
2793 /* check reg 08h, bit 24-28 */
2794 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2795 switch (detect) {
2796 case 0:
2797 cm->chip_version = 33;
2798 if (cm->do_soft_ac3)
2799 cm->can_ac3_sw = 1;
2800 else
2801 cm->can_ac3_hw = 1;
2802 break;
2803 case CM_CHIP_037:
2804 cm->chip_version = 37;
2805 cm->can_ac3_hw = 1;
2806 break;
2807 default:
2808 cm->chip_version = 39;
2809 cm->can_ac3_hw = 1;
2810 break;
2811 }
2812 cm->max_channels = 2;
2813 } else {
2814 if (detect & CM_CHIP_039) {
2815 cm->chip_version = 39;
2816 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2817 cm->max_channels = 6;
2818 else
2819 cm->max_channels = 4;
2820 } else if (detect & CM_CHIP_8768) {
2821 cm->chip_version = 68;
2822 cm->max_channels = 8;
2823 cm->can_96k = 1;
2824 } else {
2825 cm->chip_version = 55;
2826 cm->max_channels = 6;
2827 cm->can_96k = 1;
2828 }
2829 cm->can_ac3_hw = 1;
2830 cm->can_multi_ch = 1;
2831 }
2832}
2833
2834#ifdef SUPPORT_JOYSTICK
2835static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2836{
2837 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2838 struct gameport *gp;
2839 struct resource *r = NULL;
2840 int i, io_port = 0;
2841
2842 if (joystick_port[dev] == 0)
2843 return -ENODEV;
2844
2845 if (joystick_port[dev] == 1) { /* auto-detect */
2846 for (i = 0; ports[i]; i++) {
2847 io_port = ports[i];
2848 r = devm_request_region(&cm->pci->dev, io_port, 1,
2849 "CMIPCI gameport");
2850 if (r)
2851 break;
2852 }
2853 } else {
2854 io_port = joystick_port[dev];
2855 r = devm_request_region(&cm->pci->dev, io_port, 1,
2856 "CMIPCI gameport");
2857 }
2858
2859 if (!r) {
2860 dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2861 return -EBUSY;
2862 }
2863
2864 cm->gameport = gp = gameport_allocate_port();
2865 if (!gp) {
2866 dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2867 return -ENOMEM;
2868 }
2869 gameport_set_name(gameport: gp, name: "C-Media Gameport");
2870 gameport_set_phys(gameport: gp, fmt: "pci%s/gameport0", pci_name(pdev: cm->pci));
2871 gameport_set_dev_parent(gp, &cm->pci->dev);
2872 gp->io = io_port;
2873
2874 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2875
2876 gameport_register_port(cm->gameport);
2877
2878 return 0;
2879}
2880
2881static void snd_cmipci_free_gameport(struct cmipci *cm)
2882{
2883 if (cm->gameport) {
2884 gameport_unregister_port(gameport: cm->gameport);
2885 cm->gameport = NULL;
2886
2887 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888 }
2889}
2890#else
2891static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2892static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2893#endif
2894
2895static void snd_cmipci_free(struct snd_card *card)
2896{
2897 struct cmipci *cm = card->private_data;
2898
2899 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2900 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2901 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, data: 0); /* disable ints */
2902 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2903 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2904 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: 0); /* disable channels */
2905 snd_cmipci_write(cm, CM_REG_FUNCTRL1, data: 0);
2906
2907 /* reset mixer */
2908 snd_cmipci_mixer_write(s: cm, idx: 0, data: 0);
2909
2910 snd_cmipci_free_gameport(cm);
2911}
2912
2913static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2914{
2915 long iosynth;
2916 unsigned int val;
2917 struct snd_opl3 *opl3;
2918 int err;
2919
2920 if (!fm_port)
2921 goto disable_fm;
2922
2923 if (cm->chip_version >= 39) {
2924 /* first try FM regs in PCI port range */
2925 iosynth = cm->iobase + CM_REG_FM_PCI;
2926 err = snd_opl3_create(card: cm->card, l_port: iosynth, r_port: iosynth + 2,
2927 OPL3_HW_OPL3, integrated: 1, opl3: &opl3);
2928 } else {
2929 err = -EIO;
2930 }
2931 if (err < 0) {
2932 /* then try legacy ports */
2933 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2934 iosynth = fm_port;
2935 switch (iosynth) {
2936 case 0x3E8: val |= CM_FMSEL_3E8; break;
2937 case 0x3E0: val |= CM_FMSEL_3E0; break;
2938 case 0x3C8: val |= CM_FMSEL_3C8; break;
2939 case 0x388: val |= CM_FMSEL_388; break;
2940 default:
2941 goto disable_fm;
2942 }
2943 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, data: val);
2944 /* enable FM */
2945 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2946
2947 if (snd_opl3_create(card: cm->card, l_port: iosynth, r_port: iosynth + 2,
2948 OPL3_HW_OPL3, integrated: 0, opl3: &opl3) < 0) {
2949 dev_err(cm->card->dev,
2950 "no OPL device at %#lx, skipping...\n",
2951 iosynth);
2952 goto disable_fm;
2953 }
2954 }
2955 err = snd_opl3_hwdep_new(opl3, device: 0, seq_device: 1, NULL);
2956 if (err < 0) {
2957 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2958 return err;
2959 }
2960 return 0;
2961
2962 disable_fm:
2963 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2964 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2965 return 0;
2966}
2967
2968static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2969 int dev)
2970{
2971 struct cmipci *cm = card->private_data;
2972 int err;
2973 unsigned int val;
2974 long iomidi = 0;
2975 int integrated_midi = 0;
2976 char modelstr[16];
2977 int pcm_index, pcm_spdif_index;
2978 static const struct pci_device_id intel_82437vx[] = {
2979 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2980 { },
2981 };
2982
2983 err = pcim_enable_device(pdev: pci);
2984 if (err < 0)
2985 return err;
2986
2987 spin_lock_init(&cm->reg_lock);
2988 mutex_init(&cm->open_mutex);
2989 cm->device = pci->device;
2990 cm->card = card;
2991 cm->pci = pci;
2992 cm->irq = -1;
2993 cm->channel[0].ch = 0;
2994 cm->channel[1].ch = 1;
2995 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2996
2997 err = pci_request_regions(pci, card->driver);
2998 if (err < 0)
2999 return err;
3000 cm->iobase = pci_resource_start(pci, 0);
3001
3002 if (devm_request_irq(dev: &pci->dev, irq: pci->irq, handler: snd_cmipci_interrupt,
3003 IRQF_SHARED, KBUILD_MODNAME, dev_id: cm)) {
3004 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3005 return -EBUSY;
3006 }
3007 cm->irq = pci->irq;
3008 card->sync_irq = cm->irq;
3009 card->private_free = snd_cmipci_free;
3010
3011 pci_set_master(dev: cm->pci);
3012
3013 /*
3014 * check chip version, max channels and capabilities
3015 */
3016
3017 cm->chip_version = 0;
3018 cm->max_channels = 2;
3019 cm->do_soft_ac3 = soft_ac3[dev];
3020
3021 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3022 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3023 query_chip(cm);
3024 /* added -MCx suffix for chip supporting multi-channels */
3025 if (cm->can_multi_ch)
3026 sprintf(buf: cm->card->driver + strlen(cm->card->driver),
3027 fmt: "-MC%d", cm->max_channels);
3028 else if (cm->can_ac3_sw)
3029 strcpy(p: cm->card->driver + strlen(cm->card->driver), q: "-SWIEC");
3030
3031 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3032 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3033
3034#if CM_CH_PLAY == 1
3035 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */
3036#else
3037 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */
3038#endif
3039
3040 /* initialize codec registers */
3041 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3042 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3043 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, data: 0); /* disable ints */
3044 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3045 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3046 snd_cmipci_write(cm, CM_REG_FUNCTRL0, data: 0); /* disable channels */
3047 snd_cmipci_write(cm, CM_REG_FUNCTRL1, data: 0);
3048
3049 snd_cmipci_write(cm, CM_REG_CHFORMAT, data: 0);
3050 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3051#if CM_CH_PLAY == 1
3052 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3053#else
3054 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3055#endif
3056 if (cm->chip_version) {
3057 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, data: 0x20); /* magic */
3058 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, data: 0x09); /* more magic */
3059 }
3060 /* Set Bus Master Request */
3061 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3062
3063 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3064 switch (pci->device) {
3065 case PCI_DEVICE_ID_CMEDIA_CM8738:
3066 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3067 if (!pci_dev_present(ids: intel_82437vx))
3068 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3069 break;
3070 default:
3071 break;
3072 }
3073
3074 if (cm->chip_version < 68) {
3075 val = pci->device < 0x110 ? 8338 : 8738;
3076 } else {
3077 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3078 case 0:
3079 val = 8769;
3080 break;
3081 case 2:
3082 val = 8762;
3083 break;
3084 default:
3085 switch ((pci->subsystem_vendor << 16) |
3086 pci->subsystem_device) {
3087 case 0x13f69761:
3088 case 0x584d3741:
3089 case 0x584d3751:
3090 case 0x584d3761:
3091 case 0x584d3771:
3092 case 0x72848384:
3093 val = 8770;
3094 break;
3095 default:
3096 val = 8768;
3097 break;
3098 }
3099 }
3100 }
3101 sprintf(buf: card->shortname, fmt: "C-Media CMI%d", val);
3102 if (cm->chip_version < 68)
3103 scnprintf(buf: modelstr, size: sizeof(modelstr),
3104 fmt: " (model %d)", cm->chip_version);
3105 else
3106 modelstr[0] = '\0';
3107 scnprintf(buf: card->longname, size: sizeof(card->longname),
3108 fmt: "%s%s at %#lx, irq %i",
3109 card->shortname, modelstr, cm->iobase, cm->irq);
3110
3111 if (cm->chip_version >= 39) {
3112 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3113 if (val != 0x00 && val != 0xff) {
3114 if (mpu_port[dev])
3115 iomidi = cm->iobase + CM_REG_MPU_PCI;
3116 integrated_midi = 1;
3117 }
3118 }
3119 if (!integrated_midi) {
3120 val = 0;
3121 iomidi = mpu_port[dev];
3122 switch (iomidi) {
3123 case 0x320: val = CM_VMPU_320; break;
3124 case 0x310: val = CM_VMPU_310; break;
3125 case 0x300: val = CM_VMPU_300; break;
3126 case 0x330: val = CM_VMPU_330; break;
3127 default:
3128 iomidi = 0; break;
3129 }
3130 if (iomidi > 0) {
3131 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, data: val);
3132 /* enable UART */
3133 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3134 if (inb(port: iomidi + 1) == 0xff) {
3135 dev_err(cm->card->dev,
3136 "cannot enable MPU-401 port at %#lx\n",
3137 iomidi);
3138 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3139 CM_UART_EN);
3140 iomidi = 0;
3141 }
3142 }
3143 }
3144
3145 if (cm->chip_version < 68) {
3146 err = snd_cmipci_create_fm(cm, fm_port: fm_port[dev]);
3147 if (err < 0)
3148 return err;
3149 }
3150
3151 /* reset mixer */
3152 snd_cmipci_mixer_write(s: cm, idx: 0, data: 0);
3153
3154 snd_cmipci_proc_init(cm);
3155
3156 /* create pcm devices */
3157 pcm_index = pcm_spdif_index = 0;
3158 err = snd_cmipci_pcm_new(cm, device: pcm_index);
3159 if (err < 0)
3160 return err;
3161 pcm_index++;
3162 err = snd_cmipci_pcm2_new(cm, device: pcm_index);
3163 if (err < 0)
3164 return err;
3165 pcm_index++;
3166 if (cm->can_ac3_hw || cm->can_ac3_sw) {
3167 pcm_spdif_index = pcm_index;
3168 err = snd_cmipci_pcm_spdif_new(cm, device: pcm_index);
3169 if (err < 0)
3170 return err;
3171 }
3172
3173 /* create mixer interface & switches */
3174 err = snd_cmipci_mixer_new(cm, pcm_spdif_device: pcm_spdif_index);
3175 if (err < 0)
3176 return err;
3177
3178 if (iomidi > 0) {
3179 err = snd_mpu401_uart_new(card, device: 0, MPU401_HW_CMIPCI,
3180 port: iomidi,
3181 info_flags: (integrated_midi ?
3182 MPU401_INFO_INTEGRATED : 0) |
3183 MPU401_INFO_IRQ_HOOK,
3184 irq: -1, rrawmidi: &cm->rmidi);
3185 if (err < 0)
3186 dev_err(cm->card->dev,
3187 "no UART401 device at 0x%lx\n", iomidi);
3188 }
3189
3190#ifdef USE_VAR48KRATE
3191 for (val = 0; val < ARRAY_SIZE(rates); val++)
3192 snd_cmipci_set_pll(cm, rates[val], val);
3193
3194 /*
3195 * (Re-)Enable external switch spdo_48k
3196 */
3197 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3198#endif /* USE_VAR48KRATE */
3199
3200 if (snd_cmipci_create_gameport(cm, dev) < 0)
3201 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3202
3203 return 0;
3204}
3205
3206/*
3207 */
3208
3209MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3210
3211static int snd_cmipci_probe(struct pci_dev *pci,
3212 const struct pci_device_id *pci_id)
3213{
3214 static int dev;
3215 struct snd_card *card;
3216 int err;
3217
3218 if (dev >= SNDRV_CARDS)
3219 return -ENODEV;
3220 if (! enable[dev]) {
3221 dev++;
3222 return -ENOENT;
3223 }
3224
3225 err = snd_devm_card_new(parent: &pci->dev, idx: index[dev], xid: id[dev], THIS_MODULE,
3226 extra_size: sizeof(struct cmipci), card_ret: &card);
3227 if (err < 0)
3228 return err;
3229
3230 switch (pci->device) {
3231 case PCI_DEVICE_ID_CMEDIA_CM8738:
3232 case PCI_DEVICE_ID_CMEDIA_CM8738B:
3233 strcpy(p: card->driver, q: "CMI8738");
3234 break;
3235 case PCI_DEVICE_ID_CMEDIA_CM8338A:
3236 case PCI_DEVICE_ID_CMEDIA_CM8338B:
3237 strcpy(p: card->driver, q: "CMI8338");
3238 break;
3239 default:
3240 strcpy(p: card->driver, q: "CMIPCI");
3241 break;
3242 }
3243
3244 err = snd_cmipci_create(card, pci, dev);
3245 if (err < 0)
3246 goto error;
3247
3248 err = snd_card_register(card);
3249 if (err < 0)
3250 goto error;
3251
3252 pci_set_drvdata(pdev: pci, data: card);
3253 dev++;
3254 return 0;
3255
3256 error:
3257 snd_card_free(card);
3258 return err;
3259}
3260
3261/*
3262 * power management
3263 */
3264static const unsigned char saved_regs[] = {
3265 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3266 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3267 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3268 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3269 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3270};
3271
3272static const unsigned char saved_mixers[] = {
3273 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3274 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3275 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3276 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3277 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3278 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3279 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3280 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3281};
3282
3283static int snd_cmipci_suspend(struct device *dev)
3284{
3285 struct snd_card *card = dev_get_drvdata(dev);
3286 struct cmipci *cm = card->private_data;
3287 int i;
3288
3289 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3290
3291 /* save registers */
3292 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3293 cm->saved_regs[i] = snd_cmipci_read(cm, cmd: saved_regs[i]);
3294 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3295 cm->saved_mixers[i] = snd_cmipci_mixer_read(s: cm, idx: saved_mixers[i]);
3296
3297 /* disable ints */
3298 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, data: 0);
3299 return 0;
3300}
3301
3302static int snd_cmipci_resume(struct device *dev)
3303{
3304 struct snd_card *card = dev_get_drvdata(dev);
3305 struct cmipci *cm = card->private_data;
3306 int i;
3307
3308 /* reset / initialize to a sane state */
3309 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, data: 0);
3310 snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3311 snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3312 snd_cmipci_mixer_write(s: cm, idx: 0, data: 0);
3313
3314 /* restore registers */
3315 for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3316 snd_cmipci_write(cm, cmd: saved_regs[i], data: cm->saved_regs[i]);
3317 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3318 snd_cmipci_mixer_write(s: cm, idx: saved_mixers[i], data: cm->saved_mixers[i]);
3319
3320 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3321 return 0;
3322}
3323
3324static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3325
3326static struct pci_driver cmipci_driver = {
3327 .name = KBUILD_MODNAME,
3328 .id_table = snd_cmipci_ids,
3329 .probe = snd_cmipci_probe,
3330 .driver = {
3331 .pm = &snd_cmipci_pm,
3332 },
3333};
3334
3335module_pci_driver(cmipci_driver);
3336

source code of linux/sound/pci/cmipci.c