1/*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15#include <linux/ctype.h>
16#include <linux/slab.h>
17#include <linux/edac.h>
18#include <linux/bug.h>
19#include <linux/pm_runtime.h>
20#include <linux/uaccess.h>
21
22#include "edac_mc.h"
23#include "edac_module.h"
24
25/* MC EDAC Controls, setable by module parameter, and sysfs */
26static int edac_mc_log_ue = 1;
27static int edac_mc_log_ce = 1;
28static int edac_mc_panic_on_ue;
29static unsigned int edac_mc_poll_msec = 1000;
30
31/* Getter functions for above */
32int edac_mc_get_log_ue(void)
33{
34 return edac_mc_log_ue;
35}
36
37int edac_mc_get_log_ce(void)
38{
39 return edac_mc_log_ce;
40}
41
42int edac_mc_get_panic_on_ue(void)
43{
44 return edac_mc_panic_on_ue;
45}
46
47/* this is temporary */
48unsigned int edac_mc_get_poll_msec(void)
49{
50 return edac_mc_poll_msec;
51}
52
53static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54{
55 unsigned int i;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = kstrtouint(s: val, base: 0, res: &i);
62 if (ret)
63 return ret;
64
65 if (i < 1000)
66 return -EINVAL;
67
68 *((unsigned int *)kp->arg) = i;
69
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(value: i);
72
73 return 0;
74}
75
76/* Parameter declarations for above */
77module_param(edac_mc_panic_on_ue, int, 0644);
78MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79module_param(edac_mc_log_ue, int, 0644);
80MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82module_param(edac_mc_log_ce, int, 0644);
83MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 &edac_mc_poll_msec, 0644);
87MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89static struct device *mci_pdev;
90
91/*
92 * various constants for Memory Controllers
93 */
94static const char * const dev_types[] = {
95 [DEV_UNKNOWN] = "Unknown",
96 [DEV_X1] = "x1",
97 [DEV_X2] = "x2",
98 [DEV_X4] = "x4",
99 [DEV_X8] = "x8",
100 [DEV_X16] = "x16",
101 [DEV_X32] = "x32",
102 [DEV_X64] = "x64"
103};
104
105static const char * const edac_caps[] = {
106 [EDAC_UNKNOWN] = "Unknown",
107 [EDAC_NONE] = "None",
108 [EDAC_RESERVED] = "Reserved",
109 [EDAC_PARITY] = "PARITY",
110 [EDAC_EC] = "EC",
111 [EDAC_SECDED] = "SECDED",
112 [EDAC_S2ECD2ED] = "S2ECD2ED",
113 [EDAC_S4ECD4ED] = "S4ECD4ED",
114 [EDAC_S8ECD8ED] = "S8ECD8ED",
115 [EDAC_S16ECD16ED] = "S16ECD16ED"
116};
117
118#ifdef CONFIG_EDAC_LEGACY_SYSFS
119/*
120 * EDAC sysfs CSROW data structures and methods
121 */
122
123#define to_csrow(k) container_of(k, struct csrow_info, dev)
124
125/*
126 * We need it to avoid namespace conflicts between the legacy API
127 * and the per-dimm/per-rank one
128 */
129#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131
132struct dev_ch_attribute {
133 struct device_attribute attr;
134 unsigned int channel;
135};
136
137#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 { __ATTR(_name, _mode, _show, _store), (_var) }
140
141#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142
143/* Set of more default csrow<id> attribute show/store functions */
144static ssize_t csrow_ue_count_show(struct device *dev,
145 struct device_attribute *mattr, char *data)
146{
147 struct csrow_info *csrow = to_csrow(dev);
148
149 return sprintf(buf: data, fmt: "%u\n", csrow->ue_count);
150}
151
152static ssize_t csrow_ce_count_show(struct device *dev,
153 struct device_attribute *mattr, char *data)
154{
155 struct csrow_info *csrow = to_csrow(dev);
156
157 return sprintf(buf: data, fmt: "%u\n", csrow->ce_count);
158}
159
160static ssize_t csrow_size_show(struct device *dev,
161 struct device_attribute *mattr, char *data)
162{
163 struct csrow_info *csrow = to_csrow(dev);
164 int i;
165 u32 nr_pages = 0;
166
167 for (i = 0; i < csrow->nr_channels; i++)
168 nr_pages += csrow->channels[i]->dimm->nr_pages;
169 return sprintf(buf: data, fmt: "%u\n", PAGES_TO_MiB(nr_pages));
170}
171
172static ssize_t csrow_mem_type_show(struct device *dev,
173 struct device_attribute *mattr, char *data)
174{
175 struct csrow_info *csrow = to_csrow(dev);
176
177 return sprintf(buf: data, fmt: "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178}
179
180static ssize_t csrow_dev_type_show(struct device *dev,
181 struct device_attribute *mattr, char *data)
182{
183 struct csrow_info *csrow = to_csrow(dev);
184
185 return sprintf(buf: data, fmt: "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186}
187
188static ssize_t csrow_edac_mode_show(struct device *dev,
189 struct device_attribute *mattr,
190 char *data)
191{
192 struct csrow_info *csrow = to_csrow(dev);
193
194 return sprintf(buf: data, fmt: "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195}
196
197/* show/store functions for DIMM Label attributes */
198static ssize_t channel_dimm_label_show(struct device *dev,
199 struct device_attribute *mattr,
200 char *data)
201{
202 struct csrow_info *csrow = to_csrow(dev);
203 unsigned int chan = to_channel(mattr);
204 struct rank_info *rank = csrow->channels[chan];
205
206 /* if field has not been initialized, there is nothing to send */
207 if (!rank->dimm->label[0])
208 return 0;
209
210 return snprintf(buf: data, size: sizeof(rank->dimm->label) + 1, fmt: "%s\n",
211 rank->dimm->label);
212}
213
214static ssize_t channel_dimm_label_store(struct device *dev,
215 struct device_attribute *mattr,
216 const char *data, size_t count)
217{
218 struct csrow_info *csrow = to_csrow(dev);
219 unsigned int chan = to_channel(mattr);
220 struct rank_info *rank = csrow->channels[chan];
221 size_t copy_count = count;
222
223 if (count == 0)
224 return -EINVAL;
225
226 if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 copy_count -= 1;
228
229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 return -EINVAL;
231
232 memcpy(rank->dimm->label, data, copy_count);
233 rank->dimm->label[copy_count] = '\0';
234
235 return count;
236}
237
238/* show function for dynamic chX_ce_count attribute */
239static ssize_t channel_ce_count_show(struct device *dev,
240 struct device_attribute *mattr, char *data)
241{
242 struct csrow_info *csrow = to_csrow(dev);
243 unsigned int chan = to_channel(mattr);
244 struct rank_info *rank = csrow->channels[chan];
245
246 return sprintf(buf: data, fmt: "%u\n", rank->ce_count);
247}
248
249/* cwrow<id>/attribute files */
250DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256
257/* default attributes of the CSROW<id> object */
258static struct attribute *csrow_attrs[] = {
259 &dev_attr_legacy_dev_type.attr,
260 &dev_attr_legacy_mem_type.attr,
261 &dev_attr_legacy_edac_mode.attr,
262 &dev_attr_legacy_size_mb.attr,
263 &dev_attr_legacy_ue_count.attr,
264 &dev_attr_legacy_ce_count.attr,
265 NULL,
266};
267
268static const struct attribute_group csrow_attr_grp = {
269 .attrs = csrow_attrs,
270};
271
272static const struct attribute_group *csrow_attr_groups[] = {
273 &csrow_attr_grp,
274 NULL
275};
276
277static const struct device_type csrow_attr_type = {
278 .groups = csrow_attr_groups,
279};
280
281/*
282 * possible dynamic channel DIMM Label attribute files
283 *
284 */
285DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
286 channel_dimm_label_show, channel_dimm_label_store, 0);
287DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
288 channel_dimm_label_show, channel_dimm_label_store, 1);
289DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
290 channel_dimm_label_show, channel_dimm_label_store, 2);
291DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
292 channel_dimm_label_show, channel_dimm_label_store, 3);
293DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
294 channel_dimm_label_show, channel_dimm_label_store, 4);
295DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
296 channel_dimm_label_show, channel_dimm_label_store, 5);
297DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
298 channel_dimm_label_show, channel_dimm_label_store, 6);
299DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
300 channel_dimm_label_show, channel_dimm_label_store, 7);
301DEVICE_CHANNEL(ch8_dimm_label, S_IRUGO | S_IWUSR,
302 channel_dimm_label_show, channel_dimm_label_store, 8);
303DEVICE_CHANNEL(ch9_dimm_label, S_IRUGO | S_IWUSR,
304 channel_dimm_label_show, channel_dimm_label_store, 9);
305DEVICE_CHANNEL(ch10_dimm_label, S_IRUGO | S_IWUSR,
306 channel_dimm_label_show, channel_dimm_label_store, 10);
307DEVICE_CHANNEL(ch11_dimm_label, S_IRUGO | S_IWUSR,
308 channel_dimm_label_show, channel_dimm_label_store, 11);
309
310/* Total possible dynamic DIMM Label attribute file table */
311static struct attribute *dynamic_csrow_dimm_attr[] = {
312 &dev_attr_legacy_ch0_dimm_label.attr.attr,
313 &dev_attr_legacy_ch1_dimm_label.attr.attr,
314 &dev_attr_legacy_ch2_dimm_label.attr.attr,
315 &dev_attr_legacy_ch3_dimm_label.attr.attr,
316 &dev_attr_legacy_ch4_dimm_label.attr.attr,
317 &dev_attr_legacy_ch5_dimm_label.attr.attr,
318 &dev_attr_legacy_ch6_dimm_label.attr.attr,
319 &dev_attr_legacy_ch7_dimm_label.attr.attr,
320 &dev_attr_legacy_ch8_dimm_label.attr.attr,
321 &dev_attr_legacy_ch9_dimm_label.attr.attr,
322 &dev_attr_legacy_ch10_dimm_label.attr.attr,
323 &dev_attr_legacy_ch11_dimm_label.attr.attr,
324 NULL
325};
326
327/* possible dynamic channel ce_count attribute files */
328DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
329 channel_ce_count_show, NULL, 0);
330DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
331 channel_ce_count_show, NULL, 1);
332DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
333 channel_ce_count_show, NULL, 2);
334DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
335 channel_ce_count_show, NULL, 3);
336DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
337 channel_ce_count_show, NULL, 4);
338DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
339 channel_ce_count_show, NULL, 5);
340DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
341 channel_ce_count_show, NULL, 6);
342DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
343 channel_ce_count_show, NULL, 7);
344DEVICE_CHANNEL(ch8_ce_count, S_IRUGO,
345 channel_ce_count_show, NULL, 8);
346DEVICE_CHANNEL(ch9_ce_count, S_IRUGO,
347 channel_ce_count_show, NULL, 9);
348DEVICE_CHANNEL(ch10_ce_count, S_IRUGO,
349 channel_ce_count_show, NULL, 10);
350DEVICE_CHANNEL(ch11_ce_count, S_IRUGO,
351 channel_ce_count_show, NULL, 11);
352
353/* Total possible dynamic ce_count attribute file table */
354static struct attribute *dynamic_csrow_ce_count_attr[] = {
355 &dev_attr_legacy_ch0_ce_count.attr.attr,
356 &dev_attr_legacy_ch1_ce_count.attr.attr,
357 &dev_attr_legacy_ch2_ce_count.attr.attr,
358 &dev_attr_legacy_ch3_ce_count.attr.attr,
359 &dev_attr_legacy_ch4_ce_count.attr.attr,
360 &dev_attr_legacy_ch5_ce_count.attr.attr,
361 &dev_attr_legacy_ch6_ce_count.attr.attr,
362 &dev_attr_legacy_ch7_ce_count.attr.attr,
363 &dev_attr_legacy_ch8_ce_count.attr.attr,
364 &dev_attr_legacy_ch9_ce_count.attr.attr,
365 &dev_attr_legacy_ch10_ce_count.attr.attr,
366 &dev_attr_legacy_ch11_ce_count.attr.attr,
367 NULL
368};
369
370static umode_t csrow_dev_is_visible(struct kobject *kobj,
371 struct attribute *attr, int idx)
372{
373 struct device *dev = kobj_to_dev(kobj);
374 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
375
376 if (idx >= csrow->nr_channels)
377 return 0;
378
379 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
380 WARN_ONCE(1, "idx: %d\n", idx);
381 return 0;
382 }
383
384 /* Only expose populated DIMMs */
385 if (!csrow->channels[idx]->dimm->nr_pages)
386 return 0;
387
388 return attr->mode;
389}
390
391
392static const struct attribute_group csrow_dev_dimm_group = {
393 .attrs = dynamic_csrow_dimm_attr,
394 .is_visible = csrow_dev_is_visible,
395};
396
397static const struct attribute_group csrow_dev_ce_count_group = {
398 .attrs = dynamic_csrow_ce_count_attr,
399 .is_visible = csrow_dev_is_visible,
400};
401
402static const struct attribute_group *csrow_dev_groups[] = {
403 &csrow_dev_dimm_group,
404 &csrow_dev_ce_count_group,
405 NULL
406};
407
408static void csrow_release(struct device *dev)
409{
410 /*
411 * Nothing to do, just unregister sysfs here. The mci
412 * device owns the data and will also release it.
413 */
414}
415
416static inline int nr_pages_per_csrow(struct csrow_info *csrow)
417{
418 int chan, nr_pages = 0;
419
420 for (chan = 0; chan < csrow->nr_channels; chan++)
421 nr_pages += csrow->channels[chan]->dimm->nr_pages;
422
423 return nr_pages;
424}
425
426/* Create a CSROW object under specifed edac_mc_device */
427static int edac_create_csrow_object(struct mem_ctl_info *mci,
428 struct csrow_info *csrow, int index)
429{
430 int err;
431
432 csrow->dev.type = &csrow_attr_type;
433 csrow->dev.groups = csrow_dev_groups;
434 csrow->dev.release = csrow_release;
435 device_initialize(dev: &csrow->dev);
436 csrow->dev.parent = &mci->dev;
437 csrow->mci = mci;
438 dev_set_name(dev: &csrow->dev, name: "csrow%d", index);
439 dev_set_drvdata(dev: &csrow->dev, data: csrow);
440
441 err = device_add(dev: &csrow->dev);
442 if (err) {
443 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev));
444 put_device(dev: &csrow->dev);
445 return err;
446 }
447
448 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev));
449
450 return 0;
451}
452
453/* Create a CSROW object under specifed edac_mc_device */
454static int edac_create_csrow_objects(struct mem_ctl_info *mci)
455{
456 int err, i;
457 struct csrow_info *csrow;
458
459 for (i = 0; i < mci->nr_csrows; i++) {
460 csrow = mci->csrows[i];
461 if (!nr_pages_per_csrow(csrow))
462 continue;
463 err = edac_create_csrow_object(mci, csrow: mci->csrows[i], index: i);
464 if (err < 0)
465 goto error;
466 }
467 return 0;
468
469error:
470 for (--i; i >= 0; i--) {
471 if (device_is_registered(dev: &mci->csrows[i]->dev))
472 device_unregister(dev: &mci->csrows[i]->dev);
473 }
474
475 return err;
476}
477
478static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
479{
480 int i;
481
482 for (i = 0; i < mci->nr_csrows; i++) {
483 if (device_is_registered(dev: &mci->csrows[i]->dev))
484 device_unregister(dev: &mci->csrows[i]->dev);
485 }
486}
487
488#endif
489
490/*
491 * Per-dimm (or per-rank) devices
492 */
493
494#define to_dimm(k) container_of(k, struct dimm_info, dev)
495
496/* show/store functions for DIMM Label attributes */
497static ssize_t dimmdev_location_show(struct device *dev,
498 struct device_attribute *mattr, char *data)
499{
500 struct dimm_info *dimm = to_dimm(dev);
501 ssize_t count;
502
503 count = edac_dimm_info_location(dimm, buf: data, PAGE_SIZE);
504 count += scnprintf(buf: data + count, PAGE_SIZE - count, fmt: "\n");
505
506 return count;
507}
508
509static ssize_t dimmdev_label_show(struct device *dev,
510 struct device_attribute *mattr, char *data)
511{
512 struct dimm_info *dimm = to_dimm(dev);
513
514 /* if field has not been initialized, there is nothing to send */
515 if (!dimm->label[0])
516 return 0;
517
518 return snprintf(buf: data, size: sizeof(dimm->label) + 1, fmt: "%s\n", dimm->label);
519}
520
521static ssize_t dimmdev_label_store(struct device *dev,
522 struct device_attribute *mattr,
523 const char *data,
524 size_t count)
525{
526 struct dimm_info *dimm = to_dimm(dev);
527 size_t copy_count = count;
528
529 if (count == 0)
530 return -EINVAL;
531
532 if (data[count - 1] == '\0' || data[count - 1] == '\n')
533 copy_count -= 1;
534
535 if (copy_count == 0 || copy_count >= sizeof(dimm->label))
536 return -EINVAL;
537
538 memcpy(dimm->label, data, copy_count);
539 dimm->label[copy_count] = '\0';
540
541 return count;
542}
543
544static ssize_t dimmdev_size_show(struct device *dev,
545 struct device_attribute *mattr, char *data)
546{
547 struct dimm_info *dimm = to_dimm(dev);
548
549 return sprintf(buf: data, fmt: "%u\n", PAGES_TO_MiB(dimm->nr_pages));
550}
551
552static ssize_t dimmdev_mem_type_show(struct device *dev,
553 struct device_attribute *mattr, char *data)
554{
555 struct dimm_info *dimm = to_dimm(dev);
556
557 return sprintf(buf: data, fmt: "%s\n", edac_mem_types[dimm->mtype]);
558}
559
560static ssize_t dimmdev_dev_type_show(struct device *dev,
561 struct device_attribute *mattr, char *data)
562{
563 struct dimm_info *dimm = to_dimm(dev);
564
565 return sprintf(buf: data, fmt: "%s\n", dev_types[dimm->dtype]);
566}
567
568static ssize_t dimmdev_edac_mode_show(struct device *dev,
569 struct device_attribute *mattr,
570 char *data)
571{
572 struct dimm_info *dimm = to_dimm(dev);
573
574 return sprintf(buf: data, fmt: "%s\n", edac_caps[dimm->edac_mode]);
575}
576
577static ssize_t dimmdev_ce_count_show(struct device *dev,
578 struct device_attribute *mattr,
579 char *data)
580{
581 struct dimm_info *dimm = to_dimm(dev);
582
583 return sprintf(buf: data, fmt: "%u\n", dimm->ce_count);
584}
585
586static ssize_t dimmdev_ue_count_show(struct device *dev,
587 struct device_attribute *mattr,
588 char *data)
589{
590 struct dimm_info *dimm = to_dimm(dev);
591
592 return sprintf(buf: data, fmt: "%u\n", dimm->ue_count);
593}
594
595/* dimm/rank attribute files */
596static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
597 dimmdev_label_show, dimmdev_label_store);
598static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
599static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
600static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
601static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
602static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
603static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
604static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
605
606/* attributes of the dimm<id>/rank<id> object */
607static struct attribute *dimm_attrs[] = {
608 &dev_attr_dimm_label.attr,
609 &dev_attr_dimm_location.attr,
610 &dev_attr_size.attr,
611 &dev_attr_dimm_mem_type.attr,
612 &dev_attr_dimm_dev_type.attr,
613 &dev_attr_dimm_edac_mode.attr,
614 &dev_attr_dimm_ce_count.attr,
615 &dev_attr_dimm_ue_count.attr,
616 NULL,
617};
618
619static const struct attribute_group dimm_attr_grp = {
620 .attrs = dimm_attrs,
621};
622
623static const struct attribute_group *dimm_attr_groups[] = {
624 &dimm_attr_grp,
625 NULL
626};
627
628static const struct device_type dimm_attr_type = {
629 .groups = dimm_attr_groups,
630};
631
632static void dimm_release(struct device *dev)
633{
634 /*
635 * Nothing to do, just unregister sysfs here. The mci
636 * device owns the data and will also release it.
637 */
638}
639
640/* Create a DIMM object under specifed memory controller device */
641static int edac_create_dimm_object(struct mem_ctl_info *mci,
642 struct dimm_info *dimm)
643{
644 int err;
645 dimm->mci = mci;
646
647 dimm->dev.type = &dimm_attr_type;
648 dimm->dev.release = dimm_release;
649 device_initialize(dev: &dimm->dev);
650
651 dimm->dev.parent = &mci->dev;
652 if (mci->csbased)
653 dev_set_name(dev: &dimm->dev, name: "rank%d", dimm->idx);
654 else
655 dev_set_name(dev: &dimm->dev, name: "dimm%d", dimm->idx);
656 dev_set_drvdata(dev: &dimm->dev, data: dimm);
657 pm_runtime_forbid(dev: &mci->dev);
658
659 err = device_add(dev: &dimm->dev);
660 if (err) {
661 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev));
662 put_device(dev: &dimm->dev);
663 return err;
664 }
665
666 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
667 char location[80];
668
669 edac_dimm_info_location(dimm, buf: location, len: sizeof(location));
670 edac_dbg(0, "device %s created at location %s\n",
671 dev_name(&dimm->dev), location);
672 }
673
674 return 0;
675}
676
677/*
678 * Memory controller device
679 */
680
681#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
682
683static ssize_t mci_reset_counters_store(struct device *dev,
684 struct device_attribute *mattr,
685 const char *data, size_t count)
686{
687 struct mem_ctl_info *mci = to_mci(dev);
688 struct dimm_info *dimm;
689 int row, chan;
690
691 mci->ue_mc = 0;
692 mci->ce_mc = 0;
693 mci->ue_noinfo_count = 0;
694 mci->ce_noinfo_count = 0;
695
696 for (row = 0; row < mci->nr_csrows; row++) {
697 struct csrow_info *ri = mci->csrows[row];
698
699 ri->ue_count = 0;
700 ri->ce_count = 0;
701
702 for (chan = 0; chan < ri->nr_channels; chan++)
703 ri->channels[chan]->ce_count = 0;
704 }
705
706 mci_for_each_dimm(mci, dimm) {
707 dimm->ue_count = 0;
708 dimm->ce_count = 0;
709 }
710
711 mci->start_time = jiffies;
712 return count;
713}
714
715/* Memory scrubbing interface:
716 *
717 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
718 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
719 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
720 *
721 * Negative value still means that an error has occurred while setting
722 * the scrub rate.
723 */
724static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
725 struct device_attribute *mattr,
726 const char *data, size_t count)
727{
728 struct mem_ctl_info *mci = to_mci(dev);
729 unsigned long bandwidth = 0;
730 int new_bw = 0;
731
732 if (kstrtoul(s: data, base: 10, res: &bandwidth) < 0)
733 return -EINVAL;
734
735 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
736 if (new_bw < 0) {
737 edac_printk(KERN_WARNING, EDAC_MC,
738 "Error setting scrub rate to: %lu\n", bandwidth);
739 return -EINVAL;
740 }
741
742 return count;
743}
744
745/*
746 * ->get_sdram_scrub_rate() return value semantics same as above.
747 */
748static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
749 struct device_attribute *mattr,
750 char *data)
751{
752 struct mem_ctl_info *mci = to_mci(dev);
753 int bandwidth = 0;
754
755 bandwidth = mci->get_sdram_scrub_rate(mci);
756 if (bandwidth < 0) {
757 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
758 return bandwidth;
759 }
760
761 return sprintf(buf: data, fmt: "%d\n", bandwidth);
762}
763
764/* default attribute files for the MCI object */
765static ssize_t mci_ue_count_show(struct device *dev,
766 struct device_attribute *mattr,
767 char *data)
768{
769 struct mem_ctl_info *mci = to_mci(dev);
770
771 return sprintf(buf: data, fmt: "%u\n", mci->ue_mc);
772}
773
774static ssize_t mci_ce_count_show(struct device *dev,
775 struct device_attribute *mattr,
776 char *data)
777{
778 struct mem_ctl_info *mci = to_mci(dev);
779
780 return sprintf(buf: data, fmt: "%u\n", mci->ce_mc);
781}
782
783static ssize_t mci_ce_noinfo_show(struct device *dev,
784 struct device_attribute *mattr,
785 char *data)
786{
787 struct mem_ctl_info *mci = to_mci(dev);
788
789 return sprintf(buf: data, fmt: "%u\n", mci->ce_noinfo_count);
790}
791
792static ssize_t mci_ue_noinfo_show(struct device *dev,
793 struct device_attribute *mattr,
794 char *data)
795{
796 struct mem_ctl_info *mci = to_mci(dev);
797
798 return sprintf(buf: data, fmt: "%u\n", mci->ue_noinfo_count);
799}
800
801static ssize_t mci_seconds_show(struct device *dev,
802 struct device_attribute *mattr,
803 char *data)
804{
805 struct mem_ctl_info *mci = to_mci(dev);
806
807 return sprintf(buf: data, fmt: "%ld\n", (jiffies - mci->start_time) / HZ);
808}
809
810static ssize_t mci_ctl_name_show(struct device *dev,
811 struct device_attribute *mattr,
812 char *data)
813{
814 struct mem_ctl_info *mci = to_mci(dev);
815
816 return sprintf(buf: data, fmt: "%s\n", mci->ctl_name);
817}
818
819static ssize_t mci_size_mb_show(struct device *dev,
820 struct device_attribute *mattr,
821 char *data)
822{
823 struct mem_ctl_info *mci = to_mci(dev);
824 int total_pages = 0, csrow_idx, j;
825
826 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
827 struct csrow_info *csrow = mci->csrows[csrow_idx];
828
829 for (j = 0; j < csrow->nr_channels; j++) {
830 struct dimm_info *dimm = csrow->channels[j]->dimm;
831
832 total_pages += dimm->nr_pages;
833 }
834 }
835
836 return sprintf(buf: data, fmt: "%u\n", PAGES_TO_MiB(total_pages));
837}
838
839static ssize_t mci_max_location_show(struct device *dev,
840 struct device_attribute *mattr,
841 char *data)
842{
843 struct mem_ctl_info *mci = to_mci(dev);
844 int len = PAGE_SIZE;
845 char *p = data;
846 int i, n;
847
848 for (i = 0; i < mci->n_layers; i++) {
849 n = scnprintf(buf: p, size: len, fmt: "%s %d ",
850 edac_layer_name[mci->layers[i].type],
851 mci->layers[i].size - 1);
852 len -= n;
853 if (len <= 0)
854 goto out;
855
856 p += n;
857 }
858
859 p += scnprintf(buf: p, size: len, fmt: "\n");
860out:
861 return p - data;
862}
863
864/* default Control file */
865static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
866
867/* default Attribute files */
868static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
869static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
870static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
871static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
872static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
873static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
874static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
875static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
876
877/* memory scrubber attribute file */
878static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
879 mci_sdram_scrub_rate_store); /* umode set later in is_visible */
880
881static struct attribute *mci_attrs[] = {
882 &dev_attr_reset_counters.attr,
883 &dev_attr_mc_name.attr,
884 &dev_attr_size_mb.attr,
885 &dev_attr_seconds_since_reset.attr,
886 &dev_attr_ue_noinfo_count.attr,
887 &dev_attr_ce_noinfo_count.attr,
888 &dev_attr_ue_count.attr,
889 &dev_attr_ce_count.attr,
890 &dev_attr_max_location.attr,
891 &dev_attr_sdram_scrub_rate.attr,
892 NULL
893};
894
895static umode_t mci_attr_is_visible(struct kobject *kobj,
896 struct attribute *attr, int idx)
897{
898 struct device *dev = kobj_to_dev(kobj);
899 struct mem_ctl_info *mci = to_mci(dev);
900 umode_t mode = 0;
901
902 if (attr != &dev_attr_sdram_scrub_rate.attr)
903 return attr->mode;
904 if (mci->get_sdram_scrub_rate)
905 mode |= S_IRUGO;
906 if (mci->set_sdram_scrub_rate)
907 mode |= S_IWUSR;
908 return mode;
909}
910
911static const struct attribute_group mci_attr_grp = {
912 .attrs = mci_attrs,
913 .is_visible = mci_attr_is_visible,
914};
915
916static const struct attribute_group *mci_attr_groups[] = {
917 &mci_attr_grp,
918 NULL
919};
920
921static const struct device_type mci_attr_type = {
922 .groups = mci_attr_groups,
923};
924
925/*
926 * Create a new Memory Controller kobject instance,
927 * mc<id> under the 'mc' directory
928 *
929 * Return:
930 * 0 Success
931 * !0 Failure
932 */
933int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
934 const struct attribute_group **groups)
935{
936 struct dimm_info *dimm;
937 int err;
938
939 /* get the /sys/devices/system/edac subsys reference */
940 mci->dev.type = &mci_attr_type;
941 mci->dev.parent = mci_pdev;
942 mci->dev.groups = groups;
943 dev_set_name(dev: &mci->dev, name: "mc%d", mci->mc_idx);
944 dev_set_drvdata(dev: &mci->dev, data: mci);
945 pm_runtime_forbid(dev: &mci->dev);
946
947 err = device_add(dev: &mci->dev);
948 if (err < 0) {
949 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
950 /* no put_device() here, free mci with _edac_mc_free() */
951 return err;
952 }
953
954 edac_dbg(0, "device %s created\n", dev_name(&mci->dev));
955
956 /*
957 * Create the dimm/rank devices
958 */
959 mci_for_each_dimm(mci, dimm) {
960 /* Only expose populated DIMMs */
961 if (!dimm->nr_pages)
962 continue;
963
964 err = edac_create_dimm_object(mci, dimm);
965 if (err)
966 goto fail;
967 }
968
969#ifdef CONFIG_EDAC_LEGACY_SYSFS
970 err = edac_create_csrow_objects(mci);
971 if (err < 0)
972 goto fail;
973#endif
974
975 edac_create_debugfs_nodes(mci);
976 return 0;
977
978fail:
979 edac_remove_sysfs_mci_device(mci);
980
981 return err;
982}
983
984/*
985 * remove a Memory Controller instance
986 */
987void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
988{
989 struct dimm_info *dimm;
990
991 if (!device_is_registered(dev: &mci->dev))
992 return;
993
994 edac_dbg(0, "\n");
995
996#ifdef CONFIG_EDAC_DEBUG
997 edac_debugfs_remove_recursive(dentry: mci->debugfs);
998#endif
999#ifdef CONFIG_EDAC_LEGACY_SYSFS
1000 edac_delete_csrow_objects(mci);
1001#endif
1002
1003 mci_for_each_dimm(mci, dimm) {
1004 if (!device_is_registered(dev: &dimm->dev))
1005 continue;
1006 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
1007 device_unregister(dev: &dimm->dev);
1008 }
1009
1010 /* only remove the device, but keep mci */
1011 device_del(dev: &mci->dev);
1012}
1013
1014static void mc_attr_release(struct device *dev)
1015{
1016 /*
1017 * There's no container structure here, as this is just the mci
1018 * parent device, used to create the /sys/devices/mc sysfs node.
1019 * So, there are no attributes on it.
1020 */
1021 edac_dbg(1, "device %s released\n", dev_name(dev));
1022 kfree(objp: dev);
1023}
1024
1025/*
1026 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1027 */
1028int __init edac_mc_sysfs_init(void)
1029{
1030 int err;
1031
1032 mci_pdev = kzalloc(size: sizeof(*mci_pdev), GFP_KERNEL);
1033 if (!mci_pdev)
1034 return -ENOMEM;
1035
1036 mci_pdev->bus = edac_get_sysfs_subsys();
1037 mci_pdev->release = mc_attr_release;
1038 mci_pdev->init_name = "mc";
1039
1040 err = device_register(dev: mci_pdev);
1041 if (err < 0) {
1042 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
1043 put_device(dev: mci_pdev);
1044 return err;
1045 }
1046
1047 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1048
1049 return 0;
1050}
1051
1052void edac_mc_sysfs_exit(void)
1053{
1054 device_unregister(dev: mci_pdev);
1055}
1056

source code of linux/drivers/edac/edac_mc_sysfs.c