1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
4 *
5 * Rewritten for Linux IIO framework with some code based on
6 * earlier driver found in the Motorola Linux kernel:
7 *
8 * Copyright (C) 2009-2010 Motorola, Inc.
9 */
10
11#include <linux/delay.h>
12#include <linux/device.h>
13#include <linux/err.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/kernel.h>
17#include <linux/module.h>
18#include <linux/mod_devicetable.h>
19#include <linux/platform_device.h>
20#include <linux/property.h>
21#include <linux/regmap.h>
22
23#include <linux/iio/buffer.h>
24#include <linux/iio/driver.h>
25#include <linux/iio/iio.h>
26#include <linux/iio/kfifo_buf.h>
27#include <linux/mfd/motorola-cpcap.h>
28
29/* Register CPCAP_REG_ADCC1 bits */
30#define CPCAP_BIT_ADEN_AUTO_CLR BIT(15) /* Currently unused */
31#define CPCAP_BIT_CAL_MODE BIT(14) /* Set with BIT_RAND0 */
32#define CPCAP_BIT_ADC_CLK_SEL1 BIT(13) /* Currently unused */
33#define CPCAP_BIT_ADC_CLK_SEL0 BIT(12) /* Currently unused */
34#define CPCAP_BIT_ATOX BIT(11)
35#define CPCAP_BIT_ATO3 BIT(10)
36#define CPCAP_BIT_ATO2 BIT(9)
37#define CPCAP_BIT_ATO1 BIT(8)
38#define CPCAP_BIT_ATO0 BIT(7)
39#define CPCAP_BIT_ADA2 BIT(6)
40#define CPCAP_BIT_ADA1 BIT(5)
41#define CPCAP_BIT_ADA0 BIT(4)
42#define CPCAP_BIT_AD_SEL1 BIT(3) /* Set for bank1 */
43#define CPCAP_BIT_RAND1 BIT(2) /* Set for channel 16 & 17 */
44#define CPCAP_BIT_RAND0 BIT(1) /* Set with CAL_MODE */
45#define CPCAP_BIT_ADEN BIT(0) /* Currently unused */
46
47#define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \
48 CPCAP_BIT_ADC_CLK_SEL0 | \
49 CPCAP_BIT_RAND1)
50
51/* Register CPCAP_REG_ADCC2 bits */
52#define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15) /* Currently unused */
53#define CPCAP_BIT_BATDETB_EN BIT(14) /* Currently unused */
54#define CPCAP_BIT_ADTRIG_ONESHOT BIT(13) /* Set for !TIMING_IMM */
55#define CPCAP_BIT_ASC BIT(12) /* Set for TIMING_IMM */
56#define CPCAP_BIT_ATOX_PS_FACTOR BIT(11)
57#define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10)
58#define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9)
59#define CPCAP_BIT_AD4_SELECT BIT(8) /* Currently unused */
60#define CPCAP_BIT_ADC_BUSY BIT(7) /* Currently unused */
61#define CPCAP_BIT_THERMBIAS_EN BIT(6) /* Bias for AD0_BATTDETB */
62#define CPCAP_BIT_ADTRIG_DIS BIT(5) /* Disable interrupt */
63#define CPCAP_BIT_LIADC BIT(4) /* Currently unused */
64#define CPCAP_BIT_TS_REFEN BIT(3) /* Currently unused */
65#define CPCAP_BIT_TS_M2 BIT(2) /* Currently unused */
66#define CPCAP_BIT_TS_M1 BIT(1) /* Currently unused */
67#define CPCAP_BIT_TS_M0 BIT(0) /* Currently unused */
68
69#define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \
70 CPCAP_BIT_ADTRIG_DIS | \
71 CPCAP_BIT_LIADC | \
72 CPCAP_BIT_TS_M2 | \
73 CPCAP_BIT_TS_M1)
74
75#define CPCAP_MAX_TEMP_LVL 27
76#define CPCAP_FOUR_POINT_TWO_ADC 801
77#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530
78#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494
79#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530
80#define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494
81#define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3
82
83#define CPCAP_ADC_MAX_RETRIES 5 /* Calibration */
84
85/*
86 * struct cpcap_adc_ato - timing settings for cpcap adc
87 *
88 * Unfortunately no cpcap documentation available, please document when
89 * using these.
90 */
91struct cpcap_adc_ato {
92 unsigned short ato_in;
93 unsigned short atox_in;
94 unsigned short adc_ps_factor_in;
95 unsigned short atox_ps_factor_in;
96 unsigned short ato_out;
97 unsigned short atox_out;
98 unsigned short adc_ps_factor_out;
99 unsigned short atox_ps_factor_out;
100};
101
102/**
103 * struct cpcap_adc - cpcap adc device driver data
104 * @reg: cpcap regmap
105 * @dev: struct device
106 * @vendor: cpcap vendor
107 * @irq: interrupt
108 * @lock: mutex
109 * @ato: request timings
110 * @wq_data_avail: work queue
111 * @done: work done
112 */
113struct cpcap_adc {
114 struct regmap *reg;
115 struct device *dev;
116 u16 vendor;
117 int irq;
118 struct mutex lock; /* ADC register access lock */
119 const struct cpcap_adc_ato *ato;
120 wait_queue_head_t wq_data_avail;
121 bool done;
122};
123
124/*
125 * enum cpcap_adc_channel - cpcap adc channels
126 */
127enum cpcap_adc_channel {
128 /* Bank0 channels */
129 CPCAP_ADC_AD0, /* Battery temperature */
130 CPCAP_ADC_BATTP, /* Battery voltage */
131 CPCAP_ADC_VBUS, /* USB VBUS voltage */
132 CPCAP_ADC_AD3, /* Die temperature when charging */
133 CPCAP_ADC_BPLUS_AD4, /* Another battery or system voltage */
134 CPCAP_ADC_CHG_ISENSE, /* Calibrated charge current */
135 CPCAP_ADC_BATTI, /* Calibrated system current */
136 CPCAP_ADC_USB_ID, /* USB OTG ID, unused on droid 4? */
137
138 /* Bank1 channels */
139 CPCAP_ADC_AD8, /* Seems unused */
140 CPCAP_ADC_AD9, /* Seems unused */
141 CPCAP_ADC_LICELL, /* Maybe system voltage? Always 3V */
142 CPCAP_ADC_HV_BATTP, /* Another battery detection? */
143 CPCAP_ADC_TSX1_AD12, /* Seems unused, for touchscreen? */
144 CPCAP_ADC_TSX2_AD13, /* Seems unused, for touchscreen? */
145 CPCAP_ADC_TSY1_AD14, /* Seems unused, for touchscreen? */
146 CPCAP_ADC_TSY2_AD15, /* Seems unused, for touchscreen? */
147
148 /* Remuxed channels using bank0 entries */
149 CPCAP_ADC_BATTP_PI16, /* Alternative mux mode for BATTP */
150 CPCAP_ADC_BATTI_PI17, /* Alternative mux mode for BATTI */
151
152 CPCAP_ADC_CHANNEL_NUM,
153};
154
155/*
156 * enum cpcap_adc_timing - cpcap adc timing options
157 *
158 * CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
159 * Please document when using.
160 */
161enum cpcap_adc_timing {
162 CPCAP_ADC_TIMING_IMM,
163 CPCAP_ADC_TIMING_IN,
164 CPCAP_ADC_TIMING_OUT,
165};
166
167/**
168 * struct cpcap_adc_phasing_tbl - cpcap phasing table
169 * @offset: offset in the phasing table
170 * @multiplier: multiplier in the phasing table
171 * @divider: divider in the phasing table
172 * @min: minimum value
173 * @max: maximum value
174 */
175struct cpcap_adc_phasing_tbl {
176 short offset;
177 unsigned short multiplier;
178 unsigned short divider;
179 short min;
180 short max;
181};
182
183/**
184 * struct cpcap_adc_conversion_tbl - cpcap conversion table
185 * @conv_type: conversion type
186 * @align_offset: align offset
187 * @conv_offset: conversion offset
188 * @cal_offset: calibration offset
189 * @multiplier: conversion multiplier
190 * @divider: conversion divider
191 */
192struct cpcap_adc_conversion_tbl {
193 enum iio_chan_info_enum conv_type;
194 int align_offset;
195 int conv_offset;
196 int cal_offset;
197 int multiplier;
198 int divider;
199};
200
201/**
202 * struct cpcap_adc_request - cpcap adc request
203 * @channel: request channel
204 * @phase_tbl: channel phasing table
205 * @conv_tbl: channel conversion table
206 * @bank_index: channel index within the bank
207 * @timing: timing settings
208 * @result: result
209 */
210struct cpcap_adc_request {
211 int channel;
212 const struct cpcap_adc_phasing_tbl *phase_tbl;
213 const struct cpcap_adc_conversion_tbl *conv_tbl;
214 int bank_index;
215 enum cpcap_adc_timing timing;
216 int result;
217};
218
219/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
220static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
221 /* Bank0 */
222 [CPCAP_ADC_AD0] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
223 [CPCAP_ADC_BATTP] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
224 [CPCAP_ADC_VBUS] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
225 [CPCAP_ADC_AD3] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
226 [CPCAP_ADC_BPLUS_AD4] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
227 [CPCAP_ADC_CHG_ISENSE] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: -512, .max: 511},
228 [CPCAP_ADC_BATTI] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: -512, .max: 511},
229 [CPCAP_ADC_USB_ID] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
230
231 /* Bank1 */
232 [CPCAP_ADC_AD8] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
233 [CPCAP_ADC_AD9] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
234 [CPCAP_ADC_LICELL] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
235 [CPCAP_ADC_HV_BATTP] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
236 [CPCAP_ADC_TSX1_AD12] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
237 [CPCAP_ADC_TSX2_AD13] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
238 [CPCAP_ADC_TSY1_AD14] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
239 [CPCAP_ADC_TSY2_AD15] = {.offset: 0, .multiplier: 0x80, .divider: 0x80, .min: 0, .max: 1023},
240};
241
242/*
243 * Conversion table for channels. Updated during init based on calibration.
244 * Here too channels 16 & 17 use BATTP and BATTI.
245 */
246static struct cpcap_adc_conversion_tbl bank_conversion[] = {
247 /* Bank0 */
248 [CPCAP_ADC_AD0] = {
249 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
250 },
251 [CPCAP_ADC_BATTP] = {
252 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: 0, .conv_offset: 2400, .cal_offset: 0, .multiplier: 2300, .divider: 1023,
253 },
254 [CPCAP_ADC_VBUS] = {
255 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 10000, .divider: 1023,
256 },
257 [CPCAP_ADC_AD3] = {
258 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
259 },
260 [CPCAP_ADC_BPLUS_AD4] = {
261 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: 0, .conv_offset: 2400, .cal_offset: 0, .multiplier: 2300, .divider: 1023,
262 },
263 [CPCAP_ADC_CHG_ISENSE] = {
264 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: -512, .conv_offset: 2, .cal_offset: 0, .multiplier: 5000, .divider: 1023,
265 },
266 [CPCAP_ADC_BATTI] = {
267 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: -512, .conv_offset: 2, .cal_offset: 0, .multiplier: 5000, .divider: 1023,
268 },
269 [CPCAP_ADC_USB_ID] = {
270 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
271 },
272
273 /* Bank1 */
274 [CPCAP_ADC_AD8] = {
275 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
276 },
277 [CPCAP_ADC_AD9] = {
278 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
279 },
280 [CPCAP_ADC_LICELL] = {
281 .conv_type: IIO_CHAN_INFO_PROCESSED, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 3400, .divider: 1023,
282 },
283 [CPCAP_ADC_HV_BATTP] = {
284 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
285 },
286 [CPCAP_ADC_TSX1_AD12] = {
287 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
288 },
289 [CPCAP_ADC_TSX2_AD13] = {
290 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
291 },
292 [CPCAP_ADC_TSY1_AD14] = {
293 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
294 },
295 [CPCAP_ADC_TSY2_AD15] = {
296 .conv_type: IIO_CHAN_INFO_RAW, .align_offset: 0, .conv_offset: 0, .cal_offset: 0, .multiplier: 1, .divider: 1,
297 },
298};
299
300/*
301 * Temperature lookup table of register values to milliCelcius.
302 * REVISIT: Check the duplicate 0x3ff entry in a freezer
303 */
304static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
305 { 0x03ff, -40000 },
306 { 0x03ff, -35000 },
307 { 0x03ef, -30000 },
308 { 0x03b2, -25000 },
309 { 0x036c, -20000 },
310 { 0x0320, -15000 },
311 { 0x02d0, -10000 },
312 { 0x027f, -5000 },
313 { 0x022f, 0 },
314 { 0x01e4, 5000 },
315 { 0x019f, 10000 },
316 { 0x0161, 15000 },
317 { 0x012b, 20000 },
318 { 0x00fc, 25000 },
319 { 0x00d4, 30000 },
320 { 0x00b2, 35000 },
321 { 0x0095, 40000 },
322 { 0x007d, 45000 },
323 { 0x0069, 50000 },
324 { 0x0059, 55000 },
325 { 0x004b, 60000 },
326 { 0x003f, 65000 },
327 { 0x0036, 70000 },
328 { 0x002e, 75000 },
329 { 0x0027, 80000 },
330 { 0x0022, 85000 },
331 { 0x001d, 90000 },
332};
333
334#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \
335 .type = (_type), \
336 .address = (_address), \
337 .indexed = 1, \
338 .channel = (_index), \
339 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
340 BIT(IIO_CHAN_INFO_PROCESSED), \
341 .scan_index = (_index), \
342 .scan_type = { \
343 .sign = 'u', \
344 .realbits = 10, \
345 .storagebits = 16, \
346 .endianness = IIO_CPU, \
347 }, \
348 .datasheet_name = (_datasheet_name), \
349}
350
351/*
352 * The datasheet names are from Motorola mapphone Linux kernel except
353 * for the last two which might be uncalibrated charge voltage and
354 * current.
355 */
356static const struct iio_chan_spec cpcap_adc_channels[] = {
357 /* Bank0 */
358 CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"),
359 CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"),
360 CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"),
361 CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"),
362 CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"),
363 CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"),
364 CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"),
365 CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"),
366
367 /* Bank1 */
368 CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"),
369 CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"),
370 CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
371 CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
372 CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
373 CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
374 CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
375 CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
376
377 /* There are two registers with multiplexed functionality */
378 CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
379 CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
380};
381
382static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
383{
384 struct iio_dev *indio_dev = data;
385 struct cpcap_adc *ddata = iio_priv(indio_dev);
386 int error;
387
388 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
389 CPCAP_BIT_ADTRIG_DIS,
390 CPCAP_BIT_ADTRIG_DIS);
391 if (error)
392 return IRQ_NONE;
393
394 ddata->done = true;
395 wake_up_interruptible(&ddata->wq_data_avail);
396
397 return IRQ_HANDLED;
398}
399
400/* ADC calibration functions */
401static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
402 enum cpcap_adc_channel chan)
403{
404 unsigned int value = 0;
405 unsigned long timeout = jiffies + msecs_to_jiffies(m: 3000);
406 int error;
407
408 if ((chan != CPCAP_ADC_CHG_ISENSE) &&
409 (chan != CPCAP_ADC_BATTI))
410 return;
411
412 value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
413 value |= ((chan << 4) &
414 (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
415
416 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC1,
417 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
418 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
419 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
420 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
421 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
422 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
423 val: value);
424 if (error)
425 return;
426
427 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
428 CPCAP_BIT_ATOX_PS_FACTOR |
429 CPCAP_BIT_ADC_PS_FACTOR1 |
430 CPCAP_BIT_ADC_PS_FACTOR0,
431 val: 0);
432 if (error)
433 return;
434
435 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
436 CPCAP_BIT_ADTRIG_DIS,
437 CPCAP_BIT_ADTRIG_DIS);
438 if (error)
439 return;
440
441 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
442 CPCAP_BIT_ASC,
443 CPCAP_BIT_ASC);
444 if (error)
445 return;
446
447 do {
448 schedule_timeout_uninterruptible(timeout: 1);
449 error = regmap_read(map: ddata->reg, CPCAP_REG_ADCC2, val: &value);
450 if (error)
451 return;
452 } while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
453
454 if (value & CPCAP_BIT_ASC)
455 dev_err(ddata->dev,
456 "Timeout waiting for calibration to complete\n");
457
458 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC1,
459 CPCAP_BIT_CAL_MODE, val: 0);
460 if (error)
461 return;
462}
463
464static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
465 int channel,
466 u16 calibration_register,
467 int lower_threshold,
468 int upper_threshold)
469{
470 unsigned int calibration_data[2];
471 unsigned short cal_data_diff;
472 int i, error;
473
474 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
475 calibration_data[0] = 0;
476 calibration_data[1] = 0;
477
478 cpcap_adc_setup_calibrate(ddata, chan: channel);
479 error = regmap_read(map: ddata->reg, reg: calibration_register,
480 val: &calibration_data[0]);
481 if (error)
482 return error;
483 cpcap_adc_setup_calibrate(ddata, chan: channel);
484 error = regmap_read(map: ddata->reg, reg: calibration_register,
485 val: &calibration_data[1]);
486 if (error)
487 return error;
488
489 if (calibration_data[0] > calibration_data[1])
490 cal_data_diff =
491 calibration_data[0] - calibration_data[1];
492 else
493 cal_data_diff =
494 calibration_data[1] - calibration_data[0];
495
496 if (((calibration_data[1] >= lower_threshold) &&
497 (calibration_data[1] <= upper_threshold) &&
498 (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
499 (ddata->vendor == CPCAP_VENDOR_TI)) {
500 bank_conversion[channel].cal_offset =
501 ((short)calibration_data[1] * -1) + 512;
502 dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
503 channel, bank_conversion[channel].cal_offset);
504 break;
505 }
506 usleep_range(min: 5000, max: 10000);
507 }
508
509 return 0;
510}
511
512static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
513{
514 int error;
515
516 error = cpcap_adc_calibrate_one(ddata, channel: CPCAP_ADC_CHG_ISENSE,
517 CPCAP_REG_ADCAL1,
518 ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
519 ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
520 if (error)
521 return error;
522
523 error = cpcap_adc_calibrate_one(ddata, channel: CPCAP_ADC_BATTI,
524 CPCAP_REG_ADCAL2,
525 ST_ADC_CAL_BATTI_LOW_THRESHOLD,
526 ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
527 if (error)
528 return error;
529
530 return 0;
531}
532
533/* ADC setup, read and scale functions */
534static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
535 struct cpcap_adc_request *req)
536{
537 const struct cpcap_adc_ato *ato = ddata->ato;
538 unsigned short value1 = 0;
539 unsigned short value2 = 0;
540 int error;
541
542 if (!ato)
543 return;
544
545 switch (req->channel) {
546 case CPCAP_ADC_AD0:
547 value2 |= CPCAP_BIT_THERMBIAS_EN;
548 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
549 CPCAP_BIT_THERMBIAS_EN,
550 val: value2);
551 if (error)
552 return;
553 usleep_range(min: 800, max: 1000);
554 break;
555 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
556 value1 |= CPCAP_BIT_AD_SEL1;
557 break;
558 case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
559 value1 |= CPCAP_BIT_RAND1;
560 break;
561 default:
562 break;
563 }
564
565 switch (req->timing) {
566 case CPCAP_ADC_TIMING_IN:
567 value1 |= ato->ato_in;
568 value1 |= ato->atox_in;
569 value2 |= ato->adc_ps_factor_in;
570 value2 |= ato->atox_ps_factor_in;
571 break;
572 case CPCAP_ADC_TIMING_OUT:
573 value1 |= ato->ato_out;
574 value1 |= ato->atox_out;
575 value2 |= ato->adc_ps_factor_out;
576 value2 |= ato->atox_ps_factor_out;
577 break;
578
579 case CPCAP_ADC_TIMING_IMM:
580 default:
581 break;
582 }
583
584 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC1,
585 CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
586 CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
587 CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
588 CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
589 CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
590 CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
591 val: value1);
592 if (error)
593 return;
594
595 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
596 CPCAP_BIT_ATOX_PS_FACTOR |
597 CPCAP_BIT_ADC_PS_FACTOR1 |
598 CPCAP_BIT_ADC_PS_FACTOR0 |
599 CPCAP_BIT_THERMBIAS_EN,
600 val: value2);
601 if (error)
602 return;
603
604 if (req->timing == CPCAP_ADC_TIMING_IMM) {
605 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
606 CPCAP_BIT_ADTRIG_DIS,
607 CPCAP_BIT_ADTRIG_DIS);
608 if (error)
609 return;
610
611 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
612 CPCAP_BIT_ASC,
613 CPCAP_BIT_ASC);
614 if (error)
615 return;
616 } else {
617 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
618 CPCAP_BIT_ADTRIG_ONESHOT,
619 CPCAP_BIT_ADTRIG_ONESHOT);
620 if (error)
621 return;
622
623 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
624 CPCAP_BIT_ADTRIG_DIS, val: 0);
625 if (error)
626 return;
627 }
628}
629
630static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
631 struct cpcap_adc_request *req)
632{
633 int i, error;
634
635 req->timing = CPCAP_ADC_TIMING_IMM;
636 ddata->done = false;
637
638 for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
639 cpcap_adc_setup_bank(ddata, req);
640 error = wait_event_interruptible_timeout(ddata->wq_data_avail,
641 ddata->done,
642 msecs_to_jiffies(50));
643 if (error > 0)
644 return 0;
645
646 if (error == 0) {
647 error = -ETIMEDOUT;
648 continue;
649 }
650
651 if (error < 0)
652 return error;
653 }
654
655 return error;
656}
657
658static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
659{
660 int error;
661
662 error = regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC1,
663 mask: 0xffff,
664 CPCAP_REG_ADCC1_DEFAULTS);
665 if (error)
666 return error;
667
668 return regmap_update_bits(map: ddata->reg, CPCAP_REG_ADCC2,
669 mask: 0xffff,
670 CPCAP_REG_ADCC2_DEFAULTS);
671}
672
673static void cpcap_adc_phase(struct cpcap_adc_request *req)
674{
675 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
676 const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
677 int index = req->channel;
678
679 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */
680 switch (req->channel) {
681 case CPCAP_ADC_BATTP:
682 case CPCAP_ADC_BATTP_PI16:
683 index = req->bank_index;
684 req->result -= phase_tbl[index].offset;
685 req->result -= CPCAP_FOUR_POINT_TWO_ADC;
686 req->result *= phase_tbl[index].multiplier;
687 if (phase_tbl[index].divider == 0)
688 return;
689 req->result /= phase_tbl[index].divider;
690 req->result += CPCAP_FOUR_POINT_TWO_ADC;
691 break;
692 case CPCAP_ADC_BATTI_PI17:
693 index = req->bank_index;
694 fallthrough;
695 default:
696 req->result += conv_tbl[index].cal_offset;
697 req->result += conv_tbl[index].align_offset;
698 req->result *= phase_tbl[index].multiplier;
699 if (phase_tbl[index].divider == 0)
700 return;
701 req->result /= phase_tbl[index].divider;
702 req->result += phase_tbl[index].offset;
703 break;
704 }
705
706 if (req->result < phase_tbl[index].min)
707 req->result = phase_tbl[index].min;
708 else if (req->result > phase_tbl[index].max)
709 req->result = phase_tbl[index].max;
710}
711
712/* Looks up temperatures in a table and calculates averages if needed */
713static int cpcap_adc_table_to_millicelcius(unsigned short value)
714{
715 int i, result = 0, alpha;
716
717 if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
718 return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
719
720 if (value >= temp_map[0][0])
721 return temp_map[0][1];
722
723 for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
724 if ((value <= temp_map[i][0]) &&
725 (value >= temp_map[i + 1][0])) {
726 if (value == temp_map[i][0]) {
727 result = temp_map[i][1];
728 } else if (value == temp_map[i + 1][0]) {
729 result = temp_map[i + 1][1];
730 } else {
731 alpha = ((value - temp_map[i][0]) * 1000) /
732 (temp_map[i + 1][0] - temp_map[i][0]);
733
734 result = temp_map[i][1] +
735 ((alpha * (temp_map[i + 1][1] -
736 temp_map[i][1])) / 1000);
737 }
738 break;
739 }
740 }
741
742 return result;
743}
744
745static void cpcap_adc_convert(struct cpcap_adc_request *req)
746{
747 const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
748 int index = req->channel;
749
750 /* Remuxed channels 16 and 17 use BATTP and BATTI entries */
751 switch (req->channel) {
752 case CPCAP_ADC_BATTP_PI16:
753 index = CPCAP_ADC_BATTP;
754 break;
755 case CPCAP_ADC_BATTI_PI17:
756 index = CPCAP_ADC_BATTI;
757 break;
758 default:
759 break;
760 }
761
762 /* No conversion for raw channels */
763 if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
764 return;
765
766 /* Temperatures use a lookup table instead of conversion table */
767 if ((req->channel == CPCAP_ADC_AD0) ||
768 (req->channel == CPCAP_ADC_AD3)) {
769 req->result =
770 cpcap_adc_table_to_millicelcius(value: req->result);
771
772 return;
773 }
774
775 /* All processed channels use a conversion table */
776 req->result *= conv_tbl[index].multiplier;
777 if (conv_tbl[index].divider == 0)
778 return;
779 req->result /= conv_tbl[index].divider;
780 req->result += conv_tbl[index].conv_offset;
781}
782
783/*
784 * REVISIT: Check if timed sampling can use multiple channels at the
785 * same time. If not, replace channel_mask with just channel.
786 */
787static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
788 struct cpcap_adc_request *req)
789{
790 int calibration_data, error, addr;
791
792 if (ddata->vendor == CPCAP_VENDOR_TI) {
793 error = regmap_read(map: ddata->reg, CPCAP_REG_ADCAL1,
794 val: &calibration_data);
795 if (error)
796 return error;
797 bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
798 ((short)calibration_data * -1) + 512;
799
800 error = regmap_read(map: ddata->reg, CPCAP_REG_ADCAL2,
801 val: &calibration_data);
802 if (error)
803 return error;
804 bank_conversion[CPCAP_ADC_BATTI].cal_offset =
805 ((short)calibration_data * -1) + 512;
806 }
807
808 addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
809
810 error = regmap_read(map: ddata->reg, reg: addr, val: &req->result);
811 if (error)
812 return error;
813
814 req->result &= 0x3ff;
815 cpcap_adc_phase(req);
816 cpcap_adc_convert(req);
817
818 return 0;
819}
820
821static int cpcap_adc_init_request(struct cpcap_adc_request *req,
822 int channel)
823{
824 req->channel = channel;
825 req->phase_tbl = bank_phasing;
826 req->conv_tbl = bank_conversion;
827
828 switch (channel) {
829 case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
830 req->bank_index = channel;
831 break;
832 case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
833 req->bank_index = channel - 8;
834 break;
835 case CPCAP_ADC_BATTP_PI16:
836 req->bank_index = CPCAP_ADC_BATTP;
837 break;
838 case CPCAP_ADC_BATTI_PI17:
839 req->bank_index = CPCAP_ADC_BATTI;
840 break;
841 default:
842 return -EINVAL;
843 }
844
845 return 0;
846}
847
848static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
849 int addr, int *val)
850{
851 int error;
852
853 error = regmap_read(map: ddata->reg, reg: addr, val);
854 if (error)
855 return error;
856
857 *val -= 282;
858 *val *= 114;
859 *val += 25000;
860
861 return 0;
862}
863
864static int cpcap_adc_read(struct iio_dev *indio_dev,
865 struct iio_chan_spec const *chan,
866 int *val, int *val2, long mask)
867{
868 struct cpcap_adc *ddata = iio_priv(indio_dev);
869 struct cpcap_adc_request req;
870 int error;
871
872 error = cpcap_adc_init_request(req: &req, channel: chan->channel);
873 if (error)
874 return error;
875
876 switch (mask) {
877 case IIO_CHAN_INFO_RAW:
878 mutex_lock(&ddata->lock);
879 error = cpcap_adc_start_bank(ddata, req: &req);
880 if (error)
881 goto err_unlock;
882 error = regmap_read(map: ddata->reg, reg: chan->address, val);
883 if (error)
884 goto err_unlock;
885 error = cpcap_adc_stop_bank(ddata);
886 if (error)
887 goto err_unlock;
888 mutex_unlock(lock: &ddata->lock);
889 break;
890 case IIO_CHAN_INFO_PROCESSED:
891 mutex_lock(&ddata->lock);
892 error = cpcap_adc_start_bank(ddata, req: &req);
893 if (error)
894 goto err_unlock;
895 if ((ddata->vendor == CPCAP_VENDOR_ST) &&
896 (chan->channel == CPCAP_ADC_AD3)) {
897 error = cpcap_adc_read_st_die_temp(ddata,
898 addr: chan->address,
899 val: &req.result);
900 if (error)
901 goto err_unlock;
902 } else {
903 error = cpcap_adc_read_bank_scaled(ddata, req: &req);
904 if (error)
905 goto err_unlock;
906 }
907 error = cpcap_adc_stop_bank(ddata);
908 if (error)
909 goto err_unlock;
910 mutex_unlock(lock: &ddata->lock);
911 *val = req.result;
912 break;
913 default:
914 return -EINVAL;
915 }
916
917 return IIO_VAL_INT;
918
919err_unlock:
920 mutex_unlock(lock: &ddata->lock);
921 dev_err(ddata->dev, "error reading ADC: %i\n", error);
922
923 return error;
924}
925
926static const struct iio_info cpcap_adc_info = {
927 .read_raw = &cpcap_adc_read,
928};
929
930/*
931 * Configuration for Motorola mapphone series such as droid 4.
932 * Copied from the Motorola mapphone kernel tree.
933 */
934static const struct cpcap_adc_ato mapphone_adc = {
935 .ato_in = 0x0480,
936 .atox_in = 0,
937 .adc_ps_factor_in = 0x0200,
938 .atox_ps_factor_in = 0,
939 .ato_out = 0,
940 .atox_out = 0,
941 .adc_ps_factor_out = 0,
942 .atox_ps_factor_out = 0,
943};
944
945static const struct of_device_id cpcap_adc_id_table[] = {
946 {
947 .compatible = "motorola,cpcap-adc",
948 },
949 {
950 .compatible = "motorola,mapphone-cpcap-adc",
951 .data = &mapphone_adc,
952 },
953 { /* sentinel */ },
954};
955MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
956
957static int cpcap_adc_probe(struct platform_device *pdev)
958{
959 struct cpcap_adc *ddata;
960 struct iio_dev *indio_dev;
961 int error;
962
963 indio_dev = devm_iio_device_alloc(parent: &pdev->dev, sizeof_priv: sizeof(*ddata));
964 if (!indio_dev) {
965 dev_err(&pdev->dev, "failed to allocate iio device\n");
966
967 return -ENOMEM;
968 }
969 ddata = iio_priv(indio_dev);
970 ddata->ato = device_get_match_data(dev: &pdev->dev);
971 if (!ddata->ato)
972 return -ENODEV;
973 ddata->dev = &pdev->dev;
974
975 mutex_init(&ddata->lock);
976 init_waitqueue_head(&ddata->wq_data_avail);
977
978 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
979 indio_dev->channels = cpcap_adc_channels;
980 indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
981 indio_dev->name = dev_name(dev: &pdev->dev);
982 indio_dev->info = &cpcap_adc_info;
983
984 ddata->reg = dev_get_regmap(dev: pdev->dev.parent, NULL);
985 if (!ddata->reg)
986 return -ENODEV;
987
988 error = cpcap_get_vendor(dev: ddata->dev, regmap: ddata->reg, vendor: &ddata->vendor);
989 if (error)
990 return error;
991
992 platform_set_drvdata(pdev, data: indio_dev);
993
994 ddata->irq = platform_get_irq_byname(pdev, "adcdone");
995 if (ddata->irq < 0)
996 return -ENODEV;
997
998 error = devm_request_threaded_irq(dev: &pdev->dev, irq: ddata->irq, NULL,
999 thread_fn: cpcap_adc_irq_thread,
1000 IRQF_TRIGGER_NONE | IRQF_ONESHOT,
1001 devname: "cpcap-adc", dev_id: indio_dev);
1002 if (error) {
1003 dev_err(&pdev->dev, "could not get irq: %i\n",
1004 error);
1005
1006 return error;
1007 }
1008
1009 error = cpcap_adc_calibrate(ddata);
1010 if (error)
1011 return error;
1012
1013 dev_info(&pdev->dev, "CPCAP ADC device probed\n");
1014
1015 return devm_iio_device_register(&pdev->dev, indio_dev);
1016}
1017
1018static struct platform_driver cpcap_adc_driver = {
1019 .driver = {
1020 .name = "cpcap_adc",
1021 .of_match_table = cpcap_adc_id_table,
1022 },
1023 .probe = cpcap_adc_probe,
1024};
1025
1026module_platform_driver(cpcap_adc_driver);
1027
1028MODULE_ALIAS("platform:cpcap_adc");
1029MODULE_DESCRIPTION("CPCAP ADC driver");
1030MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
1031MODULE_LICENSE("GPL v2");
1032

source code of linux/drivers/iio/adc/cpcap-adc.c