1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2016 Broadcom
4 */
5
6/*
7 * This file works with the SPU2 version of the SPU. SPU2 has different message
8 * formats than the previous version of the SPU. All SPU message format
9 * differences should be hidden in the spux.c,h files.
10 */
11
12#include <linux/kernel.h>
13#include <linux/string.h>
14
15#include "util.h"
16#include "spu.h"
17#include "spu2.h"
18
19#define SPU2_TX_STATUS_LEN 0 /* SPU2 has no STATUS in input packet */
20
21/*
22 * Controlled by pkt_stat_cnt field in CRYPTO_SS_SPU0_CORE_SPU2_CONTROL0
23 * register. Defaults to 2.
24 */
25#define SPU2_RX_STATUS_LEN 2
26
27enum spu2_proto_sel {
28 SPU2_PROTO_RESV = 0,
29 SPU2_MACSEC_SECTAG8_ECB = 1,
30 SPU2_MACSEC_SECTAG8_SCB = 2,
31 SPU2_MACSEC_SECTAG16 = 3,
32 SPU2_MACSEC_SECTAG16_8_XPN = 4,
33 SPU2_IPSEC = 5,
34 SPU2_IPSEC_ESN = 6,
35 SPU2_TLS_CIPHER = 7,
36 SPU2_TLS_AEAD = 8,
37 SPU2_DTLS_CIPHER = 9,
38 SPU2_DTLS_AEAD = 10
39};
40
41static char *spu2_cipher_type_names[] = { "None", "AES128", "AES192", "AES256",
42 "DES", "3DES"
43};
44
45static char *spu2_cipher_mode_names[] = { "ECB", "CBC", "CTR", "CFB", "OFB",
46 "XTS", "CCM", "GCM"
47};
48
49static char *spu2_hash_type_names[] = { "None", "AES128", "AES192", "AES256",
50 "Reserved", "Reserved", "MD5", "SHA1", "SHA224", "SHA256", "SHA384",
51 "SHA512", "SHA512/224", "SHA512/256", "SHA3-224", "SHA3-256",
52 "SHA3-384", "SHA3-512"
53};
54
55static char *spu2_hash_mode_names[] = { "CMAC", "CBC-MAC", "XCBC-MAC", "HMAC",
56 "Rabin", "CCM", "GCM", "Reserved"
57};
58
59static char *spu2_ciph_type_name(enum spu2_cipher_type cipher_type)
60{
61 if (cipher_type >= SPU2_CIPHER_TYPE_LAST)
62 return "Reserved";
63 return spu2_cipher_type_names[cipher_type];
64}
65
66static char *spu2_ciph_mode_name(enum spu2_cipher_mode cipher_mode)
67{
68 if (cipher_mode >= SPU2_CIPHER_MODE_LAST)
69 return "Reserved";
70 return spu2_cipher_mode_names[cipher_mode];
71}
72
73static char *spu2_hash_type_name(enum spu2_hash_type hash_type)
74{
75 if (hash_type >= SPU2_HASH_TYPE_LAST)
76 return "Reserved";
77 return spu2_hash_type_names[hash_type];
78}
79
80static char *spu2_hash_mode_name(enum spu2_hash_mode hash_mode)
81{
82 if (hash_mode >= SPU2_HASH_MODE_LAST)
83 return "Reserved";
84 return spu2_hash_mode_names[hash_mode];
85}
86
87/*
88 * Convert from a software cipher mode value to the corresponding value
89 * for SPU2.
90 */
91static int spu2_cipher_mode_xlate(enum spu_cipher_mode cipher_mode,
92 enum spu2_cipher_mode *spu2_mode)
93{
94 switch (cipher_mode) {
95 case CIPHER_MODE_ECB:
96 *spu2_mode = SPU2_CIPHER_MODE_ECB;
97 break;
98 case CIPHER_MODE_CBC:
99 *spu2_mode = SPU2_CIPHER_MODE_CBC;
100 break;
101 case CIPHER_MODE_OFB:
102 *spu2_mode = SPU2_CIPHER_MODE_OFB;
103 break;
104 case CIPHER_MODE_CFB:
105 *spu2_mode = SPU2_CIPHER_MODE_CFB;
106 break;
107 case CIPHER_MODE_CTR:
108 *spu2_mode = SPU2_CIPHER_MODE_CTR;
109 break;
110 case CIPHER_MODE_CCM:
111 *spu2_mode = SPU2_CIPHER_MODE_CCM;
112 break;
113 case CIPHER_MODE_GCM:
114 *spu2_mode = SPU2_CIPHER_MODE_GCM;
115 break;
116 case CIPHER_MODE_XTS:
117 *spu2_mode = SPU2_CIPHER_MODE_XTS;
118 break;
119 default:
120 return -EINVAL;
121 }
122 return 0;
123}
124
125/**
126 * spu2_cipher_xlate() - Convert a cipher {alg/mode/type} triple to a SPU2
127 * cipher type and mode.
128 * @cipher_alg: [in] cipher algorithm value from software enumeration
129 * @cipher_mode: [in] cipher mode value from software enumeration
130 * @cipher_type: [in] cipher type value from software enumeration
131 * @spu2_type: [out] cipher type value used by spu2 hardware
132 * @spu2_mode: [out] cipher mode value used by spu2 hardware
133 *
134 * Return: 0 if successful
135 */
136static int spu2_cipher_xlate(enum spu_cipher_alg cipher_alg,
137 enum spu_cipher_mode cipher_mode,
138 enum spu_cipher_type cipher_type,
139 enum spu2_cipher_type *spu2_type,
140 enum spu2_cipher_mode *spu2_mode)
141{
142 int err;
143
144 err = spu2_cipher_mode_xlate(cipher_mode, spu2_mode);
145 if (err) {
146 flow_log(format: "Invalid cipher mode %d\n", cipher_mode);
147 return err;
148 }
149
150 switch (cipher_alg) {
151 case CIPHER_ALG_NONE:
152 *spu2_type = SPU2_CIPHER_TYPE_NONE;
153 break;
154 case CIPHER_ALG_RC4:
155 /* SPU2 does not support RC4 */
156 err = -EINVAL;
157 *spu2_type = SPU2_CIPHER_TYPE_NONE;
158 break;
159 case CIPHER_ALG_DES:
160 *spu2_type = SPU2_CIPHER_TYPE_DES;
161 break;
162 case CIPHER_ALG_3DES:
163 *spu2_type = SPU2_CIPHER_TYPE_3DES;
164 break;
165 case CIPHER_ALG_AES:
166 switch (cipher_type) {
167 case CIPHER_TYPE_AES128:
168 *spu2_type = SPU2_CIPHER_TYPE_AES128;
169 break;
170 case CIPHER_TYPE_AES192:
171 *spu2_type = SPU2_CIPHER_TYPE_AES192;
172 break;
173 case CIPHER_TYPE_AES256:
174 *spu2_type = SPU2_CIPHER_TYPE_AES256;
175 break;
176 default:
177 err = -EINVAL;
178 }
179 break;
180 case CIPHER_ALG_LAST:
181 default:
182 err = -EINVAL;
183 break;
184 }
185
186 if (err)
187 flow_log(format: "Invalid cipher alg %d or type %d\n",
188 cipher_alg, cipher_type);
189 return err;
190}
191
192/*
193 * Convert from a software hash mode value to the corresponding value
194 * for SPU2. Note that HASH_MODE_NONE and HASH_MODE_XCBC have the same value.
195 */
196static int spu2_hash_mode_xlate(enum hash_mode hash_mode,
197 enum spu2_hash_mode *spu2_mode)
198{
199 switch (hash_mode) {
200 case HASH_MODE_XCBC:
201 *spu2_mode = SPU2_HASH_MODE_XCBC_MAC;
202 break;
203 case HASH_MODE_CMAC:
204 *spu2_mode = SPU2_HASH_MODE_CMAC;
205 break;
206 case HASH_MODE_HMAC:
207 *spu2_mode = SPU2_HASH_MODE_HMAC;
208 break;
209 case HASH_MODE_CCM:
210 *spu2_mode = SPU2_HASH_MODE_CCM;
211 break;
212 case HASH_MODE_GCM:
213 *spu2_mode = SPU2_HASH_MODE_GCM;
214 break;
215 default:
216 return -EINVAL;
217 }
218 return 0;
219}
220
221/**
222 * spu2_hash_xlate() - Convert a hash {alg/mode/type} triple to a SPU2 hash type
223 * and mode.
224 * @hash_alg: [in] hash algorithm value from software enumeration
225 * @hash_mode: [in] hash mode value from software enumeration
226 * @hash_type: [in] hash type value from software enumeration
227 * @ciph_type: [in] cipher type value from software enumeration
228 * @spu2_type: [out] hash type value used by SPU2 hardware
229 * @spu2_mode: [out] hash mode value used by SPU2 hardware
230 *
231 * Return: 0 if successful
232 */
233static int
234spu2_hash_xlate(enum hash_alg hash_alg, enum hash_mode hash_mode,
235 enum hash_type hash_type, enum spu_cipher_type ciph_type,
236 enum spu2_hash_type *spu2_type, enum spu2_hash_mode *spu2_mode)
237{
238 int err;
239
240 err = spu2_hash_mode_xlate(hash_mode, spu2_mode);
241 if (err) {
242 flow_log(format: "Invalid hash mode %d\n", hash_mode);
243 return err;
244 }
245
246 switch (hash_alg) {
247 case HASH_ALG_NONE:
248 *spu2_type = SPU2_HASH_TYPE_NONE;
249 break;
250 case HASH_ALG_MD5:
251 *spu2_type = SPU2_HASH_TYPE_MD5;
252 break;
253 case HASH_ALG_SHA1:
254 *spu2_type = SPU2_HASH_TYPE_SHA1;
255 break;
256 case HASH_ALG_SHA224:
257 *spu2_type = SPU2_HASH_TYPE_SHA224;
258 break;
259 case HASH_ALG_SHA256:
260 *spu2_type = SPU2_HASH_TYPE_SHA256;
261 break;
262 case HASH_ALG_SHA384:
263 *spu2_type = SPU2_HASH_TYPE_SHA384;
264 break;
265 case HASH_ALG_SHA512:
266 *spu2_type = SPU2_HASH_TYPE_SHA512;
267 break;
268 case HASH_ALG_AES:
269 switch (ciph_type) {
270 case CIPHER_TYPE_AES128:
271 *spu2_type = SPU2_HASH_TYPE_AES128;
272 break;
273 case CIPHER_TYPE_AES192:
274 *spu2_type = SPU2_HASH_TYPE_AES192;
275 break;
276 case CIPHER_TYPE_AES256:
277 *spu2_type = SPU2_HASH_TYPE_AES256;
278 break;
279 default:
280 err = -EINVAL;
281 }
282 break;
283 case HASH_ALG_SHA3_224:
284 *spu2_type = SPU2_HASH_TYPE_SHA3_224;
285 break;
286 case HASH_ALG_SHA3_256:
287 *spu2_type = SPU2_HASH_TYPE_SHA3_256;
288 break;
289 case HASH_ALG_SHA3_384:
290 *spu2_type = SPU2_HASH_TYPE_SHA3_384;
291 break;
292 case HASH_ALG_SHA3_512:
293 *spu2_type = SPU2_HASH_TYPE_SHA3_512;
294 break;
295 case HASH_ALG_LAST:
296 default:
297 err = -EINVAL;
298 break;
299 }
300
301 if (err)
302 flow_log(format: "Invalid hash alg %d or type %d\n",
303 hash_alg, hash_type);
304 return err;
305}
306
307/* Dump FMD ctrl0. The ctrl0 input is in host byte order */
308static void spu2_dump_fmd_ctrl0(u64 ctrl0)
309{
310 enum spu2_cipher_type ciph_type;
311 enum spu2_cipher_mode ciph_mode;
312 enum spu2_hash_type hash_type;
313 enum spu2_hash_mode hash_mode;
314 char *ciph_name;
315 char *ciph_mode_name;
316 char *hash_name;
317 char *hash_mode_name;
318 u8 cfb;
319 u8 proto;
320
321 packet_log(format: " FMD CTRL0 %#16llx\n", ctrl0);
322 if (ctrl0 & SPU2_CIPH_ENCRYPT_EN)
323 packet_log(format: " encrypt\n");
324 else
325 packet_log(format: " decrypt\n");
326
327 ciph_type = (ctrl0 & SPU2_CIPH_TYPE) >> SPU2_CIPH_TYPE_SHIFT;
328 ciph_name = spu2_ciph_type_name(cipher_type: ciph_type);
329 packet_log(format: " Cipher type: %s\n", ciph_name);
330
331 if (ciph_type != SPU2_CIPHER_TYPE_NONE) {
332 ciph_mode = (ctrl0 & SPU2_CIPH_MODE) >> SPU2_CIPH_MODE_SHIFT;
333 ciph_mode_name = spu2_ciph_mode_name(cipher_mode: ciph_mode);
334 packet_log(format: " Cipher mode: %s\n", ciph_mode_name);
335 }
336
337 cfb = (ctrl0 & SPU2_CFB_MASK) >> SPU2_CFB_MASK_SHIFT;
338 packet_log(format: " CFB %#x\n", cfb);
339
340 proto = (ctrl0 & SPU2_PROTO_SEL) >> SPU2_PROTO_SEL_SHIFT;
341 packet_log(format: " protocol %#x\n", proto);
342
343 if (ctrl0 & SPU2_HASH_FIRST)
344 packet_log(format: " hash first\n");
345 else
346 packet_log(format: " cipher first\n");
347
348 if (ctrl0 & SPU2_CHK_TAG)
349 packet_log(format: " check tag\n");
350
351 hash_type = (ctrl0 & SPU2_HASH_TYPE) >> SPU2_HASH_TYPE_SHIFT;
352 hash_name = spu2_hash_type_name(hash_type);
353 packet_log(format: " Hash type: %s\n", hash_name);
354
355 if (hash_type != SPU2_HASH_TYPE_NONE) {
356 hash_mode = (ctrl0 & SPU2_HASH_MODE) >> SPU2_HASH_MODE_SHIFT;
357 hash_mode_name = spu2_hash_mode_name(hash_mode);
358 packet_log(format: " Hash mode: %s\n", hash_mode_name);
359 }
360
361 if (ctrl0 & SPU2_CIPH_PAD_EN) {
362 packet_log(format: " Cipher pad: %#2llx\n",
363 (ctrl0 & SPU2_CIPH_PAD) >> SPU2_CIPH_PAD_SHIFT);
364 }
365}
366
367/* Dump FMD ctrl1. The ctrl1 input is in host byte order */
368static void spu2_dump_fmd_ctrl1(u64 ctrl1)
369{
370 u8 hash_key_len;
371 u8 ciph_key_len;
372 u8 ret_iv_len;
373 u8 iv_offset;
374 u8 iv_len;
375 u8 hash_tag_len;
376 u8 ret_md;
377
378 packet_log(format: " FMD CTRL1 %#16llx\n", ctrl1);
379 if (ctrl1 & SPU2_TAG_LOC)
380 packet_log(format: " Tag after payload\n");
381
382 packet_log(format: " Msg includes ");
383 if (ctrl1 & SPU2_HAS_FR_DATA)
384 packet_log(format: "FD ");
385 if (ctrl1 & SPU2_HAS_AAD1)
386 packet_log(format: "AAD1 ");
387 if (ctrl1 & SPU2_HAS_NAAD)
388 packet_log(format: "NAAD ");
389 if (ctrl1 & SPU2_HAS_AAD2)
390 packet_log(format: "AAD2 ");
391 if (ctrl1 & SPU2_HAS_ESN)
392 packet_log(format: "ESN ");
393 packet_log(format: "\n");
394
395 hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
396 packet_log(format: " Hash key len %u\n", hash_key_len);
397
398 ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
399 packet_log(format: " Cipher key len %u\n", ciph_key_len);
400
401 if (ctrl1 & SPU2_GENIV)
402 packet_log(format: " Generate IV\n");
403
404 if (ctrl1 & SPU2_HASH_IV)
405 packet_log(format: " IV included in hash\n");
406
407 if (ctrl1 & SPU2_RET_IV)
408 packet_log(format: " Return IV in output before payload\n");
409
410 ret_iv_len = (ctrl1 & SPU2_RET_IV_LEN) >> SPU2_RET_IV_LEN_SHIFT;
411 packet_log(format: " Length of returned IV %u bytes\n",
412 ret_iv_len ? ret_iv_len : 16);
413
414 iv_offset = (ctrl1 & SPU2_IV_OFFSET) >> SPU2_IV_OFFSET_SHIFT;
415 packet_log(format: " IV offset %u\n", iv_offset);
416
417 iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
418 packet_log(format: " Input IV len %u bytes\n", iv_len);
419
420 hash_tag_len = (ctrl1 & SPU2_HASH_TAG_LEN) >> SPU2_HASH_TAG_LEN_SHIFT;
421 packet_log(format: " Hash tag length %u bytes\n", hash_tag_len);
422
423 packet_log(format: " Return ");
424 ret_md = (ctrl1 & SPU2_RETURN_MD) >> SPU2_RETURN_MD_SHIFT;
425 if (ret_md)
426 packet_log(format: "FMD ");
427 if (ret_md == SPU2_RET_FMD_OMD)
428 packet_log(format: "OMD ");
429 else if (ret_md == SPU2_RET_FMD_OMD_IV)
430 packet_log(format: "OMD IV ");
431 if (ctrl1 & SPU2_RETURN_FD)
432 packet_log(format: "FD ");
433 if (ctrl1 & SPU2_RETURN_AAD1)
434 packet_log(format: "AAD1 ");
435 if (ctrl1 & SPU2_RETURN_NAAD)
436 packet_log(format: "NAAD ");
437 if (ctrl1 & SPU2_RETURN_AAD2)
438 packet_log(format: "AAD2 ");
439 if (ctrl1 & SPU2_RETURN_PAY)
440 packet_log(format: "Payload");
441 packet_log(format: "\n");
442}
443
444/* Dump FMD ctrl2. The ctrl2 input is in host byte order */
445static void spu2_dump_fmd_ctrl2(u64 ctrl2)
446{
447 packet_log(format: " FMD CTRL2 %#16llx\n", ctrl2);
448
449 packet_log(format: " AAD1 offset %llu length %llu bytes\n",
450 ctrl2 & SPU2_AAD1_OFFSET,
451 (ctrl2 & SPU2_AAD1_LEN) >> SPU2_AAD1_LEN_SHIFT);
452 packet_log(format: " AAD2 offset %llu\n",
453 (ctrl2 & SPU2_AAD2_OFFSET) >> SPU2_AAD2_OFFSET_SHIFT);
454 packet_log(format: " Payload offset %llu\n",
455 (ctrl2 & SPU2_PL_OFFSET) >> SPU2_PL_OFFSET_SHIFT);
456}
457
458/* Dump FMD ctrl3. The ctrl3 input is in host byte order */
459static void spu2_dump_fmd_ctrl3(u64 ctrl3)
460{
461 packet_log(format: " FMD CTRL3 %#16llx\n", ctrl3);
462
463 packet_log(format: " Payload length %llu bytes\n", ctrl3 & SPU2_PL_LEN);
464 packet_log(format: " TLS length %llu bytes\n",
465 (ctrl3 & SPU2_TLS_LEN) >> SPU2_TLS_LEN_SHIFT);
466}
467
468static void spu2_dump_fmd(struct SPU2_FMD *fmd)
469{
470 spu2_dump_fmd_ctrl0(le64_to_cpu(fmd->ctrl0));
471 spu2_dump_fmd_ctrl1(le64_to_cpu(fmd->ctrl1));
472 spu2_dump_fmd_ctrl2(le64_to_cpu(fmd->ctrl2));
473 spu2_dump_fmd_ctrl3(le64_to_cpu(fmd->ctrl3));
474}
475
476static void spu2_dump_omd(u8 *omd, u16 hash_key_len, u16 ciph_key_len,
477 u16 hash_iv_len, u16 ciph_iv_len)
478{
479 u8 *ptr = omd;
480
481 packet_log(format: " OMD:\n");
482
483 if (hash_key_len) {
484 packet_log(format: " Hash Key Length %u bytes\n", hash_key_len);
485 packet_dump(msg: " KEY: ", var: ptr, var_len: hash_key_len);
486 ptr += hash_key_len;
487 }
488
489 if (ciph_key_len) {
490 packet_log(format: " Cipher Key Length %u bytes\n", ciph_key_len);
491 packet_dump(msg: " KEY: ", var: ptr, var_len: ciph_key_len);
492 ptr += ciph_key_len;
493 }
494
495 if (hash_iv_len) {
496 packet_log(format: " Hash IV Length %u bytes\n", hash_iv_len);
497 packet_dump(msg: " hash IV: ", var: ptr, var_len: hash_iv_len);
498 ptr += ciph_key_len;
499 }
500
501 if (ciph_iv_len) {
502 packet_log(format: " Cipher IV Length %u bytes\n", ciph_iv_len);
503 packet_dump(msg: " cipher IV: ", var: ptr, var_len: ciph_iv_len);
504 }
505}
506
507/* Dump a SPU2 header for debug */
508void spu2_dump_msg_hdr(u8 *buf, unsigned int buf_len)
509{
510 struct SPU2_FMD *fmd = (struct SPU2_FMD *)buf;
511 u8 *omd;
512 u64 ctrl1;
513 u16 hash_key_len;
514 u16 ciph_key_len;
515 u16 hash_iv_len;
516 u16 ciph_iv_len;
517 u16 omd_len;
518
519 packet_log(format: "\n");
520 packet_log(format: "SPU2 message header %p len: %u\n", buf, buf_len);
521
522 spu2_dump_fmd(fmd);
523 omd = (u8 *)(fmd + 1);
524
525 ctrl1 = le64_to_cpu(fmd->ctrl1);
526 hash_key_len = (ctrl1 & SPU2_HASH_KEY_LEN) >> SPU2_HASH_KEY_LEN_SHIFT;
527 ciph_key_len = (ctrl1 & SPU2_CIPH_KEY_LEN) >> SPU2_CIPH_KEY_LEN_SHIFT;
528 hash_iv_len = 0;
529 ciph_iv_len = (ctrl1 & SPU2_IV_LEN) >> SPU2_IV_LEN_SHIFT;
530 spu2_dump_omd(omd, hash_key_len, ciph_key_len, hash_iv_len,
531 ciph_iv_len);
532
533 /* Double check sanity */
534 omd_len = hash_key_len + ciph_key_len + hash_iv_len + ciph_iv_len;
535 if (FMD_SIZE + omd_len != buf_len) {
536 packet_log
537 (format: " Packet parsed incorrectly. buf_len %u, sum of MD %zu\n",
538 buf_len, FMD_SIZE + omd_len);
539 }
540 packet_log(format: "\n");
541}
542
543/**
544 * spu2_fmd_init() - At setkey time, initialize the fixed meta data for
545 * subsequent skcipher requests for this context.
546 * @fmd: Start of FMD field to be written
547 * @spu2_type: Cipher algorithm
548 * @spu2_mode: Cipher mode
549 * @cipher_key_len: Length of cipher key, in bytes
550 * @cipher_iv_len: Length of cipher initialization vector, in bytes
551 *
552 * Return: 0 (success)
553 */
554static int spu2_fmd_init(struct SPU2_FMD *fmd,
555 enum spu2_cipher_type spu2_type,
556 enum spu2_cipher_mode spu2_mode,
557 u32 cipher_key_len, u32 cipher_iv_len)
558{
559 u64 ctrl0;
560 u64 ctrl1;
561 u64 ctrl2;
562 u64 ctrl3;
563 u32 aad1_offset;
564 u32 aad2_offset;
565 u16 aad1_len = 0;
566 u64 payload_offset;
567
568 ctrl0 = (spu2_type << SPU2_CIPH_TYPE_SHIFT) |
569 (spu2_mode << SPU2_CIPH_MODE_SHIFT);
570
571 ctrl1 = (cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) |
572 ((u64)cipher_iv_len << SPU2_IV_LEN_SHIFT) |
573 ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT) | SPU2_RETURN_PAY;
574
575 /*
576 * AAD1 offset is from start of FD. FD length is always 0 for this
577 * driver. So AAD1_offset is always 0.
578 */
579 aad1_offset = 0;
580 aad2_offset = aad1_offset;
581 payload_offset = 0;
582 ctrl2 = aad1_offset |
583 (aad1_len << SPU2_AAD1_LEN_SHIFT) |
584 (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
585 (payload_offset << SPU2_PL_OFFSET_SHIFT);
586
587 ctrl3 = 0;
588
589 fmd->ctrl0 = cpu_to_le64(ctrl0);
590 fmd->ctrl1 = cpu_to_le64(ctrl1);
591 fmd->ctrl2 = cpu_to_le64(ctrl2);
592 fmd->ctrl3 = cpu_to_le64(ctrl3);
593
594 return 0;
595}
596
597/**
598 * spu2_fmd_ctrl0_write() - Write ctrl0 field in fixed metadata (FMD) field of
599 * SPU request packet.
600 * @fmd: Start of FMD field to be written
601 * @is_inbound: true if decrypting. false if encrypting.
602 * @auth_first: true if alg authenticates before encrypting
603 * @protocol: protocol selector
604 * @cipher_type: cipher algorithm
605 * @cipher_mode: cipher mode
606 * @auth_type: authentication type
607 * @auth_mode: authentication mode
608 */
609static void spu2_fmd_ctrl0_write(struct SPU2_FMD *fmd,
610 bool is_inbound, bool auth_first,
611 enum spu2_proto_sel protocol,
612 enum spu2_cipher_type cipher_type,
613 enum spu2_cipher_mode cipher_mode,
614 enum spu2_hash_type auth_type,
615 enum spu2_hash_mode auth_mode)
616{
617 u64 ctrl0 = 0;
618
619 if ((cipher_type != SPU2_CIPHER_TYPE_NONE) && !is_inbound)
620 ctrl0 |= SPU2_CIPH_ENCRYPT_EN;
621
622 ctrl0 |= ((u64)cipher_type << SPU2_CIPH_TYPE_SHIFT) |
623 ((u64)cipher_mode << SPU2_CIPH_MODE_SHIFT);
624
625 if (protocol)
626 ctrl0 |= (u64)protocol << SPU2_PROTO_SEL_SHIFT;
627
628 if (auth_first)
629 ctrl0 |= SPU2_HASH_FIRST;
630
631 if (is_inbound && (auth_type != SPU2_HASH_TYPE_NONE))
632 ctrl0 |= SPU2_CHK_TAG;
633
634 ctrl0 |= (((u64)auth_type << SPU2_HASH_TYPE_SHIFT) |
635 ((u64)auth_mode << SPU2_HASH_MODE_SHIFT));
636
637 fmd->ctrl0 = cpu_to_le64(ctrl0);
638}
639
640/**
641 * spu2_fmd_ctrl1_write() - Write ctrl1 field in fixed metadata (FMD) field of
642 * SPU request packet.
643 * @fmd: Start of FMD field to be written
644 * @is_inbound: true if decrypting. false if encrypting.
645 * @assoc_size: Length of additional associated data, in bytes
646 * @auth_key_len: Length of authentication key, in bytes
647 * @cipher_key_len: Length of cipher key, in bytes
648 * @gen_iv: If true, hw generates IV and returns in response
649 * @hash_iv: IV participates in hash. Used for IPSEC and TLS.
650 * @return_iv: Return IV in output packet before payload
651 * @ret_iv_len: Length of IV returned from SPU, in bytes
652 * @ret_iv_offset: Offset into full IV of start of returned IV
653 * @cipher_iv_len: Length of input cipher IV, in bytes
654 * @digest_size: Length of digest (aka, hash tag or ICV), in bytes
655 * @return_payload: Return payload in SPU response
656 * @return_md : return metadata in SPU response
657 *
658 * Packet can have AAD2 w/o AAD1. For algorithms currently supported,
659 * associated data goes in AAD2.
660 */
661static void spu2_fmd_ctrl1_write(struct SPU2_FMD *fmd, bool is_inbound,
662 u64 assoc_size,
663 u64 auth_key_len, u64 cipher_key_len,
664 bool gen_iv, bool hash_iv, bool return_iv,
665 u64 ret_iv_len, u64 ret_iv_offset,
666 u64 cipher_iv_len, u64 digest_size,
667 bool return_payload, bool return_md)
668{
669 u64 ctrl1 = 0;
670
671 if (is_inbound && digest_size)
672 ctrl1 |= SPU2_TAG_LOC;
673
674 if (assoc_size) {
675 ctrl1 |= SPU2_HAS_AAD2;
676 ctrl1 |= SPU2_RETURN_AAD2; /* need aad2 for gcm aes esp */
677 }
678
679 if (auth_key_len)
680 ctrl1 |= ((auth_key_len << SPU2_HASH_KEY_LEN_SHIFT) &
681 SPU2_HASH_KEY_LEN);
682
683 if (cipher_key_len)
684 ctrl1 |= ((cipher_key_len << SPU2_CIPH_KEY_LEN_SHIFT) &
685 SPU2_CIPH_KEY_LEN);
686
687 if (gen_iv)
688 ctrl1 |= SPU2_GENIV;
689
690 if (hash_iv)
691 ctrl1 |= SPU2_HASH_IV;
692
693 if (return_iv) {
694 ctrl1 |= SPU2_RET_IV;
695 ctrl1 |= ret_iv_len << SPU2_RET_IV_LEN_SHIFT;
696 ctrl1 |= ret_iv_offset << SPU2_IV_OFFSET_SHIFT;
697 }
698
699 ctrl1 |= ((cipher_iv_len << SPU2_IV_LEN_SHIFT) & SPU2_IV_LEN);
700
701 if (digest_size)
702 ctrl1 |= ((digest_size << SPU2_HASH_TAG_LEN_SHIFT) &
703 SPU2_HASH_TAG_LEN);
704
705 /* Let's ask for the output pkt to include FMD, but don't need to
706 * get keys and IVs back in OMD.
707 */
708 if (return_md)
709 ctrl1 |= ((u64)SPU2_RET_FMD_ONLY << SPU2_RETURN_MD_SHIFT);
710 else
711 ctrl1 |= ((u64)SPU2_RET_NO_MD << SPU2_RETURN_MD_SHIFT);
712
713 /* Crypto API does not get assoc data back. So no need for AAD2. */
714
715 if (return_payload)
716 ctrl1 |= SPU2_RETURN_PAY;
717
718 fmd->ctrl1 = cpu_to_le64(ctrl1);
719}
720
721/**
722 * spu2_fmd_ctrl2_write() - Set the ctrl2 field in the fixed metadata field of
723 * SPU2 header.
724 * @fmd: Start of FMD field to be written
725 * @cipher_offset: Number of bytes from Start of Packet (end of FD field) where
726 * data to be encrypted or decrypted begins
727 * @auth_key_len: Length of authentication key, in bytes
728 * @auth_iv_len: Length of authentication initialization vector, in bytes
729 * @cipher_key_len: Length of cipher key, in bytes
730 * @cipher_iv_len: Length of cipher IV, in bytes
731 */
732static void spu2_fmd_ctrl2_write(struct SPU2_FMD *fmd, u64 cipher_offset,
733 u64 auth_key_len, u64 auth_iv_len,
734 u64 cipher_key_len, u64 cipher_iv_len)
735{
736 u64 ctrl2;
737 u64 aad1_offset;
738 u64 aad2_offset;
739 u16 aad1_len = 0;
740 u64 payload_offset;
741
742 /* AAD1 offset is from start of FD. FD length always 0. */
743 aad1_offset = 0;
744
745 aad2_offset = aad1_offset;
746 payload_offset = cipher_offset;
747 ctrl2 = aad1_offset |
748 (aad1_len << SPU2_AAD1_LEN_SHIFT) |
749 (aad2_offset << SPU2_AAD2_OFFSET_SHIFT) |
750 (payload_offset << SPU2_PL_OFFSET_SHIFT);
751
752 fmd->ctrl2 = cpu_to_le64(ctrl2);
753}
754
755/**
756 * spu2_fmd_ctrl3_write() - Set the ctrl3 field in FMD
757 * @fmd: Fixed meta data. First field in SPU2 msg header.
758 * @payload_len: Length of payload, in bytes
759 */
760static void spu2_fmd_ctrl3_write(struct SPU2_FMD *fmd, u64 payload_len)
761{
762 u64 ctrl3;
763
764 ctrl3 = payload_len & SPU2_PL_LEN;
765
766 fmd->ctrl3 = cpu_to_le64(ctrl3);
767}
768
769/**
770 * spu2_ctx_max_payload() - Determine the maximum length of the payload for a
771 * SPU message for a given cipher and hash alg context.
772 * @cipher_alg: The cipher algorithm
773 * @cipher_mode: The cipher mode
774 * @blocksize: The size of a block of data for this algo
775 *
776 * For SPU2, the hardware generally ignores the PayloadLen field in ctrl3 of
777 * FMD and just keeps computing until it receives a DMA descriptor with the EOF
778 * flag set. So we consider the max payload to be infinite. AES CCM is an
779 * exception.
780 *
781 * Return: Max payload length in bytes
782 */
783u32 spu2_ctx_max_payload(enum spu_cipher_alg cipher_alg,
784 enum spu_cipher_mode cipher_mode,
785 unsigned int blocksize)
786{
787 if ((cipher_alg == CIPHER_ALG_AES) &&
788 (cipher_mode == CIPHER_MODE_CCM)) {
789 u32 excess = SPU2_MAX_PAYLOAD % blocksize;
790
791 return SPU2_MAX_PAYLOAD - excess;
792 } else {
793 return SPU_MAX_PAYLOAD_INF;
794 }
795}
796
797/**
798 * spu2_payload_length() - Given a SPU2 message header, extract the payload
799 * length.
800 * @spu_hdr: Start of SPU message header (FMD)
801 *
802 * Return: payload length, in bytes
803 */
804u32 spu2_payload_length(u8 *spu_hdr)
805{
806 struct SPU2_FMD *fmd = (struct SPU2_FMD *)spu_hdr;
807 u32 pl_len;
808 u64 ctrl3;
809
810 ctrl3 = le64_to_cpu(fmd->ctrl3);
811 pl_len = ctrl3 & SPU2_PL_LEN;
812
813 return pl_len;
814}
815
816/**
817 * spu2_response_hdr_len() - Determine the expected length of a SPU response
818 * header.
819 * @auth_key_len: Length of authentication key, in bytes
820 * @enc_key_len: Length of encryption key, in bytes
821 * @is_hash: Unused
822 *
823 * For SPU2, includes just FMD. OMD is never requested.
824 *
825 * Return: Length of FMD, in bytes
826 */
827u16 spu2_response_hdr_len(u16 auth_key_len, u16 enc_key_len, bool is_hash)
828{
829 return FMD_SIZE;
830}
831
832/**
833 * spu2_hash_pad_len() - Calculate the length of hash padding required to extend
834 * data to a full block size.
835 * @hash_alg: hash algorithm
836 * @hash_mode: hash mode
837 * @chunksize: length of data, in bytes
838 * @hash_block_size: size of a hash block, in bytes
839 *
840 * SPU2 hardware does all hash padding
841 *
842 * Return: length of hash pad in bytes
843 */
844u16 spu2_hash_pad_len(enum hash_alg hash_alg, enum hash_mode hash_mode,
845 u32 chunksize, u16 hash_block_size)
846{
847 return 0;
848}
849
850/**
851 * spu2_gcm_ccm_pad_len() - Determine the length of GCM/CCM padding for either
852 * the AAD field or the data.
853 * @cipher_mode: Unused
854 * @data_size: Unused
855 *
856 * Return: 0. Unlike SPU-M, SPU2 hardware does any GCM/CCM padding required.
857 */
858u32 spu2_gcm_ccm_pad_len(enum spu_cipher_mode cipher_mode,
859 unsigned int data_size)
860{
861 return 0;
862}
863
864/**
865 * spu2_assoc_resp_len() - Determine the size of the AAD2 buffer needed to catch
866 * associated data in a SPU2 output packet.
867 * @cipher_mode: cipher mode
868 * @assoc_len: length of additional associated data, in bytes
869 * @iv_len: length of initialization vector, in bytes
870 * @is_encrypt: true if encrypting. false if decrypt.
871 *
872 * Return: Length of buffer to catch associated data in response
873 */
874u32 spu2_assoc_resp_len(enum spu_cipher_mode cipher_mode,
875 unsigned int assoc_len, unsigned int iv_len,
876 bool is_encrypt)
877{
878 u32 resp_len = assoc_len;
879
880 if (is_encrypt)
881 /* gcm aes esp has to write 8-byte IV in response */
882 resp_len += iv_len;
883 return resp_len;
884}
885
886/**
887 * spu2_aead_ivlen() - Calculate the length of the AEAD IV to be included
888 * in a SPU request after the AAD and before the payload.
889 * @cipher_mode: cipher mode
890 * @iv_len: initialization vector length in bytes
891 *
892 * For SPU2, AEAD IV is included in OMD and does not need to be repeated
893 * prior to the payload.
894 *
895 * Return: Length of AEAD IV in bytes
896 */
897u8 spu2_aead_ivlen(enum spu_cipher_mode cipher_mode, u16 iv_len)
898{
899 return 0;
900}
901
902/**
903 * spu2_hash_type() - Determine the type of hash operation.
904 * @src_sent: The number of bytes in the current request that have already
905 * been sent to the SPU to be hashed.
906 *
907 * SPU2 always does a FULL hash operation
908 */
909enum hash_type spu2_hash_type(u32 src_sent)
910{
911 return HASH_TYPE_FULL;
912}
913
914/**
915 * spu2_digest_size() - Determine the size of a hash digest to expect the SPU to
916 * return.
917 * @alg_digest_size: Number of bytes in the final digest for the given algo
918 * @alg: The hash algorithm
919 * @htype: Type of hash operation (init, update, full, etc)
920 *
921 */
922u32 spu2_digest_size(u32 alg_digest_size, enum hash_alg alg,
923 enum hash_type htype)
924{
925 return alg_digest_size;
926}
927
928/**
929 * spu2_create_request() - Build a SPU2 request message header, includint FMD and
930 * OMD.
931 * @spu_hdr: Start of buffer where SPU request header is to be written
932 * @req_opts: SPU request message options
933 * @cipher_parms: Parameters related to cipher algorithm
934 * @hash_parms: Parameters related to hash algorithm
935 * @aead_parms: Parameters related to AEAD operation
936 * @data_size: Length of data to be encrypted or authenticated. If AEAD, does
937 * not include length of AAD.
938 *
939 * Construct the message starting at spu_hdr. Caller should allocate this buffer
940 * in DMA-able memory at least SPU_HEADER_ALLOC_LEN bytes long.
941 *
942 * Return: the length of the SPU header in bytes. 0 if an error occurs.
943 */
944u32 spu2_create_request(u8 *spu_hdr,
945 struct spu_request_opts *req_opts,
946 struct spu_cipher_parms *cipher_parms,
947 struct spu_hash_parms *hash_parms,
948 struct spu_aead_parms *aead_parms,
949 unsigned int data_size)
950{
951 struct SPU2_FMD *fmd;
952 u8 *ptr;
953 unsigned int buf_len;
954 int err;
955 enum spu2_cipher_type spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
956 enum spu2_cipher_mode spu2_ciph_mode;
957 enum spu2_hash_type spu2_auth_type = SPU2_HASH_TYPE_NONE;
958 enum spu2_hash_mode spu2_auth_mode;
959 bool return_md = true;
960 enum spu2_proto_sel proto = SPU2_PROTO_RESV;
961
962 /* size of the payload */
963 unsigned int payload_len =
964 hash_parms->prebuf_len + data_size + hash_parms->pad_len -
965 ((req_opts->is_aead && req_opts->is_inbound) ?
966 hash_parms->digestsize : 0);
967
968 /* offset of prebuf or data from start of AAD2 */
969 unsigned int cipher_offset = aead_parms->assoc_size +
970 aead_parms->aad_pad_len + aead_parms->iv_len;
971
972 /* total size of the data following OMD (without STAT word padding) */
973 unsigned int real_db_size = spu_real_db_size(assoc_size: aead_parms->assoc_size,
974 aead_iv_buf_len: aead_parms->iv_len,
975 prebuf_len: hash_parms->prebuf_len,
976 data_size,
977 aad_pad_len: aead_parms->aad_pad_len,
978 gcm_pad_len: aead_parms->data_pad_len,
979 hash_pad_len: hash_parms->pad_len);
980 unsigned int assoc_size = aead_parms->assoc_size;
981
982 if (req_opts->is_aead &&
983 (cipher_parms->alg == CIPHER_ALG_AES) &&
984 (cipher_parms->mode == CIPHER_MODE_GCM))
985 /*
986 * On SPU 2, aes gcm cipher first on encrypt, auth first on
987 * decrypt
988 */
989 req_opts->auth_first = req_opts->is_inbound;
990
991 /* and do opposite for ccm (auth 1st on encrypt) */
992 if (req_opts->is_aead &&
993 (cipher_parms->alg == CIPHER_ALG_AES) &&
994 (cipher_parms->mode == CIPHER_MODE_CCM))
995 req_opts->auth_first = !req_opts->is_inbound;
996
997 flow_log(format: "%s()\n", __func__);
998 flow_log(format: " in:%u authFirst:%u\n",
999 req_opts->is_inbound, req_opts->auth_first);
1000 flow_log(format: " cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1001 cipher_parms->mode, cipher_parms->type);
1002 flow_log(format: " is_esp: %s\n", req_opts->is_esp ? "yes" : "no");
1003 flow_log(format: " key: %d\n", cipher_parms->key_len);
1004 flow_dump(msg: " key: ", var: cipher_parms->key_buf, var_len: cipher_parms->key_len);
1005 flow_log(format: " iv: %d\n", cipher_parms->iv_len);
1006 flow_dump(msg: " iv: ", var: cipher_parms->iv_buf, var_len: cipher_parms->iv_len);
1007 flow_log(format: " auth alg:%u mode:%u type %u\n",
1008 hash_parms->alg, hash_parms->mode, hash_parms->type);
1009 flow_log(format: " digestsize: %u\n", hash_parms->digestsize);
1010 flow_log(format: " authkey: %d\n", hash_parms->key_len);
1011 flow_dump(msg: " authkey: ", var: hash_parms->key_buf, var_len: hash_parms->key_len);
1012 flow_log(format: " assoc_size:%u\n", assoc_size);
1013 flow_log(format: " prebuf_len:%u\n", hash_parms->prebuf_len);
1014 flow_log(format: " data_size:%u\n", data_size);
1015 flow_log(format: " hash_pad_len:%u\n", hash_parms->pad_len);
1016 flow_log(format: " real_db_size:%u\n", real_db_size);
1017 flow_log(format: " cipher_offset:%u payload_len:%u\n",
1018 cipher_offset, payload_len);
1019 flow_log(format: " aead_iv: %u\n", aead_parms->iv_len);
1020
1021 /* Convert to spu2 values for cipher alg, hash alg */
1022 err = spu2_cipher_xlate(cipher_alg: cipher_parms->alg, cipher_mode: cipher_parms->mode,
1023 cipher_type: cipher_parms->type,
1024 spu2_type: &spu2_ciph_type, spu2_mode: &spu2_ciph_mode);
1025
1026 /* If we are doing GCM hashing only - either via rfc4543 transform
1027 * or because we happen to do GCM with AAD only and no payload - we
1028 * need to configure hardware to use hash key rather than cipher key
1029 * and put data into payload. This is because unlike SPU-M, running
1030 * GCM cipher with 0 size payload is not permitted.
1031 */
1032 if ((req_opts->is_rfc4543) ||
1033 ((spu2_ciph_mode == SPU2_CIPHER_MODE_GCM) &&
1034 (payload_len == 0))) {
1035 /* Use hashing (only) and set up hash key */
1036 spu2_ciph_type = SPU2_CIPHER_TYPE_NONE;
1037 hash_parms->key_len = cipher_parms->key_len;
1038 memcpy(hash_parms->key_buf, cipher_parms->key_buf,
1039 cipher_parms->key_len);
1040 cipher_parms->key_len = 0;
1041
1042 if (req_opts->is_rfc4543)
1043 payload_len += assoc_size;
1044 else
1045 payload_len = assoc_size;
1046 cipher_offset = 0;
1047 assoc_size = 0;
1048 }
1049
1050 if (err)
1051 return 0;
1052
1053 flow_log(format: "spu2 cipher type %s, cipher mode %s\n",
1054 spu2_ciph_type_name(cipher_type: spu2_ciph_type),
1055 spu2_ciph_mode_name(cipher_mode: spu2_ciph_mode));
1056
1057 err = spu2_hash_xlate(hash_alg: hash_parms->alg, hash_mode: hash_parms->mode,
1058 hash_type: hash_parms->type,
1059 ciph_type: cipher_parms->type,
1060 spu2_type: &spu2_auth_type, spu2_mode: &spu2_auth_mode);
1061 if (err)
1062 return 0;
1063
1064 flow_log(format: "spu2 hash type %s, hash mode %s\n",
1065 spu2_hash_type_name(hash_type: spu2_auth_type),
1066 spu2_hash_mode_name(hash_mode: spu2_auth_mode));
1067
1068 fmd = (struct SPU2_FMD *)spu_hdr;
1069
1070 spu2_fmd_ctrl0_write(fmd, is_inbound: req_opts->is_inbound, auth_first: req_opts->auth_first,
1071 protocol: proto, cipher_type: spu2_ciph_type, cipher_mode: spu2_ciph_mode,
1072 auth_type: spu2_auth_type, auth_mode: spu2_auth_mode);
1073
1074 spu2_fmd_ctrl1_write(fmd, is_inbound: req_opts->is_inbound, assoc_size,
1075 auth_key_len: hash_parms->key_len, cipher_key_len: cipher_parms->key_len,
1076 gen_iv: false, hash_iv: false,
1077 return_iv: aead_parms->return_iv, ret_iv_len: aead_parms->ret_iv_len,
1078 ret_iv_offset: aead_parms->ret_iv_off,
1079 cipher_iv_len: cipher_parms->iv_len, digest_size: hash_parms->digestsize,
1080 return_payload: !req_opts->bd_suppress, return_md);
1081
1082 spu2_fmd_ctrl2_write(fmd, cipher_offset, auth_key_len: hash_parms->key_len, auth_iv_len: 0,
1083 cipher_key_len: cipher_parms->key_len, cipher_iv_len: cipher_parms->iv_len);
1084
1085 spu2_fmd_ctrl3_write(fmd, payload_len);
1086
1087 ptr = (u8 *)(fmd + 1);
1088 buf_len = sizeof(struct SPU2_FMD);
1089
1090 /* Write OMD */
1091 if (hash_parms->key_len) {
1092 memcpy(ptr, hash_parms->key_buf, hash_parms->key_len);
1093 ptr += hash_parms->key_len;
1094 buf_len += hash_parms->key_len;
1095 }
1096 if (cipher_parms->key_len) {
1097 memcpy(ptr, cipher_parms->key_buf, cipher_parms->key_len);
1098 ptr += cipher_parms->key_len;
1099 buf_len += cipher_parms->key_len;
1100 }
1101 if (cipher_parms->iv_len) {
1102 memcpy(ptr, cipher_parms->iv_buf, cipher_parms->iv_len);
1103 ptr += cipher_parms->iv_len;
1104 buf_len += cipher_parms->iv_len;
1105 }
1106
1107 packet_dump(msg: " SPU request header: ", var: spu_hdr, var_len: buf_len);
1108
1109 return buf_len;
1110}
1111
1112/**
1113 * spu2_cipher_req_init() - Build an skcipher SPU2 request message header,
1114 * including FMD and OMD.
1115 * @spu_hdr: Location of start of SPU request (FMD field)
1116 * @cipher_parms: Parameters describing cipher request
1117 *
1118 * Called at setkey time to initialize a msg header that can be reused for all
1119 * subsequent skcipher requests. Construct the message starting at spu_hdr.
1120 * Caller should allocate this buffer in DMA-able memory at least
1121 * SPU_HEADER_ALLOC_LEN bytes long.
1122 *
1123 * Return: the total length of the SPU header (FMD and OMD) in bytes. 0 if an
1124 * error occurs.
1125 */
1126u16 spu2_cipher_req_init(u8 *spu_hdr, struct spu_cipher_parms *cipher_parms)
1127{
1128 struct SPU2_FMD *fmd;
1129 u8 *omd;
1130 enum spu2_cipher_type spu2_type = SPU2_CIPHER_TYPE_NONE;
1131 enum spu2_cipher_mode spu2_mode;
1132 int err;
1133
1134 flow_log(format: "%s()\n", __func__);
1135 flow_log(format: " cipher alg:%u mode:%u type %u\n", cipher_parms->alg,
1136 cipher_parms->mode, cipher_parms->type);
1137 flow_log(format: " cipher_iv_len: %u\n", cipher_parms->iv_len);
1138 flow_log(format: " key: %d\n", cipher_parms->key_len);
1139 flow_dump(msg: " key: ", var: cipher_parms->key_buf, var_len: cipher_parms->key_len);
1140
1141 /* Convert to spu2 values */
1142 err = spu2_cipher_xlate(cipher_alg: cipher_parms->alg, cipher_mode: cipher_parms->mode,
1143 cipher_type: cipher_parms->type, spu2_type: &spu2_type, spu2_mode: &spu2_mode);
1144 if (err)
1145 return 0;
1146
1147 flow_log(format: "spu2 cipher type %s, cipher mode %s\n",
1148 spu2_ciph_type_name(cipher_type: spu2_type),
1149 spu2_ciph_mode_name(cipher_mode: spu2_mode));
1150
1151 /* Construct the FMD header */
1152 fmd = (struct SPU2_FMD *)spu_hdr;
1153 err = spu2_fmd_init(fmd, spu2_type, spu2_mode, cipher_key_len: cipher_parms->key_len,
1154 cipher_iv_len: cipher_parms->iv_len);
1155 if (err)
1156 return 0;
1157
1158 /* Write cipher key to OMD */
1159 omd = (u8 *)(fmd + 1);
1160 if (cipher_parms->key_buf && cipher_parms->key_len)
1161 memcpy(omd, cipher_parms->key_buf, cipher_parms->key_len);
1162
1163 packet_dump(msg: " SPU request header: ", var: spu_hdr,
1164 FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len);
1165
1166 return FMD_SIZE + cipher_parms->key_len + cipher_parms->iv_len;
1167}
1168
1169/**
1170 * spu2_cipher_req_finish() - Finish building a SPU request message header for a
1171 * block cipher request.
1172 * @spu_hdr: Start of the request message header (MH field)
1173 * @spu_req_hdr_len: Length in bytes of the SPU request header
1174 * @is_inbound: 0 encrypt, 1 decrypt
1175 * @cipher_parms: Parameters describing cipher operation to be performed
1176 * @data_size: Length of the data in the BD field
1177 *
1178 * Assumes much of the header was already filled in at setkey() time in
1179 * spu_cipher_req_init().
1180 * spu_cipher_req_init() fills in the encryption key.
1181 */
1182void spu2_cipher_req_finish(u8 *spu_hdr,
1183 u16 spu_req_hdr_len,
1184 unsigned int is_inbound,
1185 struct spu_cipher_parms *cipher_parms,
1186 unsigned int data_size)
1187{
1188 struct SPU2_FMD *fmd;
1189 u8 *omd; /* start of optional metadata */
1190 u64 ctrl0;
1191 u64 ctrl3;
1192
1193 flow_log(format: "%s()\n", __func__);
1194 flow_log(format: " in: %u\n", is_inbound);
1195 flow_log(format: " cipher alg: %u, cipher_type: %u\n", cipher_parms->alg,
1196 cipher_parms->type);
1197 flow_log(format: " iv len: %d\n", cipher_parms->iv_len);
1198 flow_dump(msg: " iv: ", var: cipher_parms->iv_buf, var_len: cipher_parms->iv_len);
1199 flow_log(format: " data_size: %u\n", data_size);
1200
1201 fmd = (struct SPU2_FMD *)spu_hdr;
1202 omd = (u8 *)(fmd + 1);
1203
1204 /*
1205 * FMD ctrl0 was initialized at setkey time. update it to indicate
1206 * whether we are encrypting or decrypting.
1207 */
1208 ctrl0 = le64_to_cpu(fmd->ctrl0);
1209 if (is_inbound)
1210 ctrl0 &= ~SPU2_CIPH_ENCRYPT_EN; /* decrypt */
1211 else
1212 ctrl0 |= SPU2_CIPH_ENCRYPT_EN; /* encrypt */
1213 fmd->ctrl0 = cpu_to_le64(ctrl0);
1214
1215 if (cipher_parms->alg && cipher_parms->iv_buf && cipher_parms->iv_len) {
1216 /* cipher iv provided so put it in here */
1217 memcpy(omd + cipher_parms->key_len, cipher_parms->iv_buf,
1218 cipher_parms->iv_len);
1219 }
1220
1221 ctrl3 = le64_to_cpu(fmd->ctrl3);
1222 data_size &= SPU2_PL_LEN;
1223 ctrl3 |= data_size;
1224 fmd->ctrl3 = cpu_to_le64(ctrl3);
1225
1226 packet_dump(msg: " SPU request header: ", var: spu_hdr, var_len: spu_req_hdr_len);
1227}
1228
1229/**
1230 * spu2_request_pad() - Create pad bytes at the end of the data.
1231 * @pad_start: Start of buffer where pad bytes are to be written
1232 * @gcm_padding: Length of GCM padding, in bytes
1233 * @hash_pad_len: Number of bytes of padding extend data to full block
1234 * @auth_alg: Authentication algorithm
1235 * @auth_mode: Authentication mode
1236 * @total_sent: Length inserted at end of hash pad
1237 * @status_padding: Number of bytes of padding to align STATUS word
1238 *
1239 * There may be three forms of pad:
1240 * 1. GCM pad - for GCM mode ciphers, pad to 16-byte alignment
1241 * 2. hash pad - pad to a block length, with 0x80 data terminator and
1242 * size at the end
1243 * 3. STAT pad - to ensure the STAT field is 4-byte aligned
1244 */
1245void spu2_request_pad(u8 *pad_start, u32 gcm_padding, u32 hash_pad_len,
1246 enum hash_alg auth_alg, enum hash_mode auth_mode,
1247 unsigned int total_sent, u32 status_padding)
1248{
1249 u8 *ptr = pad_start;
1250
1251 /* fix data alignent for GCM */
1252 if (gcm_padding > 0) {
1253 flow_log(format: " GCM: padding to 16 byte alignment: %u bytes\n",
1254 gcm_padding);
1255 memset(ptr, 0, gcm_padding);
1256 ptr += gcm_padding;
1257 }
1258
1259 if (hash_pad_len > 0) {
1260 /* clear the padding section */
1261 memset(ptr, 0, hash_pad_len);
1262
1263 /* terminate the data */
1264 *ptr = 0x80;
1265 ptr += (hash_pad_len - sizeof(u64));
1266
1267 /* add the size at the end as required per alg */
1268 if (auth_alg == HASH_ALG_MD5)
1269 *(__le64 *)ptr = cpu_to_le64(total_sent * 8ull);
1270 else /* SHA1, SHA2-224, SHA2-256 */
1271 *(__be64 *)ptr = cpu_to_be64(total_sent * 8ull);
1272 ptr += sizeof(u64);
1273 }
1274
1275 /* pad to a 4byte alignment for STAT */
1276 if (status_padding > 0) {
1277 flow_log(format: " STAT: padding to 4 byte alignment: %u bytes\n",
1278 status_padding);
1279
1280 memset(ptr, 0, status_padding);
1281 ptr += status_padding;
1282 }
1283}
1284
1285/**
1286 * spu2_xts_tweak_in_payload() - Indicate that SPU2 does NOT place the XTS
1287 * tweak field in the packet payload (it uses IV instead)
1288 *
1289 * Return: 0
1290 */
1291u8 spu2_xts_tweak_in_payload(void)
1292{
1293 return 0;
1294}
1295
1296/**
1297 * spu2_tx_status_len() - Return the length of the STATUS field in a SPU
1298 * response message.
1299 *
1300 * Return: Length of STATUS field in bytes.
1301 */
1302u8 spu2_tx_status_len(void)
1303{
1304 return SPU2_TX_STATUS_LEN;
1305}
1306
1307/**
1308 * spu2_rx_status_len() - Return the length of the STATUS field in a SPU
1309 * response message.
1310 *
1311 * Return: Length of STATUS field in bytes.
1312 */
1313u8 spu2_rx_status_len(void)
1314{
1315 return SPU2_RX_STATUS_LEN;
1316}
1317
1318/**
1319 * spu2_status_process() - Process the status from a SPU response message.
1320 * @statp: start of STATUS word
1321 *
1322 * Return: 0 - if status is good and response should be processed
1323 * !0 - status indicates an error and response is invalid
1324 */
1325int spu2_status_process(u8 *statp)
1326{
1327 /* SPU2 status is 2 bytes by default - SPU_RX_STATUS_LEN */
1328 u16 status = le16_to_cpu(*(__le16 *)statp);
1329
1330 if (status == 0)
1331 return 0;
1332
1333 flow_log(format: "rx status is %#x\n", status);
1334 if (status == SPU2_INVALID_ICV)
1335 return SPU_INVALID_ICV;
1336
1337 return -EBADMSG;
1338}
1339
1340/**
1341 * spu2_ccm_update_iv() - Update the IV as per the requirements for CCM mode.
1342 *
1343 * @digestsize: Digest size of this request
1344 * @cipher_parms: (pointer to) cipher parmaeters, includes IV buf & IV len
1345 * @assoclen: Length of AAD data
1346 * @chunksize: length of input data to be sent in this req
1347 * @is_encrypt: true if this is an output/encrypt operation
1348 * @is_esp: true if this is an ESP / RFC4309 operation
1349 *
1350 */
1351void spu2_ccm_update_iv(unsigned int digestsize,
1352 struct spu_cipher_parms *cipher_parms,
1353 unsigned int assoclen, unsigned int chunksize,
1354 bool is_encrypt, bool is_esp)
1355{
1356 int L; /* size of length field, in bytes */
1357
1358 /*
1359 * In RFC4309 mode, L is fixed at 4 bytes; otherwise, IV from
1360 * testmgr contains (L-1) in bottom 3 bits of first byte,
1361 * per RFC 3610.
1362 */
1363 if (is_esp)
1364 L = CCM_ESP_L_VALUE;
1365 else
1366 L = ((cipher_parms->iv_buf[0] & CCM_B0_L_PRIME) >>
1367 CCM_B0_L_PRIME_SHIFT) + 1;
1368
1369 /* SPU2 doesn't want these length bytes nor the first byte... */
1370 cipher_parms->iv_len -= (1 + L);
1371 memmove(cipher_parms->iv_buf, &cipher_parms->iv_buf[1],
1372 cipher_parms->iv_len);
1373}
1374
1375/**
1376 * spu2_wordalign_padlen() - SPU2 does not require padding.
1377 * @data_size: length of data field in bytes
1378 *
1379 * Return: length of status field padding, in bytes (always 0 on SPU2)
1380 */
1381u32 spu2_wordalign_padlen(u32 data_size)
1382{
1383 return 0;
1384}
1385

source code of linux/drivers/crypto/bcm/spu2.c