1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Unified implementation of memcpy, memmove and the __copy_user backend.
7 *
8 * Copyright (C) 1998, 99, 2000, 01, 2002 Ralf Baechle (ralf@gnu.org)
9 * Copyright (C) 1999, 2000, 01, 2002 Silicon Graphics, Inc.
10 * Copyright (C) 2002 Broadcom, Inc.
11 * memcpy/copy_user author: Mark Vandevoorde
12 * Copyright (C) 2007 Maciej W. Rozycki
13 * Copyright (C) 2014 Imagination Technologies Ltd.
14 *
15 * Mnemonic names for arguments to memcpy/__copy_user
16 */
17
18/*
19 * Hack to resolve longstanding prefetch issue
20 *
21 * Prefetching may be fatal on some systems if we're prefetching beyond the
22 * end of memory on some systems. It's also a seriously bad idea on non
23 * dma-coherent systems.
24 */
25#ifdef CONFIG_DMA_NONCOHERENT
26#undef CONFIG_CPU_HAS_PREFETCH
27#endif
28#ifdef CONFIG_MIPS_MALTA
29#undef CONFIG_CPU_HAS_PREFETCH
30#endif
31#ifdef CONFIG_CPU_MIPSR6
32#undef CONFIG_CPU_HAS_PREFETCH
33#endif
34
35#include <linux/export.h>
36#include <asm/asm.h>
37#include <asm/asm-offsets.h>
38#include <asm/regdef.h>
39
40#define dst a0
41#define src a1
42#define len a2
43
44/*
45 * Spec
46 *
47 * memcpy copies len bytes from src to dst and sets v0 to dst.
48 * It assumes that
49 * - src and dst don't overlap
50 * - src is readable
51 * - dst is writable
52 * memcpy uses the standard calling convention
53 *
54 * __copy_user copies up to len bytes from src to dst and sets a2 (len) to
55 * the number of uncopied bytes due to an exception caused by a read or write.
56 * __copy_user assumes that src and dst don't overlap, and that the call is
57 * implementing one of the following:
58 * copy_to_user
59 * - src is readable (no exceptions when reading src)
60 * copy_from_user
61 * - dst is writable (no exceptions when writing dst)
62 * __copy_user uses a non-standard calling convention; see
63 * include/asm-mips/uaccess.h
64 *
65 * When an exception happens on a load, the handler must
66 # ensure that all of the destination buffer is overwritten to prevent
67 * leaking information to user mode programs.
68 */
69
70/*
71 * Implementation
72 */
73
74/*
75 * The exception handler for loads requires that:
76 * 1- AT contain the address of the byte just past the end of the source
77 * of the copy,
78 * 2- src_entry <= src < AT, and
79 * 3- (dst - src) == (dst_entry - src_entry),
80 * The _entry suffix denotes values when __copy_user was called.
81 *
82 * (1) is set up up by uaccess.h and maintained by not writing AT in copy_user
83 * (2) is met by incrementing src by the number of bytes copied
84 * (3) is met by not doing loads between a pair of increments of dst and src
85 *
86 * The exception handlers for stores adjust len (if necessary) and return.
87 * These handlers do not need to overwrite any data.
88 *
89 * For __rmemcpy and memmove an exception is always a kernel bug, therefore
90 * they're not protected.
91 */
92
93/* Instruction type */
94#define LD_INSN 1
95#define ST_INSN 2
96/* Pretech type */
97#define SRC_PREFETCH 1
98#define DST_PREFETCH 2
99#define LEGACY_MODE 1
100#define EVA_MODE 2
101#define USEROP 1
102#define KERNELOP 2
103
104/*
105 * Wrapper to add an entry in the exception table
106 * in case the insn causes a memory exception.
107 * Arguments:
108 * insn : Load/store instruction
109 * type : Instruction type
110 * reg : Register
111 * addr : Address
112 * handler : Exception handler
113 */
114
115#define EXC(insn, type, reg, addr, handler) \
116 .if \mode == LEGACY_MODE; \
1179: insn reg, addr; \
118 .section __ex_table,"a"; \
119 PTR_WD 9b, handler; \
120 .previous; \
121 /* This is assembled in EVA mode */ \
122 .else; \
123 /* If loading from user or storing to user */ \
124 .if ((\from == USEROP) && (type == LD_INSN)) || \
125 ((\to == USEROP) && (type == ST_INSN)); \
1269: __BUILD_EVA_INSN(insn##e, reg, addr); \
127 .section __ex_table,"a"; \
128 PTR_WD 9b, handler; \
129 .previous; \
130 .else; \
131 /* \
132 * Still in EVA, but no need for \
133 * exception handler or EVA insn \
134 */ \
135 insn reg, addr; \
136 .endif; \
137 .endif
138
139/*
140 * Only on the 64-bit kernel we can made use of 64-bit registers.
141 */
142#ifdef CONFIG_64BIT
143#define USE_DOUBLE
144#endif
145
146#ifdef USE_DOUBLE
147
148#define LOADK ld /* No exception */
149#define LOAD(reg, addr, handler) EXC(ld, LD_INSN, reg, addr, handler)
150#define LOADL(reg, addr, handler) EXC(ldl, LD_INSN, reg, addr, handler)
151#define LOADR(reg, addr, handler) EXC(ldr, LD_INSN, reg, addr, handler)
152#define STOREL(reg, addr, handler) EXC(sdl, ST_INSN, reg, addr, handler)
153#define STORER(reg, addr, handler) EXC(sdr, ST_INSN, reg, addr, handler)
154#define STORE(reg, addr, handler) EXC(sd, ST_INSN, reg, addr, handler)
155#define ADD daddu
156#define SUB dsubu
157#define SRL dsrl
158#define SRA dsra
159#define SLL dsll
160#define SLLV dsllv
161#define SRLV dsrlv
162#define NBYTES 8
163#define LOG_NBYTES 3
164
165/*
166 * As we are sharing code base with the mips32 tree (which use the o32 ABI
167 * register definitions). We need to redefine the register definitions from
168 * the n64 ABI register naming to the o32 ABI register naming.
169 */
170#undef t0
171#undef t1
172#undef t2
173#undef t3
174#define t0 $8
175#define t1 $9
176#define t2 $10
177#define t3 $11
178#define t4 $12
179#define t5 $13
180#define t6 $14
181#define t7 $15
182
183#else
184
185#define LOADK lw /* No exception */
186#define LOAD(reg, addr, handler) EXC(lw, LD_INSN, reg, addr, handler)
187#define LOADL(reg, addr, handler) EXC(lwl, LD_INSN, reg, addr, handler)
188#define LOADR(reg, addr, handler) EXC(lwr, LD_INSN, reg, addr, handler)
189#define STOREL(reg, addr, handler) EXC(swl, ST_INSN, reg, addr, handler)
190#define STORER(reg, addr, handler) EXC(swr, ST_INSN, reg, addr, handler)
191#define STORE(reg, addr, handler) EXC(sw, ST_INSN, reg, addr, handler)
192#define ADD addu
193#define SUB subu
194#define SRL srl
195#define SLL sll
196#define SRA sra
197#define SLLV sllv
198#define SRLV srlv
199#define NBYTES 4
200#define LOG_NBYTES 2
201
202#endif /* USE_DOUBLE */
203
204#define LOADB(reg, addr, handler) EXC(lb, LD_INSN, reg, addr, handler)
205#define STOREB(reg, addr, handler) EXC(sb, ST_INSN, reg, addr, handler)
206
207#ifdef CONFIG_CPU_HAS_PREFETCH
208# define _PREF(hint, addr, type) \
209 .if \mode == LEGACY_MODE; \
210 kernel_pref(hint, addr); \
211 .else; \
212 .if ((\from == USEROP) && (type == SRC_PREFETCH)) || \
213 ((\to == USEROP) && (type == DST_PREFETCH)); \
214 /* \
215 * PREFE has only 9 bits for the offset \
216 * compared to PREF which has 16, so it may \
217 * need to use the $at register but this \
218 * register should remain intact because it's \
219 * used later on. Therefore use $v1. \
220 */ \
221 .set at=v1; \
222 user_pref(hint, addr); \
223 .set noat; \
224 .else; \
225 kernel_pref(hint, addr); \
226 .endif; \
227 .endif
228#else
229# define _PREF(hint, addr, type)
230#endif
231
232#define PREFS(hint, addr) _PREF(hint, addr, SRC_PREFETCH)
233#define PREFD(hint, addr) _PREF(hint, addr, DST_PREFETCH)
234
235#ifdef CONFIG_CPU_LITTLE_ENDIAN
236#define LDFIRST LOADR
237#define LDREST LOADL
238#define STFIRST STORER
239#define STREST STOREL
240#define SHIFT_DISCARD SLLV
241#else
242#define LDFIRST LOADL
243#define LDREST LOADR
244#define STFIRST STOREL
245#define STREST STORER
246#define SHIFT_DISCARD SRLV
247#endif
248
249#define FIRST(unit) ((unit)*NBYTES)
250#define REST(unit) (FIRST(unit)+NBYTES-1)
251#define UNIT(unit) FIRST(unit)
252
253#define ADDRMASK (NBYTES-1)
254
255 .text
256 .set noreorder
257#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
258 .set noat
259#else
260 .set at=v1
261#endif
262
263 .align 5
264
265 /*
266 * Macro to build the __copy_user common code
267 * Arguments:
268 * mode : LEGACY_MODE or EVA_MODE
269 * from : Source operand. USEROP or KERNELOP
270 * to : Destination operand. USEROP or KERNELOP
271 */
272 .macro __BUILD_COPY_USER mode, from, to
273
274 /* initialize __memcpy if this the first time we execute this macro */
275 .ifnotdef __memcpy
276 .set __memcpy, 1
277 .hidden __memcpy /* make sure it does not leak */
278 .endif
279
280 /*
281 * Note: dst & src may be unaligned, len may be 0
282 * Temps
283 */
284#define rem t8
285
286 R10KCBARRIER(0(ra))
287 /*
288 * The "issue break"s below are very approximate.
289 * Issue delays for dcache fills will perturb the schedule, as will
290 * load queue full replay traps, etc.
291 *
292 * If len < NBYTES use byte operations.
293 */
294 PREFS( 0, 0(src) )
295 PREFD( 1, 0(dst) )
296 sltu t2, len, NBYTES
297 and t1, dst, ADDRMASK
298 PREFS( 0, 1*32(src) )
299 PREFD( 1, 1*32(dst) )
300 bnez t2, .Lcopy_bytes_checklen\@
301 and t0, src, ADDRMASK
302 PREFS( 0, 2*32(src) )
303 PREFD( 1, 2*32(dst) )
304#ifndef CONFIG_CPU_NO_LOAD_STORE_LR
305 bnez t1, .Ldst_unaligned\@
306 nop
307 bnez t0, .Lsrc_unaligned_dst_aligned\@
308#else /* CONFIG_CPU_NO_LOAD_STORE_LR */
309 or t0, t0, t1
310 bnez t0, .Lcopy_unaligned_bytes\@
311#endif /* CONFIG_CPU_NO_LOAD_STORE_LR */
312 /*
313 * use delay slot for fall-through
314 * src and dst are aligned; need to compute rem
315 */
316.Lboth_aligned\@:
317 SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter
318 beqz t0, .Lcleanup_both_aligned\@ # len < 8*NBYTES
319 and rem, len, (8*NBYTES-1) # rem = len % (8*NBYTES)
320 PREFS( 0, 3*32(src) )
321 PREFD( 1, 3*32(dst) )
322 .align 4
3231:
324 R10KCBARRIER(0(ra))
325 LOAD(t0, UNIT(0)(src), .Ll_exc\@)
326 LOAD(t1, UNIT(1)(src), .Ll_exc_copy\@)
327 LOAD(t2, UNIT(2)(src), .Ll_exc_copy\@)
328 LOAD(t3, UNIT(3)(src), .Ll_exc_copy\@)
329 SUB len, len, 8*NBYTES
330 LOAD(t4, UNIT(4)(src), .Ll_exc_copy\@)
331 LOAD(t7, UNIT(5)(src), .Ll_exc_copy\@)
332 STORE(t0, UNIT(0)(dst), .Ls_exc_p8u\@)
333 STORE(t1, UNIT(1)(dst), .Ls_exc_p7u\@)
334 LOAD(t0, UNIT(6)(src), .Ll_exc_copy\@)
335 LOAD(t1, UNIT(7)(src), .Ll_exc_copy\@)
336 ADD src, src, 8*NBYTES
337 ADD dst, dst, 8*NBYTES
338 STORE(t2, UNIT(-6)(dst), .Ls_exc_p6u\@)
339 STORE(t3, UNIT(-5)(dst), .Ls_exc_p5u\@)
340 STORE(t4, UNIT(-4)(dst), .Ls_exc_p4u\@)
341 STORE(t7, UNIT(-3)(dst), .Ls_exc_p3u\@)
342 STORE(t0, UNIT(-2)(dst), .Ls_exc_p2u\@)
343 STORE(t1, UNIT(-1)(dst), .Ls_exc_p1u\@)
344 PREFS( 0, 8*32(src) )
345 PREFD( 1, 8*32(dst) )
346 bne len, rem, 1b
347 nop
348
349 /*
350 * len == rem == the number of bytes left to copy < 8*NBYTES
351 */
352.Lcleanup_both_aligned\@:
353 beqz len, .Ldone\@
354 sltu t0, len, 4*NBYTES
355 bnez t0, .Lless_than_4units\@
356 and rem, len, (NBYTES-1) # rem = len % NBYTES
357 /*
358 * len >= 4*NBYTES
359 */
360 LOAD( t0, UNIT(0)(src), .Ll_exc\@)
361 LOAD( t1, UNIT(1)(src), .Ll_exc_copy\@)
362 LOAD( t2, UNIT(2)(src), .Ll_exc_copy\@)
363 LOAD( t3, UNIT(3)(src), .Ll_exc_copy\@)
364 SUB len, len, 4*NBYTES
365 ADD src, src, 4*NBYTES
366 R10KCBARRIER(0(ra))
367 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@)
368 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@)
369 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@)
370 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@)
371 .set reorder /* DADDI_WAR */
372 ADD dst, dst, 4*NBYTES
373 beqz len, .Ldone\@
374 .set noreorder
375.Lless_than_4units\@:
376 /*
377 * rem = len % NBYTES
378 */
379 beq rem, len, .Lcopy_bytes\@
380 nop
3811:
382 R10KCBARRIER(0(ra))
383 LOAD(t0, 0(src), .Ll_exc\@)
384 ADD src, src, NBYTES
385 SUB len, len, NBYTES
386 STORE(t0, 0(dst), .Ls_exc_p1u\@)
387 .set reorder /* DADDI_WAR */
388 ADD dst, dst, NBYTES
389 bne rem, len, 1b
390 .set noreorder
391
392#ifndef CONFIG_CPU_NO_LOAD_STORE_LR
393 /*
394 * src and dst are aligned, need to copy rem bytes (rem < NBYTES)
395 * A loop would do only a byte at a time with possible branch
396 * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE
397 * because can't assume read-access to dst. Instead, use
398 * STREST dst, which doesn't require read access to dst.
399 *
400 * This code should perform better than a simple loop on modern,
401 * wide-issue mips processors because the code has fewer branches and
402 * more instruction-level parallelism.
403 */
404#define bits t2
405 beqz len, .Ldone\@
406 ADD t1, dst, len # t1 is just past last byte of dst
407 li bits, 8*NBYTES
408 SLL rem, len, 3 # rem = number of bits to keep
409 LOAD(t0, 0(src), .Ll_exc\@)
410 SUB bits, bits, rem # bits = number of bits to discard
411 SHIFT_DISCARD t0, t0, bits
412 STREST(t0, -1(t1), .Ls_exc\@)
413 jr ra
414 move len, zero
415.Ldst_unaligned\@:
416 /*
417 * dst is unaligned
418 * t0 = src & ADDRMASK
419 * t1 = dst & ADDRMASK; T1 > 0
420 * len >= NBYTES
421 *
422 * Copy enough bytes to align dst
423 * Set match = (src and dst have same alignment)
424 */
425#define match rem
426 LDFIRST(t3, FIRST(0)(src), .Ll_exc\@)
427 ADD t2, zero, NBYTES
428 LDREST(t3, REST(0)(src), .Ll_exc_copy\@)
429 SUB t2, t2, t1 # t2 = number of bytes copied
430 xor match, t0, t1
431 R10KCBARRIER(0(ra))
432 STFIRST(t3, FIRST(0)(dst), .Ls_exc\@)
433 beq len, t2, .Ldone\@
434 SUB len, len, t2
435 ADD dst, dst, t2
436 beqz match, .Lboth_aligned\@
437 ADD src, src, t2
438
439.Lsrc_unaligned_dst_aligned\@:
440 SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter
441 PREFS( 0, 3*32(src) )
442 beqz t0, .Lcleanup_src_unaligned\@
443 and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES
444 PREFD( 1, 3*32(dst) )
4451:
446/*
447 * Avoid consecutive LD*'s to the same register since some mips
448 * implementations can't issue them in the same cycle.
449 * It's OK to load FIRST(N+1) before REST(N) because the two addresses
450 * are to the same unit (unless src is aligned, but it's not).
451 */
452 R10KCBARRIER(0(ra))
453 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@)
454 LDFIRST(t1, FIRST(1)(src), .Ll_exc_copy\@)
455 SUB len, len, 4*NBYTES
456 LDREST(t0, REST(0)(src), .Ll_exc_copy\@)
457 LDREST(t1, REST(1)(src), .Ll_exc_copy\@)
458 LDFIRST(t2, FIRST(2)(src), .Ll_exc_copy\@)
459 LDFIRST(t3, FIRST(3)(src), .Ll_exc_copy\@)
460 LDREST(t2, REST(2)(src), .Ll_exc_copy\@)
461 LDREST(t3, REST(3)(src), .Ll_exc_copy\@)
462 PREFS( 0, 9*32(src) ) # 0 is PREF_LOAD (not streamed)
463 ADD src, src, 4*NBYTES
464#ifdef CONFIG_CPU_SB1
465 nop # improves slotting
466#endif
467 STORE(t0, UNIT(0)(dst), .Ls_exc_p4u\@)
468 STORE(t1, UNIT(1)(dst), .Ls_exc_p3u\@)
469 STORE(t2, UNIT(2)(dst), .Ls_exc_p2u\@)
470 STORE(t3, UNIT(3)(dst), .Ls_exc_p1u\@)
471 PREFD( 1, 9*32(dst) ) # 1 is PREF_STORE (not streamed)
472 .set reorder /* DADDI_WAR */
473 ADD dst, dst, 4*NBYTES
474 bne len, rem, 1b
475 .set noreorder
476
477.Lcleanup_src_unaligned\@:
478 beqz len, .Ldone\@
479 and rem, len, NBYTES-1 # rem = len % NBYTES
480 beq rem, len, .Lcopy_bytes\@
481 nop
4821:
483 R10KCBARRIER(0(ra))
484 LDFIRST(t0, FIRST(0)(src), .Ll_exc\@)
485 LDREST(t0, REST(0)(src), .Ll_exc_copy\@)
486 ADD src, src, NBYTES
487 SUB len, len, NBYTES
488 STORE(t0, 0(dst), .Ls_exc_p1u\@)
489 .set reorder /* DADDI_WAR */
490 ADD dst, dst, NBYTES
491 bne len, rem, 1b
492 .set noreorder
493
494#endif /* !CONFIG_CPU_NO_LOAD_STORE_LR */
495.Lcopy_bytes_checklen\@:
496 beqz len, .Ldone\@
497 nop
498.Lcopy_bytes\@:
499 /* 0 < len < NBYTES */
500 R10KCBARRIER(0(ra))
501#define COPY_BYTE(N) \
502 LOADB(t0, N(src), .Ll_exc\@); \
503 SUB len, len, 1; \
504 beqz len, .Ldone\@; \
505 STOREB(t0, N(dst), .Ls_exc_p1\@)
506
507 COPY_BYTE(0)
508 COPY_BYTE(1)
509#ifdef USE_DOUBLE
510 COPY_BYTE(2)
511 COPY_BYTE(3)
512 COPY_BYTE(4)
513 COPY_BYTE(5)
514#endif
515 LOADB(t0, NBYTES-2(src), .Ll_exc\@)
516 SUB len, len, 1
517 jr ra
518 STOREB(t0, NBYTES-2(dst), .Ls_exc_p1\@)
519.Ldone\@:
520 jr ra
521 nop
522
523#ifdef CONFIG_CPU_NO_LOAD_STORE_LR
524.Lcopy_unaligned_bytes\@:
5251:
526 COPY_BYTE(0)
527 COPY_BYTE(1)
528 COPY_BYTE(2)
529 COPY_BYTE(3)
530 COPY_BYTE(4)
531 COPY_BYTE(5)
532 COPY_BYTE(6)
533 COPY_BYTE(7)
534 ADD src, src, 8
535 b 1b
536 ADD dst, dst, 8
537#endif /* CONFIG_CPU_NO_LOAD_STORE_LR */
538 .if __memcpy == 1
539 END(memcpy)
540 .set __memcpy, 0
541 .hidden __memcpy
542 .endif
543
544.Ll_exc_copy\@:
545 /*
546 * Copy bytes from src until faulting load address (or until a
547 * lb faults)
548 *
549 * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28)
550 * may be more than a byte beyond the last address.
551 * Hence, the lb below may get an exception.
552 *
553 * Assumes src < THREAD_BUADDR($28)
554 */
555 LOADK t0, TI_TASK($28)
556 nop
557 LOADK t0, THREAD_BUADDR(t0)
5581:
559 LOADB(t1, 0(src), .Ll_exc\@)
560 ADD src, src, 1
561 sb t1, 0(dst) # can't fault -- we're copy_from_user
562 .set reorder /* DADDI_WAR */
563 ADD dst, dst, 1
564 bne src, t0, 1b
565 .set noreorder
566.Ll_exc\@:
567 LOADK t0, TI_TASK($28)
568 nop
569 LOADK t0, THREAD_BUADDR(t0) # t0 is just past last good address
570 nop
571 SUB len, AT, t0 # len number of uncopied bytes
572 jr ra
573 nop
574
575#define SEXC(n) \
576 .set reorder; /* DADDI_WAR */ \
577.Ls_exc_p ## n ## u\@: \
578 ADD len, len, n*NBYTES; \
579 jr ra; \
580 .set noreorder
581
582SEXC(8)
583SEXC(7)
584SEXC(6)
585SEXC(5)
586SEXC(4)
587SEXC(3)
588SEXC(2)
589SEXC(1)
590
591.Ls_exc_p1\@:
592 .set reorder /* DADDI_WAR */
593 ADD len, len, 1
594 jr ra
595 .set noreorder
596.Ls_exc\@:
597 jr ra
598 nop
599 .endm
600
601#ifndef CONFIG_HAVE_PLAT_MEMCPY
602 .align 5
603LEAF(memmove)
604EXPORT_SYMBOL(memmove)
605 ADD t0, a0, a2
606 ADD t1, a1, a2
607 sltu t0, a1, t0 # dst + len <= src -> memcpy
608 sltu t1, a0, t1 # dst >= src + len -> memcpy
609 and t0, t1
610 beqz t0, .L__memcpy
611 move v0, a0 /* return value */
612 beqz a2, .Lr_out
613 END(memmove)
614
615 /* fall through to __rmemcpy */
616LEAF(__rmemcpy) /* a0=dst a1=src a2=len */
617 sltu t0, a1, a0
618 beqz t0, .Lr_end_bytes_up # src >= dst
619 nop
620 ADD a0, a2 # dst = dst + len
621 ADD a1, a2 # src = src + len
622
623.Lr_end_bytes:
624 R10KCBARRIER(0(ra))
625 lb t0, -1(a1)
626 SUB a2, a2, 0x1
627 sb t0, -1(a0)
628 SUB a1, a1, 0x1
629 .set reorder /* DADDI_WAR */
630 SUB a0, a0, 0x1
631 bnez a2, .Lr_end_bytes
632 .set noreorder
633
634.Lr_out:
635 jr ra
636 move a2, zero
637
638.Lr_end_bytes_up:
639 R10KCBARRIER(0(ra))
640 lb t0, (a1)
641 SUB a2, a2, 0x1
642 sb t0, (a0)
643 ADD a1, a1, 0x1
644 .set reorder /* DADDI_WAR */
645 ADD a0, a0, 0x1
646 bnez a2, .Lr_end_bytes_up
647 .set noreorder
648
649 jr ra
650 move a2, zero
651 END(__rmemcpy)
652
653/*
654 * A combined memcpy/__copy_user
655 * __copy_user sets len to 0 for success; else to an upper bound of
656 * the number of uncopied bytes.
657 * memcpy sets v0 to dst.
658 */
659 .align 5
660LEAF(memcpy) /* a0=dst a1=src a2=len */
661EXPORT_SYMBOL(memcpy)
662 move v0, dst /* return value */
663.L__memcpy:
664#ifndef CONFIG_EVA
665FEXPORT(__raw_copy_from_user)
666EXPORT_SYMBOL(__raw_copy_from_user)
667FEXPORT(__raw_copy_to_user)
668EXPORT_SYMBOL(__raw_copy_to_user)
669#endif
670 /* Legacy Mode, user <-> user */
671 __BUILD_COPY_USER LEGACY_MODE USEROP USEROP
672
673#endif
674
675#ifdef CONFIG_EVA
676
677/*
678 * For EVA we need distinct symbols for reading and writing to user space.
679 * This is because we need to use specific EVA instructions to perform the
680 * virtual <-> physical translation when a virtual address is actually in user
681 * space
682 */
683
684/*
685 * __copy_from_user (EVA)
686 */
687
688LEAF(__raw_copy_from_user)
689EXPORT_SYMBOL(__raw_copy_from_user)
690 __BUILD_COPY_USER EVA_MODE USEROP KERNELOP
691END(__raw_copy_from_user)
692
693
694
695/*
696 * __copy_to_user (EVA)
697 */
698
699LEAF(__raw_copy_to_user)
700EXPORT_SYMBOL(__raw_copy_to_user)
701__BUILD_COPY_USER EVA_MODE KERNELOP USEROP
702END(__raw_copy_to_user)
703
704#endif
705

source code of linux/arch/mips/lib/memcpy.S