1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
4 * Shaohua Li <shli@fb.com>
5 */
6#include <linux/module.h>
7
8#include <linux/moduleparam.h>
9#include <linux/sched.h>
10#include <linux/fs.h>
11#include <linux/init.h>
12#include "null_blk.h"
13
14#undef pr_fmt
15#define pr_fmt(fmt) "null_blk: " fmt
16
17#define FREE_BATCH 16
18
19#define TICKS_PER_SEC 50ULL
20#define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC)
21
22#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
23static DECLARE_FAULT_ATTR(null_timeout_attr);
24static DECLARE_FAULT_ATTR(null_requeue_attr);
25static DECLARE_FAULT_ATTR(null_init_hctx_attr);
26#endif
27
28static inline u64 mb_per_tick(int mbps)
29{
30 return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
31}
32
33/*
34 * Status flags for nullb_device.
35 *
36 * CONFIGURED: Device has been configured and turned on. Cannot reconfigure.
37 * UP: Device is currently on and visible in userspace.
38 * THROTTLED: Device is being throttled.
39 * CACHE: Device is using a write-back cache.
40 */
41enum nullb_device_flags {
42 NULLB_DEV_FL_CONFIGURED = 0,
43 NULLB_DEV_FL_UP = 1,
44 NULLB_DEV_FL_THROTTLED = 2,
45 NULLB_DEV_FL_CACHE = 3,
46};
47
48#define MAP_SZ ((PAGE_SIZE >> SECTOR_SHIFT) + 2)
49/*
50 * nullb_page is a page in memory for nullb devices.
51 *
52 * @page: The page holding the data.
53 * @bitmap: The bitmap represents which sector in the page has data.
54 * Each bit represents one block size. For example, sector 8
55 * will use the 7th bit
56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
57 * page is being flushing to storage. FREE means the cache page is freed and
58 * should be skipped from flushing to storage. Please see
59 * null_make_cache_space
60 */
61struct nullb_page {
62 struct page *page;
63 DECLARE_BITMAP(bitmap, MAP_SZ);
64};
65#define NULLB_PAGE_LOCK (MAP_SZ - 1)
66#define NULLB_PAGE_FREE (MAP_SZ - 2)
67
68static LIST_HEAD(nullb_list);
69static struct mutex lock;
70static int null_major;
71static DEFINE_IDA(nullb_indexes);
72static struct blk_mq_tag_set tag_set;
73
74enum {
75 NULL_IRQ_NONE = 0,
76 NULL_IRQ_SOFTIRQ = 1,
77 NULL_IRQ_TIMER = 2,
78};
79
80static bool g_virt_boundary = false;
81module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
82MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
83
84static int g_no_sched;
85module_param_named(no_sched, g_no_sched, int, 0444);
86MODULE_PARM_DESC(no_sched, "No io scheduler");
87
88static int g_submit_queues = 1;
89module_param_named(submit_queues, g_submit_queues, int, 0444);
90MODULE_PARM_DESC(submit_queues, "Number of submission queues");
91
92static int g_poll_queues = 1;
93module_param_named(poll_queues, g_poll_queues, int, 0444);
94MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
95
96static int g_home_node = NUMA_NO_NODE;
97module_param_named(home_node, g_home_node, int, 0444);
98MODULE_PARM_DESC(home_node, "Home node for the device");
99
100#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
101/*
102 * For more details about fault injection, please refer to
103 * Documentation/fault-injection/fault-injection.rst.
104 */
105static char g_timeout_str[80];
106module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
107MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
108
109static char g_requeue_str[80];
110module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
111MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
112
113static char g_init_hctx_str[80];
114module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
115MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
116#endif
117
118/*
119 * Historic queue modes.
120 *
121 * These days nothing but NULL_Q_MQ is actually supported, but we keep it the
122 * enum for error reporting.
123 */
124enum {
125 NULL_Q_BIO = 0,
126 NULL_Q_RQ = 1,
127 NULL_Q_MQ = 2,
128};
129
130static int g_queue_mode = NULL_Q_MQ;
131
132static int null_param_store_val(const char *str, int *val, int min, int max)
133{
134 int ret, new_val;
135
136 ret = kstrtoint(s: str, base: 10, res: &new_val);
137 if (ret)
138 return -EINVAL;
139
140 if (new_val < min || new_val > max)
141 return -EINVAL;
142
143 *val = new_val;
144 return 0;
145}
146
147static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
148{
149 return null_param_store_val(str, val: &g_queue_mode, min: NULL_Q_BIO, max: NULL_Q_MQ);
150}
151
152static const struct kernel_param_ops null_queue_mode_param_ops = {
153 .set = null_set_queue_mode,
154 .get = param_get_int,
155};
156
157device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
158MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
159
160static int g_gb = 250;
161module_param_named(gb, g_gb, int, 0444);
162MODULE_PARM_DESC(gb, "Size in GB");
163
164static int g_bs = 512;
165module_param_named(bs, g_bs, int, 0444);
166MODULE_PARM_DESC(bs, "Block size (in bytes)");
167
168static int g_max_sectors;
169module_param_named(max_sectors, g_max_sectors, int, 0444);
170MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
171
172static unsigned int nr_devices = 1;
173module_param(nr_devices, uint, 0444);
174MODULE_PARM_DESC(nr_devices, "Number of devices to register");
175
176static bool g_blocking;
177module_param_named(blocking, g_blocking, bool, 0444);
178MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
179
180static bool g_shared_tags;
181module_param_named(shared_tags, g_shared_tags, bool, 0444);
182MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
183
184static bool g_shared_tag_bitmap;
185module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
186MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
187
188static int g_irqmode = NULL_IRQ_SOFTIRQ;
189
190static int null_set_irqmode(const char *str, const struct kernel_param *kp)
191{
192 return null_param_store_val(str, val: &g_irqmode, min: NULL_IRQ_NONE,
193 max: NULL_IRQ_TIMER);
194}
195
196static const struct kernel_param_ops null_irqmode_param_ops = {
197 .set = null_set_irqmode,
198 .get = param_get_int,
199};
200
201device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
202MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
203
204static unsigned long g_completion_nsec = 10000;
205module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
206MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
207
208static int g_hw_queue_depth = 64;
209module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
210MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
211
212static bool g_use_per_node_hctx;
213module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
214MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
215
216static bool g_memory_backed;
217module_param_named(memory_backed, g_memory_backed, bool, 0444);
218MODULE_PARM_DESC(memory_backed, "Create a memory-backed block device. Default: false");
219
220static bool g_discard;
221module_param_named(discard, g_discard, bool, 0444);
222MODULE_PARM_DESC(discard, "Support discard operations (requires memory-backed null_blk device). Default: false");
223
224static unsigned long g_cache_size;
225module_param_named(cache_size, g_cache_size, ulong, 0444);
226MODULE_PARM_DESC(mbps, "Cache size in MiB for memory-backed device. Default: 0 (none)");
227
228static unsigned int g_mbps;
229module_param_named(mbps, g_mbps, uint, 0444);
230MODULE_PARM_DESC(mbps, "Limit maximum bandwidth (in MiB/s). Default: 0 (no limit)");
231
232static bool g_zoned;
233module_param_named(zoned, g_zoned, bool, S_IRUGO);
234MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
235
236static unsigned long g_zone_size = 256;
237module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
238MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
239
240static unsigned long g_zone_capacity;
241module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
242MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
243
244static unsigned int g_zone_nr_conv;
245module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
246MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
247
248static unsigned int g_zone_max_open;
249module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
250MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
251
252static unsigned int g_zone_max_active;
253module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
254MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
255
256static struct nullb_device *null_alloc_dev(void);
257static void null_free_dev(struct nullb_device *dev);
258static void null_del_dev(struct nullb *nullb);
259static int null_add_dev(struct nullb_device *dev);
260static struct nullb *null_find_dev_by_name(const char *name);
261static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
262
263static inline struct nullb_device *to_nullb_device(struct config_item *item)
264{
265 return item ? container_of(to_config_group(item), struct nullb_device, group) : NULL;
266}
267
268static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
269{
270 return snprintf(buf: page, PAGE_SIZE, fmt: "%u\n", val);
271}
272
273static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
274 char *page)
275{
276 return snprintf(buf: page, PAGE_SIZE, fmt: "%lu\n", val);
277}
278
279static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
280{
281 return snprintf(buf: page, PAGE_SIZE, fmt: "%u\n", val);
282}
283
284static ssize_t nullb_device_uint_attr_store(unsigned int *val,
285 const char *page, size_t count)
286{
287 unsigned int tmp;
288 int result;
289
290 result = kstrtouint(s: page, base: 0, res: &tmp);
291 if (result < 0)
292 return result;
293
294 *val = tmp;
295 return count;
296}
297
298static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
299 const char *page, size_t count)
300{
301 int result;
302 unsigned long tmp;
303
304 result = kstrtoul(s: page, base: 0, res: &tmp);
305 if (result < 0)
306 return result;
307
308 *val = tmp;
309 return count;
310}
311
312static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
313 size_t count)
314{
315 bool tmp;
316 int result;
317
318 result = kstrtobool(s: page, res: &tmp);
319 if (result < 0)
320 return result;
321
322 *val = tmp;
323 return count;
324}
325
326/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
327#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY) \
328static ssize_t \
329nullb_device_##NAME##_show(struct config_item *item, char *page) \
330{ \
331 return nullb_device_##TYPE##_attr_show( \
332 to_nullb_device(item)->NAME, page); \
333} \
334static ssize_t \
335nullb_device_##NAME##_store(struct config_item *item, const char *page, \
336 size_t count) \
337{ \
338 int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
339 struct nullb_device *dev = to_nullb_device(item); \
340 TYPE new_value = 0; \
341 int ret; \
342 \
343 ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
344 if (ret < 0) \
345 return ret; \
346 if (apply_fn) \
347 ret = apply_fn(dev, new_value); \
348 else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) \
349 ret = -EBUSY; \
350 if (ret < 0) \
351 return ret; \
352 dev->NAME = new_value; \
353 return count; \
354} \
355CONFIGFS_ATTR(nullb_device_, NAME);
356
357static int nullb_update_nr_hw_queues(struct nullb_device *dev,
358 unsigned int submit_queues,
359 unsigned int poll_queues)
360
361{
362 struct blk_mq_tag_set *set;
363 int ret, nr_hw_queues;
364
365 if (!dev->nullb)
366 return 0;
367
368 /*
369 * Make sure at least one submit queue exists.
370 */
371 if (!submit_queues)
372 return -EINVAL;
373
374 /*
375 * Make sure that null_init_hctx() does not access nullb->queues[] past
376 * the end of that array.
377 */
378 if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
379 return -EINVAL;
380
381 /*
382 * Keep previous and new queue numbers in nullb_device for reference in
383 * the call back function null_map_queues().
384 */
385 dev->prev_submit_queues = dev->submit_queues;
386 dev->prev_poll_queues = dev->poll_queues;
387 dev->submit_queues = submit_queues;
388 dev->poll_queues = poll_queues;
389
390 set = dev->nullb->tag_set;
391 nr_hw_queues = submit_queues + poll_queues;
392 blk_mq_update_nr_hw_queues(set, nr_hw_queues);
393 ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
394
395 if (ret) {
396 /* on error, revert the queue numbers */
397 dev->submit_queues = dev->prev_submit_queues;
398 dev->poll_queues = dev->prev_poll_queues;
399 }
400
401 return ret;
402}
403
404static int nullb_apply_submit_queues(struct nullb_device *dev,
405 unsigned int submit_queues)
406{
407 return nullb_update_nr_hw_queues(dev, submit_queues, poll_queues: dev->poll_queues);
408}
409
410static int nullb_apply_poll_queues(struct nullb_device *dev,
411 unsigned int poll_queues)
412{
413 return nullb_update_nr_hw_queues(dev, submit_queues: dev->submit_queues, poll_queues);
414}
415
416NULLB_DEVICE_ATTR(size, ulong, NULL);
417NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
418NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
419NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
420NULLB_DEVICE_ATTR(home_node, uint, NULL);
421NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
422NULLB_DEVICE_ATTR(blocksize, uint, NULL);
423NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
424NULLB_DEVICE_ATTR(irqmode, uint, NULL);
425NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
426NULLB_DEVICE_ATTR(index, uint, NULL);
427NULLB_DEVICE_ATTR(blocking, bool, NULL);
428NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
429NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
430NULLB_DEVICE_ATTR(discard, bool, NULL);
431NULLB_DEVICE_ATTR(mbps, uint, NULL);
432NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
433NULLB_DEVICE_ATTR(zoned, bool, NULL);
434NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
435NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
436NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
437NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
438NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
439NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
440NULLB_DEVICE_ATTR(no_sched, bool, NULL);
441NULLB_DEVICE_ATTR(shared_tags, bool, NULL);
442NULLB_DEVICE_ATTR(shared_tag_bitmap, bool, NULL);
443
444static ssize_t nullb_device_power_show(struct config_item *item, char *page)
445{
446 return nullb_device_bool_attr_show(val: to_nullb_device(item)->power, page);
447}
448
449static ssize_t nullb_device_power_store(struct config_item *item,
450 const char *page, size_t count)
451{
452 struct nullb_device *dev = to_nullb_device(item);
453 bool newp = false;
454 ssize_t ret;
455
456 ret = nullb_device_bool_attr_store(val: &newp, page, count);
457 if (ret < 0)
458 return ret;
459
460 if (!dev->power && newp) {
461 if (test_and_set_bit(nr: NULLB_DEV_FL_UP, addr: &dev->flags))
462 return count;
463 ret = null_add_dev(dev);
464 if (ret) {
465 clear_bit(nr: NULLB_DEV_FL_UP, addr: &dev->flags);
466 return ret;
467 }
468
469 set_bit(nr: NULLB_DEV_FL_CONFIGURED, addr: &dev->flags);
470 dev->power = newp;
471 } else if (dev->power && !newp) {
472 if (test_and_clear_bit(nr: NULLB_DEV_FL_UP, addr: &dev->flags)) {
473 mutex_lock(&lock);
474 dev->power = newp;
475 null_del_dev(nullb: dev->nullb);
476 mutex_unlock(lock: &lock);
477 }
478 clear_bit(nr: NULLB_DEV_FL_CONFIGURED, addr: &dev->flags);
479 }
480
481 return count;
482}
483
484CONFIGFS_ATTR(nullb_device_, power);
485
486static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
487{
488 struct nullb_device *t_dev = to_nullb_device(item);
489
490 return badblocks_show(bb: &t_dev->badblocks, page, unack: 0);
491}
492
493static ssize_t nullb_device_badblocks_store(struct config_item *item,
494 const char *page, size_t count)
495{
496 struct nullb_device *t_dev = to_nullb_device(item);
497 char *orig, *buf, *tmp;
498 u64 start, end;
499 int ret;
500
501 orig = kstrndup(s: page, len: count, GFP_KERNEL);
502 if (!orig)
503 return -ENOMEM;
504
505 buf = strstrip(str: orig);
506
507 ret = -EINVAL;
508 if (buf[0] != '+' && buf[0] != '-')
509 goto out;
510 tmp = strchr(&buf[1], '-');
511 if (!tmp)
512 goto out;
513 *tmp = '\0';
514 ret = kstrtoull(s: buf + 1, base: 0, res: &start);
515 if (ret)
516 goto out;
517 ret = kstrtoull(s: tmp + 1, base: 0, res: &end);
518 if (ret)
519 goto out;
520 ret = -EINVAL;
521 if (start > end)
522 goto out;
523 /* enable badblocks */
524 cmpxchg(&t_dev->badblocks.shift, -1, 0);
525 if (buf[0] == '+')
526 ret = badblocks_set(bb: &t_dev->badblocks, s: start,
527 sectors: end - start + 1, acknowledged: 1);
528 else
529 ret = badblocks_clear(bb: &t_dev->badblocks, s: start,
530 sectors: end - start + 1);
531 if (ret == 0)
532 ret = count;
533out:
534 kfree(objp: orig);
535 return ret;
536}
537CONFIGFS_ATTR(nullb_device_, badblocks);
538
539static ssize_t nullb_device_zone_readonly_store(struct config_item *item,
540 const char *page, size_t count)
541{
542 struct nullb_device *dev = to_nullb_device(item);
543
544 return zone_cond_store(dev, page, count, cond: BLK_ZONE_COND_READONLY);
545}
546CONFIGFS_ATTR_WO(nullb_device_, zone_readonly);
547
548static ssize_t nullb_device_zone_offline_store(struct config_item *item,
549 const char *page, size_t count)
550{
551 struct nullb_device *dev = to_nullb_device(item);
552
553 return zone_cond_store(dev, page, count, cond: BLK_ZONE_COND_OFFLINE);
554}
555CONFIGFS_ATTR_WO(nullb_device_, zone_offline);
556
557static struct configfs_attribute *nullb_device_attrs[] = {
558 &nullb_device_attr_size,
559 &nullb_device_attr_completion_nsec,
560 &nullb_device_attr_submit_queues,
561 &nullb_device_attr_poll_queues,
562 &nullb_device_attr_home_node,
563 &nullb_device_attr_queue_mode,
564 &nullb_device_attr_blocksize,
565 &nullb_device_attr_max_sectors,
566 &nullb_device_attr_irqmode,
567 &nullb_device_attr_hw_queue_depth,
568 &nullb_device_attr_index,
569 &nullb_device_attr_blocking,
570 &nullb_device_attr_use_per_node_hctx,
571 &nullb_device_attr_power,
572 &nullb_device_attr_memory_backed,
573 &nullb_device_attr_discard,
574 &nullb_device_attr_mbps,
575 &nullb_device_attr_cache_size,
576 &nullb_device_attr_badblocks,
577 &nullb_device_attr_zoned,
578 &nullb_device_attr_zone_size,
579 &nullb_device_attr_zone_capacity,
580 &nullb_device_attr_zone_nr_conv,
581 &nullb_device_attr_zone_max_open,
582 &nullb_device_attr_zone_max_active,
583 &nullb_device_attr_zone_readonly,
584 &nullb_device_attr_zone_offline,
585 &nullb_device_attr_virt_boundary,
586 &nullb_device_attr_no_sched,
587 &nullb_device_attr_shared_tags,
588 &nullb_device_attr_shared_tag_bitmap,
589 NULL,
590};
591
592static void nullb_device_release(struct config_item *item)
593{
594 struct nullb_device *dev = to_nullb_device(item);
595
596 null_free_device_storage(dev, is_cache: false);
597 null_free_dev(dev);
598}
599
600static struct configfs_item_operations nullb_device_ops = {
601 .release = nullb_device_release,
602};
603
604static const struct config_item_type nullb_device_type = {
605 .ct_item_ops = &nullb_device_ops,
606 .ct_attrs = nullb_device_attrs,
607 .ct_owner = THIS_MODULE,
608};
609
610#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
611
612static void nullb_add_fault_config(struct nullb_device *dev)
613{
614 fault_config_init(config: &dev->timeout_config, name: "timeout_inject");
615 fault_config_init(config: &dev->requeue_config, name: "requeue_inject");
616 fault_config_init(config: &dev->init_hctx_fault_config, name: "init_hctx_fault_inject");
617
618 configfs_add_default_group(new_group: &dev->timeout_config.group, group: &dev->group);
619 configfs_add_default_group(new_group: &dev->requeue_config.group, group: &dev->group);
620 configfs_add_default_group(new_group: &dev->init_hctx_fault_config.group, group: &dev->group);
621}
622
623#else
624
625static void nullb_add_fault_config(struct nullb_device *dev)
626{
627}
628
629#endif
630
631static struct
632config_group *nullb_group_make_group(struct config_group *group, const char *name)
633{
634 struct nullb_device *dev;
635
636 if (null_find_dev_by_name(name))
637 return ERR_PTR(error: -EEXIST);
638
639 dev = null_alloc_dev();
640 if (!dev)
641 return ERR_PTR(error: -ENOMEM);
642
643 config_group_init_type_name(group: &dev->group, name, type: &nullb_device_type);
644 nullb_add_fault_config(dev);
645
646 return &dev->group;
647}
648
649static void
650nullb_group_drop_item(struct config_group *group, struct config_item *item)
651{
652 struct nullb_device *dev = to_nullb_device(item);
653
654 if (test_and_clear_bit(nr: NULLB_DEV_FL_UP, addr: &dev->flags)) {
655 mutex_lock(&lock);
656 dev->power = false;
657 null_del_dev(nullb: dev->nullb);
658 mutex_unlock(lock: &lock);
659 }
660
661 config_item_put(item);
662}
663
664static ssize_t memb_group_features_show(struct config_item *item, char *page)
665{
666 return snprintf(buf: page, PAGE_SIZE,
667 fmt: "badblocks,blocking,blocksize,cache_size,"
668 "completion_nsec,discard,home_node,hw_queue_depth,"
669 "irqmode,max_sectors,mbps,memory_backed,no_sched,"
670 "poll_queues,power,queue_mode,shared_tag_bitmap,"
671 "shared_tags,size,submit_queues,use_per_node_hctx,"
672 "virt_boundary,zoned,zone_capacity,zone_max_active,"
673 "zone_max_open,zone_nr_conv,zone_offline,zone_readonly,"
674 "zone_size\n");
675}
676
677CONFIGFS_ATTR_RO(memb_group_, features);
678
679static struct configfs_attribute *nullb_group_attrs[] = {
680 &memb_group_attr_features,
681 NULL,
682};
683
684static struct configfs_group_operations nullb_group_ops = {
685 .make_group = nullb_group_make_group,
686 .drop_item = nullb_group_drop_item,
687};
688
689static const struct config_item_type nullb_group_type = {
690 .ct_group_ops = &nullb_group_ops,
691 .ct_attrs = nullb_group_attrs,
692 .ct_owner = THIS_MODULE,
693};
694
695static struct configfs_subsystem nullb_subsys = {
696 .su_group = {
697 .cg_item = {
698 .ci_namebuf = "nullb",
699 .ci_type = &nullb_group_type,
700 },
701 },
702};
703
704static inline int null_cache_active(struct nullb *nullb)
705{
706 return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
707}
708
709static struct nullb_device *null_alloc_dev(void)
710{
711 struct nullb_device *dev;
712
713 dev = kzalloc(size: sizeof(*dev), GFP_KERNEL);
714 if (!dev)
715 return NULL;
716
717#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
718 dev->timeout_config.attr = null_timeout_attr;
719 dev->requeue_config.attr = null_requeue_attr;
720 dev->init_hctx_fault_config.attr = null_init_hctx_attr;
721#endif
722
723 INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
724 INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
725 if (badblocks_init(bb: &dev->badblocks, enable: 0)) {
726 kfree(objp: dev);
727 return NULL;
728 }
729
730 dev->size = g_gb * 1024;
731 dev->completion_nsec = g_completion_nsec;
732 dev->submit_queues = g_submit_queues;
733 dev->prev_submit_queues = g_submit_queues;
734 dev->poll_queues = g_poll_queues;
735 dev->prev_poll_queues = g_poll_queues;
736 dev->home_node = g_home_node;
737 dev->queue_mode = g_queue_mode;
738 dev->blocksize = g_bs;
739 dev->max_sectors = g_max_sectors;
740 dev->irqmode = g_irqmode;
741 dev->hw_queue_depth = g_hw_queue_depth;
742 dev->blocking = g_blocking;
743 dev->memory_backed = g_memory_backed;
744 dev->discard = g_discard;
745 dev->cache_size = g_cache_size;
746 dev->mbps = g_mbps;
747 dev->use_per_node_hctx = g_use_per_node_hctx;
748 dev->zoned = g_zoned;
749 dev->zone_size = g_zone_size;
750 dev->zone_capacity = g_zone_capacity;
751 dev->zone_nr_conv = g_zone_nr_conv;
752 dev->zone_max_open = g_zone_max_open;
753 dev->zone_max_active = g_zone_max_active;
754 dev->virt_boundary = g_virt_boundary;
755 dev->no_sched = g_no_sched;
756 dev->shared_tags = g_shared_tags;
757 dev->shared_tag_bitmap = g_shared_tag_bitmap;
758 return dev;
759}
760
761static void null_free_dev(struct nullb_device *dev)
762{
763 if (!dev)
764 return;
765
766 null_free_zoned_dev(dev);
767 badblocks_exit(bb: &dev->badblocks);
768 kfree(objp: dev);
769}
770
771static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
772{
773 struct nullb_cmd *cmd = container_of(timer, struct nullb_cmd, timer);
774
775 blk_mq_end_request(rq: blk_mq_rq_from_pdu(pdu: cmd), error: cmd->error);
776 return HRTIMER_NORESTART;
777}
778
779static void null_cmd_end_timer(struct nullb_cmd *cmd)
780{
781 ktime_t kt = cmd->nq->dev->completion_nsec;
782
783 hrtimer_start(timer: &cmd->timer, tim: kt, mode: HRTIMER_MODE_REL);
784}
785
786static void null_complete_rq(struct request *rq)
787{
788 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
789
790 blk_mq_end_request(rq, error: cmd->error);
791}
792
793static struct nullb_page *null_alloc_page(void)
794{
795 struct nullb_page *t_page;
796
797 t_page = kmalloc(size: sizeof(struct nullb_page), GFP_NOIO);
798 if (!t_page)
799 return NULL;
800
801 t_page->page = alloc_pages(GFP_NOIO, order: 0);
802 if (!t_page->page) {
803 kfree(objp: t_page);
804 return NULL;
805 }
806
807 memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
808 return t_page;
809}
810
811static void null_free_page(struct nullb_page *t_page)
812{
813 __set_bit(NULLB_PAGE_FREE, t_page->bitmap);
814 if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
815 return;
816 __free_page(t_page->page);
817 kfree(objp: t_page);
818}
819
820static bool null_page_empty(struct nullb_page *page)
821{
822 int size = MAP_SZ - 2;
823
824 return find_first_bit(addr: page->bitmap, size) == size;
825}
826
827static void null_free_sector(struct nullb *nullb, sector_t sector,
828 bool is_cache)
829{
830 unsigned int sector_bit;
831 u64 idx;
832 struct nullb_page *t_page, *ret;
833 struct radix_tree_root *root;
834
835 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
836 idx = sector >> PAGE_SECTORS_SHIFT;
837 sector_bit = (sector & SECTOR_MASK);
838
839 t_page = radix_tree_lookup(root, idx);
840 if (t_page) {
841 __clear_bit(sector_bit, t_page->bitmap);
842
843 if (null_page_empty(page: t_page)) {
844 ret = radix_tree_delete_item(root, idx, t_page);
845 WARN_ON(ret != t_page);
846 null_free_page(t_page: ret);
847 if (is_cache)
848 nullb->dev->curr_cache -= PAGE_SIZE;
849 }
850 }
851}
852
853static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
854 struct nullb_page *t_page, bool is_cache)
855{
856 struct radix_tree_root *root;
857
858 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
859
860 if (radix_tree_insert(root, index: idx, t_page)) {
861 null_free_page(t_page);
862 t_page = radix_tree_lookup(root, idx);
863 WARN_ON(!t_page || t_page->page->index != idx);
864 } else if (is_cache)
865 nullb->dev->curr_cache += PAGE_SIZE;
866
867 return t_page;
868}
869
870static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
871{
872 unsigned long pos = 0;
873 int nr_pages;
874 struct nullb_page *ret, *t_pages[FREE_BATCH];
875 struct radix_tree_root *root;
876
877 root = is_cache ? &dev->cache : &dev->data;
878
879 do {
880 int i;
881
882 nr_pages = radix_tree_gang_lookup(root,
883 results: (void **)t_pages, first_index: pos, FREE_BATCH);
884
885 for (i = 0; i < nr_pages; i++) {
886 pos = t_pages[i]->page->index;
887 ret = radix_tree_delete_item(root, pos, t_pages[i]);
888 WARN_ON(ret != t_pages[i]);
889 null_free_page(t_page: ret);
890 }
891
892 pos++;
893 } while (nr_pages == FREE_BATCH);
894
895 if (is_cache)
896 dev->curr_cache = 0;
897}
898
899static struct nullb_page *__null_lookup_page(struct nullb *nullb,
900 sector_t sector, bool for_write, bool is_cache)
901{
902 unsigned int sector_bit;
903 u64 idx;
904 struct nullb_page *t_page;
905 struct radix_tree_root *root;
906
907 idx = sector >> PAGE_SECTORS_SHIFT;
908 sector_bit = (sector & SECTOR_MASK);
909
910 root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
911 t_page = radix_tree_lookup(root, idx);
912 WARN_ON(t_page && t_page->page->index != idx);
913
914 if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
915 return t_page;
916
917 return NULL;
918}
919
920static struct nullb_page *null_lookup_page(struct nullb *nullb,
921 sector_t sector, bool for_write, bool ignore_cache)
922{
923 struct nullb_page *page = NULL;
924
925 if (!ignore_cache)
926 page = __null_lookup_page(nullb, sector, for_write, is_cache: true);
927 if (page)
928 return page;
929 return __null_lookup_page(nullb, sector, for_write, is_cache: false);
930}
931
932static struct nullb_page *null_insert_page(struct nullb *nullb,
933 sector_t sector, bool ignore_cache)
934 __releases(&nullb->lock)
935 __acquires(&nullb->lock)
936{
937 u64 idx;
938 struct nullb_page *t_page;
939
940 t_page = null_lookup_page(nullb, sector, for_write: true, ignore_cache);
941 if (t_page)
942 return t_page;
943
944 spin_unlock_irq(lock: &nullb->lock);
945
946 t_page = null_alloc_page();
947 if (!t_page)
948 goto out_lock;
949
950 if (radix_tree_preload(GFP_NOIO))
951 goto out_freepage;
952
953 spin_lock_irq(lock: &nullb->lock);
954 idx = sector >> PAGE_SECTORS_SHIFT;
955 t_page->page->index = idx;
956 t_page = null_radix_tree_insert(nullb, idx, t_page, is_cache: !ignore_cache);
957 radix_tree_preload_end();
958
959 return t_page;
960out_freepage:
961 null_free_page(t_page);
962out_lock:
963 spin_lock_irq(lock: &nullb->lock);
964 return null_lookup_page(nullb, sector, for_write: true, ignore_cache);
965}
966
967static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
968{
969 int i;
970 unsigned int offset;
971 u64 idx;
972 struct nullb_page *t_page, *ret;
973 void *dst, *src;
974
975 idx = c_page->page->index;
976
977 t_page = null_insert_page(nullb, sector: idx << PAGE_SECTORS_SHIFT, ignore_cache: true);
978
979 __clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
980 if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
981 null_free_page(t_page: c_page);
982 if (t_page && null_page_empty(page: t_page)) {
983 ret = radix_tree_delete_item(&nullb->dev->data,
984 idx, t_page);
985 null_free_page(t_page);
986 }
987 return 0;
988 }
989
990 if (!t_page)
991 return -ENOMEM;
992
993 src = kmap_local_page(page: c_page->page);
994 dst = kmap_local_page(page: t_page->page);
995
996 for (i = 0; i < PAGE_SECTORS;
997 i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
998 if (test_bit(i, c_page->bitmap)) {
999 offset = (i << SECTOR_SHIFT);
1000 memcpy(dst + offset, src + offset,
1001 nullb->dev->blocksize);
1002 __set_bit(i, t_page->bitmap);
1003 }
1004 }
1005
1006 kunmap_local(dst);
1007 kunmap_local(src);
1008
1009 ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
1010 null_free_page(t_page: ret);
1011 nullb->dev->curr_cache -= PAGE_SIZE;
1012
1013 return 0;
1014}
1015
1016static int null_make_cache_space(struct nullb *nullb, unsigned long n)
1017{
1018 int i, err, nr_pages;
1019 struct nullb_page *c_pages[FREE_BATCH];
1020 unsigned long flushed = 0, one_round;
1021
1022again:
1023 if ((nullb->dev->cache_size * 1024 * 1024) >
1024 nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
1025 return 0;
1026
1027 nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
1028 results: (void **)c_pages, first_index: nullb->cache_flush_pos, FREE_BATCH);
1029 /*
1030 * nullb_flush_cache_page could unlock before using the c_pages. To
1031 * avoid race, we don't allow page free
1032 */
1033 for (i = 0; i < nr_pages; i++) {
1034 nullb->cache_flush_pos = c_pages[i]->page->index;
1035 /*
1036 * We found the page which is being flushed to disk by other
1037 * threads
1038 */
1039 if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
1040 c_pages[i] = NULL;
1041 else
1042 __set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
1043 }
1044
1045 one_round = 0;
1046 for (i = 0; i < nr_pages; i++) {
1047 if (c_pages[i] == NULL)
1048 continue;
1049 err = null_flush_cache_page(nullb, c_page: c_pages[i]);
1050 if (err)
1051 return err;
1052 one_round++;
1053 }
1054 flushed += one_round << PAGE_SHIFT;
1055
1056 if (n > flushed) {
1057 if (nr_pages == 0)
1058 nullb->cache_flush_pos = 0;
1059 if (one_round == 0) {
1060 /* give other threads a chance */
1061 spin_unlock_irq(lock: &nullb->lock);
1062 spin_lock_irq(lock: &nullb->lock);
1063 }
1064 goto again;
1065 }
1066 return 0;
1067}
1068
1069static int copy_to_nullb(struct nullb *nullb, struct page *source,
1070 unsigned int off, sector_t sector, size_t n, bool is_fua)
1071{
1072 size_t temp, count = 0;
1073 unsigned int offset;
1074 struct nullb_page *t_page;
1075
1076 while (count < n) {
1077 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1078
1079 if (null_cache_active(nullb) && !is_fua)
1080 null_make_cache_space(nullb, PAGE_SIZE);
1081
1082 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1083 t_page = null_insert_page(nullb, sector,
1084 ignore_cache: !null_cache_active(nullb) || is_fua);
1085 if (!t_page)
1086 return -ENOSPC;
1087
1088 memcpy_page(dst_page: t_page->page, dst_off: offset, src_page: source, src_off: off + count, len: temp);
1089
1090 __set_bit(sector & SECTOR_MASK, t_page->bitmap);
1091
1092 if (is_fua)
1093 null_free_sector(nullb, sector, is_cache: true);
1094
1095 count += temp;
1096 sector += temp >> SECTOR_SHIFT;
1097 }
1098 return 0;
1099}
1100
1101static int copy_from_nullb(struct nullb *nullb, struct page *dest,
1102 unsigned int off, sector_t sector, size_t n)
1103{
1104 size_t temp, count = 0;
1105 unsigned int offset;
1106 struct nullb_page *t_page;
1107
1108 while (count < n) {
1109 temp = min_t(size_t, nullb->dev->blocksize, n - count);
1110
1111 offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
1112 t_page = null_lookup_page(nullb, sector, for_write: false,
1113 ignore_cache: !null_cache_active(nullb));
1114
1115 if (t_page)
1116 memcpy_page(dst_page: dest, dst_off: off + count, src_page: t_page->page, src_off: offset,
1117 len: temp);
1118 else
1119 zero_user(page: dest, start: off + count, size: temp);
1120
1121 count += temp;
1122 sector += temp >> SECTOR_SHIFT;
1123 }
1124 return 0;
1125}
1126
1127static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
1128 unsigned int len, unsigned int off)
1129{
1130 memset_page(page, offset: off, val: 0xff, len);
1131}
1132
1133blk_status_t null_handle_discard(struct nullb_device *dev,
1134 sector_t sector, sector_t nr_sectors)
1135{
1136 struct nullb *nullb = dev->nullb;
1137 size_t n = nr_sectors << SECTOR_SHIFT;
1138 size_t temp;
1139
1140 spin_lock_irq(lock: &nullb->lock);
1141 while (n > 0) {
1142 temp = min_t(size_t, n, dev->blocksize);
1143 null_free_sector(nullb, sector, is_cache: false);
1144 if (null_cache_active(nullb))
1145 null_free_sector(nullb, sector, is_cache: true);
1146 sector += temp >> SECTOR_SHIFT;
1147 n -= temp;
1148 }
1149 spin_unlock_irq(lock: &nullb->lock);
1150
1151 return BLK_STS_OK;
1152}
1153
1154static int null_handle_flush(struct nullb *nullb)
1155{
1156 int err;
1157
1158 if (!null_cache_active(nullb))
1159 return 0;
1160
1161 spin_lock_irq(lock: &nullb->lock);
1162 while (true) {
1163 err = null_make_cache_space(nullb,
1164 n: nullb->dev->cache_size * 1024 * 1024);
1165 if (err || nullb->dev->curr_cache == 0)
1166 break;
1167 }
1168
1169 WARN_ON(!radix_tree_empty(&nullb->dev->cache));
1170 spin_unlock_irq(lock: &nullb->lock);
1171 return err;
1172}
1173
1174static int null_transfer(struct nullb *nullb, struct page *page,
1175 unsigned int len, unsigned int off, bool is_write, sector_t sector,
1176 bool is_fua)
1177{
1178 struct nullb_device *dev = nullb->dev;
1179 unsigned int valid_len = len;
1180 int err = 0;
1181
1182 if (!is_write) {
1183 if (dev->zoned)
1184 valid_len = null_zone_valid_read_len(nullb,
1185 sector, len);
1186
1187 if (valid_len) {
1188 err = copy_from_nullb(nullb, dest: page, off,
1189 sector, n: valid_len);
1190 off += valid_len;
1191 len -= valid_len;
1192 }
1193
1194 if (len)
1195 nullb_fill_pattern(nullb, page, len, off);
1196 flush_dcache_page(page);
1197 } else {
1198 flush_dcache_page(page);
1199 err = copy_to_nullb(nullb, source: page, off, sector, n: len, is_fua);
1200 }
1201
1202 return err;
1203}
1204
1205static int null_handle_rq(struct nullb_cmd *cmd)
1206{
1207 struct request *rq = blk_mq_rq_from_pdu(pdu: cmd);
1208 struct nullb *nullb = cmd->nq->dev->nullb;
1209 int err;
1210 unsigned int len;
1211 sector_t sector = blk_rq_pos(rq);
1212 struct req_iterator iter;
1213 struct bio_vec bvec;
1214
1215 spin_lock_irq(lock: &nullb->lock);
1216 rq_for_each_segment(bvec, rq, iter) {
1217 len = bvec.bv_len;
1218 err = null_transfer(nullb, page: bvec.bv_page, len, off: bvec.bv_offset,
1219 is_write: op_is_write(op: req_op(req: rq)), sector,
1220 is_fua: rq->cmd_flags & REQ_FUA);
1221 if (err) {
1222 spin_unlock_irq(lock: &nullb->lock);
1223 return err;
1224 }
1225 sector += len >> SECTOR_SHIFT;
1226 }
1227 spin_unlock_irq(lock: &nullb->lock);
1228
1229 return 0;
1230}
1231
1232static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
1233{
1234 struct nullb_device *dev = cmd->nq->dev;
1235 struct nullb *nullb = dev->nullb;
1236 blk_status_t sts = BLK_STS_OK;
1237 struct request *rq = blk_mq_rq_from_pdu(pdu: cmd);
1238
1239 if (!hrtimer_active(timer: &nullb->bw_timer))
1240 hrtimer_restart(timer: &nullb->bw_timer);
1241
1242 if (atomic_long_sub_return(i: blk_rq_bytes(rq), v: &nullb->cur_bytes) < 0) {
1243 blk_mq_stop_hw_queues(q: nullb->q);
1244 /* race with timer */
1245 if (atomic_long_read(v: &nullb->cur_bytes) > 0)
1246 blk_mq_start_stopped_hw_queues(q: nullb->q, async: true);
1247 /* requeue request */
1248 sts = BLK_STS_DEV_RESOURCE;
1249 }
1250 return sts;
1251}
1252
1253static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
1254 sector_t sector,
1255 sector_t nr_sectors)
1256{
1257 struct badblocks *bb = &cmd->nq->dev->badblocks;
1258 sector_t first_bad;
1259 int bad_sectors;
1260
1261 if (badblocks_check(bb, s: sector, sectors: nr_sectors, first_bad: &first_bad, bad_sectors: &bad_sectors))
1262 return BLK_STS_IOERR;
1263
1264 return BLK_STS_OK;
1265}
1266
1267static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
1268 enum req_op op,
1269 sector_t sector,
1270 sector_t nr_sectors)
1271{
1272 struct nullb_device *dev = cmd->nq->dev;
1273
1274 if (op == REQ_OP_DISCARD)
1275 return null_handle_discard(dev, sector, nr_sectors);
1276 return errno_to_blk_status(errno: null_handle_rq(cmd));
1277
1278}
1279
1280static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
1281{
1282 struct request *rq = blk_mq_rq_from_pdu(pdu: cmd);
1283 struct nullb_device *dev = cmd->nq->dev;
1284 struct bio *bio;
1285
1286 if (!dev->memory_backed && req_op(req: rq) == REQ_OP_READ) {
1287 __rq_for_each_bio(bio, rq)
1288 zero_fill_bio(bio);
1289 }
1290}
1291
1292static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
1293{
1294 struct request *rq = blk_mq_rq_from_pdu(pdu: cmd);
1295
1296 /*
1297 * Since root privileges are required to configure the null_blk
1298 * driver, it is fine that this driver does not initialize the
1299 * data buffers of read commands. Zero-initialize these buffers
1300 * anyway if KMSAN is enabled to prevent that KMSAN complains
1301 * about null_blk not initializing read data buffers.
1302 */
1303 if (IS_ENABLED(CONFIG_KMSAN))
1304 nullb_zero_read_cmd_buffer(cmd);
1305
1306 /* Complete IO by inline, softirq or timer */
1307 switch (cmd->nq->dev->irqmode) {
1308 case NULL_IRQ_SOFTIRQ:
1309 blk_mq_complete_request(rq);
1310 break;
1311 case NULL_IRQ_NONE:
1312 blk_mq_end_request(rq, error: cmd->error);
1313 break;
1314 case NULL_IRQ_TIMER:
1315 null_cmd_end_timer(cmd);
1316 break;
1317 }
1318}
1319
1320blk_status_t null_process_cmd(struct nullb_cmd *cmd, enum req_op op,
1321 sector_t sector, unsigned int nr_sectors)
1322{
1323 struct nullb_device *dev = cmd->nq->dev;
1324 blk_status_t ret;
1325
1326 if (dev->badblocks.shift != -1) {
1327 ret = null_handle_badblocks(cmd, sector, nr_sectors);
1328 if (ret != BLK_STS_OK)
1329 return ret;
1330 }
1331
1332 if (dev->memory_backed)
1333 return null_handle_memory_backed(cmd, op, sector, nr_sectors);
1334
1335 return BLK_STS_OK;
1336}
1337
1338static void null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
1339 sector_t nr_sectors, enum req_op op)
1340{
1341 struct nullb_device *dev = cmd->nq->dev;
1342 struct nullb *nullb = dev->nullb;
1343 blk_status_t sts;
1344
1345 if (op == REQ_OP_FLUSH) {
1346 cmd->error = errno_to_blk_status(errno: null_handle_flush(nullb));
1347 goto out;
1348 }
1349
1350 if (dev->zoned)
1351 sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
1352 else
1353 sts = null_process_cmd(cmd, op, sector, nr_sectors);
1354
1355 /* Do not overwrite errors (e.g. timeout errors) */
1356 if (cmd->error == BLK_STS_OK)
1357 cmd->error = sts;
1358
1359out:
1360 nullb_complete_cmd(cmd);
1361}
1362
1363static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
1364{
1365 struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
1366 ktime_t timer_interval = ktime_set(secs: 0, TIMER_INTERVAL);
1367 unsigned int mbps = nullb->dev->mbps;
1368
1369 if (atomic_long_read(v: &nullb->cur_bytes) == mb_per_tick(mbps))
1370 return HRTIMER_NORESTART;
1371
1372 atomic_long_set(v: &nullb->cur_bytes, i: mb_per_tick(mbps));
1373 blk_mq_start_stopped_hw_queues(q: nullb->q, async: true);
1374
1375 hrtimer_forward_now(timer: &nullb->bw_timer, interval: timer_interval);
1376
1377 return HRTIMER_RESTART;
1378}
1379
1380static void nullb_setup_bwtimer(struct nullb *nullb)
1381{
1382 ktime_t timer_interval = ktime_set(secs: 0, TIMER_INTERVAL);
1383
1384 hrtimer_init(timer: &nullb->bw_timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
1385 nullb->bw_timer.function = nullb_bwtimer_fn;
1386 atomic_long_set(v: &nullb->cur_bytes, i: mb_per_tick(mbps: nullb->dev->mbps));
1387 hrtimer_start(timer: &nullb->bw_timer, tim: timer_interval, mode: HRTIMER_MODE_REL);
1388}
1389
1390#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1391
1392static bool should_timeout_request(struct request *rq)
1393{
1394 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1395 struct nullb_device *dev = cmd->nq->dev;
1396
1397 return should_fail(attr: &dev->timeout_config.attr, size: 1);
1398}
1399
1400static bool should_requeue_request(struct request *rq)
1401{
1402 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1403 struct nullb_device *dev = cmd->nq->dev;
1404
1405 return should_fail(attr: &dev->requeue_config.attr, size: 1);
1406}
1407
1408static bool should_init_hctx_fail(struct nullb_device *dev)
1409{
1410 return should_fail(attr: &dev->init_hctx_fault_config.attr, size: 1);
1411}
1412
1413#else
1414
1415static bool should_timeout_request(struct request *rq)
1416{
1417 return false;
1418}
1419
1420static bool should_requeue_request(struct request *rq)
1421{
1422 return false;
1423}
1424
1425static bool should_init_hctx_fail(struct nullb_device *dev)
1426{
1427 return false;
1428}
1429
1430#endif
1431
1432static void null_map_queues(struct blk_mq_tag_set *set)
1433{
1434 struct nullb *nullb = set->driver_data;
1435 int i, qoff;
1436 unsigned int submit_queues = g_submit_queues;
1437 unsigned int poll_queues = g_poll_queues;
1438
1439 if (nullb) {
1440 struct nullb_device *dev = nullb->dev;
1441
1442 /*
1443 * Refer nr_hw_queues of the tag set to check if the expected
1444 * number of hardware queues are prepared. If block layer failed
1445 * to prepare them, use previous numbers of submit queues and
1446 * poll queues to map queues.
1447 */
1448 if (set->nr_hw_queues ==
1449 dev->submit_queues + dev->poll_queues) {
1450 submit_queues = dev->submit_queues;
1451 poll_queues = dev->poll_queues;
1452 } else if (set->nr_hw_queues ==
1453 dev->prev_submit_queues + dev->prev_poll_queues) {
1454 submit_queues = dev->prev_submit_queues;
1455 poll_queues = dev->prev_poll_queues;
1456 } else {
1457 pr_warn("tag set has unexpected nr_hw_queues: %d\n",
1458 set->nr_hw_queues);
1459 WARN_ON_ONCE(true);
1460 submit_queues = 1;
1461 poll_queues = 0;
1462 }
1463 }
1464
1465 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
1466 struct blk_mq_queue_map *map = &set->map[i];
1467
1468 switch (i) {
1469 case HCTX_TYPE_DEFAULT:
1470 map->nr_queues = submit_queues;
1471 break;
1472 case HCTX_TYPE_READ:
1473 map->nr_queues = 0;
1474 continue;
1475 case HCTX_TYPE_POLL:
1476 map->nr_queues = poll_queues;
1477 break;
1478 }
1479 map->queue_offset = qoff;
1480 qoff += map->nr_queues;
1481 blk_mq_map_queues(qmap: map);
1482 }
1483}
1484
1485static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1486{
1487 struct nullb_queue *nq = hctx->driver_data;
1488 LIST_HEAD(list);
1489 int nr = 0;
1490 struct request *rq;
1491
1492 spin_lock(lock: &nq->poll_lock);
1493 list_splice_init(list: &nq->poll_list, head: &list);
1494 list_for_each_entry(rq, &list, queuelist)
1495 blk_mq_set_request_complete(rq);
1496 spin_unlock(lock: &nq->poll_lock);
1497
1498 while (!list_empty(head: &list)) {
1499 struct nullb_cmd *cmd;
1500 struct request *req;
1501
1502 req = list_first_entry(&list, struct request, queuelist);
1503 list_del_init(entry: &req->queuelist);
1504 cmd = blk_mq_rq_to_pdu(rq: req);
1505 cmd->error = null_process_cmd(cmd, op: req_op(req), sector: blk_rq_pos(rq: req),
1506 nr_sectors: blk_rq_sectors(rq: req));
1507 if (!blk_mq_add_to_batch(req, iob, ioerror: (__force int) cmd->error,
1508 complete: blk_mq_end_request_batch))
1509 blk_mq_end_request(rq: req, error: cmd->error);
1510 nr++;
1511 }
1512
1513 return nr;
1514}
1515
1516static enum blk_eh_timer_return null_timeout_rq(struct request *rq)
1517{
1518 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1519 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1520
1521 if (hctx->type == HCTX_TYPE_POLL) {
1522 struct nullb_queue *nq = hctx->driver_data;
1523
1524 spin_lock(lock: &nq->poll_lock);
1525 /* The request may have completed meanwhile. */
1526 if (blk_mq_request_completed(rq)) {
1527 spin_unlock(lock: &nq->poll_lock);
1528 return BLK_EH_DONE;
1529 }
1530 list_del_init(entry: &rq->queuelist);
1531 spin_unlock(lock: &nq->poll_lock);
1532 }
1533
1534 pr_info("rq %p timed out\n", rq);
1535
1536 /*
1537 * If the device is marked as blocking (i.e. memory backed or zoned
1538 * device), the submission path may be blocked waiting for resources
1539 * and cause real timeouts. For these real timeouts, the submission
1540 * path will complete the request using blk_mq_complete_request().
1541 * Only fake timeouts need to execute blk_mq_complete_request() here.
1542 */
1543 cmd->error = BLK_STS_TIMEOUT;
1544 if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
1545 blk_mq_complete_request(rq);
1546 return BLK_EH_DONE;
1547}
1548
1549static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
1550 const struct blk_mq_queue_data *bd)
1551{
1552 struct request *rq = bd->rq;
1553 struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
1554 struct nullb_queue *nq = hctx->driver_data;
1555 sector_t nr_sectors = blk_rq_sectors(rq);
1556 sector_t sector = blk_rq_pos(rq);
1557 const bool is_poll = hctx->type == HCTX_TYPE_POLL;
1558
1559 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1560
1561 if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
1562 hrtimer_init(timer: &cmd->timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
1563 cmd->timer.function = null_cmd_timer_expired;
1564 }
1565 cmd->error = BLK_STS_OK;
1566 cmd->nq = nq;
1567 cmd->fake_timeout = should_timeout_request(rq) ||
1568 blk_should_fake_timeout(q: rq->q);
1569
1570 if (should_requeue_request(rq)) {
1571 /*
1572 * Alternate between hitting the core BUSY path, and the
1573 * driver driven requeue path
1574 */
1575 nq->requeue_selection++;
1576 if (nq->requeue_selection & 1)
1577 return BLK_STS_RESOURCE;
1578 blk_mq_requeue_request(rq, kick_requeue_list: true);
1579 return BLK_STS_OK;
1580 }
1581
1582 if (test_bit(NULLB_DEV_FL_THROTTLED, &nq->dev->flags)) {
1583 blk_status_t sts = null_handle_throttled(cmd);
1584
1585 if (sts != BLK_STS_OK)
1586 return sts;
1587 }
1588
1589 blk_mq_start_request(rq);
1590
1591 if (is_poll) {
1592 spin_lock(lock: &nq->poll_lock);
1593 list_add_tail(new: &rq->queuelist, head: &nq->poll_list);
1594 spin_unlock(lock: &nq->poll_lock);
1595 return BLK_STS_OK;
1596 }
1597 if (cmd->fake_timeout)
1598 return BLK_STS_OK;
1599
1600 null_handle_cmd(cmd, sector, nr_sectors, op: req_op(req: rq));
1601 return BLK_STS_OK;
1602}
1603
1604static void null_queue_rqs(struct request **rqlist)
1605{
1606 struct request *requeue_list = NULL;
1607 struct request **requeue_lastp = &requeue_list;
1608 struct blk_mq_queue_data bd = { };
1609 blk_status_t ret;
1610
1611 do {
1612 struct request *rq = rq_list_pop(rqlist);
1613
1614 bd.rq = rq;
1615 ret = null_queue_rq(hctx: rq->mq_hctx, bd: &bd);
1616 if (ret != BLK_STS_OK)
1617 rq_list_add_tail(&requeue_lastp, rq);
1618 } while (!rq_list_empty(*rqlist));
1619
1620 *rqlist = requeue_list;
1621}
1622
1623static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
1624{
1625 nq->dev = nullb->dev;
1626 INIT_LIST_HEAD(list: &nq->poll_list);
1627 spin_lock_init(&nq->poll_lock);
1628}
1629
1630static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
1631 unsigned int hctx_idx)
1632{
1633 struct nullb *nullb = hctx->queue->queuedata;
1634 struct nullb_queue *nq;
1635
1636 if (should_init_hctx_fail(dev: nullb->dev))
1637 return -EFAULT;
1638
1639 nq = &nullb->queues[hctx_idx];
1640 hctx->driver_data = nq;
1641 null_init_queue(nullb, nq);
1642
1643 return 0;
1644}
1645
1646static const struct blk_mq_ops null_mq_ops = {
1647 .queue_rq = null_queue_rq,
1648 .queue_rqs = null_queue_rqs,
1649 .complete = null_complete_rq,
1650 .timeout = null_timeout_rq,
1651 .poll = null_poll,
1652 .map_queues = null_map_queues,
1653 .init_hctx = null_init_hctx,
1654};
1655
1656static void null_del_dev(struct nullb *nullb)
1657{
1658 struct nullb_device *dev;
1659
1660 if (!nullb)
1661 return;
1662
1663 dev = nullb->dev;
1664
1665 ida_free(&nullb_indexes, id: nullb->index);
1666
1667 list_del_init(entry: &nullb->list);
1668
1669 del_gendisk(gp: nullb->disk);
1670
1671 if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
1672 hrtimer_cancel(timer: &nullb->bw_timer);
1673 atomic_long_set(v: &nullb->cur_bytes, LONG_MAX);
1674 blk_mq_start_stopped_hw_queues(q: nullb->q, async: true);
1675 }
1676
1677 put_disk(disk: nullb->disk);
1678 if (nullb->tag_set == &nullb->__tag_set)
1679 blk_mq_free_tag_set(set: nullb->tag_set);
1680 kfree(objp: nullb->queues);
1681 if (null_cache_active(nullb))
1682 null_free_device_storage(dev: nullb->dev, is_cache: true);
1683 kfree(objp: nullb);
1684 dev->nullb = NULL;
1685}
1686
1687static void null_config_discard(struct nullb *nullb, struct queue_limits *lim)
1688{
1689 if (nullb->dev->discard == false)
1690 return;
1691
1692 if (!nullb->dev->memory_backed) {
1693 nullb->dev->discard = false;
1694 pr_info("discard option is ignored without memory backing\n");
1695 return;
1696 }
1697
1698 if (nullb->dev->zoned) {
1699 nullb->dev->discard = false;
1700 pr_info("discard option is ignored in zoned mode\n");
1701 return;
1702 }
1703
1704 lim->max_hw_discard_sectors = UINT_MAX >> 9;
1705}
1706
1707static const struct block_device_operations null_ops = {
1708 .owner = THIS_MODULE,
1709 .report_zones = null_report_zones,
1710};
1711
1712static int setup_queues(struct nullb *nullb)
1713{
1714 int nqueues = nr_cpu_ids;
1715
1716 if (g_poll_queues)
1717 nqueues += g_poll_queues;
1718
1719 nullb->queues = kcalloc(n: nqueues, size: sizeof(struct nullb_queue),
1720 GFP_KERNEL);
1721 if (!nullb->queues)
1722 return -ENOMEM;
1723
1724 return 0;
1725}
1726
1727static int null_init_tag_set(struct blk_mq_tag_set *set, int poll_queues)
1728{
1729 set->ops = &null_mq_ops;
1730 set->cmd_size = sizeof(struct nullb_cmd);
1731 set->timeout = 5 * HZ;
1732 set->nr_maps = 1;
1733 if (poll_queues) {
1734 set->nr_hw_queues += poll_queues;
1735 set->nr_maps += 2;
1736 }
1737 return blk_mq_alloc_tag_set(set);
1738}
1739
1740static int null_init_global_tag_set(void)
1741{
1742 int error;
1743
1744 if (tag_set.ops)
1745 return 0;
1746
1747 tag_set.nr_hw_queues = g_submit_queues;
1748 tag_set.queue_depth = g_hw_queue_depth;
1749 tag_set.numa_node = g_home_node;
1750 tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1751 if (g_no_sched)
1752 tag_set.flags |= BLK_MQ_F_NO_SCHED;
1753 if (g_shared_tag_bitmap)
1754 tag_set.flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1755 if (g_blocking)
1756 tag_set.flags |= BLK_MQ_F_BLOCKING;
1757
1758 error = null_init_tag_set(set: &tag_set, poll_queues: g_poll_queues);
1759 if (error)
1760 tag_set.ops = NULL;
1761 return error;
1762}
1763
1764static int null_setup_tagset(struct nullb *nullb)
1765{
1766 if (nullb->dev->shared_tags) {
1767 nullb->tag_set = &tag_set;
1768 return null_init_global_tag_set();
1769 }
1770
1771 nullb->tag_set = &nullb->__tag_set;
1772 nullb->tag_set->driver_data = nullb;
1773 nullb->tag_set->nr_hw_queues = nullb->dev->submit_queues;
1774 nullb->tag_set->queue_depth = nullb->dev->hw_queue_depth;
1775 nullb->tag_set->numa_node = nullb->dev->home_node;
1776 nullb->tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1777 if (nullb->dev->no_sched)
1778 nullb->tag_set->flags |= BLK_MQ_F_NO_SCHED;
1779 if (nullb->dev->shared_tag_bitmap)
1780 nullb->tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1781 if (nullb->dev->blocking)
1782 nullb->tag_set->flags |= BLK_MQ_F_BLOCKING;
1783 return null_init_tag_set(set: nullb->tag_set, poll_queues: nullb->dev->poll_queues);
1784}
1785
1786static int null_validate_conf(struct nullb_device *dev)
1787{
1788 if (dev->queue_mode == NULL_Q_RQ) {
1789 pr_err("legacy IO path is no longer available\n");
1790 return -EINVAL;
1791 }
1792 if (dev->queue_mode == NULL_Q_BIO) {
1793 pr_err("BIO-based IO path is no longer available, using blk-mq instead.\n");
1794 dev->queue_mode = NULL_Q_MQ;
1795 }
1796
1797 dev->blocksize = round_down(dev->blocksize, 512);
1798 dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
1799
1800 if (dev->use_per_node_hctx) {
1801 if (dev->submit_queues != nr_online_nodes)
1802 dev->submit_queues = nr_online_nodes;
1803 } else if (dev->submit_queues > nr_cpu_ids)
1804 dev->submit_queues = nr_cpu_ids;
1805 else if (dev->submit_queues == 0)
1806 dev->submit_queues = 1;
1807 dev->prev_submit_queues = dev->submit_queues;
1808
1809 if (dev->poll_queues > g_poll_queues)
1810 dev->poll_queues = g_poll_queues;
1811 dev->prev_poll_queues = dev->poll_queues;
1812 dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
1813
1814 /* Do memory allocation, so set blocking */
1815 if (dev->memory_backed)
1816 dev->blocking = true;
1817 else /* cache is meaningless */
1818 dev->cache_size = 0;
1819 dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
1820 dev->cache_size);
1821 dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
1822
1823 if (dev->zoned &&
1824 (!dev->zone_size || !is_power_of_2(n: dev->zone_size))) {
1825 pr_err("zone_size must be power-of-two\n");
1826 return -EINVAL;
1827 }
1828
1829 return 0;
1830}
1831
1832#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1833static bool __null_setup_fault(struct fault_attr *attr, char *str)
1834{
1835 if (!str[0])
1836 return true;
1837
1838 if (!setup_fault_attr(attr, str))
1839 return false;
1840
1841 attr->verbose = 0;
1842 return true;
1843}
1844#endif
1845
1846static bool null_setup_fault(void)
1847{
1848#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
1849 if (!__null_setup_fault(attr: &null_timeout_attr, str: g_timeout_str))
1850 return false;
1851 if (!__null_setup_fault(attr: &null_requeue_attr, str: g_requeue_str))
1852 return false;
1853 if (!__null_setup_fault(attr: &null_init_hctx_attr, str: g_init_hctx_str))
1854 return false;
1855#endif
1856 return true;
1857}
1858
1859static int null_add_dev(struct nullb_device *dev)
1860{
1861 struct queue_limits lim = {
1862 .logical_block_size = dev->blocksize,
1863 .physical_block_size = dev->blocksize,
1864 .max_hw_sectors = dev->max_sectors,
1865 };
1866
1867 struct nullb *nullb;
1868 int rv;
1869
1870 rv = null_validate_conf(dev);
1871 if (rv)
1872 return rv;
1873
1874 nullb = kzalloc_node(size: sizeof(*nullb), GFP_KERNEL, node: dev->home_node);
1875 if (!nullb) {
1876 rv = -ENOMEM;
1877 goto out;
1878 }
1879 nullb->dev = dev;
1880 dev->nullb = nullb;
1881
1882 spin_lock_init(&nullb->lock);
1883
1884 rv = setup_queues(nullb);
1885 if (rv)
1886 goto out_free_nullb;
1887
1888 rv = null_setup_tagset(nullb);
1889 if (rv)
1890 goto out_cleanup_queues;
1891
1892 if (dev->virt_boundary)
1893 lim.virt_boundary_mask = PAGE_SIZE - 1;
1894 null_config_discard(nullb, lim: &lim);
1895 if (dev->zoned) {
1896 rv = null_init_zoned_dev(dev, lim: &lim);
1897 if (rv)
1898 goto out_cleanup_tags;
1899 }
1900
1901 nullb->disk = blk_mq_alloc_disk(nullb->tag_set, &lim, nullb);
1902 if (IS_ERR(ptr: nullb->disk)) {
1903 rv = PTR_ERR(ptr: nullb->disk);
1904 goto out_cleanup_zone;
1905 }
1906 nullb->q = nullb->disk->queue;
1907
1908 if (dev->mbps) {
1909 set_bit(nr: NULLB_DEV_FL_THROTTLED, addr: &dev->flags);
1910 nullb_setup_bwtimer(nullb);
1911 }
1912
1913 if (dev->cache_size > 0) {
1914 set_bit(nr: NULLB_DEV_FL_CACHE, addr: &nullb->dev->flags);
1915 blk_queue_write_cache(q: nullb->q, enabled: true, fua: true);
1916 }
1917
1918 nullb->q->queuedata = nullb;
1919 blk_queue_flag_set(QUEUE_FLAG_NONROT, q: nullb->q);
1920
1921 mutex_lock(&lock);
1922 rv = ida_alloc(ida: &nullb_indexes, GFP_KERNEL);
1923 if (rv < 0) {
1924 mutex_unlock(lock: &lock);
1925 goto out_cleanup_disk;
1926 }
1927 nullb->index = rv;
1928 dev->index = rv;
1929 mutex_unlock(lock: &lock);
1930
1931 if (config_item_name(item: &dev->group.cg_item)) {
1932 /* Use configfs dir name as the device name */
1933 snprintf(buf: nullb->disk_name, size: sizeof(nullb->disk_name),
1934 fmt: "%s", config_item_name(item: &dev->group.cg_item));
1935 } else {
1936 sprintf(buf: nullb->disk_name, fmt: "nullb%d", nullb->index);
1937 }
1938
1939 set_capacity(disk: nullb->disk,
1940 size: ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT);
1941 nullb->disk->major = null_major;
1942 nullb->disk->first_minor = nullb->index;
1943 nullb->disk->minors = 1;
1944 nullb->disk->fops = &null_ops;
1945 nullb->disk->private_data = nullb;
1946 strscpy_pad(nullb->disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
1947
1948 if (nullb->dev->zoned) {
1949 rv = null_register_zoned_dev(nullb);
1950 if (rv)
1951 goto out_ida_free;
1952 }
1953
1954 rv = add_disk(disk: nullb->disk);
1955 if (rv)
1956 goto out_ida_free;
1957
1958 mutex_lock(&lock);
1959 list_add_tail(new: &nullb->list, head: &nullb_list);
1960 mutex_unlock(lock: &lock);
1961
1962 pr_info("disk %s created\n", nullb->disk_name);
1963
1964 return 0;
1965
1966out_ida_free:
1967 ida_free(&nullb_indexes, id: nullb->index);
1968out_cleanup_disk:
1969 put_disk(disk: nullb->disk);
1970out_cleanup_zone:
1971 null_free_zoned_dev(dev);
1972out_cleanup_tags:
1973 if (nullb->tag_set == &nullb->__tag_set)
1974 blk_mq_free_tag_set(set: nullb->tag_set);
1975out_cleanup_queues:
1976 kfree(objp: nullb->queues);
1977out_free_nullb:
1978 kfree(objp: nullb);
1979 dev->nullb = NULL;
1980out:
1981 return rv;
1982}
1983
1984static struct nullb *null_find_dev_by_name(const char *name)
1985{
1986 struct nullb *nullb = NULL, *nb;
1987
1988 mutex_lock(&lock);
1989 list_for_each_entry(nb, &nullb_list, list) {
1990 if (strcmp(nb->disk_name, name) == 0) {
1991 nullb = nb;
1992 break;
1993 }
1994 }
1995 mutex_unlock(lock: &lock);
1996
1997 return nullb;
1998}
1999
2000static int null_create_dev(void)
2001{
2002 struct nullb_device *dev;
2003 int ret;
2004
2005 dev = null_alloc_dev();
2006 if (!dev)
2007 return -ENOMEM;
2008
2009 ret = null_add_dev(dev);
2010 if (ret) {
2011 null_free_dev(dev);
2012 return ret;
2013 }
2014
2015 return 0;
2016}
2017
2018static void null_destroy_dev(struct nullb *nullb)
2019{
2020 struct nullb_device *dev = nullb->dev;
2021
2022 null_del_dev(nullb);
2023 null_free_device_storage(dev, is_cache: false);
2024 null_free_dev(dev);
2025}
2026
2027static int __init null_init(void)
2028{
2029 int ret = 0;
2030 unsigned int i;
2031 struct nullb *nullb;
2032
2033 if (g_bs > PAGE_SIZE) {
2034 pr_warn("invalid block size\n");
2035 pr_warn("defaults block size to %lu\n", PAGE_SIZE);
2036 g_bs = PAGE_SIZE;
2037 }
2038
2039 if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
2040 pr_err("invalid home_node value\n");
2041 g_home_node = NUMA_NO_NODE;
2042 }
2043
2044 if (!null_setup_fault())
2045 return -EINVAL;
2046
2047 if (g_queue_mode == NULL_Q_RQ) {
2048 pr_err("legacy IO path is no longer available\n");
2049 return -EINVAL;
2050 }
2051
2052 if (g_use_per_node_hctx) {
2053 if (g_submit_queues != nr_online_nodes) {
2054 pr_warn("submit_queues param is set to %u.\n",
2055 nr_online_nodes);
2056 g_submit_queues = nr_online_nodes;
2057 }
2058 } else if (g_submit_queues > nr_cpu_ids) {
2059 g_submit_queues = nr_cpu_ids;
2060 } else if (g_submit_queues <= 0) {
2061 g_submit_queues = 1;
2062 }
2063
2064 config_group_init(group: &nullb_subsys.su_group);
2065 mutex_init(&nullb_subsys.su_mutex);
2066
2067 ret = configfs_register_subsystem(subsys: &nullb_subsys);
2068 if (ret)
2069 return ret;
2070
2071 mutex_init(&lock);
2072
2073 null_major = register_blkdev(0, "nullb");
2074 if (null_major < 0) {
2075 ret = null_major;
2076 goto err_conf;
2077 }
2078
2079 for (i = 0; i < nr_devices; i++) {
2080 ret = null_create_dev();
2081 if (ret)
2082 goto err_dev;
2083 }
2084
2085 pr_info("module loaded\n");
2086 return 0;
2087
2088err_dev:
2089 while (!list_empty(head: &nullb_list)) {
2090 nullb = list_entry(nullb_list.next, struct nullb, list);
2091 null_destroy_dev(nullb);
2092 }
2093 unregister_blkdev(major: null_major, name: "nullb");
2094err_conf:
2095 configfs_unregister_subsystem(subsys: &nullb_subsys);
2096 return ret;
2097}
2098
2099static void __exit null_exit(void)
2100{
2101 struct nullb *nullb;
2102
2103 configfs_unregister_subsystem(subsys: &nullb_subsys);
2104
2105 unregister_blkdev(major: null_major, name: "nullb");
2106
2107 mutex_lock(&lock);
2108 while (!list_empty(head: &nullb_list)) {
2109 nullb = list_entry(nullb_list.next, struct nullb, list);
2110 null_destroy_dev(nullb);
2111 }
2112 mutex_unlock(lock: &lock);
2113
2114 if (tag_set.ops)
2115 blk_mq_free_tag_set(set: &tag_set);
2116}
2117
2118module_init(null_init);
2119module_exit(null_exit);
2120
2121MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
2122MODULE_LICENSE("GPL");
2123

source code of linux/drivers/block/null_blk/main.c