1 | /* |
2 | * Copyright (C) 1991, 1992 Linus Torvalds |
3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
4 | * Copyright (C) 2011 Don Zickus Red Hat, Inc. |
5 | * |
6 | * Pentium III FXSR, SSE support |
7 | * Gareth Hughes <gareth@valinux.com>, May 2000 |
8 | */ |
9 | |
10 | /* |
11 | * Handle hardware traps and faults. |
12 | */ |
13 | #include <linux/spinlock.h> |
14 | #include <linux/kprobes.h> |
15 | #include <linux/kdebug.h> |
16 | #include <linux/sched/debug.h> |
17 | #include <linux/nmi.h> |
18 | #include <linux/debugfs.h> |
19 | #include <linux/delay.h> |
20 | #include <linux/hardirq.h> |
21 | #include <linux/ratelimit.h> |
22 | #include <linux/slab.h> |
23 | #include <linux/export.h> |
24 | #include <linux/sched/clock.h> |
25 | |
26 | #if defined(CONFIG_EDAC) |
27 | #include <linux/edac.h> |
28 | #endif |
29 | |
30 | #include <linux/atomic.h> |
31 | #include <asm/traps.h> |
32 | #include <asm/mach_traps.h> |
33 | #include <asm/nmi.h> |
34 | #include <asm/x86_init.h> |
35 | #include <asm/reboot.h> |
36 | #include <asm/cache.h> |
37 | |
38 | #define CREATE_TRACE_POINTS |
39 | #include <trace/events/nmi.h> |
40 | |
41 | struct nmi_desc { |
42 | raw_spinlock_t lock; |
43 | struct list_head head; |
44 | }; |
45 | |
46 | static struct nmi_desc nmi_desc[NMI_MAX] = |
47 | { |
48 | { |
49 | .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock), |
50 | .head = LIST_HEAD_INIT(nmi_desc[0].head), |
51 | }, |
52 | { |
53 | .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock), |
54 | .head = LIST_HEAD_INIT(nmi_desc[1].head), |
55 | }, |
56 | { |
57 | .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock), |
58 | .head = LIST_HEAD_INIT(nmi_desc[2].head), |
59 | }, |
60 | { |
61 | .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock), |
62 | .head = LIST_HEAD_INIT(nmi_desc[3].head), |
63 | }, |
64 | |
65 | }; |
66 | |
67 | struct nmi_stats { |
68 | unsigned int normal; |
69 | unsigned int unknown; |
70 | unsigned int external; |
71 | unsigned int swallow; |
72 | }; |
73 | |
74 | static DEFINE_PER_CPU(struct nmi_stats, nmi_stats); |
75 | |
76 | static int ignore_nmis __read_mostly; |
77 | |
78 | int unknown_nmi_panic; |
79 | /* |
80 | * Prevent NMI reason port (0x61) being accessed simultaneously, can |
81 | * only be used in NMI handler. |
82 | */ |
83 | static DEFINE_RAW_SPINLOCK(nmi_reason_lock); |
84 | |
85 | static int __init setup_unknown_nmi_panic(char *str) |
86 | { |
87 | unknown_nmi_panic = 1; |
88 | return 1; |
89 | } |
90 | __setup("unknown_nmi_panic" , setup_unknown_nmi_panic); |
91 | |
92 | #define nmi_to_desc(type) (&nmi_desc[type]) |
93 | |
94 | static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC; |
95 | |
96 | static int __init nmi_warning_debugfs(void) |
97 | { |
98 | debugfs_create_u64("nmi_longest_ns" , 0644, |
99 | arch_debugfs_dir, &nmi_longest_ns); |
100 | return 0; |
101 | } |
102 | fs_initcall(nmi_warning_debugfs); |
103 | |
104 | static void nmi_max_handler(struct irq_work *w) |
105 | { |
106 | struct nmiaction *a = container_of(w, struct nmiaction, irq_work); |
107 | int remainder_ns, decimal_msecs; |
108 | u64 whole_msecs = READ_ONCE(a->max_duration); |
109 | |
110 | remainder_ns = do_div(whole_msecs, (1000 * 1000)); |
111 | decimal_msecs = remainder_ns / 1000; |
112 | |
113 | printk_ratelimited(KERN_INFO |
114 | "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n" , |
115 | a->handler, whole_msecs, decimal_msecs); |
116 | } |
117 | |
118 | static int nmi_handle(unsigned int type, struct pt_regs *regs) |
119 | { |
120 | struct nmi_desc *desc = nmi_to_desc(type); |
121 | struct nmiaction *a; |
122 | int handled=0; |
123 | |
124 | rcu_read_lock(); |
125 | |
126 | /* |
127 | * NMIs are edge-triggered, which means if you have enough |
128 | * of them concurrently, you can lose some because only one |
129 | * can be latched at any given time. Walk the whole list |
130 | * to handle those situations. |
131 | */ |
132 | list_for_each_entry_rcu(a, &desc->head, list) { |
133 | int thishandled; |
134 | u64 delta; |
135 | |
136 | delta = sched_clock(); |
137 | thishandled = a->handler(type, regs); |
138 | handled += thishandled; |
139 | delta = sched_clock() - delta; |
140 | trace_nmi_handler(a->handler, (int)delta, thishandled); |
141 | |
142 | if (delta < nmi_longest_ns || delta < a->max_duration) |
143 | continue; |
144 | |
145 | a->max_duration = delta; |
146 | irq_work_queue(&a->irq_work); |
147 | } |
148 | |
149 | rcu_read_unlock(); |
150 | |
151 | /* return total number of NMI events handled */ |
152 | return handled; |
153 | } |
154 | NOKPROBE_SYMBOL(nmi_handle); |
155 | |
156 | int __register_nmi_handler(unsigned int type, struct nmiaction *action) |
157 | { |
158 | struct nmi_desc *desc = nmi_to_desc(type); |
159 | unsigned long flags; |
160 | |
161 | if (!action->handler) |
162 | return -EINVAL; |
163 | |
164 | init_irq_work(&action->irq_work, nmi_max_handler); |
165 | |
166 | raw_spin_lock_irqsave(&desc->lock, flags); |
167 | |
168 | /* |
169 | * Indicate if there are multiple registrations on the |
170 | * internal NMI handler call chains (SERR and IO_CHECK). |
171 | */ |
172 | WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head)); |
173 | WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head)); |
174 | |
175 | /* |
176 | * some handlers need to be executed first otherwise a fake |
177 | * event confuses some handlers (kdump uses this flag) |
178 | */ |
179 | if (action->flags & NMI_FLAG_FIRST) |
180 | list_add_rcu(&action->list, &desc->head); |
181 | else |
182 | list_add_tail_rcu(&action->list, &desc->head); |
183 | |
184 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
185 | return 0; |
186 | } |
187 | EXPORT_SYMBOL(__register_nmi_handler); |
188 | |
189 | void unregister_nmi_handler(unsigned int type, const char *name) |
190 | { |
191 | struct nmi_desc *desc = nmi_to_desc(type); |
192 | struct nmiaction *n; |
193 | unsigned long flags; |
194 | |
195 | raw_spin_lock_irqsave(&desc->lock, flags); |
196 | |
197 | list_for_each_entry_rcu(n, &desc->head, list) { |
198 | /* |
199 | * the name passed in to describe the nmi handler |
200 | * is used as the lookup key |
201 | */ |
202 | if (!strcmp(n->name, name)) { |
203 | WARN(in_nmi(), |
204 | "Trying to free NMI (%s) from NMI context!\n" , n->name); |
205 | list_del_rcu(&n->list); |
206 | break; |
207 | } |
208 | } |
209 | |
210 | raw_spin_unlock_irqrestore(&desc->lock, flags); |
211 | synchronize_rcu(); |
212 | } |
213 | EXPORT_SYMBOL_GPL(unregister_nmi_handler); |
214 | |
215 | static void |
216 | pci_serr_error(unsigned char reason, struct pt_regs *regs) |
217 | { |
218 | /* check to see if anyone registered against these types of errors */ |
219 | if (nmi_handle(NMI_SERR, regs)) |
220 | return; |
221 | |
222 | pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n" , |
223 | reason, smp_processor_id()); |
224 | |
225 | if (panic_on_unrecovered_nmi) |
226 | nmi_panic(regs, "NMI: Not continuing" ); |
227 | |
228 | pr_emerg("Dazed and confused, but trying to continue\n" ); |
229 | |
230 | /* Clear and disable the PCI SERR error line. */ |
231 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR; |
232 | outb(reason, NMI_REASON_PORT); |
233 | } |
234 | NOKPROBE_SYMBOL(pci_serr_error); |
235 | |
236 | static void |
237 | io_check_error(unsigned char reason, struct pt_regs *regs) |
238 | { |
239 | unsigned long i; |
240 | |
241 | /* check to see if anyone registered against these types of errors */ |
242 | if (nmi_handle(NMI_IO_CHECK, regs)) |
243 | return; |
244 | |
245 | pr_emerg( |
246 | "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n" , |
247 | reason, smp_processor_id()); |
248 | show_regs(regs); |
249 | |
250 | if (panic_on_io_nmi) { |
251 | nmi_panic(regs, "NMI IOCK error: Not continuing" ); |
252 | |
253 | /* |
254 | * If we end up here, it means we have received an NMI while |
255 | * processing panic(). Simply return without delaying and |
256 | * re-enabling NMIs. |
257 | */ |
258 | return; |
259 | } |
260 | |
261 | /* Re-enable the IOCK line, wait for a few seconds */ |
262 | reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK; |
263 | outb(reason, NMI_REASON_PORT); |
264 | |
265 | i = 20000; |
266 | while (--i) { |
267 | touch_nmi_watchdog(); |
268 | udelay(100); |
269 | } |
270 | |
271 | reason &= ~NMI_REASON_CLEAR_IOCHK; |
272 | outb(reason, NMI_REASON_PORT); |
273 | } |
274 | NOKPROBE_SYMBOL(io_check_error); |
275 | |
276 | static void |
277 | unknown_nmi_error(unsigned char reason, struct pt_regs *regs) |
278 | { |
279 | int handled; |
280 | |
281 | /* |
282 | * Use 'false' as back-to-back NMIs are dealt with one level up. |
283 | * Of course this makes having multiple 'unknown' handlers useless |
284 | * as only the first one is ever run (unless it can actually determine |
285 | * if it caused the NMI) |
286 | */ |
287 | handled = nmi_handle(NMI_UNKNOWN, regs); |
288 | if (handled) { |
289 | __this_cpu_add(nmi_stats.unknown, handled); |
290 | return; |
291 | } |
292 | |
293 | __this_cpu_add(nmi_stats.unknown, 1); |
294 | |
295 | pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n" , |
296 | reason, smp_processor_id()); |
297 | |
298 | pr_emerg("Do you have a strange power saving mode enabled?\n" ); |
299 | if (unknown_nmi_panic || panic_on_unrecovered_nmi) |
300 | nmi_panic(regs, "NMI: Not continuing" ); |
301 | |
302 | pr_emerg("Dazed and confused, but trying to continue\n" ); |
303 | } |
304 | NOKPROBE_SYMBOL(unknown_nmi_error); |
305 | |
306 | static DEFINE_PER_CPU(bool, swallow_nmi); |
307 | static DEFINE_PER_CPU(unsigned long, last_nmi_rip); |
308 | |
309 | static void default_do_nmi(struct pt_regs *regs) |
310 | { |
311 | unsigned char reason = 0; |
312 | int handled; |
313 | bool b2b = false; |
314 | |
315 | /* |
316 | * CPU-specific NMI must be processed before non-CPU-specific |
317 | * NMI, otherwise we may lose it, because the CPU-specific |
318 | * NMI can not be detected/processed on other CPUs. |
319 | */ |
320 | |
321 | /* |
322 | * Back-to-back NMIs are interesting because they can either |
323 | * be two NMI or more than two NMIs (any thing over two is dropped |
324 | * due to NMI being edge-triggered). If this is the second half |
325 | * of the back-to-back NMI, assume we dropped things and process |
326 | * more handlers. Otherwise reset the 'swallow' NMI behaviour |
327 | */ |
328 | if (regs->ip == __this_cpu_read(last_nmi_rip)) |
329 | b2b = true; |
330 | else |
331 | __this_cpu_write(swallow_nmi, false); |
332 | |
333 | __this_cpu_write(last_nmi_rip, regs->ip); |
334 | |
335 | handled = nmi_handle(NMI_LOCAL, regs); |
336 | __this_cpu_add(nmi_stats.normal, handled); |
337 | if (handled) { |
338 | /* |
339 | * There are cases when a NMI handler handles multiple |
340 | * events in the current NMI. One of these events may |
341 | * be queued for in the next NMI. Because the event is |
342 | * already handled, the next NMI will result in an unknown |
343 | * NMI. Instead lets flag this for a potential NMI to |
344 | * swallow. |
345 | */ |
346 | if (handled > 1) |
347 | __this_cpu_write(swallow_nmi, true); |
348 | return; |
349 | } |
350 | |
351 | /* |
352 | * Non-CPU-specific NMI: NMI sources can be processed on any CPU. |
353 | * |
354 | * Another CPU may be processing panic routines while holding |
355 | * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping, |
356 | * and if so, call its callback directly. If there is no CPU preparing |
357 | * crash dump, we simply loop here. |
358 | */ |
359 | while (!raw_spin_trylock(&nmi_reason_lock)) { |
360 | run_crash_ipi_callback(regs); |
361 | cpu_relax(); |
362 | } |
363 | |
364 | reason = x86_platform.get_nmi_reason(); |
365 | |
366 | if (reason & NMI_REASON_MASK) { |
367 | if (reason & NMI_REASON_SERR) |
368 | pci_serr_error(reason, regs); |
369 | else if (reason & NMI_REASON_IOCHK) |
370 | io_check_error(reason, regs); |
371 | #ifdef CONFIG_X86_32 |
372 | /* |
373 | * Reassert NMI in case it became active |
374 | * meanwhile as it's edge-triggered: |
375 | */ |
376 | reassert_nmi(); |
377 | #endif |
378 | __this_cpu_add(nmi_stats.external, 1); |
379 | raw_spin_unlock(&nmi_reason_lock); |
380 | return; |
381 | } |
382 | raw_spin_unlock(&nmi_reason_lock); |
383 | |
384 | /* |
385 | * Only one NMI can be latched at a time. To handle |
386 | * this we may process multiple nmi handlers at once to |
387 | * cover the case where an NMI is dropped. The downside |
388 | * to this approach is we may process an NMI prematurely, |
389 | * while its real NMI is sitting latched. This will cause |
390 | * an unknown NMI on the next run of the NMI processing. |
391 | * |
392 | * We tried to flag that condition above, by setting the |
393 | * swallow_nmi flag when we process more than one event. |
394 | * This condition is also only present on the second half |
395 | * of a back-to-back NMI, so we flag that condition too. |
396 | * |
397 | * If both are true, we assume we already processed this |
398 | * NMI previously and we swallow it. Otherwise we reset |
399 | * the logic. |
400 | * |
401 | * There are scenarios where we may accidentally swallow |
402 | * a 'real' unknown NMI. For example, while processing |
403 | * a perf NMI another perf NMI comes in along with a |
404 | * 'real' unknown NMI. These two NMIs get combined into |
405 | * one (as descibed above). When the next NMI gets |
406 | * processed, it will be flagged by perf as handled, but |
407 | * noone will know that there was a 'real' unknown NMI sent |
408 | * also. As a result it gets swallowed. Or if the first |
409 | * perf NMI returns two events handled then the second |
410 | * NMI will get eaten by the logic below, again losing a |
411 | * 'real' unknown NMI. But this is the best we can do |
412 | * for now. |
413 | */ |
414 | if (b2b && __this_cpu_read(swallow_nmi)) |
415 | __this_cpu_add(nmi_stats.swallow, 1); |
416 | else |
417 | unknown_nmi_error(reason, regs); |
418 | } |
419 | NOKPROBE_SYMBOL(default_do_nmi); |
420 | |
421 | /* |
422 | * NMIs can page fault or hit breakpoints which will cause it to lose |
423 | * its NMI context with the CPU when the breakpoint or page fault does an IRET. |
424 | * |
425 | * As a result, NMIs can nest if NMIs get unmasked due an IRET during |
426 | * NMI processing. On x86_64, the asm glue protects us from nested NMIs |
427 | * if the outer NMI came from kernel mode, but we can still nest if the |
428 | * outer NMI came from user mode. |
429 | * |
430 | * To handle these nested NMIs, we have three states: |
431 | * |
432 | * 1) not running |
433 | * 2) executing |
434 | * 3) latched |
435 | * |
436 | * When no NMI is in progress, it is in the "not running" state. |
437 | * When an NMI comes in, it goes into the "executing" state. |
438 | * Normally, if another NMI is triggered, it does not interrupt |
439 | * the running NMI and the HW will simply latch it so that when |
440 | * the first NMI finishes, it will restart the second NMI. |
441 | * (Note, the latch is binary, thus multiple NMIs triggering, |
442 | * when one is running, are ignored. Only one NMI is restarted.) |
443 | * |
444 | * If an NMI executes an iret, another NMI can preempt it. We do not |
445 | * want to allow this new NMI to run, but we want to execute it when the |
446 | * first one finishes. We set the state to "latched", and the exit of |
447 | * the first NMI will perform a dec_return, if the result is zero |
448 | * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the |
449 | * dec_return would have set the state to NMI_EXECUTING (what we want it |
450 | * to be when we are running). In this case, we simply jump back to |
451 | * rerun the NMI handler again, and restart the 'latched' NMI. |
452 | * |
453 | * No trap (breakpoint or page fault) should be hit before nmi_restart, |
454 | * thus there is no race between the first check of state for NOT_RUNNING |
455 | * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs |
456 | * at this point. |
457 | * |
458 | * In case the NMI takes a page fault, we need to save off the CR2 |
459 | * because the NMI could have preempted another page fault and corrupt |
460 | * the CR2 that is about to be read. As nested NMIs must be restarted |
461 | * and they can not take breakpoints or page faults, the update of the |
462 | * CR2 must be done before converting the nmi state back to NOT_RUNNING. |
463 | * Otherwise, there would be a race of another nested NMI coming in |
464 | * after setting state to NOT_RUNNING but before updating the nmi_cr2. |
465 | */ |
466 | enum nmi_states { |
467 | NMI_NOT_RUNNING = 0, |
468 | NMI_EXECUTING, |
469 | NMI_LATCHED, |
470 | }; |
471 | static DEFINE_PER_CPU(enum nmi_states, nmi_state); |
472 | static DEFINE_PER_CPU(unsigned long, nmi_cr2); |
473 | |
474 | #ifdef CONFIG_X86_64 |
475 | /* |
476 | * In x86_64, we need to handle breakpoint -> NMI -> breakpoint. Without |
477 | * some care, the inner breakpoint will clobber the outer breakpoint's |
478 | * stack. |
479 | * |
480 | * If a breakpoint is being processed, and the debug stack is being |
481 | * used, if an NMI comes in and also hits a breakpoint, the stack |
482 | * pointer will be set to the same fixed address as the breakpoint that |
483 | * was interrupted, causing that stack to be corrupted. To handle this |
484 | * case, check if the stack that was interrupted is the debug stack, and |
485 | * if so, change the IDT so that new breakpoints will use the current |
486 | * stack and not switch to the fixed address. On return of the NMI, |
487 | * switch back to the original IDT. |
488 | */ |
489 | static DEFINE_PER_CPU(int, update_debug_stack); |
490 | #endif |
491 | |
492 | dotraplinkage notrace void |
493 | do_nmi(struct pt_regs *regs, long error_code) |
494 | { |
495 | if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { |
496 | this_cpu_write(nmi_state, NMI_LATCHED); |
497 | return; |
498 | } |
499 | this_cpu_write(nmi_state, NMI_EXECUTING); |
500 | this_cpu_write(nmi_cr2, read_cr2()); |
501 | nmi_restart: |
502 | |
503 | #ifdef CONFIG_X86_64 |
504 | /* |
505 | * If we interrupted a breakpoint, it is possible that |
506 | * the nmi handler will have breakpoints too. We need to |
507 | * change the IDT such that breakpoints that happen here |
508 | * continue to use the NMI stack. |
509 | */ |
510 | if (unlikely(is_debug_stack(regs->sp))) { |
511 | debug_stack_set_zero(); |
512 | this_cpu_write(update_debug_stack, 1); |
513 | } |
514 | #endif |
515 | |
516 | nmi_enter(); |
517 | |
518 | inc_irq_stat(__nmi_count); |
519 | |
520 | if (!ignore_nmis) |
521 | default_do_nmi(regs); |
522 | |
523 | nmi_exit(); |
524 | |
525 | #ifdef CONFIG_X86_64 |
526 | if (unlikely(this_cpu_read(update_debug_stack))) { |
527 | debug_stack_reset(); |
528 | this_cpu_write(update_debug_stack, 0); |
529 | } |
530 | #endif |
531 | |
532 | if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) |
533 | write_cr2(this_cpu_read(nmi_cr2)); |
534 | if (this_cpu_dec_return(nmi_state)) |
535 | goto nmi_restart; |
536 | } |
537 | NOKPROBE_SYMBOL(do_nmi); |
538 | |
539 | void stop_nmi(void) |
540 | { |
541 | ignore_nmis++; |
542 | } |
543 | |
544 | void restart_nmi(void) |
545 | { |
546 | ignore_nmis--; |
547 | } |
548 | |
549 | /* reset the back-to-back NMI logic */ |
550 | void local_touch_nmi(void) |
551 | { |
552 | __this_cpu_write(last_nmi_rip, 0); |
553 | } |
554 | EXPORT_SYMBOL_GPL(local_touch_nmi); |
555 | |