1/* Induction variable canonicalization and loop peeling.
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This pass detects the loops that iterate a constant number of times,
21 adds a canonical induction variable (step -1, tested against 0)
22 and replaces the exit test. This enables the less powerful rtl
23 level analysis to use this information.
24
25 This might spoil the code in some cases (by increasing register pressure).
26 Note that in the case the new variable is not needed, ivopts will get rid
27 of it, so it might only be a problem when there are no other linear induction
28 variables. In that case the created optimization possibilities are likely
29 to pay up.
30
31 We also perform
32 - complete unrolling (or peeling) when the loops is rolling few enough
33 times
34 - simple peeling (i.e. copying few initial iterations prior the loop)
35 when number of iteration estimate is known (typically by the profile
36 info). */
37
38#include "config.h"
39#include "system.h"
40#include "coretypes.h"
41#include "backend.h"
42#include "tree.h"
43#include "gimple.h"
44#include "cfghooks.h"
45#include "tree-pass.h"
46#include "ssa.h"
47#include "cgraph.h"
48#include "gimple-pretty-print.h"
49#include "fold-const.h"
50#include "profile.h"
51#include "gimple-iterator.h"
52#include "gimple-fold.h"
53#include "tree-eh.h"
54#include "tree-cfg.h"
55#include "tree-ssa-loop-manip.h"
56#include "tree-ssa-loop-niter.h"
57#include "tree-ssa-loop.h"
58#include "tree-into-ssa.h"
59#include "cfgloop.h"
60#include "tree-chrec.h"
61#include "tree-scalar-evolution.h"
62#include "tree-inline.h"
63#include "tree-cfgcleanup.h"
64#include "builtins.h"
65#include "tree-ssa-sccvn.h"
66#include "tree-vectorizer.h" /* For find_loop_location */
67#include "dbgcnt.h"
68
69/* Specifies types of loops that may be unrolled. */
70
71enum unroll_level
72{
73 UL_SINGLE_ITER, /* Only loops that exit immediately in the first
74 iteration. */
75 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase
76 of code size. */
77 UL_ALL /* All suitable loops. */
78};
79
80/* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
81 is the exit edge whose condition is replaced. The ssa versions of the new
82 IV before and after increment will be stored in VAR_BEFORE and VAR_AFTER
83 if they are not NULL. */
84
85void
86create_canonical_iv (class loop *loop, edge exit, tree niter,
87 tree *var_before = NULL, tree *var_after = NULL)
88{
89 edge in;
90 tree type, var;
91 gcond *cond;
92 gimple_stmt_iterator incr_at;
93 enum tree_code cmp;
94
95 if (dump_file && (dump_flags & TDF_DETAILS))
96 {
97 fprintf (stream: dump_file, format: "Added canonical iv to loop %d, ", loop->num);
98 print_generic_expr (dump_file, niter, TDF_SLIM);
99 fprintf (stream: dump_file, format: " iterations.\n");
100 }
101
102 cond = as_a <gcond *> (p: *gsi_last_bb (bb: exit->src));
103 in = EDGE_SUCC (exit->src, 0);
104 if (in == exit)
105 in = EDGE_SUCC (exit->src, 1);
106
107 /* Note that we do not need to worry about overflows, since
108 type of niter is always unsigned and all comparisons are
109 just for equality/nonequality -- i.e. everything works
110 with a modulo arithmetics. */
111
112 type = TREE_TYPE (niter);
113 niter = fold_build2 (PLUS_EXPR, type,
114 niter,
115 build_int_cst (type, 1));
116 incr_at = gsi_last_bb (bb: in->src);
117 create_iv (niter, PLUS_EXPR,
118 build_int_cst (type, -1),
119 NULL_TREE, loop,
120 &incr_at, false, var_before, &var);
121 if (var_after)
122 *var_after = var;
123
124 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
125 gimple_cond_set_code (gs: cond, code: cmp);
126 gimple_cond_set_lhs (gs: cond, lhs: var);
127 gimple_cond_set_rhs (gs: cond, rhs: build_int_cst (type, 0));
128 update_stmt (s: cond);
129}
130
131/* Describe size of loop as detected by tree_estimate_loop_size. */
132struct loop_size
133{
134 /* Number of instructions in the loop. */
135 int overall;
136
137 /* Number of instructions that will be likely optimized out in
138 peeled iterations of loop (i.e. computation based on induction
139 variable where induction variable starts at known constant.) */
140 int eliminated_by_peeling;
141
142 /* Same statistics for last iteration of loop: it is smaller because
143 instructions after exit are not executed. */
144 int last_iteration;
145 int last_iteration_eliminated_by_peeling;
146
147 /* If some IV computation will become constant. */
148 bool constant_iv;
149
150 /* Number of call stmts that are not a builtin and are pure or const
151 present on the hot path. */
152 int num_pure_calls_on_hot_path;
153 /* Number of call stmts that are not a builtin and are not pure nor const
154 present on the hot path. */
155 int num_non_pure_calls_on_hot_path;
156 /* Number of statements other than calls in the loop. */
157 int non_call_stmts_on_hot_path;
158 /* Number of branches seen on the hot path. */
159 int num_branches_on_hot_path;
160};
161
162/* Return true if OP in STMT will be constant after peeling LOOP. */
163
164static bool
165constant_after_peeling (tree op, gimple *stmt, class loop *loop)
166{
167 if (CONSTANT_CLASS_P (op))
168 return true;
169
170 /* Get at the actual SSA operand. */
171 if (handled_component_p (t: op)
172 && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
173 op = TREE_OPERAND (op, 0);
174
175 /* We can still fold accesses to constant arrays when index is known. */
176 if (TREE_CODE (op) != SSA_NAME)
177 {
178 tree base = op;
179
180 /* First make fast look if we see constant array inside. */
181 while (handled_component_p (t: base))
182 base = TREE_OPERAND (base, 0);
183 if ((DECL_P (base)
184 && ctor_for_folding (base) != error_mark_node)
185 || CONSTANT_CLASS_P (base))
186 {
187 /* If so, see if we understand all the indices. */
188 base = op;
189 while (handled_component_p (t: base))
190 {
191 if (TREE_CODE (base) == ARRAY_REF
192 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
193 return false;
194 base = TREE_OPERAND (base, 0);
195 }
196 return true;
197 }
198 return false;
199 }
200
201 /* Induction variables are constants when defined in loop. */
202 if (loop_containing_stmt (stmt) != loop)
203 return false;
204 tree ev = analyze_scalar_evolution (loop, op);
205 if (chrec_contains_undetermined (ev)
206 || chrec_contains_symbols (ev))
207 {
208 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (op)))
209 {
210 gassign *ass = nullptr;
211 gphi *phi = nullptr;
212 if (is_a <gassign *> (SSA_NAME_DEF_STMT (op)))
213 {
214 ass = as_a <gassign *> (SSA_NAME_DEF_STMT (op));
215 if (TREE_CODE (gimple_assign_rhs1 (ass)) == SSA_NAME)
216 phi = dyn_cast <gphi *>
217 (SSA_NAME_DEF_STMT (gimple_assign_rhs1 (ass)));
218 }
219 else if (is_a <gphi *> (SSA_NAME_DEF_STMT (op)))
220 {
221 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (op));
222 if (gimple_bb (g: phi) == loop->header)
223 {
224 tree def = gimple_phi_arg_def_from_edge
225 (gs: phi, e: loop_latch_edge (loop));
226 if (TREE_CODE (def) == SSA_NAME
227 && is_a <gassign *> (SSA_NAME_DEF_STMT (def)))
228 ass = as_a <gassign *> (SSA_NAME_DEF_STMT (def));
229 }
230 }
231 if (ass && phi)
232 {
233 tree rhs1 = gimple_assign_rhs1 (gs: ass);
234 if (gimple_assign_rhs_class (gs: ass) == GIMPLE_BINARY_RHS
235 && CONSTANT_CLASS_P (gimple_assign_rhs2 (ass))
236 && rhs1 == gimple_phi_result (gs: phi)
237 && gimple_bb (g: phi) == loop->header
238 && (gimple_phi_arg_def_from_edge (gs: phi, e: loop_latch_edge (loop))
239 == gimple_assign_lhs (gs: ass))
240 && (CONSTANT_CLASS_P (gimple_phi_arg_def_from_edge
241 (phi, loop_preheader_edge (loop)))))
242 return true;
243 }
244 }
245 return false;
246 }
247 return true;
248}
249
250/* Computes an estimated number of insns in LOOP.
251 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last
252 iteration of the loop.
253 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration
254 of loop.
255 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT.
256 Stop estimating after UPPER_BOUND is met. Return true in this case. */
257
258static bool
259tree_estimate_loop_size (class loop *loop, edge exit, edge edge_to_cancel,
260 struct loop_size *size, int upper_bound)
261{
262 basic_block *body = get_loop_body (loop);
263 gimple_stmt_iterator gsi;
264 unsigned int i;
265 bool after_exit;
266 auto_vec<basic_block> path = get_loop_hot_path (loop);
267
268 size->overall = 0;
269 size->eliminated_by_peeling = 0;
270 size->last_iteration = 0;
271 size->last_iteration_eliminated_by_peeling = 0;
272 size->num_pure_calls_on_hot_path = 0;
273 size->num_non_pure_calls_on_hot_path = 0;
274 size->non_call_stmts_on_hot_path = 0;
275 size->num_branches_on_hot_path = 0;
276 size->constant_iv = 0;
277
278 if (dump_file && (dump_flags & TDF_DETAILS))
279 fprintf (stream: dump_file, format: "Estimating sizes for loop %i\n", loop->num);
280 for (i = 0; i < loop->num_nodes; i++)
281 {
282 if (edge_to_cancel && body[i] != edge_to_cancel->src
283 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src))
284 after_exit = true;
285 else
286 after_exit = false;
287 if (dump_file && (dump_flags & TDF_DETAILS))
288 fprintf (stream: dump_file, format: " BB: %i, after_exit: %i\n", body[i]->index,
289 after_exit);
290
291 for (gsi = gsi_start_bb (bb: body[i]); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
292 {
293 gimple *stmt = gsi_stmt (i: gsi);
294 int num = estimate_num_insns (stmt, &eni_size_weights);
295 bool likely_eliminated = false;
296 bool likely_eliminated_last = false;
297 bool likely_eliminated_peeled = false;
298
299 if (dump_file && (dump_flags & TDF_DETAILS))
300 {
301 fprintf (stream: dump_file, format: " size: %3i ", num);
302 print_gimple_stmt (dump_file, gsi_stmt (i: gsi), 0);
303 }
304
305 /* Look for reasons why we might optimize this stmt away. */
306
307 if (!gimple_has_side_effects (stmt))
308 {
309 /* Exit conditional. */
310 if (exit && body[i] == exit->src
311 && stmt == *gsi_last_bb (bb: exit->src))
312 {
313 if (dump_file && (dump_flags & TDF_DETAILS))
314 fprintf (stream: dump_file, format: " Exit condition will be eliminated "
315 "in peeled copies.\n");
316 likely_eliminated_peeled = true;
317 }
318 if (edge_to_cancel && body[i] == edge_to_cancel->src
319 && stmt == *gsi_last_bb (bb: edge_to_cancel->src))
320 {
321 if (dump_file && (dump_flags & TDF_DETAILS))
322 fprintf (stream: dump_file, format: " Exit condition will be eliminated "
323 "in last copy.\n");
324 likely_eliminated_last = true;
325 }
326 /* Sets of IV variables */
327 if (gimple_code (g: stmt) == GIMPLE_ASSIGN
328 && constant_after_peeling (op: gimple_assign_lhs (gs: stmt), stmt, loop))
329 {
330 if (dump_file && (dump_flags & TDF_DETAILS))
331 fprintf (stream: dump_file, format: " Induction variable computation will"
332 " be folded away.\n");
333 likely_eliminated = true;
334 }
335 /* Assignments of IV variables. */
336 else if (gimple_code (g: stmt) == GIMPLE_ASSIGN
337 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
338 && constant_after_peeling (op: gimple_assign_rhs1 (gs: stmt),
339 stmt, loop)
340 && (gimple_assign_rhs_class (gs: stmt) != GIMPLE_BINARY_RHS
341 || constant_after_peeling (op: gimple_assign_rhs2 (gs: stmt),
342 stmt, loop))
343 && gimple_assign_rhs_class (gs: stmt) != GIMPLE_TERNARY_RHS)
344 {
345 size->constant_iv = true;
346 if (dump_file && (dump_flags & TDF_DETAILS))
347 fprintf (stream: dump_file,
348 format: " Constant expression will be folded away.\n");
349 likely_eliminated = true;
350 }
351 /* Conditionals. */
352 else if ((gimple_code (g: stmt) == GIMPLE_COND
353 && constant_after_peeling (op: gimple_cond_lhs (gs: stmt), stmt,
354 loop)
355 && constant_after_peeling (op: gimple_cond_rhs (gs: stmt), stmt,
356 loop)
357 /* We don't simplify all constant compares so make sure
358 they are not both constant already. See PR70288. */
359 && (! is_gimple_min_invariant (gimple_cond_lhs (gs: stmt))
360 || ! is_gimple_min_invariant
361 (gimple_cond_rhs (gs: stmt))))
362 || (gimple_code (g: stmt) == GIMPLE_SWITCH
363 && constant_after_peeling (op: gimple_switch_index (
364 gs: as_a <gswitch *>
365 (p: stmt)),
366 stmt, loop)
367 && ! is_gimple_min_invariant
368 (gimple_switch_index
369 (gs: as_a <gswitch *> (p: stmt)))))
370 {
371 if (dump_file && (dump_flags & TDF_DETAILS))
372 fprintf (stream: dump_file, format: " Constant conditional.\n");
373 likely_eliminated = true;
374 }
375 }
376
377 size->overall += num;
378 if (likely_eliminated || likely_eliminated_peeled)
379 size->eliminated_by_peeling += num;
380 if (!after_exit)
381 {
382 size->last_iteration += num;
383 if (likely_eliminated || likely_eliminated_last)
384 size->last_iteration_eliminated_by_peeling += num;
385 }
386 if ((size->overall * 3 / 2 - size->eliminated_by_peeling
387 - size->last_iteration_eliminated_by_peeling) > upper_bound)
388 {
389 free (ptr: body);
390 return true;
391 }
392 }
393 }
394 while (path.length ())
395 {
396 basic_block bb = path.pop ();
397 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
398 {
399 gimple *stmt = gsi_stmt (i: gsi);
400 if (gimple_code (g: stmt) == GIMPLE_CALL
401 && !gimple_inexpensive_call_p (as_a <gcall *> (p: stmt)))
402 {
403 int flags = gimple_call_flags (stmt);
404 if (flags & (ECF_PURE | ECF_CONST))
405 size->num_pure_calls_on_hot_path++;
406 else
407 size->num_non_pure_calls_on_hot_path++;
408 size->num_branches_on_hot_path ++;
409 }
410 /* Count inexpensive calls as non-calls, because they will likely
411 expand inline. */
412 else if (gimple_code (g: stmt) != GIMPLE_DEBUG)
413 size->non_call_stmts_on_hot_path++;
414 if (((gimple_code (g: stmt) == GIMPLE_COND
415 && (!constant_after_peeling (op: gimple_cond_lhs (gs: stmt), stmt, loop)
416 || !constant_after_peeling (op: gimple_cond_rhs (gs: stmt), stmt,
417 loop)))
418 || (gimple_code (g: stmt) == GIMPLE_SWITCH
419 && !constant_after_peeling (op: gimple_switch_index (
420 gs: as_a <gswitch *> (p: stmt)),
421 stmt, loop)))
422 && (!exit || bb != exit->src))
423 size->num_branches_on_hot_path++;
424 }
425 }
426
427 if (dump_file && (dump_flags & TDF_DETAILS))
428 fprintf (stream: dump_file, format: "size: %i-%i, last_iteration: %i-%i\n", size->overall,
429 size->eliminated_by_peeling, size->last_iteration,
430 size->last_iteration_eliminated_by_peeling);
431
432 free (ptr: body);
433 return false;
434}
435
436/* Estimate number of insns of completely unrolled loop.
437 It is (NUNROLL + 1) * size of loop body with taking into account
438 the fact that in last copy everything after exit conditional
439 is dead and that some instructions will be eliminated after
440 peeling.
441
442 Loop body is likely going to simplify further, this is difficult
443 to guess, we just decrease the result by 1/3. */
444
445static unsigned HOST_WIDE_INT
446estimated_unrolled_size (struct loop_size *size,
447 unsigned HOST_WIDE_INT nunroll)
448{
449 HOST_WIDE_INT unr_insns = ((nunroll)
450 * (HOST_WIDE_INT) (size->overall
451 - size->eliminated_by_peeling));
452 if (!nunroll)
453 unr_insns = 0;
454 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
455
456 unr_insns = unr_insns * 2 / 3;
457 if (unr_insns <= 0)
458 unr_insns = 1;
459
460 return unr_insns;
461}
462
463/* Loop LOOP is known to not loop. See if there is an edge in the loop
464 body that can be remove to make the loop to always exit and at
465 the same time it does not make any code potentially executed
466 during the last iteration dead.
467
468 After complete unrolling we still may get rid of the conditional
469 on the exit in the last copy even if we have no idea what it does.
470 This is quite common case for loops of form
471
472 int a[5];
473 for (i=0;i<b;i++)
474 a[i]=0;
475
476 Here we prove the loop to iterate 5 times but we do not know
477 it from induction variable.
478
479 For now we handle only simple case where there is exit condition
480 just before the latch block and the latch block contains no statements
481 with side effect that may otherwise terminate the execution of loop
482 (such as by EH or by terminating the program or longjmp).
483
484 In the general case we may want to cancel the paths leading to statements
485 loop-niter identified as having undefined effect in the last iteration.
486 The other cases are hopefully rare and will be cleaned up later. */
487
488static edge
489loop_edge_to_cancel (class loop *loop)
490{
491 unsigned i;
492 edge edge_to_cancel;
493 gimple_stmt_iterator gsi;
494
495 /* We want only one predecestor of the loop. */
496 if (EDGE_COUNT (loop->latch->preds) > 1)
497 return NULL;
498
499 auto_vec<edge> exits = get_loop_exit_edges (loop);
500
501 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel)
502 {
503 /* Find the other edge than the loop exit
504 leaving the conditoinal. */
505 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2)
506 continue;
507 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel)
508 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1);
509 else
510 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0);
511
512 /* We only can handle conditionals. */
513 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
514 continue;
515
516 /* We should never have conditionals in the loop latch. */
517 gcc_assert (edge_to_cancel->dest != loop->header);
518
519 /* Check that it leads to loop latch. */
520 if (edge_to_cancel->dest != loop->latch)
521 continue;
522
523 /* Verify that the code in loop latch does nothing that may end program
524 execution without really reaching the exit. This may include
525 non-pure/const function calls, EH statements, volatile ASMs etc. */
526 for (gsi = gsi_start_bb (bb: loop->latch); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
527 if (gimple_has_side_effects (gsi_stmt (i: gsi)))
528 return NULL;
529 return edge_to_cancel;
530 }
531 return NULL;
532}
533
534/* Remove all tests for exits that are known to be taken after LOOP was
535 peeled NPEELED times. Put gcc_unreachable before every statement
536 known to not be executed. */
537
538static bool
539remove_exits_and_undefined_stmts (class loop *loop, unsigned int npeeled)
540{
541 class nb_iter_bound *elt;
542 bool changed = false;
543
544 for (elt = loop->bounds; elt; elt = elt->next)
545 {
546 /* If statement is known to be undefined after peeling, turn it
547 into unreachable (or trap when debugging experience is supposed
548 to be good). */
549 if (!elt->is_exit
550 && wi::ltu_p (x: elt->bound, y: npeeled))
551 {
552 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt);
553 location_t loc = gimple_location (g: elt->stmt);
554 gcall *stmt = gimple_build_builtin_unreachable (loc);
555 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
556 split_block (gimple_bb (g: stmt), stmt);
557 changed = true;
558 if (dump_file && (dump_flags & TDF_DETAILS))
559 {
560 fprintf (stream: dump_file, format: "Forced statement unreachable: ");
561 print_gimple_stmt (dump_file, elt->stmt, 0);
562 }
563 }
564 /* If we know the exit will be taken after peeling, update. */
565 else if (elt->is_exit
566 && wi::leu_p (x: elt->bound, y: npeeled))
567 {
568 basic_block bb = gimple_bb (g: elt->stmt);
569 edge exit_edge = EDGE_SUCC (bb, 0);
570
571 if (dump_file && (dump_flags & TDF_DETAILS))
572 {
573 fprintf (stream: dump_file, format: "Forced exit to be taken: ");
574 print_gimple_stmt (dump_file, elt->stmt, 0);
575 }
576 if (!loop_exit_edge_p (loop, exit_edge))
577 exit_edge = EDGE_SUCC (bb, 1);
578 exit_edge->probability = profile_probability::always ();
579 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge));
580 gcond *cond_stmt = as_a <gcond *> (p: elt->stmt);
581 if (exit_edge->flags & EDGE_TRUE_VALUE)
582 gimple_cond_make_true (gs: cond_stmt);
583 else
584 gimple_cond_make_false (gs: cond_stmt);
585 update_stmt (s: cond_stmt);
586 changed = true;
587 }
588 }
589 return changed;
590}
591
592/* Remove all exits that are known to be never taken because of the loop bound
593 discovered. */
594
595static bool
596remove_redundant_iv_tests (class loop *loop)
597{
598 class nb_iter_bound *elt;
599 bool changed = false;
600
601 if (!loop->any_upper_bound)
602 return false;
603 for (elt = loop->bounds; elt; elt = elt->next)
604 {
605 /* Exit is pointless if it won't be taken before loop reaches
606 upper bound. */
607 if (elt->is_exit && loop->any_upper_bound
608 && wi::ltu_p (x: loop->nb_iterations_upper_bound, y: elt->bound))
609 {
610 basic_block bb = gimple_bb (g: elt->stmt);
611 edge exit_edge = EDGE_SUCC (bb, 0);
612 class tree_niter_desc niter;
613
614 if (!loop_exit_edge_p (loop, exit_edge))
615 exit_edge = EDGE_SUCC (bb, 1);
616
617 /* Only when we know the actual number of iterations, not
618 just a bound, we can remove the exit. */
619 if (!number_of_iterations_exit (loop, exit_edge,
620 niter: &niter, false, every_iteration: false)
621 || !integer_onep (niter.assumptions)
622 || !integer_zerop (niter.may_be_zero)
623 || !niter.niter
624 || TREE_CODE (niter.niter) != INTEGER_CST
625 || !wi::ltu_p (x: widest_int::from (x: loop->nb_iterations_upper_bound,
626 sgn: SIGNED),
627 y: wi::to_widest (t: niter.niter)))
628 continue;
629
630 if (dump_file && (dump_flags & TDF_DETAILS))
631 {
632 fprintf (stream: dump_file, format: "Removed pointless exit: ");
633 print_gimple_stmt (dump_file, elt->stmt, 0);
634 }
635 gcond *cond_stmt = as_a <gcond *> (p: elt->stmt);
636 if (exit_edge->flags & EDGE_TRUE_VALUE)
637 gimple_cond_make_false (gs: cond_stmt);
638 else
639 gimple_cond_make_true (gs: cond_stmt);
640 update_stmt (s: cond_stmt);
641 changed = true;
642 }
643 }
644 return changed;
645}
646
647/* Stores loops that will be unlooped and edges that will be removed
648 after we process whole loop tree. */
649static vec<loop_p> loops_to_unloop;
650static vec<int> loops_to_unloop_nunroll;
651static vec<edge> edges_to_remove;
652/* Stores loops that has been peeled. */
653static bitmap peeled_loops;
654
655/* Cancel all fully unrolled loops by putting __builtin_unreachable
656 on the latch edge.
657 We do it after all unrolling since unlooping moves basic blocks
658 across loop boundaries trashing loop closed SSA form as well
659 as SCEV info needed to be intact during unrolling.
660
661 IRRED_INVALIDATED is used to bookkeep if information about
662 irreducible regions may become invalid as a result
663 of the transformation.
664 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case
665 when we need to go into loop closed SSA form. */
666
667void
668unloop_loops (vec<class loop *> &loops_to_unloop,
669 vec<int> &loops_to_unloop_nunroll,
670 vec<edge> &edges_to_remove,
671 bitmap loop_closed_ssa_invalidated,
672 bool *irred_invalidated)
673{
674 while (loops_to_unloop.length ())
675 {
676 class loop *loop = loops_to_unloop.pop ();
677 int n_unroll = loops_to_unloop_nunroll.pop ();
678 basic_block latch = loop->latch;
679 edge latch_edge = loop_latch_edge (loop);
680 int flags = latch_edge->flags;
681 location_t locus = latch_edge->goto_locus;
682 gcall *stmt;
683 gimple_stmt_iterator gsi;
684
685 remove_exits_and_undefined_stmts (loop, npeeled: n_unroll);
686
687 /* Unloop destroys the latch edge. */
688 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated);
689
690 /* Create new basic block for the latch edge destination and wire
691 it in. */
692 stmt = gimple_build_builtin_unreachable (locus);
693 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags);
694 latch_edge->probability = profile_probability::never ();
695 latch_edge->flags |= flags;
696 latch_edge->goto_locus = locus;
697
698 add_bb_to_loop (latch_edge->dest, current_loops->tree_root);
699 latch_edge->dest->count = profile_count::zero ();
700 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src);
701
702 gsi = gsi_start_bb (bb: latch_edge->dest);
703 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
704 }
705
706 /* Remove edges in peeled copies. Given remove_path removes dominated
707 regions we need to cope with removal of already removed paths. */
708 unsigned i;
709 edge e;
710 auto_vec<int, 20> src_bbs;
711 src_bbs.reserve_exact (nelems: edges_to_remove.length ());
712 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
713 src_bbs.quick_push (obj: e->src->index);
714 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
715 if (BASIC_BLOCK_FOR_FN (cfun, src_bbs[i]))
716 {
717 bool ok = remove_path (e, irred_invalidated,
718 loop_closed_ssa_invalidated);
719 gcc_assert (ok);
720 }
721 edges_to_remove.release ();
722}
723
724/* Tries to unroll LOOP completely, i.e. NITER times.
725 UL determines which loops we are allowed to unroll.
726 EXIT is the exit of the loop that should be eliminated.
727 MAXITER specfy bound on number of iterations, -1 if it is
728 not known or too large for HOST_WIDE_INT. The location
729 LOCUS corresponding to the loop is used when emitting
730 a summary of the unroll to the dump file. */
731
732static bool
733try_unroll_loop_completely (class loop *loop,
734 edge exit, tree niter, bool may_be_zero,
735 enum unroll_level ul,
736 HOST_WIDE_INT maxiter,
737 dump_user_location_t locus, bool allow_peel)
738{
739 unsigned HOST_WIDE_INT n_unroll = 0;
740 bool n_unroll_found = false;
741 edge edge_to_cancel = NULL;
742
743 /* See if we proved number of iterations to be low constant.
744
745 EXIT is an edge that will be removed in all but last iteration of
746 the loop.
747
748 EDGE_TO_CACNEL is an edge that will be removed from the last iteration
749 of the unrolled sequence and is expected to make the final loop not
750 rolling.
751
752 If the number of execution of loop is determined by standard induction
753 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving
754 from the iv test. */
755 if (tree_fits_uhwi_p (niter))
756 {
757 n_unroll = tree_to_uhwi (niter);
758 n_unroll_found = true;
759 edge_to_cancel = EDGE_SUCC (exit->src, 0);
760 if (edge_to_cancel == exit)
761 edge_to_cancel = EDGE_SUCC (exit->src, 1);
762 }
763 /* We do not know the number of iterations and thus we cannot eliminate
764 the EXIT edge. */
765 else
766 exit = NULL;
767
768 /* See if we can improve our estimate by using recorded loop bounds. */
769 if ((maxiter == 0 || ul != UL_SINGLE_ITER)
770 && maxiter >= 0
771 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll))
772 {
773 n_unroll = maxiter;
774 n_unroll_found = true;
775 /* Loop terminates before the IV variable test, so we cannot
776 remove it in the last iteration. */
777 edge_to_cancel = NULL;
778 /* If we do not allow peeling and we iterate just allow cases
779 that do not grow code. */
780 if (!allow_peel && maxiter != 0)
781 ul = UL_NO_GROWTH;
782 }
783
784 if (!n_unroll_found)
785 return false;
786
787 if (!loop->unroll
788 && n_unroll > (unsigned) param_max_completely_peel_times)
789 {
790 if (dump_file && (dump_flags & TDF_DETAILS))
791 fprintf (stream: dump_file, format: "Not unrolling loop %d "
792 "(--param max-completely-peel-times limit reached).\n",
793 loop->num);
794 return false;
795 }
796
797 if (!edge_to_cancel)
798 edge_to_cancel = loop_edge_to_cancel (loop);
799
800 if (n_unroll)
801 {
802 if (ul == UL_SINGLE_ITER)
803 return false;
804
805 if (loop->unroll)
806 {
807 /* If the unrolling factor is too large, bail out. */
808 if (n_unroll > (unsigned)loop->unroll)
809 {
810 if (dump_file && (dump_flags & TDF_DETAILS))
811 fprintf (stream: dump_file,
812 format: "Not unrolling loop %d: "
813 "user didn't want it unrolled completely.\n",
814 loop->num);
815 return false;
816 }
817 }
818 else
819 {
820 struct loop_size size;
821 /* EXIT can be removed only if we are sure it passes first N_UNROLL
822 iterations. */
823 bool remove_exit = (exit && niter
824 && TREE_CODE (niter) == INTEGER_CST
825 && wi::leu_p (x: n_unroll, y: wi::to_widest (t: niter)));
826 bool large
827 = tree_estimate_loop_size
828 (loop, exit: remove_exit ? exit : NULL, edge_to_cancel, size: &size,
829 param_max_completely_peeled_insns);
830 if (large)
831 {
832 if (dump_file && (dump_flags & TDF_DETAILS))
833 fprintf (stream: dump_file, format: "Not unrolling loop %d: it is too large.\n",
834 loop->num);
835 return false;
836 }
837
838 unsigned HOST_WIDE_INT ninsns = size.overall;
839 unsigned HOST_WIDE_INT unr_insns
840 = estimated_unrolled_size (size: &size, nunroll: n_unroll);
841 if (dump_file && (dump_flags & TDF_DETAILS))
842 {
843 fprintf (stream: dump_file, format: " Loop size: %d\n", (int) ninsns);
844 fprintf (stream: dump_file, format: " Estimated size after unrolling: %d\n",
845 (int) unr_insns);
846 }
847
848 /* If the code is going to shrink, we don't need to be extra
849 cautious on guessing if the unrolling is going to be
850 profitable. */
851 if (unr_insns
852 /* If there is IV variable that will become constant, we
853 save one instruction in the loop prologue we do not
854 account otherwise. */
855 <= ninsns + (size.constant_iv != false))
856 ;
857 /* We unroll only inner loops, because we do not consider it
858 profitable otheriwse. We still can cancel loopback edge
859 of not rolling loop; this is always a good idea. */
860 else if (ul == UL_NO_GROWTH)
861 {
862 if (dump_file && (dump_flags & TDF_DETAILS))
863 fprintf (stream: dump_file, format: "Not unrolling loop %d: size would grow.\n",
864 loop->num);
865 return false;
866 }
867 /* Outer loops tend to be less interesting candidates for
868 complete unrolling unless we can do a lot of propagation
869 into the inner loop body. For now we disable outer loop
870 unrolling when the code would grow. */
871 else if (loop->inner)
872 {
873 if (dump_file && (dump_flags & TDF_DETAILS))
874 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
875 "it is not innermost and code would grow.\n",
876 loop->num);
877 return false;
878 }
879 /* If there is call on a hot path through the loop, then
880 there is most probably not much to optimize. */
881 else if (size.num_non_pure_calls_on_hot_path)
882 {
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
885 "contains call and code would grow.\n",
886 loop->num);
887 return false;
888 }
889 /* If there is pure/const call in the function, then we can
890 still optimize the unrolled loop body if it contains some
891 other interesting code than the calls and code storing or
892 cumulating the return value. */
893 else if (size.num_pure_calls_on_hot_path
894 /* One IV increment, one test, one ivtmp store and
895 one useful stmt. That is about minimal loop
896 doing pure call. */
897 && (size.non_call_stmts_on_hot_path
898 <= 3 + size.num_pure_calls_on_hot_path))
899 {
900 if (dump_file && (dump_flags & TDF_DETAILS))
901 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
902 "contains just pure calls and code would grow.\n",
903 loop->num);
904 return false;
905 }
906 /* Complete unrolling is major win when control flow is
907 removed and one big basic block is created. If the loop
908 contains control flow the optimization may still be a win
909 because of eliminating the loop overhead but it also may
910 blow the branch predictor tables. Limit number of
911 branches on the hot path through the peeled sequence. */
912 else if (size.num_branches_on_hot_path * (int)n_unroll
913 > param_max_peel_branches)
914 {
915 if (dump_file && (dump_flags & TDF_DETAILS))
916 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
917 "number of branches on hot path in the unrolled "
918 "sequence reaches --param max-peel-branches limit.\n",
919 loop->num);
920 return false;
921 }
922 else if (unr_insns
923 > (unsigned) param_max_completely_peeled_insns)
924 {
925 if (dump_file && (dump_flags & TDF_DETAILS))
926 fprintf (stream: dump_file, format: "Not unrolling loop %d: "
927 "number of insns in the unrolled sequence reaches "
928 "--param max-completely-peeled-insns limit.\n",
929 loop->num);
930 return false;
931 }
932 }
933
934 if (!dbg_cnt (index: gimple_unroll))
935 return false;
936
937 initialize_original_copy_tables ();
938 auto_sbitmap wont_exit (n_unroll + 1);
939 if (exit && niter
940 && TREE_CODE (niter) == INTEGER_CST
941 && wi::leu_p (x: n_unroll, y: wi::to_widest (t: niter)))
942 {
943 bitmap_ones (wont_exit);
944 if (wi::eq_p (x: wi::to_widest (t: niter), y: n_unroll)
945 || edge_to_cancel)
946 bitmap_clear_bit (map: wont_exit, bitno: 0);
947 }
948 else
949 {
950 exit = NULL;
951 bitmap_clear (wont_exit);
952 }
953 if (may_be_zero)
954 bitmap_clear_bit (map: wont_exit, bitno: 1);
955
956 /* If loop was originally estimated to iterate too many times,
957 reduce the profile to avoid new profile inconsistencies. */
958 scale_loop_profile (loop, profile_probability::always (), n_unroll);
959
960 if (!gimple_duplicate_loop_body_to_header_edge (
961 loop, loop_preheader_edge (loop), n_unroll, wont_exit, exit,
962 &edges_to_remove,
963 DLTHE_FLAG_UPDATE_FREQ | DLTHE_FLAG_COMPLETTE_PEEL))
964 {
965 free_original_copy_tables ();
966 if (dump_file && (dump_flags & TDF_DETAILS))
967 fprintf (stream: dump_file, format: "Failed to duplicate the loop\n");
968 return false;
969 }
970
971 free_original_copy_tables ();
972 }
973 else
974 scale_loop_profile (loop, profile_probability::always (), 0);
975
976 /* Remove the conditional from the last copy of the loop. */
977 if (edge_to_cancel)
978 {
979 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: edge_to_cancel->src));
980 force_edge_cold (edge_to_cancel, true);
981 if (edge_to_cancel->flags & EDGE_TRUE_VALUE)
982 gimple_cond_make_false (gs: cond);
983 else
984 gimple_cond_make_true (gs: cond);
985 update_stmt (s: cond);
986 /* Do not remove the path, as doing so may remove outer loop and
987 confuse bookkeeping code in tree_unroll_loops_completely. */
988 }
989
990 /* Store the loop for later unlooping and exit removal. */
991 loops_to_unloop.safe_push (obj: loop);
992 loops_to_unloop_nunroll.safe_push (obj: n_unroll);
993
994 if (dump_enabled_p ())
995 {
996 if (!n_unroll)
997 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
998 "loop turned into non-loop; it never loops\n");
999 else
1000 {
1001 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
1002 "loop with %d iterations completely unrolled",
1003 (int) n_unroll);
1004 if (loop->header->count.initialized_p ())
1005 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
1006 " (header execution count %d)",
1007 (int)loop->header->count.to_gcov_type ());
1008 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n");
1009 }
1010 }
1011
1012 if (dump_file && (dump_flags & TDF_DETAILS))
1013 {
1014 if (exit)
1015 fprintf (stream: dump_file, format: "Exit condition of peeled iterations was "
1016 "eliminated.\n");
1017 if (edge_to_cancel)
1018 fprintf (stream: dump_file, format: "Last iteration exit edge was proved true.\n");
1019 else
1020 fprintf (stream: dump_file, format: "Latch of last iteration was marked by "
1021 "__builtin_unreachable ().\n");
1022 }
1023
1024 return true;
1025}
1026
1027/* Return number of instructions after peeling. */
1028static unsigned HOST_WIDE_INT
1029estimated_peeled_sequence_size (struct loop_size *size,
1030 unsigned HOST_WIDE_INT npeel)
1031{
1032 return MAX (npeel * (HOST_WIDE_INT) (size->overall
1033 - size->eliminated_by_peeling), 1);
1034}
1035
1036/* Update loop estimates after peeling LOOP by NPEEL.
1037 If PRECISE is false only likely exists were duplicated and thus
1038 do not update any estimates that are supposed to be always reliable. */
1039void
1040adjust_loop_info_after_peeling (class loop *loop, int npeel, bool precise)
1041{
1042 if (loop->any_estimate)
1043 {
1044 /* Since peeling is mostly about loops where first few
1045 iterations are special, it is not quite correct to
1046 assume that the remaining iterations will behave
1047 the same way. However we do not have better info
1048 so update the esitmate, since it is likely better
1049 than keeping it as it is.
1050
1051 Remove it if it looks wrong.
1052
1053 TODO: We likely want to special case the situation where
1054 peeling is optimizing out exit edges and only update
1055 estimates here. */
1056 if (wi::leu_p (x: npeel, y: loop->nb_iterations_estimate))
1057 loop->nb_iterations_estimate -= npeel;
1058 else
1059 loop->any_estimate = false;
1060 }
1061 if (loop->any_upper_bound && precise)
1062 {
1063 if (wi::leu_p (x: npeel, y: loop->nb_iterations_upper_bound))
1064 loop->nb_iterations_upper_bound -= npeel;
1065 else
1066 {
1067 /* Peeling maximal number of iterations or more
1068 makes no sense and is a bug.
1069 We should peel completely. */
1070 gcc_unreachable ();
1071 }
1072 }
1073 if (loop->any_likely_upper_bound)
1074 {
1075 if (wi::leu_p (x: npeel, y: loop->nb_iterations_likely_upper_bound))
1076 loop->nb_iterations_likely_upper_bound -= npeel;
1077 else
1078 {
1079 loop->any_estimate = true;
1080 loop->nb_iterations_estimate = 0;
1081 loop->nb_iterations_likely_upper_bound = 0;
1082 }
1083 }
1084}
1085
1086/* If the loop is expected to iterate N times and is
1087 small enough, duplicate the loop body N+1 times before
1088 the loop itself. This way the hot path will never
1089 enter the loop.
1090 Parameters are the same as for try_unroll_loops_completely */
1091
1092static bool
1093try_peel_loop (class loop *loop,
1094 edge exit, tree niter, bool may_be_zero,
1095 HOST_WIDE_INT maxiter)
1096{
1097 HOST_WIDE_INT npeel;
1098 struct loop_size size;
1099 int peeled_size;
1100
1101 if (!flag_peel_loops
1102 || param_max_peel_times <= 0
1103 || !peeled_loops)
1104 return false;
1105
1106 if (bitmap_bit_p (peeled_loops, loop->num))
1107 {
1108 if (dump_file)
1109 fprintf (stream: dump_file, format: "Not peeling: loop is already peeled\n");
1110 return false;
1111 }
1112
1113 /* We don't peel loops that will be unrolled as this can duplicate a
1114 loop more times than the user requested. */
1115 if (loop->unroll)
1116 {
1117 if (dump_file)
1118 fprintf (stream: dump_file, format: "Not peeling: user didn't want it peeled.\n");
1119 return false;
1120 }
1121
1122 /* Peel only innermost loops.
1123 While the code is perfectly capable of peeling non-innermost loops,
1124 the heuristics would probably need some improvements. */
1125 if (loop->inner)
1126 {
1127 if (dump_file)
1128 fprintf (stream: dump_file, format: "Not peeling: outer loop\n");
1129 return false;
1130 }
1131
1132 if (!optimize_loop_for_speed_p (loop))
1133 {
1134 if (dump_file)
1135 fprintf (stream: dump_file, format: "Not peeling: cold loop\n");
1136 return false;
1137 }
1138
1139 /* Check if there is an estimate on the number of iterations. */
1140 npeel = estimated_loop_iterations_int (loop);
1141 if (npeel < 0)
1142 npeel = likely_max_loop_iterations_int (loop);
1143 if (npeel < 0)
1144 {
1145 if (dump_file)
1146 fprintf (stream: dump_file, format: "Not peeling: number of iterations is not "
1147 "estimated\n");
1148 return false;
1149 }
1150 if (maxiter >= 0 && maxiter <= npeel)
1151 {
1152 if (dump_file)
1153 fprintf (stream: dump_file, format: "Not peeling: upper bound is known so can "
1154 "unroll completely\n");
1155 return false;
1156 }
1157
1158 /* We want to peel estimated number of iterations + 1 (so we never
1159 enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES
1160 and be sure to avoid overflows. */
1161 if (npeel > param_max_peel_times - 1)
1162 {
1163 if (dump_file)
1164 fprintf (stream: dump_file, format: "Not peeling: rolls too much "
1165 "(%i + 1 > --param max-peel-times)\n", (int) npeel);
1166 return false;
1167 }
1168 npeel++;
1169
1170 /* Check peeled loops size. */
1171 tree_estimate_loop_size (loop, exit, NULL, size: &size,
1172 param_max_peeled_insns);
1173 if ((peeled_size = estimated_peeled_sequence_size (size: &size, npeel: (int) npeel))
1174 > param_max_peeled_insns)
1175 {
1176 if (dump_file)
1177 fprintf (stream: dump_file, format: "Not peeling: peeled sequence size is too large "
1178 "(%i insns > --param max-peel-insns)", peeled_size);
1179 return false;
1180 }
1181
1182 if (!dbg_cnt (index: gimple_unroll))
1183 return false;
1184
1185 /* Duplicate possibly eliminating the exits. */
1186 initialize_original_copy_tables ();
1187 auto_sbitmap wont_exit (npeel + 1);
1188 if (exit && niter
1189 && TREE_CODE (niter) == INTEGER_CST
1190 && wi::leu_p (x: npeel, y: wi::to_widest (t: niter)))
1191 {
1192 bitmap_ones (wont_exit);
1193 bitmap_clear_bit (map: wont_exit, bitno: 0);
1194 }
1195 else
1196 {
1197 exit = NULL;
1198 bitmap_clear (wont_exit);
1199 }
1200 if (may_be_zero)
1201 bitmap_clear_bit (map: wont_exit, bitno: 1);
1202
1203 if (!gimple_duplicate_loop_body_to_header_edge (
1204 loop, loop_preheader_edge (loop), npeel, wont_exit, exit,
1205 &edges_to_remove, DLTHE_FLAG_UPDATE_FREQ))
1206 {
1207 free_original_copy_tables ();
1208 return false;
1209 }
1210 free_original_copy_tables ();
1211 if (dump_file && (dump_flags & TDF_DETAILS))
1212 {
1213 fprintf (stream: dump_file, format: "Peeled loop %d, %i times.\n",
1214 loop->num, (int) npeel);
1215 }
1216 adjust_loop_info_after_peeling (loop, npeel, precise: true);
1217
1218 bitmap_set_bit (peeled_loops, loop->num);
1219 return true;
1220}
1221/* Adds a canonical induction variable to LOOP if suitable.
1222 CREATE_IV is true if we may create a new iv. UL determines
1223 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
1224 to determine the number of iterations of a loop by direct evaluation.
1225 Returns true if cfg is changed. */
1226
1227static bool
1228canonicalize_loop_induction_variables (class loop *loop,
1229 bool create_iv, enum unroll_level ul,
1230 bool try_eval, bool allow_peel)
1231{
1232 edge exit = NULL;
1233 tree niter;
1234 HOST_WIDE_INT maxiter;
1235 bool modified = false;
1236 class tree_niter_desc niter_desc;
1237 bool may_be_zero = false;
1238
1239 /* For unrolling allow conditional constant or zero iterations, thus
1240 perform loop-header copying on-the-fly. */
1241 exit = single_exit (loop);
1242 niter = chrec_dont_know;
1243 if (exit && number_of_iterations_exit (loop, exit, niter: &niter_desc, false))
1244 {
1245 niter = niter_desc.niter;
1246 may_be_zero
1247 = niter_desc.may_be_zero && !integer_zerop (niter_desc.may_be_zero);
1248 }
1249 if (TREE_CODE (niter) != INTEGER_CST)
1250 {
1251 /* For non-constant niter fold may_be_zero into niter again. */
1252 if (may_be_zero)
1253 {
1254 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1255 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter),
1256 niter_desc.may_be_zero,
1257 build_int_cst (TREE_TYPE (niter), 0), niter);
1258 else
1259 niter = chrec_dont_know;
1260 may_be_zero = false;
1261 }
1262
1263 /* If the loop has more than one exit, try checking all of them
1264 for # of iterations determinable through scev. */
1265 if (!exit)
1266 niter = find_loop_niter (loop, &exit);
1267
1268 /* Finally if everything else fails, try brute force evaluation. */
1269 if (try_eval
1270 && (chrec_contains_undetermined (niter)
1271 || TREE_CODE (niter) != INTEGER_CST))
1272 niter = find_loop_niter_by_eval (loop, &exit);
1273
1274 if (TREE_CODE (niter) != INTEGER_CST)
1275 exit = NULL;
1276 }
1277
1278 /* We work exceptionally hard here to estimate the bound
1279 by find_loop_niter_by_eval. Be sure to keep it for future. */
1280 if (niter && TREE_CODE (niter) == INTEGER_CST)
1281 {
1282 auto_vec<edge> exits = get_loop_exit_edges (loop);
1283 record_niter_bound (loop, wi::to_widest (t: niter),
1284 exit == single_likely_exit (loop, exits), true);
1285 }
1286
1287 /* Force re-computation of loop bounds so we can remove redundant exits. */
1288 maxiter = max_loop_iterations_int (loop);
1289
1290 if (dump_file && (dump_flags & TDF_DETAILS)
1291 && TREE_CODE (niter) == INTEGER_CST)
1292 {
1293 fprintf (stream: dump_file, format: "Loop %d iterates ", loop->num);
1294 print_generic_expr (dump_file, niter, TDF_SLIM);
1295 fprintf (stream: dump_file, format: " times.\n");
1296 }
1297 if (dump_file && (dump_flags & TDF_DETAILS)
1298 && maxiter >= 0)
1299 {
1300 fprintf (stream: dump_file, format: "Loop %d iterates at most %i times.\n", loop->num,
1301 (int)maxiter);
1302 }
1303 if (dump_file && (dump_flags & TDF_DETAILS)
1304 && likely_max_loop_iterations_int (loop) >= 0)
1305 {
1306 fprintf (stream: dump_file, format: "Loop %d likely iterates at most %i times.\n",
1307 loop->num, (int)likely_max_loop_iterations_int (loop));
1308 }
1309
1310 /* Remove exits that are known to be never taken based on loop bound.
1311 Needs to be called after compilation of max_loop_iterations_int that
1312 populates the loop bounds. */
1313 modified |= remove_redundant_iv_tests (loop);
1314
1315 dump_user_location_t locus = find_loop_location (loop);
1316 if (try_unroll_loop_completely (loop, exit, niter, may_be_zero, ul,
1317 maxiter, locus, allow_peel))
1318 return true;
1319
1320 if (create_iv
1321 && niter && !chrec_contains_undetermined (niter)
1322 && exit && just_once_each_iteration_p (loop, exit->src))
1323 {
1324 tree iv_niter = niter;
1325 if (may_be_zero)
1326 {
1327 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1328 iv_niter = fold_build3 (COND_EXPR, TREE_TYPE (iv_niter),
1329 niter_desc.may_be_zero,
1330 build_int_cst (TREE_TYPE (iv_niter), 0),
1331 iv_niter);
1332 else
1333 iv_niter = NULL_TREE;
1334 }
1335 if (iv_niter)
1336 create_canonical_iv (loop, exit, niter: iv_niter);
1337 }
1338
1339 if (ul == UL_ALL)
1340 modified |= try_peel_loop (loop, exit, niter, may_be_zero, maxiter);
1341
1342 return modified;
1343}
1344
1345/* The main entry point of the pass. Adds canonical induction variables
1346 to the suitable loops. */
1347
1348unsigned int
1349canonicalize_induction_variables (void)
1350{
1351 bool changed = false;
1352 bool irred_invalidated = false;
1353 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1354
1355 estimate_numbers_of_iterations (cfun);
1356
1357 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1358 {
1359 changed |= canonicalize_loop_induction_variables (loop,
1360 create_iv: true, ul: UL_SINGLE_ITER,
1361 try_eval: true, allow_peel: false);
1362 }
1363 gcc_assert (!need_ssa_update_p (cfun));
1364
1365 unloop_loops (loops_to_unloop, loops_to_unloop_nunroll, edges_to_remove,
1366 loop_closed_ssa_invalidated, irred_invalidated: &irred_invalidated);
1367 loops_to_unloop.release ();
1368 loops_to_unloop_nunroll.release ();
1369 if (irred_invalidated
1370 && loops_state_satisfies_p (flags: LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1371 mark_irreducible_loops ();
1372
1373 /* Clean up the information about numbers of iterations, since brute force
1374 evaluation could reveal new information. */
1375 free_numbers_of_iterations_estimates (cfun);
1376 scev_reset ();
1377
1378 if (!bitmap_empty_p (map: loop_closed_ssa_invalidated))
1379 {
1380 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA));
1381 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1382 }
1383 BITMAP_FREE (loop_closed_ssa_invalidated);
1384
1385 if (changed)
1386 return TODO_cleanup_cfg;
1387 return 0;
1388}
1389
1390/* Process loops from innermost to outer, stopping at the innermost
1391 loop we unrolled. */
1392
1393static bool
1394tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer,
1395 bitmap father_bbs, class loop *loop)
1396{
1397 class loop *loop_father;
1398 bool changed = false;
1399 class loop *inner;
1400 enum unroll_level ul;
1401 unsigned num = number_of_loops (cfun);
1402
1403 /* Process inner loops first. Don't walk loops added by the recursive
1404 calls because SSA form is not up-to-date. They can be handled in the
1405 next iteration. */
1406 bitmap child_father_bbs = NULL;
1407 for (inner = loop->inner; inner != NULL; inner = inner->next)
1408 if ((unsigned) inner->num < num)
1409 {
1410 if (!child_father_bbs)
1411 child_father_bbs = BITMAP_ALLOC (NULL);
1412 if (tree_unroll_loops_completely_1 (may_increase_size, unroll_outer,
1413 father_bbs: child_father_bbs, loop: inner))
1414 {
1415 bitmap_ior_into (father_bbs, child_father_bbs);
1416 bitmap_clear (child_father_bbs);
1417 changed = true;
1418 }
1419 }
1420 if (child_father_bbs)
1421 BITMAP_FREE (child_father_bbs);
1422
1423 /* If we changed an inner loop we cannot process outer loops in this
1424 iteration because SSA form is not up-to-date. Continue with
1425 siblings of outer loops instead. */
1426 if (changed)
1427 {
1428 /* If we are recorded as father clear all other fathers that
1429 are necessarily covered already to avoid redundant work. */
1430 if (bitmap_bit_p (father_bbs, loop->header->index))
1431 {
1432 bitmap_clear (father_bbs);
1433 bitmap_set_bit (father_bbs, loop->header->index);
1434 }
1435 return true;
1436 }
1437
1438 /* Don't unroll #pragma omp simd loops until the vectorizer
1439 attempts to vectorize those. */
1440 if (loop->force_vectorize)
1441 return false;
1442
1443 /* Try to unroll this loop. */
1444 loop_father = loop_outer (loop);
1445 if (!loop_father)
1446 return false;
1447
1448 if (loop->unroll > 1)
1449 ul = UL_ALL;
1450 else if (may_increase_size && optimize_loop_nest_for_speed_p (loop)
1451 /* Unroll outermost loops only if asked to do so or they do
1452 not cause code growth. */
1453 && (unroll_outer || loop_outer (loop: loop_father)))
1454 ul = UL_ALL;
1455 else
1456 ul = UL_NO_GROWTH;
1457
1458 if (canonicalize_loop_induction_variables
1459 (loop, create_iv: false, ul, try_eval: !flag_tree_loop_ivcanon, allow_peel: unroll_outer))
1460 {
1461 /* If we'll continue unrolling, we need to propagate constants
1462 within the new basic blocks to fold away induction variable
1463 computations; otherwise, the size might blow up before the
1464 iteration is complete and the IR eventually cleaned up. */
1465 if (loop_outer (loop: loop_father))
1466 {
1467 /* Once we process our father we will have processed
1468 the fathers of our children as well, so avoid doing
1469 redundant work and clear fathers we've gathered sofar. */
1470 bitmap_clear (father_bbs);
1471 bitmap_set_bit (father_bbs, loop_father->header->index);
1472 }
1473 else if (unroll_outer)
1474 /* Trigger scalar cleanup once any outermost loop gets unrolled. */
1475 cfun->pending_TODOs |= PENDING_TODO_force_next_scalar_cleanup;
1476
1477 return true;
1478 }
1479
1480 return false;
1481}
1482
1483/* Unroll LOOPS completely if they iterate just few times. Unless
1484 MAY_INCREASE_SIZE is true, perform the unrolling only if the
1485 size of the code does not increase. */
1486
1487static unsigned int
1488tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
1489{
1490 bitmap father_bbs = BITMAP_ALLOC (NULL);
1491 bool changed;
1492 int iteration = 0;
1493 bool irred_invalidated = false;
1494
1495 estimate_numbers_of_iterations (cfun);
1496
1497 do
1498 {
1499 changed = false;
1500 bitmap loop_closed_ssa_invalidated = NULL;
1501
1502 if (loops_state_satisfies_p (flags: LOOP_CLOSED_SSA))
1503 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1504
1505 free_numbers_of_iterations_estimates (cfun);
1506 estimate_numbers_of_iterations (cfun);
1507
1508 changed = tree_unroll_loops_completely_1 (may_increase_size,
1509 unroll_outer, father_bbs,
1510 current_loops->tree_root);
1511 if (changed)
1512 {
1513 unsigned i;
1514
1515 unloop_loops (loops_to_unloop, loops_to_unloop_nunroll,
1516 edges_to_remove, loop_closed_ssa_invalidated,
1517 irred_invalidated: &irred_invalidated);
1518 loops_to_unloop.release ();
1519 loops_to_unloop_nunroll.release ();
1520
1521 /* We cannot use TODO_update_ssa_no_phi because VOPS gets confused. */
1522 if (loop_closed_ssa_invalidated
1523 && !bitmap_empty_p (map: loop_closed_ssa_invalidated))
1524 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated,
1525 TODO_update_ssa);
1526 else
1527 update_ssa (TODO_update_ssa);
1528
1529 /* father_bbs is a bitmap of loop father header BB indices.
1530 Translate that to what non-root loops these BBs belong to now. */
1531 bitmap_iterator bi;
1532 bitmap fathers = BITMAP_ALLOC (NULL);
1533 EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi)
1534 {
1535 basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i);
1536 if (! unrolled_loop_bb)
1537 continue;
1538 if (loop_outer (loop: unrolled_loop_bb->loop_father))
1539 bitmap_set_bit (fathers,
1540 unrolled_loop_bb->loop_father->num);
1541 }
1542 bitmap_clear (father_bbs);
1543 /* Propagate the constants within the new basic blocks. */
1544 EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi)
1545 {
1546 loop_p father = get_loop (cfun, num: i);
1547 bitmap exit_bbs = BITMAP_ALLOC (NULL);
1548 loop_exit *exit = father->exits->next;
1549 while (exit->e)
1550 {
1551 bitmap_set_bit (exit_bbs, exit->e->dest->index);
1552 exit = exit->next;
1553 }
1554 do_rpo_vn (cfun, loop_preheader_edge (father), exit_bbs);
1555 }
1556 BITMAP_FREE (fathers);
1557
1558 /* Clean up the information about numbers of iterations, since
1559 complete unrolling might have invalidated it. */
1560 scev_reset ();
1561
1562 /* This will take care of removing completely unrolled loops
1563 from the loop structures so we can continue unrolling now
1564 innermost loops. */
1565 if (cleanup_tree_cfg ())
1566 update_ssa (TODO_update_ssa_only_virtuals);
1567
1568 if (flag_checking && loops_state_satisfies_p (flags: LOOP_CLOSED_SSA))
1569 verify_loop_closed_ssa (true);
1570 }
1571 if (loop_closed_ssa_invalidated)
1572 BITMAP_FREE (loop_closed_ssa_invalidated);
1573 }
1574 while (changed
1575 && ++iteration <= param_max_unroll_iterations);
1576
1577 BITMAP_FREE (father_bbs);
1578
1579 if (irred_invalidated
1580 && loops_state_satisfies_p (flags: LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1581 mark_irreducible_loops ();
1582
1583 return 0;
1584}
1585
1586/* Canonical induction variable creation pass. */
1587
1588namespace {
1589
1590const pass_data pass_data_iv_canon =
1591{
1592 .type: GIMPLE_PASS, /* type */
1593 .name: "ivcanon", /* name */
1594 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
1595 .tv_id: TV_TREE_LOOP_IVCANON, /* tv_id */
1596 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
1597 .properties_provided: 0, /* properties_provided */
1598 .properties_destroyed: 0, /* properties_destroyed */
1599 .todo_flags_start: 0, /* todo_flags_start */
1600 .todo_flags_finish: 0, /* todo_flags_finish */
1601};
1602
1603class pass_iv_canon : public gimple_opt_pass
1604{
1605public:
1606 pass_iv_canon (gcc::context *ctxt)
1607 : gimple_opt_pass (pass_data_iv_canon, ctxt)
1608 {}
1609
1610 /* opt_pass methods: */
1611 bool gate (function *) final override { return flag_tree_loop_ivcanon != 0; }
1612 unsigned int execute (function *fun) final override;
1613
1614}; // class pass_iv_canon
1615
1616unsigned int
1617pass_iv_canon::execute (function *fun)
1618{
1619 if (number_of_loops (fn: fun) <= 1)
1620 return 0;
1621
1622 return canonicalize_induction_variables ();
1623}
1624
1625} // anon namespace
1626
1627gimple_opt_pass *
1628make_pass_iv_canon (gcc::context *ctxt)
1629{
1630 return new pass_iv_canon (ctxt);
1631}
1632
1633/* Complete unrolling of loops. */
1634
1635namespace {
1636
1637const pass_data pass_data_complete_unroll =
1638{
1639 .type: GIMPLE_PASS, /* type */
1640 .name: "cunroll", /* name */
1641 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
1642 .tv_id: TV_COMPLETE_UNROLL, /* tv_id */
1643 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
1644 .properties_provided: 0, /* properties_provided */
1645 .properties_destroyed: 0, /* properties_destroyed */
1646 .todo_flags_start: 0, /* todo_flags_start */
1647 .todo_flags_finish: 0, /* todo_flags_finish */
1648};
1649
1650class pass_complete_unroll : public gimple_opt_pass
1651{
1652public:
1653 pass_complete_unroll (gcc::context *ctxt)
1654 : gimple_opt_pass (pass_data_complete_unroll, ctxt)
1655 {}
1656
1657 /* opt_pass methods: */
1658 unsigned int execute (function *) final override;
1659
1660}; // class pass_complete_unroll
1661
1662unsigned int
1663pass_complete_unroll::execute (function *fun)
1664{
1665 if (number_of_loops (fn: fun) <= 1)
1666 return 0;
1667
1668 /* If we ever decide to run loop peeling more than once, we will need to
1669 track loops already peeled in loop structures themselves to avoid
1670 re-peeling the same loop multiple times. */
1671 if (flag_peel_loops)
1672 peeled_loops = BITMAP_ALLOC (NULL);
1673 unsigned int val = tree_unroll_loops_completely (flag_cunroll_grow_size,
1674 unroll_outer: true);
1675 if (peeled_loops)
1676 {
1677 BITMAP_FREE (peeled_loops);
1678 peeled_loops = NULL;
1679 }
1680 return val;
1681}
1682
1683} // anon namespace
1684
1685gimple_opt_pass *
1686make_pass_complete_unroll (gcc::context *ctxt)
1687{
1688 return new pass_complete_unroll (ctxt);
1689}
1690
1691/* Complete unrolling of inner loops. */
1692
1693namespace {
1694
1695const pass_data pass_data_complete_unrolli =
1696{
1697 .type: GIMPLE_PASS, /* type */
1698 .name: "cunrolli", /* name */
1699 .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */
1700 .tv_id: TV_COMPLETE_UNROLL, /* tv_id */
1701 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
1702 .properties_provided: 0, /* properties_provided */
1703 .properties_destroyed: 0, /* properties_destroyed */
1704 .todo_flags_start: 0, /* todo_flags_start */
1705 .todo_flags_finish: 0, /* todo_flags_finish */
1706};
1707
1708class pass_complete_unrolli : public gimple_opt_pass
1709{
1710public:
1711 pass_complete_unrolli (gcc::context *ctxt)
1712 : gimple_opt_pass (pass_data_complete_unrolli, ctxt)
1713 {}
1714
1715 /* opt_pass methods: */
1716 bool gate (function *) final override { return optimize >= 2; }
1717 unsigned int execute (function *) final override;
1718
1719}; // class pass_complete_unrolli
1720
1721unsigned int
1722pass_complete_unrolli::execute (function *fun)
1723{
1724 unsigned ret = 0;
1725
1726 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
1727 if (number_of_loops (fn: fun) > 1)
1728 {
1729 scev_initialize ();
1730 ret = tree_unroll_loops_completely (optimize >= 3, unroll_outer: false);
1731 scev_finalize ();
1732 }
1733 loop_optimizer_finalize ();
1734
1735 return ret;
1736}
1737
1738} // anon namespace
1739
1740gimple_opt_pass *
1741make_pass_complete_unrolli (gcc::context *ctxt)
1742{
1743 return new pass_complete_unrolli (ctxt);
1744}
1745
1746
1747

source code of gcc/tree-ssa-loop-ivcanon.cc