1/*
2 * Copyright 1985, 1987, 1990, 1998 The Open Group
3 * Copyright 2008 Dan Nicholson
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 * AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Except as contained in this notice, the names of the authors or their
23 * institutions shall not be used in advertising or otherwise to promote the
24 * sale, use or other dealings in this Software without prior written
25 * authorization from the authors.
26 */
27
28/************************************************************
29 * Copyright (c) 1993 by Silicon Graphics Computer Systems, Inc.
30 *
31 * Permission to use, copy, modify, and distribute this
32 * software and its documentation for any purpose and without
33 * fee is hereby granted, provided that the above copyright
34 * notice appear in all copies and that both that copyright
35 * notice and this permission notice appear in supporting
36 * documentation, and that the name of Silicon Graphics not be
37 * used in advertising or publicity pertaining to distribution
38 * of the software without specific prior written permission.
39 * Silicon Graphics makes no representation about the suitability
40 * of this software for any purpose. It is provided "as is"
41 * without any express or implied warranty.
42 *
43 * SILICON GRAPHICS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
44 * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
45 * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
46 * GRAPHICS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
47 * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
48 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
49 * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
50 * THE USE OR PERFORMANCE OF THIS SOFTWARE.
51 *
52 ********************************************************/
53
54/*
55 * Copyright © 2009-2012 Daniel Stone
56 * Copyright © 2012 Intel Corporation
57 * Copyright © 2012 Ran Benita
58 *
59 * Permission is hereby granted, free of charge, to any person obtaining a
60 * copy of this software and associated documentation files (the "Software"),
61 * to deal in the Software without restriction, including without limitation
62 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
63 * and/or sell copies of the Software, and to permit persons to whom the
64 * Software is furnished to do so, subject to the following conditions:
65 *
66 * The above copyright notice and this permission notice (including the next
67 * paragraph) shall be included in all copies or substantial portions of the
68 * Software.
69 *
70 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
71 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
72 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
73 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
74 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
75 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
76 * DEALINGS IN THE SOFTWARE.
77 *
78 * Author: Daniel Stone <daniel@fooishbar.org>
79 */
80
81#ifndef _XKBCOMMON_H_
82#define _XKBCOMMON_H_
83
84#include <stdint.h>
85#include <stdio.h>
86#include <stdarg.h>
87
88#include <xkbcommon/xkbcommon-names.h>
89#include <xkbcommon/xkbcommon-keysyms.h>
90
91#ifdef __cplusplus
92extern "C" {
93#endif
94
95/**
96 * @file
97 * Main libxkbcommon API.
98 */
99
100/**
101 * @struct xkb_context
102 * Opaque top level library context object.
103 *
104 * The context contains various general library data and state, like
105 * logging level and include paths.
106 *
107 * Objects are created in a specific context, and multiple contexts may
108 * coexist simultaneously. Objects from different contexts are completely
109 * separated and do not share any memory or state.
110 */
111struct xkb_context;
112
113/**
114 * @struct xkb_keymap
115 * Opaque compiled keymap object.
116 *
117 * The keymap object holds all of the static keyboard information obtained
118 * from compiling XKB files.
119 *
120 * A keymap is immutable after it is created (besides reference counts, etc.);
121 * if you need to change it, you must create a new one.
122 */
123struct xkb_keymap;
124
125/**
126 * @struct xkb_state
127 * Opaque keyboard state object.
128 *
129 * State objects contain the active state of a keyboard (or keyboards), such
130 * as the currently effective layout and the active modifiers. It acts as a
131 * simple state machine, wherein key presses and releases are the input, and
132 * key symbols (keysyms) are the output.
133 */
134struct xkb_state;
135
136/**
137 * A number used to represent a physical key on a keyboard.
138 *
139 * A standard PC-compatible keyboard might have 102 keys. An appropriate
140 * keymap would assign each of them a keycode, by which the user should
141 * refer to the key throughout the library.
142 *
143 * Historically, the X11 protocol, and consequentially the XKB protocol,
144 * assign only 8 bits for keycodes. This limits the number of different
145 * keys that can be used simultaneously in a single keymap to 256
146 * (disregarding other limitations). This library does not share this limit;
147 * keycodes beyond 255 ('extended keycodes') are not treated specially.
148 * Keymaps and applications which are compatible with X11 should not use
149 * these keycodes.
150 *
151 * The values of specific keycodes are determined by the keymap and the
152 * underlying input system. For example, with an X11-compatible keymap
153 * and Linux evdev scan codes (see linux/input.h), a fixed offset is used:
154 *
155 * The keymap defines a canonical name for each key, plus possible aliases.
156 * Historically, the XKB protocol restricts these names to at most 4 (ASCII)
157 * characters, but this library does not share this limit.
158 *
159 * @code
160 * xkb_keycode_t keycode_A = KEY_A + 8;
161 * @endcode
162 *
163 * @sa xkb_keycode_is_legal_ext() xkb_keycode_is_legal_x11()
164 */
165typedef uint32_t xkb_keycode_t;
166
167/**
168 * A number used to represent the symbols generated from a key on a keyboard.
169 *
170 * A key, represented by a keycode, may generate different symbols according
171 * to keyboard state. For example, on a QWERTY keyboard, pressing the key
172 * labled \<A\> generates the symbol 'a'. If the Shift key is held, it
173 * generates the symbol 'A'. If a different layout is used, say Greek,
174 * it generates the symbol 'α'. And so on.
175 *
176 * Each such symbol is represented by a keysym. Note that keysyms are
177 * somewhat more general, in that they can also represent some "function",
178 * such as "Left" or "Right" for the arrow keys. For more information,
179 * see:
180 * http://www.x.org/releases/X11R7.7/doc/xproto/x11protocol.html#keysym_encoding
181 *
182 * Specifically named keysyms can be found in the
183 * xkbcommon/xkbcommon-keysyms.h header file. Their name does not include
184 * the XKB_KEY_ prefix.
185 *
186 * Besides those, any Unicode/ISO 10646 character in the range U0100 to
187 * U10FFFF can be represented by a keysym value in the range 0x01000100 to
188 * 0x0110FFFF. The name of Unicode keysyms is "U<codepoint>", e.g. "UA1B2".
189 *
190 * The name of other unnamed keysyms is the hexadecimal representation of
191 * their value, e.g. "0xabcd1234".
192 *
193 * Keysym names are case-sensitive.
194 */
195typedef uint32_t xkb_keysym_t;
196
197/**
198 * Index of a keyboard layout.
199 *
200 * The layout index is a state component which detemines which <em>keyboard
201 * layout</em> is active. These may be different alphabets, different key
202 * arrangements, etc.
203 *
204 * Layout indices are consecutive. The first layout has index 0.
205 *
206 * Each layout is not required to have a name, and the names are not
207 * guaranteed to be unique (though they are usually provided and unique).
208 * Therefore, it is not safe to use the name as a unique identifier for a
209 * layout. Layout names are case-sensitive.
210 *
211 * Layouts are also called "groups" by XKB.
212 *
213 * @sa xkb_keymap_num_layouts() xkb_keymap_num_layouts_for_key()
214 */
215typedef uint32_t xkb_layout_index_t;
216/** A mask of layout indices. */
217typedef uint32_t xkb_layout_mask_t;
218
219/**
220 * Index of a shift level.
221 *
222 * Any key, in any layout, can have several <em>shift levels</em>. Each
223 * shift level can assign different keysyms to the key. The shift level
224 * to use is chosen according to the current keyboard state; for example,
225 * if no keys are pressed, the first level may be used; if the Left Shift
226 * key is pressed, the second; if Num Lock is pressed, the third; and
227 * many such combinations are possible (see xkb_mod_index_t).
228 *
229 * Level indices are consecutive. The first level has index 0.
230 */
231typedef uint32_t xkb_level_index_t;
232
233/**
234 * Index of a modifier.
235 *
236 * A @e modifier is a state component which changes the way keys are
237 * interpreted. A keymap defines a set of modifiers, such as Alt, Shift,
238 * Num Lock or Meta, and specifies which keys may @e activate which
239 * modifiers (in a many-to-many relationship, i.e. a key can activate
240 * several modifiers, and a modifier may be activated by several keys.
241 * Different keymaps do this differently).
242 *
243 * When retrieving the keysyms for a key, the active modifier set is
244 * consulted; this detemines the correct shift level to use within the
245 * currently active layout (see xkb_level_index_t).
246 *
247 * Modifier indices are consecutive. The first modifier has index 0.
248 *
249 * Each modifier must have a name, and the names are unique. Therefore, it
250 * is safe to use the name as a unique identifier for a modifier. The names
251 * of some common modifiers are provided in the xkbcommon/xkbcommon-names.h
252 * header file. Modifier names are case-sensitive.
253 *
254 * @sa xkb_keymap_num_mods()
255 */
256typedef uint32_t xkb_mod_index_t;
257/** A mask of modifier indices. */
258typedef uint32_t xkb_mod_mask_t;
259
260/**
261 * Index of a keyboard LED.
262 *
263 * LEDs are logical objects which may be @e active or @e inactive. They
264 * typically correspond to the lights on the keyboard. Their state is
265 * determined by the current keyboard state.
266 *
267 * LED indices are non-consecutive. The first LED has index 0.
268 *
269 * Each LED must have a name, and the names are unique. Therefore,
270 * it is safe to use the name as a unique identifier for a LED. The names
271 * of some common LEDs are provided in the xkbcommon/xkbcommon-names.h
272 * header file. LED names are case-sensitive.
273 *
274 * @warning A given keymap may specify an exact index for a given LED.
275 * Therefore, LED indexing is not necessarily sequential, as opposed to
276 * modifiers and layouts. This means that when iterating over the LEDs
277 * in a keymap using e.g. xkb_keymap_num_leds(), some indices might be
278 * invalid. Given such an index, functions like xkb_keymap_led_get_name()
279 * will return NULL, and xkb_state_led_index_is_active() will return -1.
280 *
281 * LEDs are also called "indicators" by XKB.
282 *
283 * @sa xkb_keymap_num_leds()
284 */
285typedef uint32_t xkb_led_index_t;
286/** A mask of LED indices. */
287typedef uint32_t xkb_led_mask_t;
288
289#define XKB_KEYCODE_INVALID (0xffffffff)
290#define XKB_LAYOUT_INVALID (0xffffffff)
291#define XKB_LEVEL_INVALID (0xffffffff)
292#define XKB_MOD_INVALID (0xffffffff)
293#define XKB_LED_INVALID (0xffffffff)
294
295#define XKB_KEYCODE_MAX (0xffffffff - 1)
296
297/**
298 * Test whether a value is a valid extended keycode.
299 * @sa xkb_keycode_t
300 **/
301#define xkb_keycode_is_legal_ext(key) (key <= XKB_KEYCODE_MAX)
302
303/**
304 * Test whether a value is a valid X11 keycode.
305 * @sa xkb_keycode_t
306 */
307#define xkb_keycode_is_legal_x11(key) (key >= 8 && key <= 255)
308
309/**
310 * Names to compile a keymap with, also known as RMLVO.
311 *
312 * The names are the common configuration values by which a user picks
313 * a keymap.
314 *
315 * If the entire struct is NULL, then each field is taken to be NULL.
316 * You should prefer passing NULL instead of choosing your own defaults.
317 */
318struct xkb_rule_names {
319 /**
320 * The rules file to use. The rules file describes how to interpret
321 * the values of the model, layout, variant and options fields.
322 *
323 * If NULL or the empty string "", a default value is used.
324 * If the XKB_DEFAULT_RULES environment variable is set, it is used
325 * as the default. Otherwise the system default is used.
326 */
327 const char *rules;
328 /**
329 * The keyboard model by which to interpret keycodes and LEDs.
330 *
331 * If NULL or the empty string "", a default value is used.
332 * If the XKB_DEFAULT_MODEL environment variable is set, it is used
333 * as the default. Otherwise the system default is used.
334 */
335 const char *model;
336 /**
337 * A comma separated list of layouts (languages) to include in the
338 * keymap.
339 *
340 * If NULL or the empty string "", a default value is used.
341 * If the XKB_DEFAULT_LAYOUT environment variable is set, it is used
342 * as the default. Otherwise the system default is used.
343 */
344 const char *layout;
345 /**
346 * A comma separated list of variants, one per layout, which may
347 * modify or augment the respective layout in various ways.
348 *
349 * If NULL or the empty string "", and a default value is also used
350 * for the layout, a default value is used. Otherwise no variant is
351 * used.
352 * If the XKB_DEFAULT_VARIANT environment variable is set, it is used
353 * as the default. Otherwise the system default is used.
354 */
355 const char *variant;
356 /**
357 * A comma separated list of options, through which the user specifies
358 * non-layout related preferences, like which key combinations are used
359 * for switching layouts, or which key is the Compose key.
360 *
361 * If NULL, a default value is used. If the empty string "", no
362 * options are used.
363 * If the XKB_DEFAULT_OPTIONS environment variable is set, it is used
364 * as the default. Otherwise the system default is used.
365 */
366 const char *options;
367};
368
369/**
370 * @defgroup keysyms Keysyms
371 * Utility functions related to keysyms.
372 *
373 * @{
374 */
375
376/**
377 * @page keysym-transformations Keysym Transformations
378 *
379 * Keysym translation is subject to several "keysym transformations",
380 * as described in the XKB specification. These are:
381 *
382 * - Capitalization transformation. If the Caps Lock modifier is
383 * active and was not consumed by the translation process, a single
384 * keysym is transformed to its upper-case form (if applicable).
385 * Similarly, the UTF-8/UTF-32 string produced is capitalized.
386 *
387 * This is described in:
388 * http://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Lock_Modifier
389 *
390 * - Control transformation. If the Control modifier is active and
391 * was not consumed by the translation process, the string produced
392 * is transformed to its matching ASCII control character (if
393 * applicable). Keysyms are not affected.
394 *
395 * This is described in:
396 * http://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Control_Modifier
397 *
398 * Each relevant function discusses which transformations it performs.
399 *
400 * These transformations are not applicable when a key produces multiple
401 * keysyms.
402 */
403
404
405/**
406 * Get the name of a keysym.
407 *
408 * For a description of how keysyms are named, see @ref xkb_keysym_t.
409 *
410 * @param[in] keysym The keysym.
411 * @param[out] buffer A string buffer to write the name into.
412 * @param[in] size Size of the buffer.
413 *
414 * @warning If the buffer passed is too small, the string is truncated
415 * (though still NUL-terminated); a size of at least 64 bytes is recommended.
416 *
417 * @returns The number of bytes in the name, excluding the NUL byte. If
418 * the keysym is invalid, returns -1.
419 *
420 * You may check if truncation has occurred by comparing the return value
421 * with the length of buffer, similarly to the snprintf(3) function.
422 *
423 * @sa xkb_keysym_t
424 */
425int
426xkb_keysym_get_name(xkb_keysym_t keysym, char *buffer, size_t size);
427
428/** Flags for xkb_keysym_from_name(). */
429enum xkb_keysym_flags {
430 /** Do not apply any flags. */
431 XKB_KEYSYM_NO_FLAGS = 0,
432 /** Find keysym by case-insensitive search. */
433 XKB_KEYSYM_CASE_INSENSITIVE = (1 << 0)
434};
435
436/**
437 * Get a keysym from its name.
438 *
439 * @param name The name of a keysym. See remarks in xkb_keysym_get_name();
440 * this function will accept any name returned by that function.
441 * @param flags A set of flags controlling how the search is done. If
442 * invalid flags are passed, this will fail with XKB_KEY_NoSymbol.
443 *
444 * If you use the XKB_KEYSYM_CASE_INSENSITIVE flag and two keysym names
445 * differ only by case, then the lower-case keysym is returned. For
446 * instance, for KEY_a and KEY_A, this function would return KEY_a for the
447 * case-insensitive search. If this functionality is needed, it is
448 * recommended to first call this function without this flag; and if that
449 * fails, only then to try with this flag, while possibly warning the user
450 * he had misspelled the name, and might get wrong results.
451 *
452 * @returns The keysym. If the name is invalid, returns XKB_KEY_NoSymbol.
453 *
454 * @sa xkb_keysym_t
455 */
456xkb_keysym_t
457xkb_keysym_from_name(const char *name, enum xkb_keysym_flags flags);
458
459/**
460 * Get the Unicode/UTF-8 representation of a keysym.
461 *
462 * @param[in] keysym The keysym.
463 * @param[out] buffer A buffer to write the UTF-8 string into.
464 * @param[in] size The size of buffer. Must be at least 7.
465 *
466 * @returns The number of bytes written to the buffer (including the
467 * terminating byte). If the keysym does not have a Unicode
468 * representation, returns 0. If the buffer is too small, returns -1.
469 *
470 * This function does not perform any @ref keysym-transformations.
471 * Therefore, prefer to use xkb_state_key_get_utf8() if possible.
472 *
473 * @sa xkb_state_key_get_utf8()
474 */
475int
476xkb_keysym_to_utf8(xkb_keysym_t keysym, char *buffer, size_t size);
477
478/**
479 * Get the Unicode/UTF-32 representation of a keysym.
480 *
481 * @returns The Unicode/UTF-32 representation of keysym, which is also
482 * compatible with UCS-4. If the keysym does not have a Unicode
483 * representation, returns 0.
484 *
485 * This function does not perform any @ref keysym-transformations.
486 * Therefore, prefer to use xkb_state_key_get_utf32() if possible.
487 *
488 * @sa xkb_state_key_get_utf32()
489 */
490uint32_t
491xkb_keysym_to_utf32(xkb_keysym_t keysym);
492
493/** @} */
494
495/**
496 * @defgroup context Library Context
497 * Creating, destroying and using library contexts.
498 *
499 * Every keymap compilation request must have a context associated with
500 * it. The context keeps around state such as the include path.
501 *
502 * @{
503 */
504
505/**
506 * @page envvars Environment Variables
507 *
508 * The user may set some environment variables which affect the library:
509 *
510 * - `XKB_CONFIG_ROOT`, `HOME` - see @ref include-path.
511 * - `XKB_LOG_LEVEL` - see xkb_context_set_log_level().
512 * - `XKB_LOG_VERBOSITY` - see xkb_context_set_log_verbosity().
513 * - `XKB_DEFAULT_RULES`, `XKB_DEFAULT_MODEL`, `XKB_DEFAULT_LAYOUT`,
514 * `XKB_DEFAULT_VARIANT`, `XKB_DEFAULT_OPTIONS` - see xkb_rule_names.
515 */
516
517/** Flags for context creation. */
518enum xkb_context_flags {
519 /** Do not apply any context flags. */
520 XKB_CONTEXT_NO_FLAGS = 0,
521 /** Create this context with an empty include path. */
522 XKB_CONTEXT_NO_DEFAULT_INCLUDES = (1 << 0),
523 /**
524 * Don't take RMLVO names from the environment.
525 * @since 0.3.0
526 */
527 XKB_CONTEXT_NO_ENVIRONMENT_NAMES = (1 << 1)
528};
529
530/**
531 * Create a new context.
532 *
533 * @param flags Optional flags for the context, or 0.
534 *
535 * @returns A new context, or NULL on failure.
536 *
537 * @memberof xkb_context
538 */
539struct xkb_context *
540xkb_context_new(enum xkb_context_flags flags);
541
542/**
543 * Take a new reference on a context.
544 *
545 * @returns The passed in context.
546 *
547 * @memberof xkb_context
548 */
549struct xkb_context *
550xkb_context_ref(struct xkb_context *context);
551
552/**
553 * Release a reference on a context, and possibly free it.
554 *
555 * @param context The context. If it is NULL, this function does nothing.
556 *
557 * @memberof xkb_context
558 */
559void
560xkb_context_unref(struct xkb_context *context);
561
562/**
563 * Store custom user data in the context.
564 *
565 * This may be useful in conjunction with xkb_context_set_log_fn() or other
566 * callbacks.
567 *
568 * @memberof xkb_context
569 */
570void
571xkb_context_set_user_data(struct xkb_context *context, void *user_data);
572
573/**
574 * Retrieves stored user data from the context.
575 *
576 * @returns The stored user data. If the user data wasn't set, or the
577 * passed in context is NULL, returns NULL.
578 *
579 * This may be useful to access private user data from callbacks like a
580 * custom logging function.
581 *
582 * @memberof xkb_context
583 **/
584void *
585xkb_context_get_user_data(struct xkb_context *context);
586
587/** @} */
588
589/**
590 * @defgroup include-path Include Paths
591 * Manipulating the include paths in a context.
592 *
593 * The include paths are the file-system paths that are searched when an
594 * include statement is encountered during keymap compilation.
595 *
596 * The default include paths are:
597 * - The system XKB root, defined at library configuration time.
598 * If * the `XKB_CONFIG_ROOT` environment is defined, it is used instead.
599 * - The path `$HOME/.xkb`, where $HOME is the value of the environment
600 * variable `HOME`.
601 *
602 * @{
603 */
604
605/**
606 * Append a new entry to the context's include path.
607 *
608 * @returns 1 on success, or 0 if the include path could not be added or is
609 * inaccessible.
610 *
611 * @memberof xkb_context
612 */
613int
614xkb_context_include_path_append(struct xkb_context *context, const char *path);
615
616/**
617 * Append the default include paths to the context's include path.
618 *
619 * @returns 1 on success, or 0 if the primary include path could not be added.
620 *
621 * @memberof xkb_context
622 */
623int
624xkb_context_include_path_append_default(struct xkb_context *context);
625
626/**
627 * Reset the context's include path to the default.
628 *
629 * Removes all entries from the context's include path, and inserts the
630 * default paths.
631 *
632 * @returns 1 on success, or 0 if the primary include path could not be added.
633 *
634 * @memberof xkb_context
635 */
636int
637xkb_context_include_path_reset_defaults(struct xkb_context *context);
638
639/**
640 * Remove all entries from the context's include path.
641 *
642 * @memberof xkb_context
643 */
644void
645xkb_context_include_path_clear(struct xkb_context *context);
646
647/**
648 * Get the number of paths in the context's include path.
649 *
650 * @memberof xkb_context
651 */
652unsigned int
653xkb_context_num_include_paths(struct xkb_context *context);
654
655/**
656 * Get a specific include path from the context's include path.
657 *
658 * @returns The include path at the specified index. If the index is
659 * invalid, returns NULL.
660 *
661 * @memberof xkb_context
662 */
663const char *
664xkb_context_include_path_get(struct xkb_context *context, unsigned int index);
665
666/** @} */
667
668/**
669 * @defgroup logging Logging Handling
670 * Manipulating how logging from this library is handled.
671 *
672 * @{
673 */
674
675/** Specifies a logging level. */
676enum xkb_log_level {
677 XKB_LOG_LEVEL_CRITICAL = 10, /**< Log critical internal errors only. */
678 XKB_LOG_LEVEL_ERROR = 20, /**< Log all errors. */
679 XKB_LOG_LEVEL_WARNING = 30, /**< Log warnings and errors. */
680 XKB_LOG_LEVEL_INFO = 40, /**< Log information, warnings, and errors. */
681 XKB_LOG_LEVEL_DEBUG = 50 /**< Log everything. */
682};
683
684/**
685 * Set the current logging level.
686 *
687 * @param context The context in which to set the logging level.
688 * @param level The logging level to use. Only messages from this level
689 * and below will be logged.
690 *
691 * The default level is XKB_LOG_LEVEL_ERROR. The environment variable
692 * XKB_LOG_LEVEL, if set in the time the context was created, overrides the
693 * default value. It may be specified as a level number or name.
694 *
695 * @memberof xkb_context
696 */
697void
698xkb_context_set_log_level(struct xkb_context *context,
699 enum xkb_log_level level);
700
701/**
702 * Get the current logging level.
703 *
704 * @memberof xkb_context
705 */
706enum xkb_log_level
707xkb_context_get_log_level(struct xkb_context *context);
708
709/**
710 * Sets the current logging verbosity.
711 *
712 * The library can generate a number of warnings which are not helpful to
713 * ordinary users of the library. The verbosity may be increased if more
714 * information is desired (e.g. when developing a new keymap).
715 *
716 * The default verbosity is 0. The environment variable XKB_LOG_VERBOSITY,
717 * if set in the time the context was created, overrides the default value.
718 *
719 * @param context The context in which to use the set verbosity.
720 * @param verbosity The verbosity to use. Currently used values are
721 * 1 to 10, higher values being more verbose. 0 would result in no verbose
722 * messages being logged.
723 *
724 * Most verbose messages are of level XKB_LOG_LEVEL_WARNING or lower.
725 *
726 * @memberof xkb_context
727 */
728void
729xkb_context_set_log_verbosity(struct xkb_context *context, int verbosity);
730
731/**
732 * Get the current logging verbosity of the context.
733 *
734 * @memberof xkb_context
735 */
736int
737xkb_context_get_log_verbosity(struct xkb_context *context);
738
739/**
740 * Set a custom function to handle logging messages.
741 *
742 * @param context The context in which to use the set logging function.
743 * @param log_fn The function that will be called for logging messages.
744 * Passing NULL restores the default function, which logs to stderr.
745 *
746 * By default, log messages from this library are printed to stderr. This
747 * function allows you to replace the default behavior with a custom
748 * handler. The handler is only called with messages which match the
749 * current logging level and verbosity settings for the context.
750 * level is the logging level of the message. @a format and @a args are
751 * the same as in the vprintf(3) function.
752 *
753 * You may use xkb_context_set_user_data() on the context, and then call
754 * xkb_context_get_user_data() from within the logging function to provide
755 * it with additional private context.
756 *
757 * @memberof xkb_context
758 */
759void
760xkb_context_set_log_fn(struct xkb_context *context,
761 void (*log_fn)(struct xkb_context *context,
762 enum xkb_log_level level,
763 const char *format, va_list args));
764
765/** @} */
766
767/**
768 * @defgroup keymap Keymap Creation
769 * Creating and destroying keymaps.
770 *
771 * @{
772 */
773
774/** Flags for keymap compilation. */
775enum xkb_keymap_compile_flags {
776 /** Do not apply any flags. */
777 XKB_KEYMAP_COMPILE_NO_FLAGS = 0
778};
779
780/**
781 * Create a keymap from RMLVO names.
782 *
783 * The primary keymap entry point: creates a new XKB keymap from a set of
784 * RMLVO (Rules + Model + Layouts + Variants + Options) names.
785 *
786 * @param context The context in which to create the keymap.
787 * @param names The RMLVO names to use. See xkb_rule_names.
788 * @param flags Optional flags for the keymap, or 0.
789 *
790 * @returns A keymap compiled according to the RMLVO names, or NULL if
791 * the compilation failed.
792 *
793 * @sa xkb_rule_names
794 * @memberof xkb_keymap
795 */
796struct xkb_keymap *
797xkb_keymap_new_from_names(struct xkb_context *context,
798 const struct xkb_rule_names *names,
799 enum xkb_keymap_compile_flags flags);
800
801/** The possible keymap formats. */
802enum xkb_keymap_format {
803 /** The current/classic XKB text format, as generated by xkbcomp -xkb. */
804 XKB_KEYMAP_FORMAT_TEXT_V1 = 1
805};
806
807/**
808 * Create a keymap from a keymap file.
809 *
810 * @param context The context in which to create the keymap.
811 * @param file The keymap file to compile.
812 * @param format The text format of the keymap file to compile.
813 * @param flags Optional flags for the keymap, or 0.
814 *
815 * @returns A keymap compiled from the given XKB keymap file, or NULL if
816 * the compilation failed.
817 *
818 * The file must contain a complete keymap. For example, in the
819 * XKB_KEYMAP_FORMAT_TEXT_V1 format, this means the file must contain one
820 * top level '%xkb_keymap' section, which in turn contains other required
821 * sections.
822 *
823 * @memberof xkb_keymap
824 */
825struct xkb_keymap *
826xkb_keymap_new_from_file(struct xkb_context *context, FILE *file,
827 enum xkb_keymap_format format,
828 enum xkb_keymap_compile_flags flags);
829
830/**
831 * Create a keymap from a keymap string.
832 *
833 * This is just like xkb_keymap_new_from_file(), but instead of a file, gets
834 * the keymap as one enormous string.
835 *
836 * @see xkb_keymap_new_from_file()
837 * @memberof xkb_keymap
838 */
839struct xkb_keymap *
840xkb_keymap_new_from_string(struct xkb_context *context, const char *string,
841 enum xkb_keymap_format format,
842 enum xkb_keymap_compile_flags flags);
843
844/**
845 * Create a keymap from a memory buffer.
846 *
847 * This is just like xkb_keymap_new_from_string(), but takes a length argument
848 * so the input string does not have to be zero-terminated.
849 *
850 * @see xkb_keymap_new_from_string()
851 * @memberof xkb_keymap
852 * @since 0.3.0
853 */
854struct xkb_keymap *
855xkb_keymap_new_from_buffer(struct xkb_context *context, const char *buffer,
856 size_t length, enum xkb_keymap_format format,
857 enum xkb_keymap_compile_flags flags);
858
859/**
860 * Take a new reference on a keymap.
861 *
862 * @returns The passed in keymap.
863 *
864 * @memberof xkb_keymap
865 */
866struct xkb_keymap *
867xkb_keymap_ref(struct xkb_keymap *keymap);
868
869/**
870 * Release a reference on a keymap, and possibly free it.
871 *
872 * @param keymap The keymap. If it is NULL, this function does nothing.
873 *
874 * @memberof xkb_keymap
875 */
876void
877xkb_keymap_unref(struct xkb_keymap *keymap);
878
879/**
880 * Get the keymap as a string in the format from which it was created.
881 * @sa xkb_keymap_get_as_string()
882 **/
883#define XKB_KEYMAP_USE_ORIGINAL_FORMAT ((enum xkb_keymap_format) -1)
884
885/**
886 * Get the compiled keymap as a string.
887 *
888 * @param keymap The keymap to get as a string.
889 * @param format The keymap format to use for the string. You can pass
890 * in the special value XKB_KEYMAP_USE_ORIGINAL_FORMAT to use the format
891 * from which the keymap was originally created.
892 *
893 * @returns The keymap as a NUL-terminated string, or NULL if unsuccessful.
894 *
895 * The returned string may be fed back into xkb_keymap_new_from_string() to get
896 * the exact same keymap (possibly in another process, etc.).
897 *
898 * The returned string is dynamically allocated and should be freed by the
899 * caller.
900 *
901 * @memberof xkb_keymap
902 */
903char *
904xkb_keymap_get_as_string(struct xkb_keymap *keymap,
905 enum xkb_keymap_format format);
906
907/** @} */
908
909/**
910 * @defgroup components Keymap Components
911 * Enumeration of state components in a keymap.
912 *
913 * @{
914 */
915
916/**
917 * Get the minimum keycode in the keymap.
918 *
919 * @sa xkb_keycode_t
920 * @memberof xkb_keymap
921 * @since 0.3.1
922 */
923xkb_keycode_t
924xkb_keymap_min_keycode(struct xkb_keymap *keymap);
925
926/**
927 * Get the maximum keycode in the keymap.
928 *
929 * @sa xkb_keycode_t
930 * @memberof xkb_keymap
931 * @since 0.3.1
932 */
933xkb_keycode_t
934xkb_keymap_max_keycode(struct xkb_keymap *keymap);
935
936/**
937 * The iterator used by xkb_keymap_key_for_each().
938 *
939 * @sa xkb_keymap_key_for_each
940 * @memberof xkb_keymap
941 * @since 0.3.1
942 */
943typedef void
944(*xkb_keymap_key_iter_t)(struct xkb_keymap *keymap, xkb_keycode_t key,
945 void *data);
946
947/**
948 * Run a specified function for every valid keycode in the keymap. If a
949 * keymap is sparse, this function may be called fewer than
950 * (max_keycode - min_keycode + 1) times.
951 *
952 * @sa xkb_keymap_min_keycode() xkb_keymap_max_keycode() xkb_keycode_t
953 * @memberof xkb_keymap
954 * @since 0.3.1
955 */
956void
957xkb_keymap_key_for_each(struct xkb_keymap *keymap, xkb_keymap_key_iter_t iter,
958 void *data);
959
960/**
961 * Find the name of the key with the given keycode.
962 *
963 * This function always returns the canonical name of the key (see
964 * description in xkb_keycode_t).
965 *
966 * @returns The key name. If no key with this keycode exists,
967 * returns NULL.
968 *
969 * @sa xkb_keycode_t
970 * @memberof xkb_keymap
971 * @since 0.6.0
972 */
973const char *
974xkb_keymap_key_get_name(struct xkb_keymap *keymap, xkb_keycode_t key);
975
976/**
977 * Find the keycode of the key with the given name.
978 *
979 * The name can be either a canonical name or an alias.
980 *
981 * @returns The keycode. If no key with this name exists,
982 * returns XKB_KEYCODE_INVALID.
983 *
984 * @sa xkb_keycode_t
985 * @memberof xkb_keymap
986 * @since 0.6.0
987 */
988xkb_keycode_t
989xkb_keymap_key_by_name(struct xkb_keymap *keymap, const char *name);
990
991/**
992 * Get the number of modifiers in the keymap.
993 *
994 * @sa xkb_mod_index_t
995 * @memberof xkb_keymap
996 */
997xkb_mod_index_t
998xkb_keymap_num_mods(struct xkb_keymap *keymap);
999
1000/**
1001 * Get the name of a modifier by index.
1002 *
1003 * @returns The name. If the index is invalid, returns NULL.
1004 *
1005 * @sa xkb_mod_index_t
1006 * @memberof xkb_keymap
1007 */
1008const char *
1009xkb_keymap_mod_get_name(struct xkb_keymap *keymap, xkb_mod_index_t idx);
1010
1011/**
1012 * Get the index of a modifier by name.
1013 *
1014 * @returns The index. If no modifier with this name exists, returns
1015 * XKB_MOD_INVALID.
1016 *
1017 * @sa xkb_mod_index_t
1018 * @memberof xkb_keymap
1019 */
1020xkb_mod_index_t
1021xkb_keymap_mod_get_index(struct xkb_keymap *keymap, const char *name);
1022
1023/**
1024 * Get the number of layouts in the keymap.
1025 *
1026 * @sa xkb_layout_index_t xkb_rule_names xkb_keymap_num_layouts_for_key()
1027 * @memberof xkb_keymap
1028 */
1029xkb_layout_index_t
1030xkb_keymap_num_layouts(struct xkb_keymap *keymap);
1031
1032/**
1033 * Get the name of a layout by index.
1034 *
1035 * @returns The name. If the index is invalid, or the layout does not have
1036 * a name, returns NULL.
1037 *
1038 * @sa xkb_layout_index_t
1039 * @memberof xkb_keymap
1040 */
1041const char *
1042xkb_keymap_layout_get_name(struct xkb_keymap *keymap, xkb_layout_index_t idx);
1043
1044/**
1045 * Get the index of a layout by name.
1046 *
1047 * @returns The index. If no layout exists with this name, returns
1048 * XKB_LAYOUT_INVALID. If more than one layout in the keymap has this name,
1049 * returns the lowest index among them.
1050 *
1051 * @memberof xkb_keymap
1052 */
1053xkb_layout_index_t
1054xkb_keymap_layout_get_index(struct xkb_keymap *keymap, const char *name);
1055
1056/**
1057 * Get the number of LEDs in the keymap.
1058 *
1059 * @warning The range [ 0...xkb_keymap_num_leds() ) includes all of the LEDs
1060 * in the keymap, but may also contain inactive LEDs. When iterating over
1061 * this range, you need the handle this case when calling functions such as
1062 * xkb_keymap_led_get_name() or xkb_state_led_index_is_active().
1063 *
1064 * @sa xkb_led_index_t
1065 * @memberof xkb_keymap
1066 */
1067xkb_led_index_t
1068xkb_keymap_num_leds(struct xkb_keymap *keymap);
1069
1070/**
1071 * Get the name of a LED by index.
1072 *
1073 * @returns The name. If the index is invalid, returns NULL.
1074 *
1075 * @memberof xkb_keymap
1076 */
1077const char *
1078xkb_keymap_led_get_name(struct xkb_keymap *keymap, xkb_led_index_t idx);
1079
1080/**
1081 * Get the index of a LED by name.
1082 *
1083 * @returns The index. If no LED with this name exists, returns
1084 * XKB_LED_INVALID.
1085 *
1086 * @memberof xkb_keymap
1087 */
1088xkb_led_index_t
1089xkb_keymap_led_get_index(struct xkb_keymap *keymap, const char *name);
1090
1091/**
1092 * Get the number of layouts for a specific key.
1093 *
1094 * This number can be different from xkb_keymap_num_layouts(), but is always
1095 * smaller. It is the appropriate value to use when iterating over the
1096 * layouts of a key.
1097 *
1098 * @sa xkb_layout_index_t
1099 * @memberof xkb_keymap
1100 */
1101xkb_layout_index_t
1102xkb_keymap_num_layouts_for_key(struct xkb_keymap *keymap, xkb_keycode_t key);
1103
1104/**
1105 * Get the number of shift levels for a specific key and layout.
1106 *
1107 * If @c layout is out of range for this key (that is, larger or equal to
1108 * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1109 * back into range in a manner consistent with xkb_state_key_get_layout().
1110 *
1111 * @sa xkb_level_index_t
1112 * @memberof xkb_keymap
1113 */
1114xkb_level_index_t
1115xkb_keymap_num_levels_for_key(struct xkb_keymap *keymap, xkb_keycode_t key,
1116 xkb_layout_index_t layout);
1117
1118/**
1119 * Get the keysyms obtained from pressing a key in a given layout and
1120 * shift level.
1121 *
1122 * This function is like xkb_state_key_get_syms(), only the layout and
1123 * shift level are not derived from the keyboard state but are instead
1124 * specified explicitly.
1125 *
1126 * @param[in] keymap The keymap.
1127 * @param[in] key The keycode of the key.
1128 * @param[in] layout The layout for which to get the keysyms.
1129 * @param[in] level The shift level in the layout for which to get the
1130 * keysyms. This must be smaller than:
1131 * @code xkb_keymap_num_levels_for_key(keymap, key) @endcode
1132 * @param[out] syms_out An immutable array of keysyms corresponding to the
1133 * key in the given layout and shift level.
1134 *
1135 * If @c layout is out of range for this key (that is, larger or equal to
1136 * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1137 * back into range in a manner consistent with xkb_state_key_get_layout().
1138 *
1139 * @returns The number of keysyms in the syms_out array. If no keysyms
1140 * are produced by the key in the given layout and shift level, returns 0
1141 * and sets syms_out to NULL.
1142 *
1143 * @sa xkb_state_key_get_syms()
1144 * @memberof xkb_keymap
1145 */
1146int
1147xkb_keymap_key_get_syms_by_level(struct xkb_keymap *keymap,
1148 xkb_keycode_t key,
1149 xkb_layout_index_t layout,
1150 xkb_level_index_t level,
1151 const xkb_keysym_t **syms_out);
1152
1153/**
1154 * Determine whether a key should repeat or not.
1155 *
1156 * A keymap may specify different repeat behaviors for different keys.
1157 * Most keys should generally exhibit repeat behavior; for example, holding
1158 * the 'a' key down in a text editor should normally insert a single 'a'
1159 * character every few milliseconds, until the key is released. However,
1160 * there are keys which should not or do not need to be repeated. For
1161 * example, repeating modifier keys such as Left/Right Shift or Caps Lock
1162 * is not generally useful or desired.
1163 *
1164 * @returns 1 if the key should repeat, 0 otherwise.
1165 *
1166 * @memberof xkb_keymap
1167 */
1168int
1169xkb_keymap_key_repeats(struct xkb_keymap *keymap, xkb_keycode_t key);
1170
1171/** @} */
1172
1173/**
1174 * @defgroup state Keyboard State
1175 * Creating, destroying and manipulating keyboard state objects.
1176 *
1177 * @{
1178 */
1179
1180/**
1181 * Create a new keyboard state object.
1182 *
1183 * @param keymap The keymap which the state will use.
1184 *
1185 * @returns A new keyboard state object, or NULL on failure.
1186 *
1187 * @memberof xkb_state
1188 */
1189struct xkb_state *
1190xkb_state_new(struct xkb_keymap *keymap);
1191
1192/**
1193 * Take a new reference on a keyboard state object.
1194 *
1195 * @returns The passed in object.
1196 *
1197 * @memberof xkb_state
1198 */
1199struct xkb_state *
1200xkb_state_ref(struct xkb_state *state);
1201
1202/**
1203 * Release a reference on a keybaord state object, and possibly free it.
1204 *
1205 * @param state The state. If it is NULL, this function does nothing.
1206 *
1207 * @memberof xkb_state
1208 */
1209void
1210xkb_state_unref(struct xkb_state *state);
1211
1212/**
1213 * Get the keymap which a keyboard state object is using.
1214 *
1215 * @returns The keymap which was passed to xkb_state_new() when creating
1216 * this state object.
1217 *
1218 * This function does not take a new reference on the keymap; you must
1219 * explicitly reference it yourself if you plan to use it beyond the
1220 * lifetime of the state.
1221 *
1222 * @memberof xkb_state
1223 */
1224struct xkb_keymap *
1225xkb_state_get_keymap(struct xkb_state *state);
1226
1227/** Specifies the direction of the key (press / release). */
1228enum xkb_key_direction {
1229 XKB_KEY_UP, /**< The key was released. */
1230 XKB_KEY_DOWN /**< The key was pressed. */
1231};
1232
1233/**
1234 * Modifier and layout types for state objects. This enum is bitmaskable,
1235 * e.g. (XKB_STATE_MODS_DEPRESSED | XKB_STATE_MODS_LATCHED) is valid to
1236 * exclude locked modifiers.
1237 *
1238 * In XKB, the DEPRESSED components are also known as 'base'.
1239 */
1240enum xkb_state_component {
1241 /** Depressed modifiers, i.e. a key is physically holding them. */
1242 XKB_STATE_MODS_DEPRESSED = (1 << 0),
1243 /** Latched modifiers, i.e. will be unset after the next non-modifier
1244 * key press. */
1245 XKB_STATE_MODS_LATCHED = (1 << 1),
1246 /** Locked modifiers, i.e. will be unset after the key provoking the
1247 * lock has been pressed again. */
1248 XKB_STATE_MODS_LOCKED = (1 << 2),
1249 /** Effective modifiers, i.e. currently active and affect key
1250 * processing (derived from the other state components).
1251 * Use this unless you explictly care how the state came about. */
1252 XKB_STATE_MODS_EFFECTIVE = (1 << 3),
1253 /** Depressed layout, i.e. a key is physically holding it. */
1254 XKB_STATE_LAYOUT_DEPRESSED = (1 << 4),
1255 /** Latched layout, i.e. will be unset after the next non-modifier
1256 * key press. */
1257 XKB_STATE_LAYOUT_LATCHED = (1 << 5),
1258 /** Locked layout, i.e. will be unset after the key provoking the lock
1259 * has been pressed again. */
1260 XKB_STATE_LAYOUT_LOCKED = (1 << 6),
1261 /** Effective layout, i.e. currently active and affects key processing
1262 * (derived from the other state components).
1263 * Use this unless you explictly care how the state came about. */
1264 XKB_STATE_LAYOUT_EFFECTIVE = (1 << 7),
1265 /** LEDs (derived from the other state components). */
1266 XKB_STATE_LEDS = (1 << 8)
1267};
1268
1269/**
1270 * Update the keyboard state to reflect a given key being pressed or
1271 * released.
1272 *
1273 * This entry point is intended for programs which track the keyboard state
1274 * explictly (like an evdev client). If the state is serialized to you by
1275 * a master process (like a Wayland compositor) using functions like
1276 * xkb_state_serialize_mods(), you should use xkb_state_update_mask() instead.
1277 * The two functins should not generally be used together.
1278 *
1279 * A series of calls to this function should be consistent; that is, a call
1280 * with XKB_KEY_DOWN for a key should be matched by an XKB_KEY_UP; if a key
1281 * is pressed twice, it should be released twice; etc. Otherwise (e.g. due
1282 * to missed input events), situations like "stuck modifiers" may occur.
1283 *
1284 * This function is often used in conjunction with the function
1285 * xkb_state_key_get_syms() (or xkb_state_key_get_one_sym()), for example,
1286 * when handling a key event. In this case, you should prefer to get the
1287 * keysyms *before* updating the key, such that the keysyms reported for
1288 * the key event are not affected by the event itself. This is the
1289 * conventional behavior.
1290 *
1291 * @returns A mask of state components that have changed as a result of
1292 * the update. If nothing in the state has changed, returns 0.
1293 *
1294 * @memberof xkb_state
1295 *
1296 * @sa xkb_state_update_mask()
1297 */
1298enum xkb_state_component
1299xkb_state_update_key(struct xkb_state *state, xkb_keycode_t key,
1300 enum xkb_key_direction direction);
1301
1302/**
1303 * Update a keyboard state from a set of explicit masks.
1304 *
1305 * This entry point is intended for window systems and the like, where a
1306 * master process holds an xkb_state, then serializes it over a wire
1307 * protocol, and clients then use the serialization to feed in to their own
1308 * xkb_state.
1309 *
1310 * All parameters must always be passed, or the resulting state may be
1311 * incoherent.
1312 *
1313 * The serialization is lossy and will not survive round trips; it must only
1314 * be used to feed slave state objects, and must not be used to update the
1315 * master state.
1316 *
1317 * If you do not fit the description above, you should use
1318 * xkb_state_update_key() instead. The two functions should not generally be
1319 * used together.
1320 *
1321 * @returns A mask of state components that have changed as a result of
1322 * the update. If nothing in the state has changed, returns 0.
1323 *
1324 * @memberof xkb_state
1325 *
1326 * @sa xkb_state_component
1327 * @sa xkb_state_update_key
1328 */
1329enum xkb_state_component
1330xkb_state_update_mask(struct xkb_state *state,
1331 xkb_mod_mask_t depressed_mods,
1332 xkb_mod_mask_t latched_mods,
1333 xkb_mod_mask_t locked_mods,
1334 xkb_layout_index_t depressed_layout,
1335 xkb_layout_index_t latched_layout,
1336 xkb_layout_index_t locked_layout);
1337
1338/**
1339 * Get the keysyms obtained from pressing a particular key in a given
1340 * keyboard state.
1341 *
1342 * Get the keysyms for a key according to the current active layout,
1343 * modifiers and shift level for the key, as determined by a keyboard
1344 * state.
1345 *
1346 * @param[in] state The keyboard state object.
1347 * @param[in] key The keycode of the key.
1348 * @param[out] syms_out An immutable array of keysyms corresponding the
1349 * key in the given keyboard state.
1350 *
1351 * As an extension to XKB, this function can return more than one keysym.
1352 * If you do not want to handle this case, you can use
1353 * xkb_state_key_get_one_sym() for a simpler interface.
1354 *
1355 * This function does not perform any @ref keysym-transformations.
1356 * (This might change).
1357 *
1358 * @returns The number of keysyms in the syms_out array. If no keysyms
1359 * are produced by the key in the given keyboard state, returns 0 and sets
1360 * syms_out to NULL.
1361 *
1362 * @memberof xkb_state
1363 */
1364int
1365xkb_state_key_get_syms(struct xkb_state *state, xkb_keycode_t key,
1366 const xkb_keysym_t **syms_out);
1367
1368/**
1369 * Get the Unicode/UTF-8 string obtained from pressing a particular key
1370 * in a given keyboard state.
1371 *
1372 * @param[in] state The keyboard state object.
1373 * @param[in] key The keycode of the key.
1374 * @param[out] buffer A buffer to write the string into.
1375 * @param[in] size Size of the buffer.
1376 *
1377 * @warning If the buffer passed is too small, the string is truncated
1378 * (though still NUL-terminated).
1379 *
1380 * @returns The number of bytes required for the string, excluding the
1381 * NUL byte. If there is nothing to write, returns 0.
1382 *
1383 * You may check if truncation has occurred by comparing the return value
1384 * with the size of @p buffer, similarly to the snprintf(3) function.
1385 * You may safely pass NULL and 0 to @p buffer and @p size to find the
1386 * required size (without the NUL-byte).
1387 *
1388 * This function performs Capitalization and Control @ref
1389 * keysym-transformations.
1390 *
1391 * @memberof xkb_state
1392 * @since 0.4.1
1393 */
1394int
1395xkb_state_key_get_utf8(struct xkb_state *state, xkb_keycode_t key,
1396 char *buffer, size_t size);
1397
1398/**
1399 * Get the Unicode/UTF-32 codepoint obtained from pressing a particular
1400 * key in a a given keyboard state.
1401 *
1402 * @returns The UTF-32 representation for the key, if it consists of only
1403 * a single codepoint. Otherwise, returns 0.
1404 *
1405 * This function performs Capitalization and Control @ref
1406 * keysym-transformations.
1407 *
1408 * @memberof xkb_state
1409 * @since 0.4.1
1410 */
1411uint32_t
1412xkb_state_key_get_utf32(struct xkb_state *state, xkb_keycode_t key);
1413
1414/**
1415 * Get the single keysym obtained from pressing a particular key in a
1416 * given keyboard state.
1417 *
1418 * This function is similar to xkb_state_key_get_syms(), but intended
1419 * for users which cannot or do not want to handle the case where
1420 * multiple keysyms are returned (in which case this function is
1421 * preferred).
1422 *
1423 * @returns The keysym. If the key does not have exactly one keysym,
1424 * returns XKB_KEY_NoSymbol
1425 *
1426 * This function performs Capitalization @ref keysym-transformations.
1427 *
1428 * @sa xkb_state_key_get_syms()
1429 * @memberof xkb_state
1430 */
1431xkb_keysym_t
1432xkb_state_key_get_one_sym(struct xkb_state *state, xkb_keycode_t key);
1433
1434/**
1435 * Get the effective layout index for a key in a given keyboard state.
1436 *
1437 * @returns The layout index for the key in the given keyboard state. If
1438 * the given keycode is invalid, or if the key is not included in any
1439 * layout at all, returns XKB_LAYOUT_INVALID.
1440 *
1441 * @invariant If the returned layout is valid, the following always holds:
1442 * @code
1443 * xkb_state_key_get_layout(state, key) < xkb_keymap_num_layouts_for_key(keymap, key)
1444 * @endcode
1445 *
1446 * @memberof xkb_state
1447 */
1448xkb_layout_index_t
1449xkb_state_key_get_layout(struct xkb_state *state, xkb_keycode_t key);
1450
1451/**
1452 * Get the effective shift level for a key in a given keyboard state and
1453 * layout.
1454 *
1455 * @param state The keyboard state.
1456 * @param key The keycode of the key.
1457 * @param layout The layout for which to get the shift level. This must be
1458 * smaller than:
1459 * @code xkb_keymap_num_layouts_for_key(keymap, key) @endcode
1460 * usually it would be:
1461 * @code xkb_state_key_get_layout(state, key) @endcode
1462 *
1463 * @return The shift level index. If the key or layout are invalid,
1464 * returns XKB_LEVEL_INVALID.
1465 *
1466 * @invariant If the returned level is valid, the following always holds:
1467 * @code
1468 * xkb_state_key_get_level(state, key, layout) < xkb_keymap_num_levels_for_key(keymap, key, layout)
1469 * @endcode
1470 *
1471 * @memberof xkb_state
1472 */
1473xkb_level_index_t
1474xkb_state_key_get_level(struct xkb_state *state, xkb_keycode_t key,
1475 xkb_layout_index_t layout);
1476
1477/**
1478 * Match flags for xkb_state_mod_indices_are_active() and
1479 * xkb_state_mod_names_are_active(), specifying the conditions for a
1480 * successful match. XKB_STATE_MATCH_NON_EXCLUSIVE is bitmaskable with
1481 * the other modes.
1482 */
1483enum xkb_state_match {
1484 /** Returns true if any of the modifiers are active. */
1485 XKB_STATE_MATCH_ANY = (1 << 0),
1486 /** Returns true if all of the modifiers are active. */
1487 XKB_STATE_MATCH_ALL = (1 << 1),
1488 /** Makes matching non-exclusive, i.e. will not return false if a
1489 * modifier not specified in the arguments is active. */
1490 XKB_STATE_MATCH_NON_EXCLUSIVE = (1 << 16)
1491};
1492
1493/**
1494 * The counterpart to xkb_state_update_mask for modifiers, to be used on
1495 * the server side of serialization.
1496 *
1497 * @param state The keyboard state.
1498 * @param components A mask of the modifier state components to serialize.
1499 * State components other than XKB_STATE_MODS_* are ignored.
1500 * If XKB_STATE_MODS_EFFECTIVE is included, all other state components are
1501 * ignored.
1502 *
1503 * @returns A xkb_mod_mask_t representing the given components of the
1504 * modifier state.
1505 *
1506 * This function should not be used in regular clients; please use the
1507 * xkb_state_mod_*_is_active API instead.
1508 *
1509 * @memberof xkb_state
1510 */
1511xkb_mod_mask_t
1512xkb_state_serialize_mods(struct xkb_state *state,
1513 enum xkb_state_component components);
1514
1515/**
1516 * The counterpart to xkb_state_update_mask for layouts, to be used on
1517 * the server side of serialization.
1518 *
1519 * @param state The keyboard state.
1520 * @param components A mask of the layout state components to serialize.
1521 * State components other than XKB_STATE_LAYOUT_* are ignored.
1522 * If XKB_STATE_LAYOUT_EFFECTIVE is included, all other state components are
1523 * ignored.
1524 *
1525 * @returns A layout index representing the given components of the
1526 * layout state.
1527 *
1528 * This function should not be used in regular clients; please use the
1529 * xkb_state_layout_*_is_active API instead.
1530 *
1531 * @memberof xkb_state
1532 */
1533xkb_layout_index_t
1534xkb_state_serialize_layout(struct xkb_state *state,
1535 enum xkb_state_component components);
1536
1537/**
1538 * Test whether a modifier is active in a given keyboard state by name.
1539 *
1540 * @returns 1 if the modifier is active, 0 if it is not. If the modifier
1541 * name does not exist in the keymap, returns -1.
1542 *
1543 * @memberof xkb_state
1544 */
1545int
1546xkb_state_mod_name_is_active(struct xkb_state *state, const char *name,
1547 enum xkb_state_component type);
1548
1549/**
1550 * Test whether a set of modifiers are active in a given keyboard state by
1551 * name.
1552 *
1553 * @param state The keyboard state.
1554 * @param type The component of the state against which to match the
1555 * given modifiers.
1556 * @param match The manner by which to match the state against the
1557 * given modifiers.
1558 * @param ... The set of of modifier names to test, terminated by a NULL
1559 * argument (sentinel).
1560 *
1561 * @returns 1 if the modifiers are active, 0 if they are not. If any of
1562 * the modifier names do not exist in the keymap, returns -1.
1563 *
1564 * @memberof xkb_state
1565 */
1566int
1567xkb_state_mod_names_are_active(struct xkb_state *state,
1568 enum xkb_state_component type,
1569 enum xkb_state_match match,
1570 ...);
1571
1572/**
1573 * Test whether a modifier is active in a given keyboard state by index.
1574 *
1575 * @returns 1 if the modifier is active, 0 if it is not. If the modifier
1576 * index is invalid in the keymap, returns -1.
1577 *
1578 * @memberof xkb_state
1579 */
1580int
1581xkb_state_mod_index_is_active(struct xkb_state *state, xkb_mod_index_t idx,
1582 enum xkb_state_component type);
1583
1584/**
1585 * Test whether a set of modifiers are active in a given keyboard state by
1586 * index.
1587 *
1588 * @param state The keyboard state.
1589 * @param type The component of the state against which to match the
1590 * given modifiers.
1591 * @param match The manner by which to match the state against the
1592 * given modifiers.
1593 * @param ... The set of of modifier indices to test, terminated by a
1594 * XKB_MOD_INVALID argument (sentinel).
1595 *
1596 * @returns 1 if the modifiers are active, 0 if they are not. If any of
1597 * the modifier indices are invalid in the keymap, returns -1.
1598 *
1599 * @memberof xkb_state
1600 */
1601int
1602xkb_state_mod_indices_are_active(struct xkb_state *state,
1603 enum xkb_state_component type,
1604 enum xkb_state_match match,
1605 ...);
1606
1607/**
1608 * @page consumed-modifiers Consumed Modifiers
1609 * @parblock
1610 *
1611 * Some functions, like xkb_state_key_get_syms(), look at the state of
1612 * the modifiers in the keymap and derive from it the correct shift level
1613 * to use for the key. For example, in a US layout, pressing the key
1614 * labeled \<A\> while the Shift modifier is active, generates the keysym
1615 * 'A'. In this case, the Shift modifier is said to be "consumed".
1616 * However, the Num Lock modifier does not affect this translation at all,
1617 * even if it is active, so it is not consumed by this translation.
1618 *
1619 * It may be desirable for some application to not reuse consumed modifiers
1620 * for further processing, e.g. for hotkeys or keyboard shortcuts. To
1621 * understand why, consider some requirements from a standard shortcut
1622 * mechanism, and how they are implemented:
1623 *
1624 * 1. The shortcut's modifiers must match exactly to the state. For
1625 * example, it is possible to bind separate actions to \<Alt\>\<Tab\>
1626 * and to \<Alt\>\<Shift\>\<Tab\>. Further, if only \<Alt\>\<Tab\> is
1627 * bound to an action, pressing \<Alt\>\<Shift\>\<Tab\> should not
1628 * trigger the shortcut.
1629 * Effectively, this means that the modifiers are compared using the
1630 * equality operator (==).
1631 *
1632 * 2. Only relevant modifiers are considered for the matching. For example,
1633 * Caps Lock and Num Lock should not generally affect the matching, e.g.
1634 * when matching \<Alt\>\<Tab\> against the state, it does not matter
1635 * whether Num Lock is active or not. These relevant, or "significant",
1636 * modifiers usually include Alt, Control, Shift, Super and similar.
1637 * Effectively, this means that non-significant modifiers are masked out,
1638 * before doing the comparison as described above.
1639 *
1640 * 3. The matching must be independent of the layout/keymap. For example,
1641 * the \<Plus\> (+) symbol is found on the first level on some layouts,
1642 * but requires holding Shift on others. If you simply bind the action
1643 * to the \<Plus\> keysym, it would work for the unshifted kind, but
1644 * not for the others, because the match against Shift would fail. If
1645 * you bind the action to \<Shift\>\<Plus\>, only the shifted kind would
1646 * work. So what is needed is to recognize that Shift is used up in the
1647 * translation of the keysym itself, and therefore should not be included
1648 * in the matching.
1649 * Effectively, this means that consumed modifiers (Shift in this example)
1650 * are masked out as well, before doing the comparison.
1651 *
1652 * In summary, this is how the matching would be performed:
1653 * @code
1654 * (keysym == shortcut_keysym) &&
1655 * ((state_mods & ~consumed_mods & significant_mods) == shortcut_mods)
1656 * @endcode
1657 *
1658 * @c state_mods are the modifiers reported by
1659 * xkb_state_mod_index_is_active() and similar functions.
1660 * @c consumed_mods are the modifiers reported by
1661 * xkb_state_mod_index_is_consumed() and similar functions.
1662 * @c significant_mods are decided upon by the application/toolkit/user;
1663 * it is up to them to decide whether these are configurable or hard-coded.
1664 *
1665 * @endparblock
1666 */
1667
1668/**
1669 * Test whether a modifier is consumed by keyboard state translation for
1670 * a key.
1671 *
1672 * @returns 1 if the modifier is consumed, 0 if it is not. If the modifier
1673 * index is not valid in the keymap, returns -1.
1674 *
1675 * @sa xkb_state_mod_mask_remove_consumed()
1676 * @sa xkb_state_key_get_consumed_mods()
1677 * @memberof xkb_state
1678 */
1679int
1680xkb_state_mod_index_is_consumed(struct xkb_state *state, xkb_keycode_t key,
1681 xkb_mod_index_t idx);
1682
1683/**
1684 * Remove consumed modifiers from a modifier mask for a key.
1685 *
1686 * Takes the given modifier mask, and removes all modifiers which are
1687 * consumed for that particular key (as in xkb_state_mod_index_is_consumed()).
1688 *
1689 * @sa xkb_state_mod_index_is_consumed()
1690 * @memberof xkb_state
1691 */
1692xkb_mod_mask_t
1693xkb_state_mod_mask_remove_consumed(struct xkb_state *state, xkb_keycode_t key,
1694 xkb_mod_mask_t mask);
1695
1696/**
1697 * Get the mask of modifiers consumed by translating a given key.
1698 *
1699 * @returns a mask of the consumed modifiers.
1700 *
1701 * @sa xkb_state_mod_index_is_consumed()
1702 * @memberof xkb_state
1703 * @since 0.4.1
1704 */
1705xkb_mod_mask_t
1706xkb_state_key_get_consumed_mods(struct xkb_state *state, xkb_keycode_t key);
1707
1708/**
1709 * Test whether a layout is active in a given keyboard state by name.
1710 *
1711 * @returns 1 if the layout is active, 0 if it is not. If no layout with
1712 * this name exists in the keymap, return -1.
1713 *
1714 * If multiple layouts in the keymap have this name, the one with the lowest
1715 * index is tested.
1716 *
1717 * @sa xkb_layout_index_t
1718 * @memberof xkb_state
1719 */
1720int
1721xkb_state_layout_name_is_active(struct xkb_state *state, const char *name,
1722 enum xkb_state_component type);
1723
1724/**
1725 * Test whether a layout is active in a given keyboard state by index.
1726 *
1727 * @returns 1 if the layout is active, 0 if it is not. If the layout index
1728 * is not valid in the keymap, returns -1.
1729 *
1730 * @sa xkb_layout_index_t
1731 * @memberof xkb_state
1732 */
1733int
1734xkb_state_layout_index_is_active(struct xkb_state *state,
1735 xkb_layout_index_t idx,
1736 enum xkb_state_component type);
1737
1738/**
1739 * Test whether a LED is active in a given keyboard state by name.
1740 *
1741 * @returns 1 if the LED is active, 0 if it not. If no LED with this name
1742 * exists in the keymap, returns -1.
1743 *
1744 * @sa xkb_led_index_t
1745 * @memberof xkb_state
1746 */
1747int
1748xkb_state_led_name_is_active(struct xkb_state *state, const char *name);
1749
1750/**
1751 * Test whether a LED is active in a given keyboard state by index.
1752 *
1753 * @returns 1 if the LED is active, 0 if it not. If the LED index is not
1754 * valid in the keymap, returns -1.
1755 *
1756 * @sa xkb_led_index_t
1757 * @memberof xkb_state
1758 */
1759int
1760xkb_state_led_index_is_active(struct xkb_state *state, xkb_led_index_t idx);
1761
1762/** @} */
1763
1764/* Leave this include last, so it can pick up our types, etc. */
1765#include <xkbcommon/xkbcommon-compat.h>
1766
1767#ifdef __cplusplus
1768} /* extern "C" */
1769#endif
1770
1771#endif /* _XKBCOMMON_H_ */
1772