1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Performance event support - powerpc architecture code
4 *
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 */
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/sched/clock.h>
10#include <linux/perf_event.h>
11#include <linux/percpu.h>
12#include <linux/hardirq.h>
13#include <linux/uaccess.h>
14#include <asm/reg.h>
15#include <asm/pmc.h>
16#include <asm/machdep.h>
17#include <asm/firmware.h>
18#include <asm/ptrace.h>
19#include <asm/code-patching.h>
20#include <asm/hw_irq.h>
21#include <asm/interrupt.h>
22
23#ifdef CONFIG_PPC64
24#include "internal.h"
25#endif
26
27#define BHRB_MAX_ENTRIES 32
28#define BHRB_TARGET 0x0000000000000002
29#define BHRB_PREDICTION 0x0000000000000001
30#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
31
32struct cpu_hw_events {
33 int n_events;
34 int n_percpu;
35 int disabled;
36 int n_added;
37 int n_limited;
38 u8 pmcs_enabled;
39 struct perf_event *event[MAX_HWEVENTS];
40 u64 events[MAX_HWEVENTS];
41 unsigned int flags[MAX_HWEVENTS];
42 struct mmcr_regs mmcr;
43 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
44 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
45 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48
49 unsigned int txn_flags;
50 int n_txn_start;
51
52 /* BHRB bits */
53 u64 bhrb_filter; /* BHRB HW branch filter */
54 unsigned int bhrb_users;
55 void *bhrb_context;
56 struct perf_branch_stack bhrb_stack;
57 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
58 u64 ic_init;
59
60 /* Store the PMC values */
61 unsigned long pmcs[MAX_HWEVENTS];
62};
63
64static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65
66static struct power_pmu *ppmu;
67
68/*
69 * Normally, to ignore kernel events we set the FCS (freeze counters
70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71 * hypervisor bit set in the MSR, or if we are running on a processor
72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73 * then we need to use the FCHV bit to ignore kernel events.
74 */
75static unsigned int freeze_events_kernel = MMCR0_FCS;
76
77/*
78 * 32-bit doesn't have MMCRA but does have an MMCR2,
79 * and a few other names are different.
80 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
81 * Define them as zero knowing that any code path accessing
82 * these registers (via mtspr/mfspr) are done under ppmu flag
83 * check for PPMU_ARCH_31 and we will not enter that code path
84 * for 32-bit.
85 */
86#ifdef CONFIG_PPC32
87
88#define MMCR0_FCHV 0
89#define MMCR0_PMCjCE MMCR0_PMCnCE
90#define MMCR0_FC56 0
91#define MMCR0_PMAO 0
92#define MMCR0_EBE 0
93#define MMCR0_BHRBA 0
94#define MMCR0_PMCC 0
95#define MMCR0_PMCC_U6 0
96
97#define SPRN_MMCRA SPRN_MMCR2
98#define SPRN_MMCR3 0
99#define SPRN_SIER2 0
100#define SPRN_SIER3 0
101#define MMCRA_SAMPLE_ENABLE 0
102#define MMCRA_BHRB_DISABLE 0
103#define MMCR0_PMCCEXT 0
104
105static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
106{
107 return 0;
108}
109static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
110static inline u32 perf_get_misc_flags(struct pt_regs *regs)
111{
112 return 0;
113}
114static inline void perf_read_regs(struct pt_regs *regs)
115{
116 regs->result = 0;
117}
118
119static inline int siar_valid(struct pt_regs *regs)
120{
121 return 1;
122}
123
124static bool is_ebb_event(struct perf_event *event) { return false; }
125static int ebb_event_check(struct perf_event *event) { return 0; }
126static void ebb_event_add(struct perf_event *event) { }
127static void ebb_switch_out(unsigned long mmcr0) { }
128static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
129{
130 return cpuhw->mmcr.mmcr0;
131}
132
133static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
134static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
135static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
136static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
137static void pmao_restore_workaround(bool ebb) { }
138#endif /* CONFIG_PPC32 */
139
140bool is_sier_available(void)
141{
142 if (!ppmu)
143 return false;
144
145 if (ppmu->flags & PPMU_HAS_SIER)
146 return true;
147
148 return false;
149}
150
151/*
152 * Return PMC value corresponding to the
153 * index passed.
154 */
155unsigned long get_pmcs_ext_regs(int idx)
156{
157 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
158
159 return cpuhw->pmcs[idx];
160}
161
162static bool regs_use_siar(struct pt_regs *regs)
163{
164 /*
165 * When we take a performance monitor exception the regs are setup
166 * using perf_read_regs() which overloads some fields, in particular
167 * regs->result to tell us whether to use SIAR.
168 *
169 * However if the regs are from another exception, eg. a syscall, then
170 * they have not been setup using perf_read_regs() and so regs->result
171 * is something random.
172 */
173 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
174}
175
176/*
177 * Things that are specific to 64-bit implementations.
178 */
179#ifdef CONFIG_PPC64
180
181static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
182{
183 unsigned long mmcra = regs->dsisr;
184
185 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
186 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
187 if (slot > 1)
188 return 4 * (slot - 1);
189 }
190
191 return 0;
192}
193
194/*
195 * The user wants a data address recorded.
196 * If we're not doing instruction sampling, give them the SDAR
197 * (sampled data address). If we are doing instruction sampling, then
198 * only give them the SDAR if it corresponds to the instruction
199 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
200 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
201 */
202static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
203{
204 unsigned long mmcra = regs->dsisr;
205 bool sdar_valid;
206
207 if (ppmu->flags & PPMU_HAS_SIER)
208 sdar_valid = regs->dar & SIER_SDAR_VALID;
209 else {
210 unsigned long sdsync;
211
212 if (ppmu->flags & PPMU_SIAR_VALID)
213 sdsync = POWER7P_MMCRA_SDAR_VALID;
214 else if (ppmu->flags & PPMU_ALT_SIPR)
215 sdsync = POWER6_MMCRA_SDSYNC;
216 else if (ppmu->flags & PPMU_NO_SIAR)
217 sdsync = MMCRA_SAMPLE_ENABLE;
218 else
219 sdsync = MMCRA_SDSYNC;
220
221 sdar_valid = mmcra & sdsync;
222 }
223
224 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
225 *addrp = mfspr(SPRN_SDAR);
226
227 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
228 *addrp = 0;
229}
230
231static bool regs_sihv(struct pt_regs *regs)
232{
233 unsigned long sihv = MMCRA_SIHV;
234
235 if (ppmu->flags & PPMU_HAS_SIER)
236 return !!(regs->dar & SIER_SIHV);
237
238 if (ppmu->flags & PPMU_ALT_SIPR)
239 sihv = POWER6_MMCRA_SIHV;
240
241 return !!(regs->dsisr & sihv);
242}
243
244static bool regs_sipr(struct pt_regs *regs)
245{
246 unsigned long sipr = MMCRA_SIPR;
247
248 if (ppmu->flags & PPMU_HAS_SIER)
249 return !!(regs->dar & SIER_SIPR);
250
251 if (ppmu->flags & PPMU_ALT_SIPR)
252 sipr = POWER6_MMCRA_SIPR;
253
254 return !!(regs->dsisr & sipr);
255}
256
257static inline u32 perf_flags_from_msr(struct pt_regs *regs)
258{
259 if (user_mode(regs))
260 return PERF_RECORD_MISC_USER;
261 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
262 return PERF_RECORD_MISC_HYPERVISOR;
263 return PERF_RECORD_MISC_KERNEL;
264}
265
266static inline u32 perf_get_misc_flags(struct pt_regs *regs)
267{
268 bool use_siar = regs_use_siar(regs);
269 unsigned long mmcra = regs->dsisr;
270 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
271
272 if (!use_siar)
273 return perf_flags_from_msr(regs);
274
275 /*
276 * Check the address in SIAR to identify the
277 * privilege levels since the SIER[MSR_HV, MSR_PR]
278 * bits are not set for marked events in power10
279 * DD1.
280 */
281 if (marked && (ppmu->flags & PPMU_P10_DD1)) {
282 unsigned long siar = mfspr(SPRN_SIAR);
283 if (siar) {
284 if (is_kernel_addr(siar))
285 return PERF_RECORD_MISC_KERNEL;
286 return PERF_RECORD_MISC_USER;
287 } else {
288 if (is_kernel_addr(regs->nip))
289 return PERF_RECORD_MISC_KERNEL;
290 return PERF_RECORD_MISC_USER;
291 }
292 }
293
294 /*
295 * If we don't have flags in MMCRA, rather than using
296 * the MSR, we intuit the flags from the address in
297 * SIAR which should give slightly more reliable
298 * results
299 */
300 if (ppmu->flags & PPMU_NO_SIPR) {
301 unsigned long siar = mfspr(SPRN_SIAR);
302 if (is_kernel_addr(siar))
303 return PERF_RECORD_MISC_KERNEL;
304 return PERF_RECORD_MISC_USER;
305 }
306
307 /* PR has priority over HV, so order below is important */
308 if (regs_sipr(regs))
309 return PERF_RECORD_MISC_USER;
310
311 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
312 return PERF_RECORD_MISC_HYPERVISOR;
313
314 return PERF_RECORD_MISC_KERNEL;
315}
316
317/*
318 * Overload regs->dsisr to store MMCRA so we only need to read it once
319 * on each interrupt.
320 * Overload regs->dar to store SIER if we have it.
321 * Overload regs->result to specify whether we should use the MSR (result
322 * is zero) or the SIAR (result is non zero).
323 */
324static inline void perf_read_regs(struct pt_regs *regs)
325{
326 unsigned long mmcra = mfspr(SPRN_MMCRA);
327 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
328 int use_siar;
329
330 regs->dsisr = mmcra;
331
332 if (ppmu->flags & PPMU_HAS_SIER)
333 regs->dar = mfspr(SPRN_SIER);
334
335 /*
336 * If this isn't a PMU exception (eg a software event) the SIAR is
337 * not valid. Use pt_regs.
338 *
339 * If it is a marked event use the SIAR.
340 *
341 * If the PMU doesn't update the SIAR for non marked events use
342 * pt_regs.
343 *
344 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
345 * issue with regs_sipr not being in synch with SIAR in interrupt entry
346 * and return sequences, which can result in regs_sipr being true for
347 * kernel interrupts and SIAR, which has the effect of causing samples
348 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
349 * interrupt entry/exit.
350 *
351 * If the PMU has HV/PR flags then check to see if they
352 * place the exception in userspace. If so, use pt_regs. In
353 * continuous sampling mode the SIAR and the PMU exception are
354 * not synchronised, so they may be many instructions apart.
355 * This can result in confusing backtraces. We still want
356 * hypervisor samples as well as samples in the kernel with
357 * interrupts off hence the userspace check.
358 */
359 if (TRAP(regs) != INTERRUPT_PERFMON)
360 use_siar = 0;
361 else if ((ppmu->flags & PPMU_NO_SIAR))
362 use_siar = 0;
363 else if (marked)
364 use_siar = 1;
365 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
366 use_siar = 0;
367 else if (!user_mode(regs))
368 use_siar = 1;
369 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
370 use_siar = 0;
371 else
372 use_siar = 1;
373
374 regs->result = use_siar;
375}
376
377/*
378 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
379 * must be sampled only if the SIAR-valid bit is set.
380 *
381 * For unmarked instructions and for processors that don't have the SIAR-Valid
382 * bit, assume that SIAR is valid.
383 */
384static inline int siar_valid(struct pt_regs *regs)
385{
386 unsigned long mmcra = regs->dsisr;
387 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
388
389 if (marked) {
390 /*
391 * SIER[SIAR_VALID] is not set for some
392 * marked events on power10 DD1, so drop
393 * the check for SIER[SIAR_VALID] and return true.
394 */
395 if (ppmu->flags & PPMU_P10_DD1)
396 return 0x1;
397 else if (ppmu->flags & PPMU_HAS_SIER)
398 return regs->dar & SIER_SIAR_VALID;
399
400 if (ppmu->flags & PPMU_SIAR_VALID)
401 return mmcra & POWER7P_MMCRA_SIAR_VALID;
402 }
403
404 return 1;
405}
406
407
408/* Reset all possible BHRB entries */
409static void power_pmu_bhrb_reset(void)
410{
411 asm volatile(PPC_CLRBHRB);
412}
413
414static void power_pmu_bhrb_enable(struct perf_event *event)
415{
416 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
417
418 if (!ppmu->bhrb_nr)
419 return;
420
421 /* Clear BHRB if we changed task context to avoid data leaks */
422 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
423 power_pmu_bhrb_reset();
424 cpuhw->bhrb_context = event->ctx;
425 }
426 cpuhw->bhrb_users++;
427 perf_sched_cb_inc(event->pmu);
428}
429
430static void power_pmu_bhrb_disable(struct perf_event *event)
431{
432 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
433
434 if (!ppmu->bhrb_nr)
435 return;
436
437 WARN_ON_ONCE(!cpuhw->bhrb_users);
438 cpuhw->bhrb_users--;
439 perf_sched_cb_dec(event->pmu);
440
441 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
442 /* BHRB cannot be turned off when other
443 * events are active on the PMU.
444 */
445
446 /* avoid stale pointer */
447 cpuhw->bhrb_context = NULL;
448 }
449}
450
451/* Called from ctxsw to prevent one process's branch entries to
452 * mingle with the other process's entries during context switch.
453 */
454static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
455{
456 if (!ppmu->bhrb_nr)
457 return;
458
459 if (sched_in)
460 power_pmu_bhrb_reset();
461}
462/* Calculate the to address for a branch */
463static __u64 power_pmu_bhrb_to(u64 addr)
464{
465 unsigned int instr;
466 __u64 target;
467
468 if (is_kernel_addr(addr)) {
469 if (copy_from_kernel_nofault(&instr, (void *)addr,
470 sizeof(instr)))
471 return 0;
472
473 return branch_target(&instr);
474 }
475
476 /* Userspace: need copy instruction here then translate it */
477 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
478 sizeof(instr)))
479 return 0;
480
481 target = branch_target(&instr);
482 if ((!target) || (instr & BRANCH_ABSOLUTE))
483 return target;
484
485 /* Translate relative branch target from kernel to user address */
486 return target - (unsigned long)&instr + addr;
487}
488
489/* Processing BHRB entries */
490static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
491{
492 u64 val;
493 u64 addr;
494 int r_index, u_index, pred;
495
496 r_index = 0;
497 u_index = 0;
498 while (r_index < ppmu->bhrb_nr) {
499 /* Assembly read function */
500 val = read_bhrb(r_index++);
501 if (!val)
502 /* Terminal marker: End of valid BHRB entries */
503 break;
504 else {
505 addr = val & BHRB_EA;
506 pred = val & BHRB_PREDICTION;
507
508 if (!addr)
509 /* invalid entry */
510 continue;
511
512 /*
513 * BHRB rolling buffer could very much contain the kernel
514 * addresses at this point. Check the privileges before
515 * exporting it to userspace (avoid exposure of regions
516 * where we could have speculative execution)
517 * Incase of ISA v3.1, BHRB will capture only user-space
518 * addresses, hence include a check before filtering code
519 */
520 if (!(ppmu->flags & PPMU_ARCH_31) &&
521 is_kernel_addr(addr) && event->attr.exclude_kernel)
522 continue;
523
524 /* Branches are read most recent first (ie. mfbhrb 0 is
525 * the most recent branch).
526 * There are two types of valid entries:
527 * 1) a target entry which is the to address of a
528 * computed goto like a blr,bctr,btar. The next
529 * entry read from the bhrb will be branch
530 * corresponding to this target (ie. the actual
531 * blr/bctr/btar instruction).
532 * 2) a from address which is an actual branch. If a
533 * target entry proceeds this, then this is the
534 * matching branch for that target. If this is not
535 * following a target entry, then this is a branch
536 * where the target is given as an immediate field
537 * in the instruction (ie. an i or b form branch).
538 * In this case we need to read the instruction from
539 * memory to determine the target/to address.
540 */
541
542 if (val & BHRB_TARGET) {
543 /* Target branches use two entries
544 * (ie. computed gotos/XL form)
545 */
546 cpuhw->bhrb_entries[u_index].to = addr;
547 cpuhw->bhrb_entries[u_index].mispred = pred;
548 cpuhw->bhrb_entries[u_index].predicted = ~pred;
549
550 /* Get from address in next entry */
551 val = read_bhrb(r_index++);
552 addr = val & BHRB_EA;
553 if (val & BHRB_TARGET) {
554 /* Shouldn't have two targets in a
555 row.. Reset index and try again */
556 r_index--;
557 addr = 0;
558 }
559 cpuhw->bhrb_entries[u_index].from = addr;
560 } else {
561 /* Branches to immediate field
562 (ie I or B form) */
563 cpuhw->bhrb_entries[u_index].from = addr;
564 cpuhw->bhrb_entries[u_index].to =
565 power_pmu_bhrb_to(addr);
566 cpuhw->bhrb_entries[u_index].mispred = pred;
567 cpuhw->bhrb_entries[u_index].predicted = ~pred;
568 }
569 u_index++;
570
571 }
572 }
573 cpuhw->bhrb_stack.nr = u_index;
574 cpuhw->bhrb_stack.hw_idx = -1ULL;
575 return;
576}
577
578static bool is_ebb_event(struct perf_event *event)
579{
580 /*
581 * This could be a per-PMU callback, but we'd rather avoid the cost. We
582 * check that the PMU supports EBB, meaning those that don't can still
583 * use bit 63 of the event code for something else if they wish.
584 */
585 return (ppmu->flags & PPMU_ARCH_207S) &&
586 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
587}
588
589static int ebb_event_check(struct perf_event *event)
590{
591 struct perf_event *leader = event->group_leader;
592
593 /* Event and group leader must agree on EBB */
594 if (is_ebb_event(leader) != is_ebb_event(event))
595 return -EINVAL;
596
597 if (is_ebb_event(event)) {
598 if (!(event->attach_state & PERF_ATTACH_TASK))
599 return -EINVAL;
600
601 if (!leader->attr.pinned || !leader->attr.exclusive)
602 return -EINVAL;
603
604 if (event->attr.freq ||
605 event->attr.inherit ||
606 event->attr.sample_type ||
607 event->attr.sample_period ||
608 event->attr.enable_on_exec)
609 return -EINVAL;
610 }
611
612 return 0;
613}
614
615static void ebb_event_add(struct perf_event *event)
616{
617 if (!is_ebb_event(event) || current->thread.used_ebb)
618 return;
619
620 /*
621 * IFF this is the first time we've added an EBB event, set
622 * PMXE in the user MMCR0 so we can detect when it's cleared by
623 * userspace. We need this so that we can context switch while
624 * userspace is in the EBB handler (where PMXE is 0).
625 */
626 current->thread.used_ebb = 1;
627 current->thread.mmcr0 |= MMCR0_PMXE;
628}
629
630static void ebb_switch_out(unsigned long mmcr0)
631{
632 if (!(mmcr0 & MMCR0_EBE))
633 return;
634
635 current->thread.siar = mfspr(SPRN_SIAR);
636 current->thread.sier = mfspr(SPRN_SIER);
637 current->thread.sdar = mfspr(SPRN_SDAR);
638 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
639 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
640 if (ppmu->flags & PPMU_ARCH_31) {
641 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
642 current->thread.sier2 = mfspr(SPRN_SIER2);
643 current->thread.sier3 = mfspr(SPRN_SIER3);
644 }
645}
646
647static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
648{
649 unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
650
651 if (!ebb)
652 goto out;
653
654 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
655 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
656
657 /*
658 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
659 * with pmao_restore_workaround() because we may add PMAO but we never
660 * clear it here.
661 */
662 mmcr0 |= current->thread.mmcr0;
663
664 /*
665 * Be careful not to set PMXE if userspace had it cleared. This is also
666 * compatible with pmao_restore_workaround() because it has already
667 * cleared PMXE and we leave PMAO alone.
668 */
669 if (!(current->thread.mmcr0 & MMCR0_PMXE))
670 mmcr0 &= ~MMCR0_PMXE;
671
672 mtspr(SPRN_SIAR, current->thread.siar);
673 mtspr(SPRN_SIER, current->thread.sier);
674 mtspr(SPRN_SDAR, current->thread.sdar);
675
676 /*
677 * Merge the kernel & user values of MMCR2. The semantics we implement
678 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
679 * but not clear bits. If a task wants to be able to clear bits, ie.
680 * unfreeze counters, it should not set exclude_xxx in its events and
681 * instead manage the MMCR2 entirely by itself.
682 */
683 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
684
685 if (ppmu->flags & PPMU_ARCH_31) {
686 mtspr(SPRN_MMCR3, current->thread.mmcr3);
687 mtspr(SPRN_SIER2, current->thread.sier2);
688 mtspr(SPRN_SIER3, current->thread.sier3);
689 }
690out:
691 return mmcr0;
692}
693
694static void pmao_restore_workaround(bool ebb)
695{
696 unsigned pmcs[6];
697
698 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
699 return;
700
701 /*
702 * On POWER8E there is a hardware defect which affects the PMU context
703 * switch logic, ie. power_pmu_disable/enable().
704 *
705 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
706 * by the hardware. Sometime later the actual PMU exception is
707 * delivered.
708 *
709 * If we context switch, or simply disable/enable, the PMU prior to the
710 * exception arriving, the exception will be lost when we clear PMAO.
711 *
712 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
713 * set, and this _should_ generate an exception. However because of the
714 * defect no exception is generated when we write PMAO, and we get
715 * stuck with no counters counting but no exception delivered.
716 *
717 * The workaround is to detect this case and tweak the hardware to
718 * create another pending PMU exception.
719 *
720 * We do that by setting up PMC6 (cycles) for an imminent overflow and
721 * enabling the PMU. That causes a new exception to be generated in the
722 * chip, but we don't take it yet because we have interrupts hard
723 * disabled. We then write back the PMU state as we want it to be seen
724 * by the exception handler. When we reenable interrupts the exception
725 * handler will be called and see the correct state.
726 *
727 * The logic is the same for EBB, except that the exception is gated by
728 * us having interrupts hard disabled as well as the fact that we are
729 * not in userspace. The exception is finally delivered when we return
730 * to userspace.
731 */
732
733 /* Only if PMAO is set and PMAO_SYNC is clear */
734 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
735 return;
736
737 /* If we're doing EBB, only if BESCR[GE] is set */
738 if (ebb && !(current->thread.bescr & BESCR_GE))
739 return;
740
741 /*
742 * We are already soft-disabled in power_pmu_enable(). We need to hard
743 * disable to actually prevent the PMU exception from firing.
744 */
745 hard_irq_disable();
746
747 /*
748 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
749 * Using read/write_pmc() in a for loop adds 12 function calls and
750 * almost doubles our code size.
751 */
752 pmcs[0] = mfspr(SPRN_PMC1);
753 pmcs[1] = mfspr(SPRN_PMC2);
754 pmcs[2] = mfspr(SPRN_PMC3);
755 pmcs[3] = mfspr(SPRN_PMC4);
756 pmcs[4] = mfspr(SPRN_PMC5);
757 pmcs[5] = mfspr(SPRN_PMC6);
758
759 /* Ensure all freeze bits are unset */
760 mtspr(SPRN_MMCR2, 0);
761
762 /* Set up PMC6 to overflow in one cycle */
763 mtspr(SPRN_PMC6, 0x7FFFFFFE);
764
765 /* Enable exceptions and unfreeze PMC6 */
766 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
767
768 /* Now we need to refreeze and restore the PMCs */
769 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
770
771 mtspr(SPRN_PMC1, pmcs[0]);
772 mtspr(SPRN_PMC2, pmcs[1]);
773 mtspr(SPRN_PMC3, pmcs[2]);
774 mtspr(SPRN_PMC4, pmcs[3]);
775 mtspr(SPRN_PMC5, pmcs[4]);
776 mtspr(SPRN_PMC6, pmcs[5]);
777}
778
779/*
780 * If the perf subsystem wants performance monitor interrupts as soon as
781 * possible (e.g., to sample the instruction address and stack chain),
782 * this should return true. The IRQ masking code can then enable MSR[EE]
783 * in some places (e.g., interrupt handlers) that allows PMI interrupts
784 * through to improve accuracy of profiles, at the cost of some performance.
785 *
786 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
787 * access), but in that case there is no need for prompt PMI handling.
788 *
789 * This currently returns true if any perf counter is being used. It
790 * could possibly return false if only events are being counted rather than
791 * samples being taken, but for now this is good enough.
792 */
793bool power_pmu_wants_prompt_pmi(void)
794{
795 struct cpu_hw_events *cpuhw;
796
797 /*
798 * This could simply test local_paca->pmcregs_in_use if that were not
799 * under ifdef KVM.
800 */
801 if (!ppmu)
802 return false;
803
804 cpuhw = this_cpu_ptr(&cpu_hw_events);
805 return cpuhw->n_events;
806}
807#endif /* CONFIG_PPC64 */
808
809static void perf_event_interrupt(struct pt_regs *regs);
810
811/*
812 * Read one performance monitor counter (PMC).
813 */
814static unsigned long read_pmc(int idx)
815{
816 unsigned long val;
817
818 switch (idx) {
819 case 1:
820 val = mfspr(SPRN_PMC1);
821 break;
822 case 2:
823 val = mfspr(SPRN_PMC2);
824 break;
825 case 3:
826 val = mfspr(SPRN_PMC3);
827 break;
828 case 4:
829 val = mfspr(SPRN_PMC4);
830 break;
831 case 5:
832 val = mfspr(SPRN_PMC5);
833 break;
834 case 6:
835 val = mfspr(SPRN_PMC6);
836 break;
837#ifdef CONFIG_PPC64
838 case 7:
839 val = mfspr(SPRN_PMC7);
840 break;
841 case 8:
842 val = mfspr(SPRN_PMC8);
843 break;
844#endif /* CONFIG_PPC64 */
845 default:
846 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
847 val = 0;
848 }
849 return val;
850}
851
852/*
853 * Write one PMC.
854 */
855static void write_pmc(int idx, unsigned long val)
856{
857 switch (idx) {
858 case 1:
859 mtspr(SPRN_PMC1, val);
860 break;
861 case 2:
862 mtspr(SPRN_PMC2, val);
863 break;
864 case 3:
865 mtspr(SPRN_PMC3, val);
866 break;
867 case 4:
868 mtspr(SPRN_PMC4, val);
869 break;
870 case 5:
871 mtspr(SPRN_PMC5, val);
872 break;
873 case 6:
874 mtspr(SPRN_PMC6, val);
875 break;
876#ifdef CONFIG_PPC64
877 case 7:
878 mtspr(SPRN_PMC7, val);
879 break;
880 case 8:
881 mtspr(SPRN_PMC8, val);
882 break;
883#endif /* CONFIG_PPC64 */
884 default:
885 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
886 }
887}
888
889static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
890{
891 int i, idx;
892
893 for (i = 0; i < cpuhw->n_events; i++) {
894 idx = cpuhw->event[i]->hw.idx;
895 if ((idx) && ((int)read_pmc(idx) < 0))
896 return idx;
897 }
898
899 return 0;
900}
901
902/* Called from sysrq_handle_showregs() */
903void perf_event_print_debug(void)
904{
905 unsigned long sdar, sier, flags;
906 u32 pmcs[MAX_HWEVENTS];
907 int i;
908
909 if (!ppmu) {
910 pr_info("Performance monitor hardware not registered.\n");
911 return;
912 }
913
914 if (!ppmu->n_counter)
915 return;
916
917 local_irq_save(flags);
918
919 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
920 smp_processor_id(), ppmu->name, ppmu->n_counter);
921
922 for (i = 0; i < ppmu->n_counter; i++)
923 pmcs[i] = read_pmc(idx: i + 1);
924
925 for (; i < MAX_HWEVENTS; i++)
926 pmcs[i] = 0xdeadbeef;
927
928 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
929 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
930
931 if (ppmu->n_counter > 4)
932 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
933 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
934
935 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
936 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
937
938 sdar = sier = 0;
939#ifdef CONFIG_PPC64
940 sdar = mfspr(SPRN_SDAR);
941
942 if (ppmu->flags & PPMU_HAS_SIER)
943 sier = mfspr(SPRN_SIER);
944
945 if (ppmu->flags & PPMU_ARCH_207S) {
946 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
947 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
948 pr_info("EBBRR: %016lx BESCR: %016lx\n",
949 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
950 }
951
952 if (ppmu->flags & PPMU_ARCH_31) {
953 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
954 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
955 }
956#endif
957 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
958 mfspr(SPRN_SIAR), sdar, sier);
959
960 local_irq_restore(flags);
961}
962
963/*
964 * Check if a set of events can all go on the PMU at once.
965 * If they can't, this will look at alternative codes for the events
966 * and see if any combination of alternative codes is feasible.
967 * The feasible set is returned in event_id[].
968 */
969static int power_check_constraints(struct cpu_hw_events *cpuhw,
970 u64 event_id[], unsigned int cflags[],
971 int n_ev, struct perf_event **event)
972{
973 unsigned long mask, value, nv;
974 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
975 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
976 int i, j;
977 unsigned long addf = ppmu->add_fields;
978 unsigned long tadd = ppmu->test_adder;
979 unsigned long grp_mask = ppmu->group_constraint_mask;
980 unsigned long grp_val = ppmu->group_constraint_val;
981
982 if (n_ev > ppmu->n_counter)
983 return -1;
984
985 /* First see if the events will go on as-is */
986 for (i = 0; i < n_ev; ++i) {
987 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
988 && !ppmu->limited_pmc_event(event_id[i])) {
989 ppmu->get_alternatives(event_id[i], cflags[i],
990 cpuhw->alternatives[i]);
991 event_id[i] = cpuhw->alternatives[i][0];
992 }
993 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
994 &cpuhw->avalues[i][0], event[i]->attr.config1))
995 return -1;
996 }
997 value = mask = 0;
998 for (i = 0; i < n_ev; ++i) {
999 nv = (value | cpuhw->avalues[i][0]) +
1000 (value & cpuhw->avalues[i][0] & addf);
1001
1002 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
1003 break;
1004
1005 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
1006 & (~grp_mask)) != 0)
1007 break;
1008
1009 value = nv;
1010 mask |= cpuhw->amasks[i][0];
1011 }
1012 if (i == n_ev) {
1013 if ((value & mask & grp_mask) != (mask & grp_val))
1014 return -1;
1015 else
1016 return 0; /* all OK */
1017 }
1018
1019 /* doesn't work, gather alternatives... */
1020 if (!ppmu->get_alternatives)
1021 return -1;
1022 for (i = 0; i < n_ev; ++i) {
1023 choice[i] = 0;
1024 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1025 cpuhw->alternatives[i]);
1026 for (j = 1; j < n_alt[i]; ++j)
1027 ppmu->get_constraint(cpuhw->alternatives[i][j],
1028 &cpuhw->amasks[i][j],
1029 &cpuhw->avalues[i][j],
1030 event[i]->attr.config1);
1031 }
1032
1033 /* enumerate all possibilities and see if any will work */
1034 i = 0;
1035 j = -1;
1036 value = mask = nv = 0;
1037 while (i < n_ev) {
1038 if (j >= 0) {
1039 /* we're backtracking, restore context */
1040 value = svalues[i];
1041 mask = smasks[i];
1042 j = choice[i];
1043 }
1044 /*
1045 * See if any alternative k for event_id i,
1046 * where k > j, will satisfy the constraints.
1047 */
1048 while (++j < n_alt[i]) {
1049 nv = (value | cpuhw->avalues[i][j]) +
1050 (value & cpuhw->avalues[i][j] & addf);
1051 if ((((nv + tadd) ^ value) & mask) == 0 &&
1052 (((nv + tadd) ^ cpuhw->avalues[i][j])
1053 & cpuhw->amasks[i][j]) == 0)
1054 break;
1055 }
1056 if (j >= n_alt[i]) {
1057 /*
1058 * No feasible alternative, backtrack
1059 * to event_id i-1 and continue enumerating its
1060 * alternatives from where we got up to.
1061 */
1062 if (--i < 0)
1063 return -1;
1064 } else {
1065 /*
1066 * Found a feasible alternative for event_id i,
1067 * remember where we got up to with this event_id,
1068 * go on to the next event_id, and start with
1069 * the first alternative for it.
1070 */
1071 choice[i] = j;
1072 svalues[i] = value;
1073 smasks[i] = mask;
1074 value = nv;
1075 mask |= cpuhw->amasks[i][j];
1076 ++i;
1077 j = -1;
1078 }
1079 }
1080
1081 /* OK, we have a feasible combination, tell the caller the solution */
1082 for (i = 0; i < n_ev; ++i)
1083 event_id[i] = cpuhw->alternatives[i][choice[i]];
1084 return 0;
1085}
1086
1087/*
1088 * Check if newly-added events have consistent settings for
1089 * exclude_{user,kernel,hv} with each other and any previously
1090 * added events.
1091 */
1092static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1093 int n_prev, int n_new)
1094{
1095 int eu = 0, ek = 0, eh = 0;
1096 int i, n, first;
1097 struct perf_event *event;
1098
1099 /*
1100 * If the PMU we're on supports per event exclude settings then we
1101 * don't need to do any of this logic. NB. This assumes no PMU has both
1102 * per event exclude and limited PMCs.
1103 */
1104 if (ppmu->flags & PPMU_ARCH_207S)
1105 return 0;
1106
1107 n = n_prev + n_new;
1108 if (n <= 1)
1109 return 0;
1110
1111 first = 1;
1112 for (i = 0; i < n; ++i) {
1113 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1114 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1115 continue;
1116 }
1117 event = ctrs[i];
1118 if (first) {
1119 eu = event->attr.exclude_user;
1120 ek = event->attr.exclude_kernel;
1121 eh = event->attr.exclude_hv;
1122 first = 0;
1123 } else if (event->attr.exclude_user != eu ||
1124 event->attr.exclude_kernel != ek ||
1125 event->attr.exclude_hv != eh) {
1126 return -EAGAIN;
1127 }
1128 }
1129
1130 if (eu || ek || eh)
1131 for (i = 0; i < n; ++i)
1132 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1133 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1134
1135 return 0;
1136}
1137
1138static u64 check_and_compute_delta(u64 prev, u64 val)
1139{
1140 u64 delta = (val - prev) & 0xfffffffful;
1141
1142 /*
1143 * POWER7 can roll back counter values, if the new value is smaller
1144 * than the previous value it will cause the delta and the counter to
1145 * have bogus values unless we rolled a counter over. If a counter is
1146 * rolled back, it will be smaller, but within 256, which is the maximum
1147 * number of events to rollback at once. If we detect a rollback
1148 * return 0. This can lead to a small lack of precision in the
1149 * counters.
1150 */
1151 if (prev > val && (prev - val) < 256)
1152 delta = 0;
1153
1154 return delta;
1155}
1156
1157static void power_pmu_read(struct perf_event *event)
1158{
1159 s64 val, delta, prev;
1160
1161 if (event->hw.state & PERF_HES_STOPPED)
1162 return;
1163
1164 if (!event->hw.idx)
1165 return;
1166
1167 if (is_ebb_event(event)) {
1168 val = read_pmc(idx: event->hw.idx);
1169 local64_set(&event->hw.prev_count, val);
1170 return;
1171 }
1172
1173 /*
1174 * Performance monitor interrupts come even when interrupts
1175 * are soft-disabled, as long as interrupts are hard-enabled.
1176 * Therefore we treat them like NMIs.
1177 */
1178 do {
1179 prev = local64_read(&event->hw.prev_count);
1180 barrier();
1181 val = read_pmc(idx: event->hw.idx);
1182 delta = check_and_compute_delta(prev, val);
1183 if (!delta)
1184 return;
1185 } while (local64_cmpxchg(l: &event->hw.prev_count, old: prev, new: val) != prev);
1186
1187 local64_add(delta, &event->count);
1188
1189 /*
1190 * A number of places program the PMC with (0x80000000 - period_left).
1191 * We never want period_left to be less than 1 because we will program
1192 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1193 * roll around to 0 before taking an exception. We have seen this
1194 * on POWER8.
1195 *
1196 * To fix this, clamp the minimum value of period_left to 1.
1197 */
1198 do {
1199 prev = local64_read(&event->hw.period_left);
1200 val = prev - delta;
1201 if (val < 1)
1202 val = 1;
1203 } while (local64_cmpxchg(l: &event->hw.period_left, old: prev, new: val) != prev);
1204}
1205
1206/*
1207 * On some machines, PMC5 and PMC6 can't be written, don't respect
1208 * the freeze conditions, and don't generate interrupts. This tells
1209 * us if `event' is using such a PMC.
1210 */
1211static int is_limited_pmc(int pmcnum)
1212{
1213 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1214 && (pmcnum == 5 || pmcnum == 6);
1215}
1216
1217static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1218 unsigned long pmc5, unsigned long pmc6)
1219{
1220 struct perf_event *event;
1221 u64 val, prev, delta;
1222 int i;
1223
1224 for (i = 0; i < cpuhw->n_limited; ++i) {
1225 event = cpuhw->limited_counter[i];
1226 if (!event->hw.idx)
1227 continue;
1228 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1229 prev = local64_read(&event->hw.prev_count);
1230 event->hw.idx = 0;
1231 delta = check_and_compute_delta(prev, val);
1232 if (delta)
1233 local64_add(delta, &event->count);
1234 }
1235}
1236
1237static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1238 unsigned long pmc5, unsigned long pmc6)
1239{
1240 struct perf_event *event;
1241 u64 val, prev;
1242 int i;
1243
1244 for (i = 0; i < cpuhw->n_limited; ++i) {
1245 event = cpuhw->limited_counter[i];
1246 event->hw.idx = cpuhw->limited_hwidx[i];
1247 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1248 prev = local64_read(&event->hw.prev_count);
1249 if (check_and_compute_delta(prev, val))
1250 local64_set(&event->hw.prev_count, val);
1251 perf_event_update_userpage(event);
1252 }
1253}
1254
1255/*
1256 * Since limited events don't respect the freeze conditions, we
1257 * have to read them immediately after freezing or unfreezing the
1258 * other events. We try to keep the values from the limited
1259 * events as consistent as possible by keeping the delay (in
1260 * cycles and instructions) between freezing/unfreezing and reading
1261 * the limited events as small and consistent as possible.
1262 * Therefore, if any limited events are in use, we read them
1263 * both, and always in the same order, to minimize variability,
1264 * and do it inside the same asm that writes MMCR0.
1265 */
1266static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1267{
1268 unsigned long pmc5, pmc6;
1269
1270 if (!cpuhw->n_limited) {
1271 mtspr(SPRN_MMCR0, mmcr0);
1272 return;
1273 }
1274
1275 /*
1276 * Write MMCR0, then read PMC5 and PMC6 immediately.
1277 * To ensure we don't get a performance monitor interrupt
1278 * between writing MMCR0 and freezing/thawing the limited
1279 * events, we first write MMCR0 with the event overflow
1280 * interrupt enable bits turned off.
1281 */
1282 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1283 : "=&r" (pmc5), "=&r" (pmc6)
1284 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1285 "i" (SPRN_MMCR0),
1286 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1287
1288 if (mmcr0 & MMCR0_FC)
1289 freeze_limited_counters(cpuhw, pmc5, pmc6);
1290 else
1291 thaw_limited_counters(cpuhw, pmc5, pmc6);
1292
1293 /*
1294 * Write the full MMCR0 including the event overflow interrupt
1295 * enable bits, if necessary.
1296 */
1297 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1298 mtspr(SPRN_MMCR0, mmcr0);
1299}
1300
1301/*
1302 * Disable all events to prevent PMU interrupts and to allow
1303 * events to be added or removed.
1304 */
1305static void power_pmu_disable(struct pmu *pmu)
1306{
1307 struct cpu_hw_events *cpuhw;
1308 unsigned long flags, mmcr0, val, mmcra;
1309
1310 if (!ppmu)
1311 return;
1312 local_irq_save(flags);
1313 cpuhw = this_cpu_ptr(&cpu_hw_events);
1314
1315 if (!cpuhw->disabled) {
1316 /*
1317 * Check if we ever enabled the PMU on this cpu.
1318 */
1319 if (!cpuhw->pmcs_enabled) {
1320 ppc_enable_pmcs();
1321 cpuhw->pmcs_enabled = 1;
1322 }
1323
1324 /*
1325 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1326 * Also clear PMXE to disable PMI's getting triggered in some
1327 * corner cases during PMU disable.
1328 */
1329 val = mmcr0 = mfspr(SPRN_MMCR0);
1330 val |= MMCR0_FC;
1331 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1332 MMCR0_PMXE | MMCR0_FC56);
1333 /* Set mmcr0 PMCCEXT for p10 */
1334 if (ppmu->flags & PPMU_ARCH_31)
1335 val |= MMCR0_PMCCEXT;
1336
1337 /*
1338 * The barrier is to make sure the mtspr has been
1339 * executed and the PMU has frozen the events etc.
1340 * before we return.
1341 */
1342 write_mmcr0(cpuhw, mmcr0: val);
1343 mb();
1344 isync();
1345
1346 /*
1347 * Some corner cases could clear the PMU counter overflow
1348 * while a masked PMI is pending. One such case is when
1349 * a PMI happens during interrupt replay and perf counter
1350 * values are cleared by PMU callbacks before replay.
1351 *
1352 * Disable the interrupt by clearing the paca bit for PMI
1353 * since we are disabling the PMU now. Otherwise provide a
1354 * warning if there is PMI pending, but no counter is found
1355 * overflown.
1356 *
1357 * Since power_pmu_disable runs under local_irq_save, it
1358 * could happen that code hits a PMC overflow without PMI
1359 * pending in paca. Hence only clear PMI pending if it was
1360 * set.
1361 *
1362 * If a PMI is pending, then MSR[EE] must be disabled (because
1363 * the masked PMI handler disabling EE). So it is safe to
1364 * call clear_pmi_irq_pending().
1365 */
1366 if (pmi_irq_pending())
1367 clear_pmi_irq_pending();
1368
1369 val = mmcra = cpuhw->mmcr.mmcra;
1370
1371 /*
1372 * Disable instruction sampling if it was enabled
1373 */
1374 val &= ~MMCRA_SAMPLE_ENABLE;
1375
1376 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1377 if (ppmu->flags & PPMU_ARCH_31)
1378 val |= MMCRA_BHRB_DISABLE;
1379
1380 /*
1381 * Write SPRN_MMCRA if mmcra has either disabled
1382 * instruction sampling or BHRB.
1383 */
1384 if (val != mmcra) {
1385 mtspr(SPRN_MMCRA, val);
1386 mb();
1387 isync();
1388 }
1389
1390 cpuhw->disabled = 1;
1391 cpuhw->n_added = 0;
1392
1393 ebb_switch_out(mmcr0);
1394
1395#ifdef CONFIG_PPC64
1396 /*
1397 * These are readable by userspace, may contain kernel
1398 * addresses and are not switched by context switch, so clear
1399 * them now to avoid leaking anything to userspace in general
1400 * including to another process.
1401 */
1402 if (ppmu->flags & PPMU_ARCH_207S) {
1403 mtspr(SPRN_SDAR, 0);
1404 mtspr(SPRN_SIAR, 0);
1405 }
1406#endif
1407 }
1408
1409 local_irq_restore(flags);
1410}
1411
1412/*
1413 * Re-enable all events if disable == 0.
1414 * If we were previously disabled and events were added, then
1415 * put the new config on the PMU.
1416 */
1417static void power_pmu_enable(struct pmu *pmu)
1418{
1419 struct perf_event *event;
1420 struct cpu_hw_events *cpuhw;
1421 unsigned long flags;
1422 long i;
1423 unsigned long val, mmcr0;
1424 s64 left;
1425 unsigned int hwc_index[MAX_HWEVENTS];
1426 int n_lim;
1427 int idx;
1428 bool ebb;
1429
1430 if (!ppmu)
1431 return;
1432 local_irq_save(flags);
1433
1434 cpuhw = this_cpu_ptr(&cpu_hw_events);
1435 if (!cpuhw->disabled)
1436 goto out;
1437
1438 if (cpuhw->n_events == 0) {
1439 ppc_set_pmu_inuse(0);
1440 goto out;
1441 }
1442
1443 cpuhw->disabled = 0;
1444
1445 /*
1446 * EBB requires an exclusive group and all events must have the EBB
1447 * flag set, or not set, so we can just check a single event. Also we
1448 * know we have at least one event.
1449 */
1450 ebb = is_ebb_event(cpuhw->event[0]);
1451
1452 /*
1453 * If we didn't change anything, or only removed events,
1454 * no need to recalculate MMCR* settings and reset the PMCs.
1455 * Just reenable the PMU with the current MMCR* settings
1456 * (possibly updated for removal of events).
1457 */
1458 if (!cpuhw->n_added) {
1459 /*
1460 * If there is any active event with an overflown PMC
1461 * value, set back PACA_IRQ_PMI which would have been
1462 * cleared in power_pmu_disable().
1463 */
1464 hard_irq_disable();
1465 if (any_pmc_overflown(cpuhw))
1466 set_pmi_irq_pending();
1467
1468 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1469 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1470 if (ppmu->flags & PPMU_ARCH_31)
1471 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1472 goto out_enable;
1473 }
1474
1475 /*
1476 * Clear all MMCR settings and recompute them for the new set of events.
1477 */
1478 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1479
1480 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1481 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1482 /* shouldn't ever get here */
1483 printk(KERN_ERR "oops compute_mmcr failed\n");
1484 goto out;
1485 }
1486
1487 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1488 /*
1489 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1490 * bits for the first event. We have already checked that all
1491 * events have the same value for these bits as the first event.
1492 */
1493 event = cpuhw->event[0];
1494 if (event->attr.exclude_user)
1495 cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1496 if (event->attr.exclude_kernel)
1497 cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1498 if (event->attr.exclude_hv)
1499 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1500 }
1501
1502 /*
1503 * Write the new configuration to MMCR* with the freeze
1504 * bit set and set the hardware events to their initial values.
1505 * Then unfreeze the events.
1506 */
1507 ppc_set_pmu_inuse(1);
1508 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1509 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1510 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1511 | MMCR0_FC);
1512 if (ppmu->flags & PPMU_ARCH_207S)
1513 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1514
1515 if (ppmu->flags & PPMU_ARCH_31)
1516 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1517
1518 /*
1519 * Read off any pre-existing events that need to move
1520 * to another PMC.
1521 */
1522 for (i = 0; i < cpuhw->n_events; ++i) {
1523 event = cpuhw->event[i];
1524 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1525 power_pmu_read(event);
1526 write_pmc(idx: event->hw.idx, val: 0);
1527 event->hw.idx = 0;
1528 }
1529 }
1530
1531 /*
1532 * Initialize the PMCs for all the new and moved events.
1533 */
1534 cpuhw->n_limited = n_lim = 0;
1535 for (i = 0; i < cpuhw->n_events; ++i) {
1536 event = cpuhw->event[i];
1537 if (event->hw.idx)
1538 continue;
1539 idx = hwc_index[i] + 1;
1540 if (is_limited_pmc(pmcnum: idx)) {
1541 cpuhw->limited_counter[n_lim] = event;
1542 cpuhw->limited_hwidx[n_lim] = idx;
1543 ++n_lim;
1544 continue;
1545 }
1546
1547 if (ebb)
1548 val = local64_read(&event->hw.prev_count);
1549 else {
1550 val = 0;
1551 if (event->hw.sample_period) {
1552 left = local64_read(&event->hw.period_left);
1553 if (left < 0x80000000L)
1554 val = 0x80000000L - left;
1555 }
1556 local64_set(&event->hw.prev_count, val);
1557 }
1558
1559 event->hw.idx = idx;
1560 if (event->hw.state & PERF_HES_STOPPED)
1561 val = 0;
1562 write_pmc(idx, val);
1563
1564 perf_event_update_userpage(event);
1565 }
1566 cpuhw->n_limited = n_lim;
1567 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1568
1569 out_enable:
1570 pmao_restore_workaround(ebb);
1571
1572 mmcr0 = ebb_switch_in(ebb, cpuhw);
1573
1574 mb();
1575 if (cpuhw->bhrb_users)
1576 ppmu->config_bhrb(cpuhw->bhrb_filter);
1577
1578 write_mmcr0(cpuhw, mmcr0);
1579
1580 /*
1581 * Enable instruction sampling if necessary
1582 */
1583 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1584 mb();
1585 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1586 }
1587
1588 out:
1589
1590 local_irq_restore(flags);
1591}
1592
1593static int collect_events(struct perf_event *group, int max_count,
1594 struct perf_event *ctrs[], u64 *events,
1595 unsigned int *flags)
1596{
1597 int n = 0;
1598 struct perf_event *event;
1599
1600 if (group->pmu->task_ctx_nr == perf_hw_context) {
1601 if (n >= max_count)
1602 return -1;
1603 ctrs[n] = group;
1604 flags[n] = group->hw.event_base;
1605 events[n++] = group->hw.config;
1606 }
1607 for_each_sibling_event(event, group) {
1608 if (event->pmu->task_ctx_nr == perf_hw_context &&
1609 event->state != PERF_EVENT_STATE_OFF) {
1610 if (n >= max_count)
1611 return -1;
1612 ctrs[n] = event;
1613 flags[n] = event->hw.event_base;
1614 events[n++] = event->hw.config;
1615 }
1616 }
1617 return n;
1618}
1619
1620/*
1621 * Add an event to the PMU.
1622 * If all events are not already frozen, then we disable and
1623 * re-enable the PMU in order to get hw_perf_enable to do the
1624 * actual work of reconfiguring the PMU.
1625 */
1626static int power_pmu_add(struct perf_event *event, int ef_flags)
1627{
1628 struct cpu_hw_events *cpuhw;
1629 unsigned long flags;
1630 int n0;
1631 int ret = -EAGAIN;
1632
1633 local_irq_save(flags);
1634 perf_pmu_disable(pmu: event->pmu);
1635
1636 /*
1637 * Add the event to the list (if there is room)
1638 * and check whether the total set is still feasible.
1639 */
1640 cpuhw = this_cpu_ptr(&cpu_hw_events);
1641 n0 = cpuhw->n_events;
1642 if (n0 >= ppmu->n_counter)
1643 goto out;
1644 cpuhw->event[n0] = event;
1645 cpuhw->events[n0] = event->hw.config;
1646 cpuhw->flags[n0] = event->hw.event_base;
1647
1648 /*
1649 * This event may have been disabled/stopped in record_and_restart()
1650 * because we exceeded the ->event_limit. If re-starting the event,
1651 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1652 * notification is re-enabled.
1653 */
1654 if (!(ef_flags & PERF_EF_START))
1655 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1656 else
1657 event->hw.state = 0;
1658
1659 /*
1660 * If group events scheduling transaction was started,
1661 * skip the schedulability test here, it will be performed
1662 * at commit time(->commit_txn) as a whole
1663 */
1664 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1665 goto nocheck;
1666
1667 if (check_excludes(ctrs: cpuhw->event, cflags: cpuhw->flags, n_prev: n0, n_new: 1))
1668 goto out;
1669 if (power_check_constraints(cpuhw, event_id: cpuhw->events, cflags: cpuhw->flags, n_ev: n0 + 1, event: cpuhw->event))
1670 goto out;
1671 event->hw.config = cpuhw->events[n0];
1672
1673nocheck:
1674 ebb_event_add(event);
1675
1676 ++cpuhw->n_events;
1677 ++cpuhw->n_added;
1678
1679 ret = 0;
1680 out:
1681 if (has_branch_stack(event)) {
1682 u64 bhrb_filter = -1;
1683
1684 if (ppmu->bhrb_filter_map)
1685 bhrb_filter = ppmu->bhrb_filter_map(
1686 event->attr.branch_sample_type);
1687
1688 if (bhrb_filter != -1) {
1689 cpuhw->bhrb_filter = bhrb_filter;
1690 power_pmu_bhrb_enable(event);
1691 }
1692 }
1693
1694 perf_pmu_enable(pmu: event->pmu);
1695 local_irq_restore(flags);
1696 return ret;
1697}
1698
1699/*
1700 * Remove an event from the PMU.
1701 */
1702static void power_pmu_del(struct perf_event *event, int ef_flags)
1703{
1704 struct cpu_hw_events *cpuhw;
1705 long i;
1706 unsigned long flags;
1707
1708 local_irq_save(flags);
1709 perf_pmu_disable(pmu: event->pmu);
1710
1711 power_pmu_read(event);
1712
1713 cpuhw = this_cpu_ptr(&cpu_hw_events);
1714 for (i = 0; i < cpuhw->n_events; ++i) {
1715 if (event == cpuhw->event[i]) {
1716 while (++i < cpuhw->n_events) {
1717 cpuhw->event[i-1] = cpuhw->event[i];
1718 cpuhw->events[i-1] = cpuhw->events[i];
1719 cpuhw->flags[i-1] = cpuhw->flags[i];
1720 }
1721 --cpuhw->n_events;
1722 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1723 if (event->hw.idx) {
1724 write_pmc(idx: event->hw.idx, val: 0);
1725 event->hw.idx = 0;
1726 }
1727 perf_event_update_userpage(event);
1728 break;
1729 }
1730 }
1731 for (i = 0; i < cpuhw->n_limited; ++i)
1732 if (event == cpuhw->limited_counter[i])
1733 break;
1734 if (i < cpuhw->n_limited) {
1735 while (++i < cpuhw->n_limited) {
1736 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1737 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1738 }
1739 --cpuhw->n_limited;
1740 }
1741 if (cpuhw->n_events == 0) {
1742 /* disable exceptions if no events are running */
1743 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1744 }
1745
1746 if (has_branch_stack(event))
1747 power_pmu_bhrb_disable(event);
1748
1749 perf_pmu_enable(pmu: event->pmu);
1750 local_irq_restore(flags);
1751}
1752
1753/*
1754 * POWER-PMU does not support disabling individual counters, hence
1755 * program their cycle counter to their max value and ignore the interrupts.
1756 */
1757
1758static void power_pmu_start(struct perf_event *event, int ef_flags)
1759{
1760 unsigned long flags;
1761 s64 left;
1762 unsigned long val;
1763
1764 if (!event->hw.idx || !event->hw.sample_period)
1765 return;
1766
1767 if (!(event->hw.state & PERF_HES_STOPPED))
1768 return;
1769
1770 if (ef_flags & PERF_EF_RELOAD)
1771 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1772
1773 local_irq_save(flags);
1774 perf_pmu_disable(pmu: event->pmu);
1775
1776 event->hw.state = 0;
1777 left = local64_read(&event->hw.period_left);
1778
1779 val = 0;
1780 if (left < 0x80000000L)
1781 val = 0x80000000L - left;
1782
1783 write_pmc(idx: event->hw.idx, val);
1784
1785 perf_event_update_userpage(event);
1786 perf_pmu_enable(pmu: event->pmu);
1787 local_irq_restore(flags);
1788}
1789
1790static void power_pmu_stop(struct perf_event *event, int ef_flags)
1791{
1792 unsigned long flags;
1793
1794 if (!event->hw.idx || !event->hw.sample_period)
1795 return;
1796
1797 if (event->hw.state & PERF_HES_STOPPED)
1798 return;
1799
1800 local_irq_save(flags);
1801 perf_pmu_disable(pmu: event->pmu);
1802
1803 power_pmu_read(event);
1804 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1805 write_pmc(idx: event->hw.idx, val: 0);
1806
1807 perf_event_update_userpage(event);
1808 perf_pmu_enable(pmu: event->pmu);
1809 local_irq_restore(flags);
1810}
1811
1812/*
1813 * Start group events scheduling transaction
1814 * Set the flag to make pmu::enable() not perform the
1815 * schedulability test, it will be performed at commit time
1816 *
1817 * We only support PERF_PMU_TXN_ADD transactions. Save the
1818 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1819 * transactions.
1820 */
1821static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1822{
1823 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1824
1825 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1826
1827 cpuhw->txn_flags = txn_flags;
1828 if (txn_flags & ~PERF_PMU_TXN_ADD)
1829 return;
1830
1831 perf_pmu_disable(pmu);
1832 cpuhw->n_txn_start = cpuhw->n_events;
1833}
1834
1835/*
1836 * Stop group events scheduling transaction
1837 * Clear the flag and pmu::enable() will perform the
1838 * schedulability test.
1839 */
1840static void power_pmu_cancel_txn(struct pmu *pmu)
1841{
1842 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1843 unsigned int txn_flags;
1844
1845 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1846
1847 txn_flags = cpuhw->txn_flags;
1848 cpuhw->txn_flags = 0;
1849 if (txn_flags & ~PERF_PMU_TXN_ADD)
1850 return;
1851
1852 perf_pmu_enable(pmu);
1853}
1854
1855/*
1856 * Commit group events scheduling transaction
1857 * Perform the group schedulability test as a whole
1858 * Return 0 if success
1859 */
1860static int power_pmu_commit_txn(struct pmu *pmu)
1861{
1862 struct cpu_hw_events *cpuhw;
1863 long i, n;
1864
1865 if (!ppmu)
1866 return -EAGAIN;
1867
1868 cpuhw = this_cpu_ptr(&cpu_hw_events);
1869 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1870
1871 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1872 cpuhw->txn_flags = 0;
1873 return 0;
1874 }
1875
1876 n = cpuhw->n_events;
1877 if (check_excludes(ctrs: cpuhw->event, cflags: cpuhw->flags, n_prev: 0, n_new: n))
1878 return -EAGAIN;
1879 i = power_check_constraints(cpuhw, event_id: cpuhw->events, cflags: cpuhw->flags, n_ev: n, event: cpuhw->event);
1880 if (i < 0)
1881 return -EAGAIN;
1882
1883 for (i = cpuhw->n_txn_start; i < n; ++i)
1884 cpuhw->event[i]->hw.config = cpuhw->events[i];
1885
1886 cpuhw->txn_flags = 0;
1887 perf_pmu_enable(pmu);
1888 return 0;
1889}
1890
1891/*
1892 * Return 1 if we might be able to put event on a limited PMC,
1893 * or 0 if not.
1894 * An event can only go on a limited PMC if it counts something
1895 * that a limited PMC can count, doesn't require interrupts, and
1896 * doesn't exclude any processor mode.
1897 */
1898static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1899 unsigned int flags)
1900{
1901 int n;
1902 u64 alt[MAX_EVENT_ALTERNATIVES];
1903
1904 if (event->attr.exclude_user
1905 || event->attr.exclude_kernel
1906 || event->attr.exclude_hv
1907 || event->attr.sample_period)
1908 return 0;
1909
1910 if (ppmu->limited_pmc_event(ev))
1911 return 1;
1912
1913 /*
1914 * The requested event_id isn't on a limited PMC already;
1915 * see if any alternative code goes on a limited PMC.
1916 */
1917 if (!ppmu->get_alternatives)
1918 return 0;
1919
1920 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1921 n = ppmu->get_alternatives(ev, flags, alt);
1922
1923 return n > 0;
1924}
1925
1926/*
1927 * Find an alternative event_id that goes on a normal PMC, if possible,
1928 * and return the event_id code, or 0 if there is no such alternative.
1929 * (Note: event_id code 0 is "don't count" on all machines.)
1930 */
1931static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1932{
1933 u64 alt[MAX_EVENT_ALTERNATIVES];
1934 int n;
1935
1936 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1937 n = ppmu->get_alternatives(ev, flags, alt);
1938 if (!n)
1939 return 0;
1940 return alt[0];
1941}
1942
1943/* Number of perf_events counting hardware events */
1944static atomic_t num_events;
1945/* Used to avoid races in calling reserve/release_pmc_hardware */
1946static DEFINE_MUTEX(pmc_reserve_mutex);
1947
1948/*
1949 * Release the PMU if this is the last perf_event.
1950 */
1951static void hw_perf_event_destroy(struct perf_event *event)
1952{
1953 if (!atomic_add_unless(v: &num_events, a: -1, u: 1)) {
1954 mutex_lock(&pmc_reserve_mutex);
1955 if (atomic_dec_return(v: &num_events) == 0)
1956 release_pmc_hardware();
1957 mutex_unlock(lock: &pmc_reserve_mutex);
1958 }
1959}
1960
1961/*
1962 * Translate a generic cache event_id config to a raw event_id code.
1963 */
1964static int hw_perf_cache_event(u64 config, u64 *eventp)
1965{
1966 unsigned long type, op, result;
1967 u64 ev;
1968
1969 if (!ppmu->cache_events)
1970 return -EINVAL;
1971
1972 /* unpack config */
1973 type = config & 0xff;
1974 op = (config >> 8) & 0xff;
1975 result = (config >> 16) & 0xff;
1976
1977 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1978 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1979 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1980 return -EINVAL;
1981
1982 ev = (*ppmu->cache_events)[type][op][result];
1983 if (ev == 0)
1984 return -EOPNOTSUPP;
1985 if (ev == -1)
1986 return -EINVAL;
1987 *eventp = ev;
1988 return 0;
1989}
1990
1991static bool is_event_blacklisted(u64 ev)
1992{
1993 int i;
1994
1995 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1996 if (ppmu->blacklist_ev[i] == ev)
1997 return true;
1998 }
1999
2000 return false;
2001}
2002
2003static int power_pmu_event_init(struct perf_event *event)
2004{
2005 u64 ev;
2006 unsigned long flags, irq_flags;
2007 struct perf_event *ctrs[MAX_HWEVENTS];
2008 u64 events[MAX_HWEVENTS];
2009 unsigned int cflags[MAX_HWEVENTS];
2010 int n;
2011 int err;
2012 struct cpu_hw_events *cpuhw;
2013
2014 if (!ppmu)
2015 return -ENOENT;
2016
2017 if (has_branch_stack(event)) {
2018 /* PMU has BHRB enabled */
2019 if (!(ppmu->flags & PPMU_ARCH_207S))
2020 return -EOPNOTSUPP;
2021 }
2022
2023 switch (event->attr.type) {
2024 case PERF_TYPE_HARDWARE:
2025 ev = event->attr.config;
2026 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2027 return -EOPNOTSUPP;
2028
2029 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2030 return -EINVAL;
2031 ev = ppmu->generic_events[ev];
2032 break;
2033 case PERF_TYPE_HW_CACHE:
2034 err = hw_perf_cache_event(config: event->attr.config, eventp: &ev);
2035 if (err)
2036 return err;
2037
2038 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2039 return -EINVAL;
2040 break;
2041 case PERF_TYPE_RAW:
2042 ev = event->attr.config;
2043
2044 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2045 return -EINVAL;
2046 break;
2047 default:
2048 return -ENOENT;
2049 }
2050
2051 /*
2052 * PMU config registers have fields that are
2053 * reserved and some specific values for bit fields are reserved.
2054 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2055 * and value of 0b11 to this field is reserved.
2056 * Check for invalid values in attr.config.
2057 */
2058 if (ppmu->check_attr_config &&
2059 ppmu->check_attr_config(event))
2060 return -EINVAL;
2061
2062 event->hw.config_base = ev;
2063 event->hw.idx = 0;
2064
2065 /*
2066 * If we are not running on a hypervisor, force the
2067 * exclude_hv bit to 0 so that we don't care what
2068 * the user set it to.
2069 */
2070 if (!firmware_has_feature(FW_FEATURE_LPAR))
2071 event->attr.exclude_hv = 0;
2072
2073 /*
2074 * If this is a per-task event, then we can use
2075 * PM_RUN_* events interchangeably with their non RUN_*
2076 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2077 * XXX we should check if the task is an idle task.
2078 */
2079 flags = 0;
2080 if (event->attach_state & PERF_ATTACH_TASK)
2081 flags |= PPMU_ONLY_COUNT_RUN;
2082
2083 /*
2084 * If this machine has limited events, check whether this
2085 * event_id could go on a limited event.
2086 */
2087 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2088 if (can_go_on_limited_pmc(event, ev, flags)) {
2089 flags |= PPMU_LIMITED_PMC_OK;
2090 } else if (ppmu->limited_pmc_event(ev)) {
2091 /*
2092 * The requested event_id is on a limited PMC,
2093 * but we can't use a limited PMC; see if any
2094 * alternative goes on a normal PMC.
2095 */
2096 ev = normal_pmc_alternative(ev, flags);
2097 if (!ev)
2098 return -EINVAL;
2099 }
2100 }
2101
2102 /* Extra checks for EBB */
2103 err = ebb_event_check(event);
2104 if (err)
2105 return err;
2106
2107 /*
2108 * If this is in a group, check if it can go on with all the
2109 * other hardware events in the group. We assume the event
2110 * hasn't been linked into its leader's sibling list at this point.
2111 */
2112 n = 0;
2113 if (event->group_leader != event) {
2114 n = collect_events(group: event->group_leader, max_count: ppmu->n_counter - 1,
2115 ctrs: ctrs, events: events, flags: cflags);
2116 if (n < 0)
2117 return -EINVAL;
2118 }
2119 events[n] = ev;
2120 ctrs[n] = event;
2121 cflags[n] = flags;
2122 if (check_excludes(ctrs: ctrs, cflags: cflags, n_prev: n, n_new: 1))
2123 return -EINVAL;
2124
2125 local_irq_save(irq_flags);
2126 cpuhw = this_cpu_ptr(&cpu_hw_events);
2127
2128 err = power_check_constraints(cpuhw, event_id: events, cflags: cflags, n_ev: n + 1, event: ctrs);
2129
2130 if (has_branch_stack(event)) {
2131 u64 bhrb_filter = -1;
2132
2133 /*
2134 * Currently no PMU supports having multiple branch filters
2135 * at the same time. Branch filters are set via MMCRA IFM[32:33]
2136 * bits for Power8 and above. Return EOPNOTSUPP when multiple
2137 * branch filters are requested in the event attr.
2138 *
2139 * When opening event via perf_event_open(), branch_sample_type
2140 * gets adjusted in perf_copy_attr(). Kernel will automatically
2141 * adjust the branch_sample_type based on the event modifier
2142 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
2143 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
2144 */
2145 if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
2146 local_irq_restore(irq_flags);
2147 return -EOPNOTSUPP;
2148 }
2149
2150 if (ppmu->bhrb_filter_map)
2151 bhrb_filter = ppmu->bhrb_filter_map(
2152 event->attr.branch_sample_type);
2153
2154 if (bhrb_filter == -1) {
2155 local_irq_restore(irq_flags);
2156 return -EOPNOTSUPP;
2157 }
2158 cpuhw->bhrb_filter = bhrb_filter;
2159 }
2160
2161 local_irq_restore(irq_flags);
2162 if (err)
2163 return -EINVAL;
2164
2165 event->hw.config = events[n];
2166 event->hw.event_base = cflags[n];
2167 event->hw.last_period = event->hw.sample_period;
2168 local64_set(&event->hw.period_left, event->hw.last_period);
2169
2170 /*
2171 * For EBB events we just context switch the PMC value, we don't do any
2172 * of the sample_period logic. We use hw.prev_count for this.
2173 */
2174 if (is_ebb_event(event))
2175 local64_set(&event->hw.prev_count, 0);
2176
2177 /*
2178 * See if we need to reserve the PMU.
2179 * If no events are currently in use, then we have to take a
2180 * mutex to ensure that we don't race with another task doing
2181 * reserve_pmc_hardware or release_pmc_hardware.
2182 */
2183 err = 0;
2184 if (!atomic_inc_not_zero(v: &num_events)) {
2185 mutex_lock(&pmc_reserve_mutex);
2186 if (atomic_read(v: &num_events) == 0 &&
2187 reserve_pmc_hardware(perf_event_interrupt))
2188 err = -EBUSY;
2189 else
2190 atomic_inc(v: &num_events);
2191 mutex_unlock(lock: &pmc_reserve_mutex);
2192 }
2193 event->destroy = hw_perf_event_destroy;
2194
2195 return err;
2196}
2197
2198static int power_pmu_event_idx(struct perf_event *event)
2199{
2200 return event->hw.idx;
2201}
2202
2203ssize_t power_events_sysfs_show(struct device *dev,
2204 struct device_attribute *attr, char *page)
2205{
2206 struct perf_pmu_events_attr *pmu_attr;
2207
2208 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2209
2210 return sprintf(buf: page, fmt: "event=0x%02llx\n", pmu_attr->id);
2211}
2212
2213static struct pmu power_pmu = {
2214 .pmu_enable = power_pmu_enable,
2215 .pmu_disable = power_pmu_disable,
2216 .event_init = power_pmu_event_init,
2217 .add = power_pmu_add,
2218 .del = power_pmu_del,
2219 .start = power_pmu_start,
2220 .stop = power_pmu_stop,
2221 .read = power_pmu_read,
2222 .start_txn = power_pmu_start_txn,
2223 .cancel_txn = power_pmu_cancel_txn,
2224 .commit_txn = power_pmu_commit_txn,
2225 .event_idx = power_pmu_event_idx,
2226 .sched_task = power_pmu_sched_task,
2227};
2228
2229#define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
2230 PERF_SAMPLE_PHYS_ADDR | \
2231 PERF_SAMPLE_DATA_PAGE_SIZE)
2232/*
2233 * A counter has overflowed; update its count and record
2234 * things if requested. Note that interrupts are hard-disabled
2235 * here so there is no possibility of being interrupted.
2236 */
2237static void record_and_restart(struct perf_event *event, unsigned long val,
2238 struct pt_regs *regs)
2239{
2240 u64 period = event->hw.sample_period;
2241 s64 prev, delta, left;
2242 int record = 0;
2243
2244 if (event->hw.state & PERF_HES_STOPPED) {
2245 write_pmc(idx: event->hw.idx, val: 0);
2246 return;
2247 }
2248
2249 /* we don't have to worry about interrupts here */
2250 prev = local64_read(&event->hw.prev_count);
2251 delta = check_and_compute_delta(prev, val);
2252 local64_add(delta, &event->count);
2253
2254 /*
2255 * See if the total period for this event has expired,
2256 * and update for the next period.
2257 */
2258 val = 0;
2259 left = local64_read(&event->hw.period_left) - delta;
2260 if (delta == 0)
2261 left++;
2262 if (period) {
2263 if (left <= 0) {
2264 left += period;
2265 if (left <= 0)
2266 left = period;
2267
2268 /*
2269 * If address is not requested in the sample via
2270 * PERF_SAMPLE_IP, just record that sample irrespective
2271 * of SIAR valid check.
2272 */
2273 if (event->attr.sample_type & PERF_SAMPLE_IP)
2274 record = siar_valid(regs);
2275 else
2276 record = 1;
2277
2278 event->hw.last_period = event->hw.sample_period;
2279 }
2280 if (left < 0x80000000LL)
2281 val = 0x80000000LL - left;
2282 }
2283
2284 write_pmc(idx: event->hw.idx, val);
2285 local64_set(&event->hw.prev_count, val);
2286 local64_set(&event->hw.period_left, left);
2287 perf_event_update_userpage(event);
2288
2289 /*
2290 * Due to hardware limitation, sometimes SIAR could sample a kernel
2291 * address even when freeze on supervisor state (kernel) is set in
2292 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2293 * these cases.
2294 */
2295 if (event->attr.exclude_kernel &&
2296 (event->attr.sample_type & PERF_SAMPLE_IP) &&
2297 is_kernel_addr(mfspr(SPRN_SIAR)))
2298 record = 0;
2299
2300 /*
2301 * Finally record data if requested.
2302 */
2303 if (record) {
2304 struct perf_sample_data data;
2305
2306 perf_sample_data_init(data: &data, addr: ~0ULL, period: event->hw.last_period);
2307
2308 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2309 perf_get_data_addr(event, regs, &data.addr);
2310
2311 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2312 struct cpu_hw_events *cpuhw;
2313 cpuhw = this_cpu_ptr(&cpu_hw_events);
2314 power_pmu_bhrb_read(event, cpuhw);
2315 perf_sample_save_brstack(data: &data, event, brs: &cpuhw->bhrb_stack, NULL);
2316 }
2317
2318 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2319 ppmu->get_mem_data_src) {
2320 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2321 data.sample_flags |= PERF_SAMPLE_DATA_SRC;
2322 }
2323
2324 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2325 ppmu->get_mem_weight) {
2326 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2327 data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2328 }
2329 if (perf_event_overflow(event, data: &data, regs))
2330 power_pmu_stop(event, ef_flags: 0);
2331 } else if (period) {
2332 /* Account for interrupt in case of invalid SIAR */
2333 if (perf_event_account_interrupt(event))
2334 power_pmu_stop(event, ef_flags: 0);
2335 }
2336}
2337
2338/*
2339 * Called from generic code to get the misc flags (i.e. processor mode)
2340 * for an event_id.
2341 */
2342unsigned long perf_misc_flags(struct pt_regs *regs)
2343{
2344 u32 flags = perf_get_misc_flags(regs);
2345
2346 if (flags)
2347 return flags;
2348 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2349 PERF_RECORD_MISC_KERNEL;
2350}
2351
2352/*
2353 * Called from generic code to get the instruction pointer
2354 * for an event_id.
2355 */
2356unsigned long perf_instruction_pointer(struct pt_regs *regs)
2357{
2358 unsigned long siar = mfspr(SPRN_SIAR);
2359
2360 if (regs_use_siar(regs) && siar_valid(regs) && siar)
2361 return siar + perf_ip_adjust(regs);
2362 else
2363 return regs->nip;
2364}
2365
2366static bool pmc_overflow_power7(unsigned long val)
2367{
2368 /*
2369 * Events on POWER7 can roll back if a speculative event doesn't
2370 * eventually complete. Unfortunately in some rare cases they will
2371 * raise a performance monitor exception. We need to catch this to
2372 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2373 * cycles from overflow.
2374 *
2375 * We only do this if the first pass fails to find any overflowing
2376 * PMCs because a user might set a period of less than 256 and we
2377 * don't want to mistakenly reset them.
2378 */
2379 if ((0x80000000 - val) <= 256)
2380 return true;
2381
2382 return false;
2383}
2384
2385static bool pmc_overflow(unsigned long val)
2386{
2387 if ((int)val < 0)
2388 return true;
2389
2390 return false;
2391}
2392
2393/*
2394 * Performance monitor interrupt stuff
2395 */
2396static void __perf_event_interrupt(struct pt_regs *regs)
2397{
2398 int i, j;
2399 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2400 struct perf_event *event;
2401 int found, active;
2402
2403 if (cpuhw->n_limited)
2404 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2405 mfspr(SPRN_PMC6));
2406
2407 perf_read_regs(regs);
2408
2409 /* Read all the PMCs since we'll need them a bunch of times */
2410 for (i = 0; i < ppmu->n_counter; ++i)
2411 cpuhw->pmcs[i] = read_pmc(idx: i + 1);
2412
2413 /* Try to find what caused the IRQ */
2414 found = 0;
2415 for (i = 0; i < ppmu->n_counter; ++i) {
2416 if (!pmc_overflow(val: cpuhw->pmcs[i]))
2417 continue;
2418 if (is_limited_pmc(pmcnum: i + 1))
2419 continue; /* these won't generate IRQs */
2420 /*
2421 * We've found one that's overflowed. For active
2422 * counters we need to log this. For inactive
2423 * counters, we need to reset it anyway
2424 */
2425 found = 1;
2426 active = 0;
2427 for (j = 0; j < cpuhw->n_events; ++j) {
2428 event = cpuhw->event[j];
2429 if (event->hw.idx == (i + 1)) {
2430 active = 1;
2431 record_and_restart(event, val: cpuhw->pmcs[i], regs);
2432 break;
2433 }
2434 }
2435
2436 /*
2437 * Clear PACA_IRQ_PMI in case it was set by
2438 * set_pmi_irq_pending() when PMU was enabled
2439 * after accounting for interrupts.
2440 */
2441 clear_pmi_irq_pending();
2442
2443 if (!active)
2444 /* reset non active counters that have overflowed */
2445 write_pmc(idx: i + 1, val: 0);
2446 }
2447 if (!found && pvr_version_is(PVR_POWER7)) {
2448 /* check active counters for special buggy p7 overflow */
2449 for (i = 0; i < cpuhw->n_events; ++i) {
2450 event = cpuhw->event[i];
2451 if (!event->hw.idx || is_limited_pmc(pmcnum: event->hw.idx))
2452 continue;
2453 if (pmc_overflow_power7(val: cpuhw->pmcs[event->hw.idx - 1])) {
2454 /* event has overflowed in a buggy way*/
2455 found = 1;
2456 record_and_restart(event,
2457 val: cpuhw->pmcs[event->hw.idx - 1],
2458 regs);
2459 }
2460 }
2461 }
2462
2463 /*
2464 * During system wide profiling or while specific CPU is monitored for an
2465 * event, some corner cases could cause PMC to overflow in idle path. This
2466 * will trigger a PMI after waking up from idle. Since counter values are _not_
2467 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2468 */
2469 if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2470 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2471
2472 /*
2473 * Reset MMCR0 to its normal value. This will set PMXE and
2474 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2475 * and thus allow interrupts to occur again.
2476 * XXX might want to use MSR.PM to keep the events frozen until
2477 * we get back out of this interrupt.
2478 */
2479 write_mmcr0(cpuhw, mmcr0: cpuhw->mmcr.mmcr0);
2480
2481 /* Clear the cpuhw->pmcs */
2482 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2483
2484}
2485
2486static void perf_event_interrupt(struct pt_regs *regs)
2487{
2488 u64 start_clock = sched_clock();
2489
2490 __perf_event_interrupt(regs);
2491 perf_sample_event_took(sample_len_ns: sched_clock() - start_clock);
2492}
2493
2494static int power_pmu_prepare_cpu(unsigned int cpu)
2495{
2496 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2497
2498 if (ppmu) {
2499 memset(cpuhw, 0, sizeof(*cpuhw));
2500 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2501 }
2502 return 0;
2503}
2504
2505static ssize_t pmu_name_show(struct device *cdev,
2506 struct device_attribute *attr,
2507 char *buf)
2508{
2509 if (ppmu)
2510 return sysfs_emit(buf, fmt: "%s", ppmu->name);
2511
2512 return 0;
2513}
2514
2515static DEVICE_ATTR_RO(pmu_name);
2516
2517static struct attribute *pmu_caps_attrs[] = {
2518 &dev_attr_pmu_name.attr,
2519 NULL
2520};
2521
2522static const struct attribute_group pmu_caps_group = {
2523 .name = "caps",
2524 .attrs = pmu_caps_attrs,
2525};
2526
2527static const struct attribute_group *pmu_caps_groups[] = {
2528 &pmu_caps_group,
2529 NULL,
2530};
2531
2532int __init register_power_pmu(struct power_pmu *pmu)
2533{
2534 if (ppmu)
2535 return -EBUSY; /* something's already registered */
2536
2537 ppmu = pmu;
2538 pr_info("%s performance monitor hardware support registered\n",
2539 pmu->name);
2540
2541 power_pmu.attr_groups = ppmu->attr_groups;
2542
2543 if (ppmu->flags & PPMU_ARCH_207S)
2544 power_pmu.attr_update = pmu_caps_groups;
2545
2546 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2547
2548#ifdef MSR_HV
2549 /*
2550 * Use FCHV to ignore kernel events if MSR.HV is set.
2551 */
2552 if (mfmsr() & MSR_HV)
2553 freeze_events_kernel = MMCR0_FCHV;
2554#endif /* CONFIG_PPC64 */
2555
2556 perf_pmu_register(pmu: &power_pmu, name: "cpu", type: PERF_TYPE_RAW);
2557 cpuhp_setup_state(state: CPUHP_PERF_POWER, name: "perf/powerpc:prepare",
2558 startup: power_pmu_prepare_cpu, NULL);
2559 return 0;
2560}
2561
2562#ifdef CONFIG_PPC64
2563static bool pmu_override = false;
2564static unsigned long pmu_override_val;
2565static void do_pmu_override(void *data)
2566{
2567 ppc_set_pmu_inuse(1);
2568 if (pmu_override_val)
2569 mtspr(SPRN_MMCR1, pmu_override_val);
2570 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2571}
2572
2573static int __init init_ppc64_pmu(void)
2574{
2575 if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2576 pr_warn("disabling perf due to pmu_override= command line option.\n");
2577 on_each_cpu(do_pmu_override, NULL, 1);
2578 return 0;
2579 }
2580
2581 /* run through all the pmu drivers one at a time */
2582 if (!init_power5_pmu())
2583 return 0;
2584 else if (!init_power5p_pmu())
2585 return 0;
2586 else if (!init_power6_pmu())
2587 return 0;
2588 else if (!init_power7_pmu())
2589 return 0;
2590 else if (!init_power8_pmu())
2591 return 0;
2592 else if (!init_power9_pmu())
2593 return 0;
2594 else if (!init_power10_pmu())
2595 return 0;
2596 else if (!init_power11_pmu())
2597 return 0;
2598 else if (!init_ppc970_pmu())
2599 return 0;
2600 else
2601 return init_generic_compat_pmu();
2602}
2603early_initcall(init_ppc64_pmu);
2604
2605static int __init pmu_setup(char *str)
2606{
2607 unsigned long val;
2608
2609 if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2610 return 0;
2611
2612 pmu_override = true;
2613
2614 if (kstrtoul(str, 0, &val))
2615 val = 0;
2616
2617 pmu_override_val = val;
2618
2619 return 1;
2620}
2621__setup("pmu_override=", pmu_setup);
2622
2623#endif
2624

source code of linux/arch/powerpc/perf/core-book3s.c