1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2016-2017, 2019, The Linux Foundation. All rights reserved.
4 * Copyright (c) 2022 Linaro Limited.
5 * Author: Caleb Connolly <caleb.connolly@linaro.org>
6 *
7 * This driver is for the Round Robin ADC found in the pmi8998 and pm660 PMICs.
8 */
9
10#include <linux/bitfield.h>
11#include <linux/delay.h>
12#include <linux/kernel.h>
13#include <linux/math64.h>
14#include <linux/module.h>
15#include <linux/mod_devicetable.h>
16#include <linux/platform_device.h>
17#include <linux/property.h>
18#include <linux/regmap.h>
19#include <linux/spmi.h>
20#include <linux/types.h>
21#include <linux/units.h>
22
23#include <asm/unaligned.h>
24
25#include <linux/iio/iio.h>
26#include <linux/iio/types.h>
27
28#include <soc/qcom/qcom-spmi-pmic.h>
29
30#define DRIVER_NAME "qcom-spmi-rradc"
31
32#define RR_ADC_EN_CTL 0x46
33#define RR_ADC_SKIN_TEMP_LSB 0x50
34#define RR_ADC_SKIN_TEMP_MSB 0x51
35#define RR_ADC_CTL 0x52
36#define RR_ADC_CTL_CONTINUOUS_SEL BIT(3)
37#define RR_ADC_LOG 0x53
38#define RR_ADC_LOG_CLR_CTRL BIT(0)
39
40#define RR_ADC_FAKE_BATT_LOW_LSB 0x58
41#define RR_ADC_FAKE_BATT_LOW_MSB 0x59
42#define RR_ADC_FAKE_BATT_HIGH_LSB 0x5A
43#define RR_ADC_FAKE_BATT_HIGH_MSB 0x5B
44
45#define RR_ADC_BATT_ID_CTRL 0x60
46#define RR_ADC_BATT_ID_CTRL_CHANNEL_CONV BIT(0)
47#define RR_ADC_BATT_ID_TRIGGER 0x61
48#define RR_ADC_BATT_ID_STS 0x62
49#define RR_ADC_BATT_ID_CFG 0x63
50#define BATT_ID_SETTLE_MASK GENMASK(7, 5)
51#define RR_ADC_BATT_ID_5_LSB 0x66
52#define RR_ADC_BATT_ID_5_MSB 0x67
53#define RR_ADC_BATT_ID_15_LSB 0x68
54#define RR_ADC_BATT_ID_15_MSB 0x69
55#define RR_ADC_BATT_ID_150_LSB 0x6A
56#define RR_ADC_BATT_ID_150_MSB 0x6B
57
58#define RR_ADC_BATT_THERM_CTRL 0x70
59#define RR_ADC_BATT_THERM_TRIGGER 0x71
60#define RR_ADC_BATT_THERM_STS 0x72
61#define RR_ADC_BATT_THERM_CFG 0x73
62#define RR_ADC_BATT_THERM_LSB 0x74
63#define RR_ADC_BATT_THERM_MSB 0x75
64#define RR_ADC_BATT_THERM_FREQ 0x76
65
66#define RR_ADC_AUX_THERM_CTRL 0x80
67#define RR_ADC_AUX_THERM_TRIGGER 0x81
68#define RR_ADC_AUX_THERM_STS 0x82
69#define RR_ADC_AUX_THERM_CFG 0x83
70#define RR_ADC_AUX_THERM_LSB 0x84
71#define RR_ADC_AUX_THERM_MSB 0x85
72
73#define RR_ADC_SKIN_HOT 0x86
74#define RR_ADC_SKIN_TOO_HOT 0x87
75
76#define RR_ADC_AUX_THERM_C1 0x88
77#define RR_ADC_AUX_THERM_C2 0x89
78#define RR_ADC_AUX_THERM_C3 0x8A
79#define RR_ADC_AUX_THERM_HALF_RANGE 0x8B
80
81#define RR_ADC_USB_IN_V_CTRL 0x90
82#define RR_ADC_USB_IN_V_TRIGGER 0x91
83#define RR_ADC_USB_IN_V_STS 0x92
84#define RR_ADC_USB_IN_V_LSB 0x94
85#define RR_ADC_USB_IN_V_MSB 0x95
86#define RR_ADC_USB_IN_I_CTRL 0x98
87#define RR_ADC_USB_IN_I_TRIGGER 0x99
88#define RR_ADC_USB_IN_I_STS 0x9A
89#define RR_ADC_USB_IN_I_LSB 0x9C
90#define RR_ADC_USB_IN_I_MSB 0x9D
91
92#define RR_ADC_DC_IN_V_CTRL 0xA0
93#define RR_ADC_DC_IN_V_TRIGGER 0xA1
94#define RR_ADC_DC_IN_V_STS 0xA2
95#define RR_ADC_DC_IN_V_LSB 0xA4
96#define RR_ADC_DC_IN_V_MSB 0xA5
97#define RR_ADC_DC_IN_I_CTRL 0xA8
98#define RR_ADC_DC_IN_I_TRIGGER 0xA9
99#define RR_ADC_DC_IN_I_STS 0xAA
100#define RR_ADC_DC_IN_I_LSB 0xAC
101#define RR_ADC_DC_IN_I_MSB 0xAD
102
103#define RR_ADC_PMI_DIE_TEMP_CTRL 0xB0
104#define RR_ADC_PMI_DIE_TEMP_TRIGGER 0xB1
105#define RR_ADC_PMI_DIE_TEMP_STS 0xB2
106#define RR_ADC_PMI_DIE_TEMP_CFG 0xB3
107#define RR_ADC_PMI_DIE_TEMP_LSB 0xB4
108#define RR_ADC_PMI_DIE_TEMP_MSB 0xB5
109
110#define RR_ADC_CHARGER_TEMP_CTRL 0xB8
111#define RR_ADC_CHARGER_TEMP_TRIGGER 0xB9
112#define RR_ADC_CHARGER_TEMP_STS 0xBA
113#define RR_ADC_CHARGER_TEMP_CFG 0xBB
114#define RR_ADC_CHARGER_TEMP_LSB 0xBC
115#define RR_ADC_CHARGER_TEMP_MSB 0xBD
116#define RR_ADC_CHARGER_HOT 0xBE
117#define RR_ADC_CHARGER_TOO_HOT 0xBF
118
119#define RR_ADC_GPIO_CTRL 0xC0
120#define RR_ADC_GPIO_TRIGGER 0xC1
121#define RR_ADC_GPIO_STS 0xC2
122#define RR_ADC_GPIO_LSB 0xC4
123#define RR_ADC_GPIO_MSB 0xC5
124
125#define RR_ADC_ATEST_CTRL 0xC8
126#define RR_ADC_ATEST_TRIGGER 0xC9
127#define RR_ADC_ATEST_STS 0xCA
128#define RR_ADC_ATEST_LSB 0xCC
129#define RR_ADC_ATEST_MSB 0xCD
130#define RR_ADC_SEC_ACCESS 0xD0
131
132#define RR_ADC_PERPH_RESET_CTL2 0xD9
133#define RR_ADC_PERPH_RESET_CTL3 0xDA
134#define RR_ADC_PERPH_RESET_CTL4 0xDB
135#define RR_ADC_INT_TEST1 0xE0
136#define RR_ADC_INT_TEST_VAL 0xE1
137
138#define RR_ADC_TM_TRIGGER_CTRLS 0xE2
139#define RR_ADC_TM_ADC_CTRLS 0xE3
140#define RR_ADC_TM_CNL_CTRL 0xE4
141#define RR_ADC_TM_BATT_ID_CTRL 0xE5
142#define RR_ADC_TM_THERM_CTRL 0xE6
143#define RR_ADC_TM_CONV_STS 0xE7
144#define RR_ADC_TM_ADC_READ_LSB 0xE8
145#define RR_ADC_TM_ADC_READ_MSB 0xE9
146#define RR_ADC_TM_ATEST_MUX_1 0xEA
147#define RR_ADC_TM_ATEST_MUX_2 0xEB
148#define RR_ADC_TM_REFERENCES 0xED
149#define RR_ADC_TM_MISC_CTL 0xEE
150#define RR_ADC_TM_RR_CTRL 0xEF
151
152#define RR_ADC_TRIGGER_EVERY_CYCLE BIT(7)
153#define RR_ADC_TRIGGER_CTL BIT(0)
154
155#define RR_ADC_BATT_ID_RANGE 820
156
157#define RR_ADC_BITS 10
158#define RR_ADC_CHAN_MSB (1 << RR_ADC_BITS)
159#define RR_ADC_FS_VOLTAGE_MV 2500
160
161/* BATT_THERM 0.25K/LSB */
162#define RR_ADC_BATT_THERM_LSB_K 4
163
164#define RR_ADC_TEMP_FS_VOLTAGE_NUM 5000000
165#define RR_ADC_TEMP_FS_VOLTAGE_DEN 3
166#define RR_ADC_DIE_TEMP_OFFSET 601400
167#define RR_ADC_DIE_TEMP_SLOPE 2
168#define RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC 25000
169
170#define RR_ADC_CHG_TEMP_GF_OFFSET_UV 1303168
171#define RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C 3784
172#define RR_ADC_CHG_TEMP_SMIC_OFFSET_UV 1338433
173#define RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655
174#define RR_ADC_CHG_TEMP_660_GF_OFFSET_UV 1309001
175#define RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403
176#define RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV 1295898
177#define RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596
178#define RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV 1314779
179#define RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496
180#define RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC 25000
181#define RR_ADC_CHG_THRESHOLD_SCALE 4
182
183#define RR_ADC_VOLT_INPUT_FACTOR 8
184#define RR_ADC_CURR_INPUT_FACTOR 2000
185#define RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL 1886
186#define RR_ADC_CURR_USBIN_660_FACTOR_MIL 9
187#define RR_ADC_CURR_USBIN_660_UV_VAL 579500
188
189#define RR_ADC_GPIO_FS_RANGE 5000
190#define RR_ADC_COHERENT_CHECK_RETRY 5
191#define RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN 16
192
193#define RR_ADC_STS_CHANNEL_READING_MASK GENMASK(1, 0)
194#define RR_ADC_STS_CHANNEL_STS BIT(1)
195
196#define RR_ADC_TP_REV_VERSION1 21
197#define RR_ADC_TP_REV_VERSION2 29
198#define RR_ADC_TP_REV_VERSION3 32
199
200#define RRADC_BATT_ID_DELAY_MAX 8
201
202enum rradc_channel_id {
203 RR_ADC_BATT_ID = 0,
204 RR_ADC_BATT_THERM,
205 RR_ADC_SKIN_TEMP,
206 RR_ADC_USBIN_I,
207 RR_ADC_USBIN_V,
208 RR_ADC_DCIN_I,
209 RR_ADC_DCIN_V,
210 RR_ADC_DIE_TEMP,
211 RR_ADC_CHG_TEMP,
212 RR_ADC_GPIO,
213 RR_ADC_CHAN_MAX
214};
215
216struct rradc_chip;
217
218/**
219 * struct rradc_channel - rradc channel data
220 * @label: channel label
221 * @lsb: Channel least significant byte
222 * @status: Channel status address
223 * @size: number of bytes to read
224 * @trigger_addr: Trigger address, trigger is only used on some channels
225 * @trigger_mask: Trigger mask
226 * @scale_fn: Post process callback for channels which can't be exposed
227 * as offset + scale.
228 */
229struct rradc_channel {
230 const char *label;
231 u8 lsb;
232 u8 status;
233 int size;
234 int trigger_addr;
235 int trigger_mask;
236 int (*scale_fn)(struct rradc_chip *chip, u16 adc_code, int *result);
237};
238
239struct rradc_chip {
240 struct device *dev;
241 const struct qcom_spmi_pmic *pmic;
242 /*
243 * Lock held while doing channel conversion
244 * involving multiple register read/writes
245 */
246 struct mutex conversion_lock;
247 struct regmap *regmap;
248 u32 base;
249 int batt_id_delay;
250 u16 batt_id_data;
251};
252
253static const int batt_id_delays[] = { 0, 1, 4, 12, 20, 40, 60, 80 };
254static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX];
255static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX];
256
257static int rradc_read(struct rradc_chip *chip, u16 addr, __le16 *buf, int len)
258{
259 int ret, retry_cnt = 0;
260 __le16 data_check[RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN / 2];
261
262 if (len > RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN) {
263 dev_err(chip->dev,
264 "Can't read more than %d bytes, but asked to read %d bytes.\n",
265 RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN, len);
266 return -EINVAL;
267 }
268
269 while (retry_cnt < RR_ADC_COHERENT_CHECK_RETRY) {
270 ret = regmap_bulk_read(map: chip->regmap, reg: chip->base + addr, val: buf,
271 val_count: len);
272 if (ret < 0) {
273 dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
274 ret);
275 return ret;
276 }
277
278 ret = regmap_bulk_read(map: chip->regmap, reg: chip->base + addr,
279 val: data_check, val_count: len);
280 if (ret < 0) {
281 dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
282 ret);
283 return ret;
284 }
285
286 if (memcmp(p: buf, q: data_check, size: len) != 0) {
287 retry_cnt++;
288 dev_dbg(chip->dev,
289 "coherent read error, retry_cnt:%d\n",
290 retry_cnt);
291 continue;
292 }
293
294 break;
295 }
296
297 if (retry_cnt == RR_ADC_COHERENT_CHECK_RETRY)
298 dev_err(chip->dev, "Retry exceeded for coherency check\n");
299
300 return ret;
301}
302
303static int rradc_get_fab_coeff(struct rradc_chip *chip, int64_t *offset,
304 int64_t *slope)
305{
306 if (chip->pmic->subtype == PM660_SUBTYPE) {
307 switch (chip->pmic->fab_id) {
308 case PM660_FAB_ID_GF:
309 *offset = RR_ADC_CHG_TEMP_660_GF_OFFSET_UV;
310 *slope = RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C;
311 return 0;
312 case PM660_FAB_ID_TSMC:
313 *offset = RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV;
314 *slope = RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C;
315 return 0;
316 default:
317 *offset = RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV;
318 *slope = RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C;
319 }
320 } else if (chip->pmic->subtype == PMI8998_SUBTYPE) {
321 switch (chip->pmic->fab_id) {
322 case PMI8998_FAB_ID_GF:
323 *offset = RR_ADC_CHG_TEMP_GF_OFFSET_UV;
324 *slope = RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C;
325 return 0;
326 case PMI8998_FAB_ID_SMIC:
327 *offset = RR_ADC_CHG_TEMP_SMIC_OFFSET_UV;
328 *slope = RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C;
329 return 0;
330 default:
331 return -EINVAL;
332 }
333 }
334
335 return -EINVAL;
336}
337
338/*
339 * These functions explicitly cast int64_t to int.
340 * They will never overflow, as the values are small enough.
341 */
342static int rradc_post_process_batt_id(struct rradc_chip *chip, u16 adc_code,
343 int *result_ohms)
344{
345 uint32_t current_value;
346 int64_t r_id;
347
348 current_value = chip->batt_id_data;
349 r_id = ((int64_t)adc_code * RR_ADC_FS_VOLTAGE_MV);
350 r_id = div64_s64(dividend: r_id, divisor: (RR_ADC_CHAN_MSB * current_value));
351 *result_ohms = (int)(r_id * MILLI);
352
353 return 0;
354}
355
356static int rradc_enable_continuous_mode(struct rradc_chip *chip)
357{
358 int ret;
359
360 /* Clear channel log */
361 ret = regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_LOG,
362 RR_ADC_LOG_CLR_CTRL, RR_ADC_LOG_CLR_CTRL);
363 if (ret < 0) {
364 dev_err(chip->dev, "log ctrl update to clear failed:%d\n", ret);
365 return ret;
366 }
367
368 ret = regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_LOG,
369 RR_ADC_LOG_CLR_CTRL, val: 0);
370 if (ret < 0) {
371 dev_err(chip->dev, "log ctrl update to not clear failed:%d\n",
372 ret);
373 return ret;
374 }
375
376 /* Switch to continuous mode */
377 ret = regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_CTL,
378 RR_ADC_CTL_CONTINUOUS_SEL,
379 RR_ADC_CTL_CONTINUOUS_SEL);
380 if (ret < 0)
381 dev_err(chip->dev, "Update to continuous mode failed:%d\n",
382 ret);
383
384 return ret;
385}
386
387static int rradc_disable_continuous_mode(struct rradc_chip *chip)
388{
389 int ret;
390
391 /* Switch to non continuous mode */
392 ret = regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_CTL,
393 RR_ADC_CTL_CONTINUOUS_SEL, val: 0);
394 if (ret < 0)
395 dev_err(chip->dev, "Update to non-continuous mode failed:%d\n",
396 ret);
397
398 return ret;
399}
400
401static bool rradc_is_ready(struct rradc_chip *chip,
402 enum rradc_channel_id chan_address)
403{
404 const struct rradc_channel *chan = &rradc_chans[chan_address];
405 int ret;
406 unsigned int status, mask;
407
408 /* BATT_ID STS bit does not get set initially */
409 switch (chan_address) {
410 case RR_ADC_BATT_ID:
411 mask = RR_ADC_STS_CHANNEL_STS;
412 break;
413 default:
414 mask = RR_ADC_STS_CHANNEL_READING_MASK;
415 break;
416 }
417
418 ret = regmap_read(map: chip->regmap, reg: chip->base + chan->status, val: &status);
419 if (ret < 0 || !(status & mask))
420 return false;
421
422 return true;
423}
424
425static int rradc_read_status_in_cont_mode(struct rradc_chip *chip,
426 enum rradc_channel_id chan_address)
427{
428 const struct rradc_channel *chan = &rradc_chans[chan_address];
429 const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
430 int ret, i;
431
432 if (chan->trigger_mask == 0) {
433 dev_err(chip->dev, "Channel doesn't have a trigger mask\n");
434 return -EINVAL;
435 }
436
437 ret = regmap_update_bits(map: chip->regmap, reg: chip->base + chan->trigger_addr,
438 mask: chan->trigger_mask, val: chan->trigger_mask);
439 if (ret < 0) {
440 dev_err(chip->dev,
441 "Failed to apply trigger for channel '%s' ret=%d\n",
442 iio_chan->extend_name, ret);
443 return ret;
444 }
445
446 ret = rradc_enable_continuous_mode(chip);
447 if (ret < 0) {
448 dev_err(chip->dev, "Failed to switch to continuous mode\n");
449 goto disable_trigger;
450 }
451
452 /*
453 * The wait/sleep values were found through trial and error,
454 * this is mostly for the battery ID channel which takes some
455 * time to settle.
456 */
457 for (i = 0; i < 5; i++) {
458 if (rradc_is_ready(chip, chan_address))
459 break;
460 usleep_range(min: 50000, max: 50000 + 500);
461 }
462
463 if (i == 5) {
464 dev_err(chip->dev, "Channel '%s' is not ready\n",
465 iio_chan->extend_name);
466 ret = -ETIMEDOUT;
467 }
468
469 rradc_disable_continuous_mode(chip);
470
471disable_trigger:
472 regmap_update_bits(map: chip->regmap, reg: chip->base + chan->trigger_addr,
473 mask: chan->trigger_mask, val: 0);
474
475 return ret;
476}
477
478static int rradc_prepare_batt_id_conversion(struct rradc_chip *chip,
479 enum rradc_channel_id chan_address,
480 u16 *data)
481{
482 int ret;
483
484 ret = regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_BATT_ID_CTRL,
485 RR_ADC_BATT_ID_CTRL_CHANNEL_CONV,
486 RR_ADC_BATT_ID_CTRL_CHANNEL_CONV);
487 if (ret < 0) {
488 dev_err(chip->dev, "Enabling BATT ID channel failed:%d\n", ret);
489 return ret;
490 }
491
492 ret = regmap_update_bits(map: chip->regmap,
493 reg: chip->base + RR_ADC_BATT_ID_TRIGGER,
494 RR_ADC_TRIGGER_CTL, RR_ADC_TRIGGER_CTL);
495 if (ret < 0) {
496 dev_err(chip->dev, "BATT_ID trigger set failed:%d\n", ret);
497 goto out_disable_batt_id;
498 }
499
500 ret = rradc_read_status_in_cont_mode(chip, chan_address);
501
502 /* Reset registers back to default values */
503 regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_BATT_ID_TRIGGER,
504 RR_ADC_TRIGGER_CTL, val: 0);
505
506out_disable_batt_id:
507 regmap_update_bits(map: chip->regmap, reg: chip->base + RR_ADC_BATT_ID_CTRL,
508 RR_ADC_BATT_ID_CTRL_CHANNEL_CONV, val: 0);
509
510 return ret;
511}
512
513static int rradc_do_conversion(struct rradc_chip *chip,
514 enum rradc_channel_id chan_address, u16 *data)
515{
516 const struct rradc_channel *chan = &rradc_chans[chan_address];
517 const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
518 int ret;
519 __le16 buf[3];
520
521 mutex_lock(&chip->conversion_lock);
522
523 switch (chan_address) {
524 case RR_ADC_BATT_ID:
525 ret = rradc_prepare_batt_id_conversion(chip, chan_address, data);
526 if (ret < 0) {
527 dev_err(chip->dev, "Battery ID conversion failed:%d\n",
528 ret);
529 goto unlock_out;
530 }
531 break;
532
533 case RR_ADC_USBIN_V:
534 case RR_ADC_DIE_TEMP:
535 ret = rradc_read_status_in_cont_mode(chip, chan_address);
536 if (ret < 0) {
537 dev_err(chip->dev,
538 "Error reading in continuous mode:%d\n", ret);
539 goto unlock_out;
540 }
541 break;
542 default:
543 if (!rradc_is_ready(chip, chan_address)) {
544 /*
545 * Usually this means the channel isn't attached, for example
546 * the in_voltage_usbin_v_input channel will not be ready if
547 * no USB cable is attached
548 */
549 dev_dbg(chip->dev, "channel '%s' is not ready\n",
550 iio_chan->extend_name);
551 ret = -ENODATA;
552 goto unlock_out;
553 }
554 break;
555 }
556
557 ret = rradc_read(chip, addr: chan->lsb, buf, len: chan->size);
558 if (ret) {
559 dev_err(chip->dev, "read data failed\n");
560 goto unlock_out;
561 }
562
563 /*
564 * For the battery ID we read the register for every ID ADC and then
565 * see which one is actually connected.
566 */
567 if (chan_address == RR_ADC_BATT_ID) {
568 u16 batt_id_150 = le16_to_cpu(buf[2]);
569 u16 batt_id_15 = le16_to_cpu(buf[1]);
570 u16 batt_id_5 = le16_to_cpu(buf[0]);
571
572 if (!batt_id_150 && !batt_id_15 && !batt_id_5) {
573 dev_err(chip->dev,
574 "Invalid batt_id values with all zeros\n");
575 ret = -EINVAL;
576 goto unlock_out;
577 }
578
579 if (batt_id_150 <= RR_ADC_BATT_ID_RANGE) {
580 *data = batt_id_150;
581 chip->batt_id_data = 150;
582 } else if (batt_id_15 <= RR_ADC_BATT_ID_RANGE) {
583 *data = batt_id_15;
584 chip->batt_id_data = 15;
585 } else {
586 *data = batt_id_5;
587 chip->batt_id_data = 5;
588 }
589 } else {
590 /*
591 * All of the other channels are either 1 or 2 bytes.
592 * We can rely on the second byte being 0 for 1-byte channels.
593 */
594 *data = le16_to_cpu(buf[0]);
595 }
596
597unlock_out:
598 mutex_unlock(lock: &chip->conversion_lock);
599
600 return ret;
601}
602
603static int rradc_read_scale(struct rradc_chip *chip, int chan_address, int *val,
604 int *val2)
605{
606 int64_t fab_offset, fab_slope;
607 int ret;
608
609 ret = rradc_get_fab_coeff(chip, offset: &fab_offset, slope: &fab_slope);
610 if (ret < 0) {
611 dev_err(chip->dev, "Unable to get fab id coefficients\n");
612 return -EINVAL;
613 }
614
615 switch (chan_address) {
616 case RR_ADC_SKIN_TEMP:
617 *val = MILLI;
618 *val2 = RR_ADC_BATT_THERM_LSB_K;
619 return IIO_VAL_FRACTIONAL;
620 case RR_ADC_USBIN_I:
621 *val = RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL *
622 RR_ADC_FS_VOLTAGE_MV;
623 *val2 = RR_ADC_CHAN_MSB;
624 return IIO_VAL_FRACTIONAL;
625 case RR_ADC_DCIN_I:
626 *val = RR_ADC_CURR_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV;
627 *val2 = RR_ADC_CHAN_MSB;
628 return IIO_VAL_FRACTIONAL;
629 case RR_ADC_USBIN_V:
630 case RR_ADC_DCIN_V:
631 *val = RR_ADC_VOLT_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV * MILLI;
632 *val2 = RR_ADC_CHAN_MSB;
633 return IIO_VAL_FRACTIONAL;
634 case RR_ADC_GPIO:
635 *val = RR_ADC_GPIO_FS_RANGE;
636 *val2 = RR_ADC_CHAN_MSB;
637 return IIO_VAL_FRACTIONAL;
638 case RR_ADC_CHG_TEMP:
639 /*
640 * We divide val2 by MILLI instead of multiplying val
641 * to avoid an integer overflow.
642 */
643 *val = -RR_ADC_TEMP_FS_VOLTAGE_NUM;
644 *val2 = div64_s64(RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
645 fab_slope,
646 MILLI);
647
648 return IIO_VAL_FRACTIONAL;
649 case RR_ADC_DIE_TEMP:
650 *val = RR_ADC_TEMP_FS_VOLTAGE_NUM;
651 *val2 = RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
652 RR_ADC_DIE_TEMP_SLOPE;
653
654 return IIO_VAL_FRACTIONAL;
655 default:
656 return -EINVAL;
657 }
658}
659
660static int rradc_read_offset(struct rradc_chip *chip, int chan_address, int *val)
661{
662 int64_t fab_offset, fab_slope;
663 int64_t offset1, offset2;
664 int ret;
665
666 switch (chan_address) {
667 case RR_ADC_SKIN_TEMP:
668 /*
669 * Offset from kelvin to degC, divided by the
670 * scale factor (250). We lose some precision here.
671 * 273150 / 250 = 1092.6
672 */
673 *val = div64_s64(ABSOLUTE_ZERO_MILLICELSIUS,
674 divisor: (MILLI / RR_ADC_BATT_THERM_LSB_K));
675 return IIO_VAL_INT;
676 case RR_ADC_CHG_TEMP:
677 ret = rradc_get_fab_coeff(chip, offset: &fab_offset, slope: &fab_slope);
678 if (ret < 0) {
679 dev_err(chip->dev,
680 "Unable to get fab id coefficients\n");
681 return -EINVAL;
682 }
683 offset1 = -(fab_offset * RR_ADC_TEMP_FS_VOLTAGE_DEN *
684 RR_ADC_CHAN_MSB);
685 offset1 += (int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM / 2ULL;
686 offset1 = div64_s64(dividend: offset1,
687 divisor: (int64_t)(RR_ADC_TEMP_FS_VOLTAGE_NUM));
688
689 offset2 = (int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
690 RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
691 (int64_t)fab_slope;
692 offset2 += ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM) / 2;
693 offset2 = div64_s64(
694 dividend: offset2, divisor: ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM));
695
696 /*
697 * The -1 is to compensate for lost precision.
698 * It should actually be -0.7906976744186046.
699 * This works out to every value being off
700 * by about +0.091 degrees C after applying offset and scale.
701 */
702 *val = (int)(offset1 - offset2 - 1);
703 return IIO_VAL_INT;
704 case RR_ADC_DIE_TEMP:
705 offset1 = -RR_ADC_DIE_TEMP_OFFSET *
706 (int64_t)RR_ADC_TEMP_FS_VOLTAGE_DEN *
707 (int64_t)RR_ADC_CHAN_MSB;
708 offset1 = div64_s64(dividend: offset1, RR_ADC_TEMP_FS_VOLTAGE_NUM);
709
710 offset2 = -(int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
711 RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
712 RR_ADC_DIE_TEMP_SLOPE;
713 offset2 = div64_s64(dividend: offset2,
714 divisor: ((int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM));
715
716 /*
717 * The result is -339, it should be -338.69789, this results
718 * in the calculated die temp being off by
719 * -0.004 - -0.0175 degrees C
720 */
721 *val = (int)(offset1 - offset2);
722 return IIO_VAL_INT;
723 default:
724 break;
725 }
726 return -EINVAL;
727}
728
729static int rradc_read_raw(struct iio_dev *indio_dev,
730 struct iio_chan_spec const *chan_spec, int *val,
731 int *val2, long mask)
732{
733 struct rradc_chip *chip = iio_priv(indio_dev);
734 const struct rradc_channel *chan;
735 int ret;
736 u16 adc_code;
737
738 if (chan_spec->address >= RR_ADC_CHAN_MAX) {
739 dev_err(chip->dev, "Invalid channel index:%lu\n",
740 chan_spec->address);
741 return -EINVAL;
742 }
743
744 switch (mask) {
745 case IIO_CHAN_INFO_SCALE:
746 return rradc_read_scale(chip, chan_address: chan_spec->address, val, val2);
747 case IIO_CHAN_INFO_OFFSET:
748 return rradc_read_offset(chip, chan_address: chan_spec->address, val);
749 case IIO_CHAN_INFO_RAW:
750 ret = rradc_do_conversion(chip, chan_address: chan_spec->address, data: &adc_code);
751 if (ret < 0)
752 return ret;
753
754 *val = adc_code;
755 return IIO_VAL_INT;
756 case IIO_CHAN_INFO_PROCESSED:
757 chan = &rradc_chans[chan_spec->address];
758 if (!chan->scale_fn)
759 return -EINVAL;
760 ret = rradc_do_conversion(chip, chan_address: chan_spec->address, data: &adc_code);
761 if (ret < 0)
762 return ret;
763
764 *val = chan->scale_fn(chip, adc_code, val);
765 return IIO_VAL_INT;
766 default:
767 return -EINVAL;
768 }
769}
770
771static int rradc_read_label(struct iio_dev *indio_dev,
772 struct iio_chan_spec const *chan, char *label)
773{
774 return snprintf(buf: label, PAGE_SIZE, fmt: "%s\n",
775 rradc_chans[chan->address].label);
776}
777
778static const struct iio_info rradc_info = {
779 .read_raw = rradc_read_raw,
780 .read_label = rradc_read_label,
781};
782
783static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX] = {
784 {
785 .label = "batt_id",
786 .scale_fn = rradc_post_process_batt_id,
787 .lsb = RR_ADC_BATT_ID_5_LSB,
788 .status = RR_ADC_BATT_ID_STS,
789 .size = 6,
790 .trigger_addr = RR_ADC_BATT_ID_TRIGGER,
791 .trigger_mask = BIT(0),
792 }, {
793 .label = "batt",
794 .lsb = RR_ADC_BATT_THERM_LSB,
795 .status = RR_ADC_BATT_THERM_STS,
796 .size = 2,
797 .trigger_addr = RR_ADC_BATT_THERM_TRIGGER,
798 }, {
799 .label = "pmi8998_skin",
800 .lsb = RR_ADC_SKIN_TEMP_LSB,
801 .status = RR_ADC_AUX_THERM_STS,
802 .size = 2,
803 .trigger_addr = RR_ADC_AUX_THERM_TRIGGER,
804 }, {
805 .label = "usbin_i",
806 .lsb = RR_ADC_USB_IN_I_LSB,
807 .status = RR_ADC_USB_IN_I_STS,
808 .size = 2,
809 .trigger_addr = RR_ADC_USB_IN_I_TRIGGER,
810 }, {
811 .label = "usbin_v",
812 .lsb = RR_ADC_USB_IN_V_LSB,
813 .status = RR_ADC_USB_IN_V_STS,
814 .size = 2,
815 .trigger_addr = RR_ADC_USB_IN_V_TRIGGER,
816 .trigger_mask = BIT(7),
817 }, {
818 .label = "dcin_i",
819 .lsb = RR_ADC_DC_IN_I_LSB,
820 .status = RR_ADC_DC_IN_I_STS,
821 .size = 2,
822 .trigger_addr = RR_ADC_DC_IN_I_TRIGGER,
823 }, {
824 .label = "dcin_v",
825 .lsb = RR_ADC_DC_IN_V_LSB,
826 .status = RR_ADC_DC_IN_V_STS,
827 .size = 2,
828 .trigger_addr = RR_ADC_DC_IN_V_TRIGGER,
829 }, {
830 .label = "pmi8998_die",
831 .lsb = RR_ADC_PMI_DIE_TEMP_LSB,
832 .status = RR_ADC_PMI_DIE_TEMP_STS,
833 .size = 2,
834 .trigger_addr = RR_ADC_PMI_DIE_TEMP_TRIGGER,
835 .trigger_mask = RR_ADC_TRIGGER_EVERY_CYCLE,
836 }, {
837 .label = "chg",
838 .lsb = RR_ADC_CHARGER_TEMP_LSB,
839 .status = RR_ADC_CHARGER_TEMP_STS,
840 .size = 2,
841 .trigger_addr = RR_ADC_CHARGER_TEMP_TRIGGER,
842 }, {
843 .label = "gpio",
844 .lsb = RR_ADC_GPIO_LSB,
845 .status = RR_ADC_GPIO_STS,
846 .size = 2,
847 .trigger_addr = RR_ADC_GPIO_TRIGGER,
848 },
849};
850
851static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX] = {
852 {
853 .type = IIO_RESISTANCE,
854 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
855 .address = RR_ADC_BATT_ID,
856 .channel = 0,
857 .indexed = 1,
858 }, {
859 .type = IIO_TEMP,
860 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
861 .address = RR_ADC_BATT_THERM,
862 .channel = 0,
863 .indexed = 1,
864 }, {
865 .type = IIO_TEMP,
866 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
867 BIT(IIO_CHAN_INFO_SCALE) |
868 BIT(IIO_CHAN_INFO_OFFSET),
869 .address = RR_ADC_SKIN_TEMP,
870 .channel = 1,
871 .indexed = 1,
872 }, {
873 .type = IIO_CURRENT,
874 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
875 BIT(IIO_CHAN_INFO_SCALE),
876 .address = RR_ADC_USBIN_I,
877 .channel = 0,
878 .indexed = 1,
879 }, {
880 .type = IIO_VOLTAGE,
881 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
882 BIT(IIO_CHAN_INFO_SCALE),
883 .address = RR_ADC_USBIN_V,
884 .channel = 0,
885 .indexed = 1,
886 }, {
887 .type = IIO_CURRENT,
888 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
889 BIT(IIO_CHAN_INFO_SCALE),
890 .address = RR_ADC_DCIN_I,
891 .channel = 1,
892 .indexed = 1,
893 }, {
894 .type = IIO_VOLTAGE,
895 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
896 BIT(IIO_CHAN_INFO_SCALE),
897 .address = RR_ADC_DCIN_V,
898 .channel = 1,
899 .indexed = 1,
900 }, {
901 .type = IIO_TEMP,
902 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
903 BIT(IIO_CHAN_INFO_SCALE) |
904 BIT(IIO_CHAN_INFO_OFFSET),
905 .address = RR_ADC_DIE_TEMP,
906 .channel = 2,
907 .indexed = 1,
908 }, {
909 .type = IIO_TEMP,
910 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
911 BIT(IIO_CHAN_INFO_OFFSET) |
912 BIT(IIO_CHAN_INFO_SCALE),
913 .address = RR_ADC_CHG_TEMP,
914 .channel = 3,
915 .indexed = 1,
916 }, {
917 .type = IIO_VOLTAGE,
918 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
919 BIT(IIO_CHAN_INFO_SCALE),
920 .address = RR_ADC_GPIO,
921 .channel = 2,
922 .indexed = 1,
923 },
924};
925
926static int rradc_probe(struct platform_device *pdev)
927{
928 struct device *dev = &pdev->dev;
929 struct iio_dev *indio_dev;
930 struct rradc_chip *chip;
931 int ret, i, batt_id_delay;
932
933 indio_dev = devm_iio_device_alloc(parent: dev, sizeof_priv: sizeof(*chip));
934 if (!indio_dev)
935 return -ENOMEM;
936
937 chip = iio_priv(indio_dev);
938 chip->regmap = dev_get_regmap(dev: pdev->dev.parent, NULL);
939 if (!chip->regmap) {
940 dev_err(dev, "Couldn't get parent's regmap\n");
941 return -EINVAL;
942 }
943
944 chip->dev = dev;
945 mutex_init(&chip->conversion_lock);
946
947 ret = device_property_read_u32(dev, propname: "reg", val: &chip->base);
948 if (ret < 0) {
949 dev_err(chip->dev, "Couldn't find reg address, ret = %d\n",
950 ret);
951 return ret;
952 }
953
954 batt_id_delay = -1;
955 ret = device_property_read_u32(dev, propname: "qcom,batt-id-delay-ms",
956 val: &batt_id_delay);
957 if (!ret) {
958 for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) {
959 if (batt_id_delay == batt_id_delays[i])
960 break;
961 }
962 if (i == RRADC_BATT_ID_DELAY_MAX)
963 batt_id_delay = -1;
964 }
965
966 if (batt_id_delay >= 0) {
967 batt_id_delay = FIELD_PREP(BATT_ID_SETTLE_MASK, batt_id_delay);
968 ret = regmap_update_bits(map: chip->regmap,
969 reg: chip->base + RR_ADC_BATT_ID_CFG,
970 mask: batt_id_delay, val: batt_id_delay);
971 if (ret < 0) {
972 dev_err(chip->dev,
973 "BATT_ID settling time config failed:%d\n",
974 ret);
975 }
976 }
977
978 /* Get the PMIC revision, we need it to handle some varying coefficients */
979 chip->pmic = qcom_pmic_get(dev: chip->dev);
980 if (IS_ERR(ptr: chip->pmic)) {
981 dev_err(chip->dev, "Unable to get reference to PMIC device\n");
982 return PTR_ERR(ptr: chip->pmic);
983 }
984
985 switch (chip->pmic->subtype) {
986 case PMI8998_SUBTYPE:
987 indio_dev->name = "pmi8998-rradc";
988 break;
989 case PM660_SUBTYPE:
990 indio_dev->name = "pm660-rradc";
991 break;
992 default:
993 indio_dev->name = DRIVER_NAME;
994 break;
995 }
996 indio_dev->modes = INDIO_DIRECT_MODE;
997 indio_dev->info = &rradc_info;
998 indio_dev->channels = rradc_iio_chans;
999 indio_dev->num_channels = ARRAY_SIZE(rradc_iio_chans);
1000
1001 return devm_iio_device_register(dev, indio_dev);
1002}
1003
1004static const struct of_device_id rradc_match_table[] = {
1005 { .compatible = "qcom,pm660-rradc" },
1006 { .compatible = "qcom,pmi8998-rradc" },
1007 {}
1008};
1009MODULE_DEVICE_TABLE(of, rradc_match_table);
1010
1011static struct platform_driver rradc_driver = {
1012 .driver = {
1013 .name = DRIVER_NAME,
1014 .of_match_table = rradc_match_table,
1015 },
1016 .probe = rradc_probe,
1017};
1018module_platform_driver(rradc_driver);
1019
1020MODULE_DESCRIPTION("QCOM SPMI PMIC RR ADC driver");
1021MODULE_AUTHOR("Caleb Connolly <caleb.connolly@linaro.org>");
1022MODULE_LICENSE("GPL");
1023

source code of linux/drivers/iio/adc/qcom-spmi-rradc.c