1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * adux1020.c - Support for Analog Devices ADUX1020 photometric sensor
4 *
5 * Copyright (C) 2019 Linaro Ltd.
6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7 *
8 * TODO: Triggered buffer support
9 */
10
11#include <linux/bitfield.h>
12#include <linux/delay.h>
13#include <linux/err.h>
14#include <linux/i2c.h>
15#include <linux/init.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/mutex.h>
20#include <linux/regmap.h>
21
22#include <linux/iio/iio.h>
23#include <linux/iio/sysfs.h>
24#include <linux/iio/events.h>
25
26#define ADUX1020_REGMAP_NAME "adux1020_regmap"
27#define ADUX1020_DRV_NAME "adux1020"
28
29/* System registers */
30#define ADUX1020_REG_CHIP_ID 0x08
31#define ADUX1020_REG_SLAVE_ADDRESS 0x09
32
33#define ADUX1020_REG_SW_RESET 0x0f
34#define ADUX1020_REG_INT_ENABLE 0x1c
35#define ADUX1020_REG_INT_POLARITY 0x1d
36#define ADUX1020_REG_PROX_TH_ON1 0x2a
37#define ADUX1020_REG_PROX_TH_OFF1 0x2b
38#define ADUX1020_REG_PROX_TYPE 0x2f
39#define ADUX1020_REG_TEST_MODES_3 0x32
40#define ADUX1020_REG_FORCE_MODE 0x33
41#define ADUX1020_REG_FREQUENCY 0x40
42#define ADUX1020_REG_LED_CURRENT 0x41
43#define ADUX1020_REG_OP_MODE 0x45
44#define ADUX1020_REG_INT_MASK 0x48
45#define ADUX1020_REG_INT_STATUS 0x49
46#define ADUX1020_REG_DATA_BUFFER 0x60
47
48/* Chip ID bits */
49#define ADUX1020_CHIP_ID_MASK GENMASK(11, 0)
50#define ADUX1020_CHIP_ID 0x03fc
51
52#define ADUX1020_SW_RESET BIT(1)
53#define ADUX1020_FIFO_FLUSH BIT(15)
54#define ADUX1020_OP_MODE_MASK GENMASK(3, 0)
55#define ADUX1020_DATA_OUT_MODE_MASK GENMASK(7, 4)
56#define ADUX1020_DATA_OUT_PROX_I FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1)
57
58#define ADUX1020_MODE_INT_MASK GENMASK(7, 0)
59#define ADUX1020_INT_ENABLE 0x2094
60#define ADUX1020_INT_DISABLE 0x2090
61#define ADUX1020_PROX_INT_ENABLE 0x00f0
62#define ADUX1020_PROX_ON1_INT BIT(0)
63#define ADUX1020_PROX_OFF1_INT BIT(1)
64#define ADUX1020_FIFO_INT_ENABLE 0x7f
65#define ADUX1020_MODE_INT_DISABLE 0xff
66#define ADUX1020_MODE_INT_STATUS_MASK GENMASK(7, 0)
67#define ADUX1020_FIFO_STATUS_MASK GENMASK(15, 8)
68#define ADUX1020_INT_CLEAR 0xff
69#define ADUX1020_PROX_TYPE BIT(15)
70
71#define ADUX1020_INT_PROX_ON1 BIT(0)
72#define ADUX1020_INT_PROX_OFF1 BIT(1)
73
74#define ADUX1020_FORCE_CLOCK_ON 0x0f4f
75#define ADUX1020_FORCE_CLOCK_RESET 0x0040
76#define ADUX1020_ACTIVE_4_STATE 0x0008
77
78#define ADUX1020_PROX_FREQ_MASK GENMASK(7, 4)
79#define ADUX1020_PROX_FREQ(x) FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x)
80
81#define ADUX1020_LED_CURRENT_MASK GENMASK(3, 0)
82#define ADUX1020_LED_PIREF_EN BIT(12)
83
84/* Operating modes */
85enum adux1020_op_modes {
86 ADUX1020_MODE_STANDBY,
87 ADUX1020_MODE_PROX_I,
88 ADUX1020_MODE_PROX_XY,
89 ADUX1020_MODE_GEST,
90 ADUX1020_MODE_SAMPLE,
91 ADUX1020_MODE_FORCE = 0x0e,
92 ADUX1020_MODE_IDLE = 0x0f,
93};
94
95struct adux1020_data {
96 struct i2c_client *client;
97 struct iio_dev *indio_dev;
98 struct mutex lock;
99 struct regmap *regmap;
100};
101
102struct adux1020_mode_data {
103 u8 bytes;
104 u8 buf_len;
105 u16 int_en;
106};
107
108static const struct adux1020_mode_data adux1020_modes[] = {
109 [ADUX1020_MODE_PROX_I] = {
110 .bytes = 2,
111 .buf_len = 1,
112 .int_en = ADUX1020_PROX_INT_ENABLE,
113 },
114};
115
116static const struct regmap_config adux1020_regmap_config = {
117 .name = ADUX1020_REGMAP_NAME,
118 .reg_bits = 8,
119 .val_bits = 16,
120 .max_register = 0x6F,
121 .cache_type = REGCACHE_NONE,
122};
123
124static const struct reg_sequence adux1020_def_conf[] = {
125 { 0x000c, 0x000f },
126 { 0x0010, 0x1010 },
127 { 0x0011, 0x004c },
128 { 0x0012, 0x5f0c },
129 { 0x0013, 0xada5 },
130 { 0x0014, 0x0080 },
131 { 0x0015, 0x0000 },
132 { 0x0016, 0x0600 },
133 { 0x0017, 0x0000 },
134 { 0x0018, 0x2693 },
135 { 0x0019, 0x0004 },
136 { 0x001a, 0x4280 },
137 { 0x001b, 0x0060 },
138 { 0x001c, 0x2094 },
139 { 0x001d, 0x0020 },
140 { 0x001e, 0x0001 },
141 { 0x001f, 0x0100 },
142 { 0x0020, 0x0320 },
143 { 0x0021, 0x0A13 },
144 { 0x0022, 0x0320 },
145 { 0x0023, 0x0113 },
146 { 0x0024, 0x0000 },
147 { 0x0025, 0x2412 },
148 { 0x0026, 0x2412 },
149 { 0x0027, 0x0022 },
150 { 0x0028, 0x0000 },
151 { 0x0029, 0x0300 },
152 { 0x002a, 0x0700 },
153 { 0x002b, 0x0600 },
154 { 0x002c, 0x6000 },
155 { 0x002d, 0x4000 },
156 { 0x002e, 0x0000 },
157 { 0x002f, 0x0000 },
158 { 0x0030, 0x0000 },
159 { 0x0031, 0x0000 },
160 { 0x0032, 0x0040 },
161 { 0x0033, 0x0008 },
162 { 0x0034, 0xE400 },
163 { 0x0038, 0x8080 },
164 { 0x0039, 0x8080 },
165 { 0x003a, 0x2000 },
166 { 0x003b, 0x1f00 },
167 { 0x003c, 0x2000 },
168 { 0x003d, 0x2000 },
169 { 0x003e, 0x0000 },
170 { 0x0040, 0x8069 },
171 { 0x0041, 0x1f2f },
172 { 0x0042, 0x4000 },
173 { 0x0043, 0x0000 },
174 { 0x0044, 0x0008 },
175 { 0x0046, 0x0000 },
176 { 0x0048, 0x00ef },
177 { 0x0049, 0x0000 },
178 { 0x0045, 0x0000 },
179};
180
181static const int adux1020_rates[][2] = {
182 { 0, 100000 },
183 { 0, 200000 },
184 { 0, 500000 },
185 { 1, 0 },
186 { 2, 0 },
187 { 5, 0 },
188 { 10, 0 },
189 { 20, 0 },
190 { 50, 0 },
191 { 100, 0 },
192 { 190, 0 },
193 { 450, 0 },
194 { 820, 0 },
195 { 1400, 0 },
196};
197
198static const int adux1020_led_currents[][2] = {
199 { 0, 25000 },
200 { 0, 40000 },
201 { 0, 55000 },
202 { 0, 70000 },
203 { 0, 85000 },
204 { 0, 100000 },
205 { 0, 115000 },
206 { 0, 130000 },
207 { 0, 145000 },
208 { 0, 160000 },
209 { 0, 175000 },
210 { 0, 190000 },
211 { 0, 205000 },
212 { 0, 220000 },
213 { 0, 235000 },
214 { 0, 250000 },
215};
216
217static int adux1020_flush_fifo(struct adux1020_data *data)
218{
219 int ret;
220
221 /* Force Idle mode */
222 ret = regmap_write(map: data->regmap, ADUX1020_REG_FORCE_MODE,
223 ADUX1020_ACTIVE_4_STATE);
224 if (ret < 0)
225 return ret;
226
227 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_OP_MODE,
228 ADUX1020_OP_MODE_MASK, val: ADUX1020_MODE_FORCE);
229 if (ret < 0)
230 return ret;
231
232 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_OP_MODE,
233 ADUX1020_OP_MODE_MASK, val: ADUX1020_MODE_IDLE);
234 if (ret < 0)
235 return ret;
236
237 /* Flush FIFO */
238 ret = regmap_write(map: data->regmap, ADUX1020_REG_TEST_MODES_3,
239 ADUX1020_FORCE_CLOCK_ON);
240 if (ret < 0)
241 return ret;
242
243 ret = regmap_write(map: data->regmap, ADUX1020_REG_INT_STATUS,
244 ADUX1020_FIFO_FLUSH);
245 if (ret < 0)
246 return ret;
247
248 return regmap_write(map: data->regmap, ADUX1020_REG_TEST_MODES_3,
249 ADUX1020_FORCE_CLOCK_RESET);
250}
251
252static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len)
253{
254 unsigned int regval;
255 int i, ret;
256
257 /* Enable 32MHz clock */
258 ret = regmap_write(map: data->regmap, ADUX1020_REG_TEST_MODES_3,
259 ADUX1020_FORCE_CLOCK_ON);
260 if (ret < 0)
261 return ret;
262
263 for (i = 0; i < buf_len; i++) {
264 ret = regmap_read(map: data->regmap, ADUX1020_REG_DATA_BUFFER,
265 val: &regval);
266 if (ret < 0)
267 return ret;
268
269 buf[i] = regval;
270 }
271
272 /* Set 32MHz clock to be controlled by internal state machine */
273 return regmap_write(map: data->regmap, ADUX1020_REG_TEST_MODES_3,
274 ADUX1020_FORCE_CLOCK_RESET);
275}
276
277static int adux1020_set_mode(struct adux1020_data *data,
278 enum adux1020_op_modes mode)
279{
280 int ret;
281
282 /* Switch to standby mode before changing the mode */
283 ret = regmap_write(map: data->regmap, ADUX1020_REG_OP_MODE,
284 val: ADUX1020_MODE_STANDBY);
285 if (ret < 0)
286 return ret;
287
288 /* Set data out and switch to the desired mode */
289 switch (mode) {
290 case ADUX1020_MODE_PROX_I:
291 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_OP_MODE,
292 ADUX1020_DATA_OUT_MODE_MASK,
293 ADUX1020_DATA_OUT_PROX_I);
294 if (ret < 0)
295 return ret;
296
297 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_OP_MODE,
298 ADUX1020_OP_MODE_MASK,
299 val: ADUX1020_MODE_PROX_I);
300 if (ret < 0)
301 return ret;
302 break;
303 default:
304 return -EINVAL;
305 }
306
307 return 0;
308}
309
310static int adux1020_measure(struct adux1020_data *data,
311 enum adux1020_op_modes mode,
312 u16 *val)
313{
314 unsigned int status;
315 int ret, tries = 50;
316
317 /* Disable INT pin as polling is going to be used */
318 ret = regmap_write(map: data->regmap, ADUX1020_REG_INT_ENABLE,
319 ADUX1020_INT_DISABLE);
320 if (ret < 0)
321 return ret;
322
323 /* Enable mode interrupt */
324 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_INT_MASK,
325 ADUX1020_MODE_INT_MASK,
326 val: adux1020_modes[mode].int_en);
327 if (ret < 0)
328 return ret;
329
330 while (tries--) {
331 ret = regmap_read(map: data->regmap, ADUX1020_REG_INT_STATUS,
332 val: &status);
333 if (ret < 0)
334 return ret;
335
336 status &= ADUX1020_FIFO_STATUS_MASK;
337 if (status >= adux1020_modes[mode].bytes)
338 break;
339 msleep(msecs: 20);
340 }
341
342 if (tries < 0)
343 return -EIO;
344
345 ret = adux1020_read_fifo(data, buf: val, buf_len: adux1020_modes[mode].buf_len);
346 if (ret < 0)
347 return ret;
348
349 /* Clear mode interrupt */
350 ret = regmap_write(map: data->regmap, ADUX1020_REG_INT_STATUS,
351 val: (~adux1020_modes[mode].int_en));
352 if (ret < 0)
353 return ret;
354
355 /* Disable mode interrupts */
356 return regmap_update_bits(map: data->regmap, ADUX1020_REG_INT_MASK,
357 ADUX1020_MODE_INT_MASK,
358 ADUX1020_MODE_INT_DISABLE);
359}
360
361static int adux1020_read_raw(struct iio_dev *indio_dev,
362 struct iio_chan_spec const *chan,
363 int *val, int *val2, long mask)
364{
365 struct adux1020_data *data = iio_priv(indio_dev);
366 u16 buf[3];
367 int ret = -EINVAL;
368 unsigned int regval;
369
370 mutex_lock(&data->lock);
371
372 switch (mask) {
373 case IIO_CHAN_INFO_RAW:
374 switch (chan->type) {
375 case IIO_PROXIMITY:
376 ret = adux1020_set_mode(data, mode: ADUX1020_MODE_PROX_I);
377 if (ret < 0)
378 goto fail;
379
380 ret = adux1020_measure(data, mode: ADUX1020_MODE_PROX_I, val: buf);
381 if (ret < 0)
382 goto fail;
383
384 *val = buf[0];
385 ret = IIO_VAL_INT;
386 break;
387 default:
388 break;
389 }
390 break;
391 case IIO_CHAN_INFO_PROCESSED:
392 switch (chan->type) {
393 case IIO_CURRENT:
394 ret = regmap_read(map: data->regmap,
395 ADUX1020_REG_LED_CURRENT, val: &regval);
396 if (ret < 0)
397 goto fail;
398
399 regval = regval & ADUX1020_LED_CURRENT_MASK;
400
401 *val = adux1020_led_currents[regval][0];
402 *val2 = adux1020_led_currents[regval][1];
403
404 ret = IIO_VAL_INT_PLUS_MICRO;
405 break;
406 default:
407 break;
408 }
409 break;
410 case IIO_CHAN_INFO_SAMP_FREQ:
411 switch (chan->type) {
412 case IIO_PROXIMITY:
413 ret = regmap_read(map: data->regmap, ADUX1020_REG_FREQUENCY,
414 val: &regval);
415 if (ret < 0)
416 goto fail;
417
418 regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval);
419
420 *val = adux1020_rates[regval][0];
421 *val2 = adux1020_rates[regval][1];
422
423 ret = IIO_VAL_INT_PLUS_MICRO;
424 break;
425 default:
426 break;
427 }
428 break;
429 default:
430 break;
431 }
432
433fail:
434 mutex_unlock(lock: &data->lock);
435
436 return ret;
437};
438
439static inline int adux1020_find_index(const int array[][2], int count, int val,
440 int val2)
441{
442 int i;
443
444 for (i = 0; i < count; i++)
445 if (val == array[i][0] && val2 == array[i][1])
446 return i;
447
448 return -EINVAL;
449}
450
451static int adux1020_write_raw(struct iio_dev *indio_dev,
452 struct iio_chan_spec const *chan,
453 int val, int val2, long mask)
454{
455 struct adux1020_data *data = iio_priv(indio_dev);
456 int i, ret = -EINVAL;
457
458 mutex_lock(&data->lock);
459
460 switch (mask) {
461 case IIO_CHAN_INFO_SAMP_FREQ:
462 if (chan->type == IIO_PROXIMITY) {
463 i = adux1020_find_index(array: adux1020_rates,
464 ARRAY_SIZE(adux1020_rates),
465 val, val2);
466 if (i < 0) {
467 ret = i;
468 goto fail;
469 }
470
471 ret = regmap_update_bits(map: data->regmap,
472 ADUX1020_REG_FREQUENCY,
473 ADUX1020_PROX_FREQ_MASK,
474 ADUX1020_PROX_FREQ(i));
475 }
476 break;
477 case IIO_CHAN_INFO_PROCESSED:
478 if (chan->type == IIO_CURRENT) {
479 i = adux1020_find_index(array: adux1020_led_currents,
480 ARRAY_SIZE(adux1020_led_currents),
481 val, val2);
482 if (i < 0) {
483 ret = i;
484 goto fail;
485 }
486
487 ret = regmap_update_bits(map: data->regmap,
488 ADUX1020_REG_LED_CURRENT,
489 ADUX1020_LED_CURRENT_MASK, val: i);
490 }
491 break;
492 default:
493 break;
494 }
495
496fail:
497 mutex_unlock(lock: &data->lock);
498
499 return ret;
500}
501
502static int adux1020_write_event_config(struct iio_dev *indio_dev,
503 const struct iio_chan_spec *chan,
504 enum iio_event_type type,
505 enum iio_event_direction dir, int state)
506{
507 struct adux1020_data *data = iio_priv(indio_dev);
508 int ret, mask;
509
510 mutex_lock(&data->lock);
511
512 ret = regmap_write(map: data->regmap, ADUX1020_REG_INT_ENABLE,
513 ADUX1020_INT_ENABLE);
514 if (ret < 0)
515 goto fail;
516
517 ret = regmap_write(map: data->regmap, ADUX1020_REG_INT_POLARITY, val: 0);
518 if (ret < 0)
519 goto fail;
520
521 switch (chan->type) {
522 case IIO_PROXIMITY:
523 if (dir == IIO_EV_DIR_RISING)
524 mask = ADUX1020_PROX_ON1_INT;
525 else
526 mask = ADUX1020_PROX_OFF1_INT;
527
528 if (state)
529 state = 0;
530 else
531 state = mask;
532
533 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_INT_MASK,
534 mask, val: state);
535 if (ret < 0)
536 goto fail;
537
538 /*
539 * Trigger proximity interrupt when the intensity is above
540 * or below threshold
541 */
542 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_PROX_TYPE,
543 ADUX1020_PROX_TYPE,
544 ADUX1020_PROX_TYPE);
545 if (ret < 0)
546 goto fail;
547
548 /* Set proximity mode */
549 ret = adux1020_set_mode(data, mode: ADUX1020_MODE_PROX_I);
550 break;
551 default:
552 ret = -EINVAL;
553 break;
554 }
555
556fail:
557 mutex_unlock(lock: &data->lock);
558
559 return ret;
560}
561
562static int adux1020_read_event_config(struct iio_dev *indio_dev,
563 const struct iio_chan_spec *chan,
564 enum iio_event_type type,
565 enum iio_event_direction dir)
566{
567 struct adux1020_data *data = iio_priv(indio_dev);
568 int ret, mask;
569 unsigned int regval;
570
571 switch (chan->type) {
572 case IIO_PROXIMITY:
573 if (dir == IIO_EV_DIR_RISING)
574 mask = ADUX1020_PROX_ON1_INT;
575 else
576 mask = ADUX1020_PROX_OFF1_INT;
577 break;
578 default:
579 return -EINVAL;
580 }
581
582 ret = regmap_read(map: data->regmap, ADUX1020_REG_INT_MASK, val: &regval);
583 if (ret < 0)
584 return ret;
585
586 return !(regval & mask);
587}
588
589static int adux1020_read_thresh(struct iio_dev *indio_dev,
590 const struct iio_chan_spec *chan,
591 enum iio_event_type type,
592 enum iio_event_direction dir,
593 enum iio_event_info info, int *val, int *val2)
594{
595 struct adux1020_data *data = iio_priv(indio_dev);
596 u8 reg;
597 int ret;
598 unsigned int regval;
599
600 switch (chan->type) {
601 case IIO_PROXIMITY:
602 if (dir == IIO_EV_DIR_RISING)
603 reg = ADUX1020_REG_PROX_TH_ON1;
604 else
605 reg = ADUX1020_REG_PROX_TH_OFF1;
606 break;
607 default:
608 return -EINVAL;
609 }
610
611 ret = regmap_read(map: data->regmap, reg, val: &regval);
612 if (ret < 0)
613 return ret;
614
615 *val = regval;
616
617 return IIO_VAL_INT;
618}
619
620static int adux1020_write_thresh(struct iio_dev *indio_dev,
621 const struct iio_chan_spec *chan,
622 enum iio_event_type type,
623 enum iio_event_direction dir,
624 enum iio_event_info info, int val, int val2)
625{
626 struct adux1020_data *data = iio_priv(indio_dev);
627 u8 reg;
628
629 switch (chan->type) {
630 case IIO_PROXIMITY:
631 if (dir == IIO_EV_DIR_RISING)
632 reg = ADUX1020_REG_PROX_TH_ON1;
633 else
634 reg = ADUX1020_REG_PROX_TH_OFF1;
635 break;
636 default:
637 return -EINVAL;
638 }
639
640 /* Full scale threshold value is 0-65535 */
641 if (val < 0 || val > 65535)
642 return -EINVAL;
643
644 return regmap_write(map: data->regmap, reg, val);
645}
646
647static const struct iio_event_spec adux1020_proximity_event[] = {
648 {
649 .type = IIO_EV_TYPE_THRESH,
650 .dir = IIO_EV_DIR_RISING,
651 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
652 BIT(IIO_EV_INFO_ENABLE),
653 },
654 {
655 .type = IIO_EV_TYPE_THRESH,
656 .dir = IIO_EV_DIR_FALLING,
657 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
658 BIT(IIO_EV_INFO_ENABLE),
659 },
660};
661
662static const struct iio_chan_spec adux1020_channels[] = {
663 {
664 .type = IIO_PROXIMITY,
665 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
666 BIT(IIO_CHAN_INFO_SAMP_FREQ),
667 .event_spec = adux1020_proximity_event,
668 .num_event_specs = ARRAY_SIZE(adux1020_proximity_event),
669 },
670 {
671 .type = IIO_CURRENT,
672 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
673 .extend_name = "led",
674 .output = 1,
675 },
676};
677
678static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
679 "0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400");
680
681static struct attribute *adux1020_attributes[] = {
682 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
683 NULL
684};
685
686static const struct attribute_group adux1020_attribute_group = {
687 .attrs = adux1020_attributes,
688};
689
690static const struct iio_info adux1020_info = {
691 .attrs = &adux1020_attribute_group,
692 .read_raw = adux1020_read_raw,
693 .write_raw = adux1020_write_raw,
694 .read_event_config = adux1020_read_event_config,
695 .write_event_config = adux1020_write_event_config,
696 .read_event_value = adux1020_read_thresh,
697 .write_event_value = adux1020_write_thresh,
698};
699
700static irqreturn_t adux1020_interrupt_handler(int irq, void *private)
701{
702 struct iio_dev *indio_dev = private;
703 struct adux1020_data *data = iio_priv(indio_dev);
704 int ret, status;
705
706 ret = regmap_read(map: data->regmap, ADUX1020_REG_INT_STATUS, val: &status);
707 if (ret < 0)
708 return IRQ_HANDLED;
709
710 status &= ADUX1020_MODE_INT_STATUS_MASK;
711
712 if (status & ADUX1020_INT_PROX_ON1) {
713 iio_push_event(indio_dev,
714 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
715 IIO_EV_TYPE_THRESH,
716 IIO_EV_DIR_RISING),
717 timestamp: iio_get_time_ns(indio_dev));
718 }
719
720 if (status & ADUX1020_INT_PROX_OFF1) {
721 iio_push_event(indio_dev,
722 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
723 IIO_EV_TYPE_THRESH,
724 IIO_EV_DIR_FALLING),
725 timestamp: iio_get_time_ns(indio_dev));
726 }
727
728 regmap_update_bits(map: data->regmap, ADUX1020_REG_INT_STATUS,
729 ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR);
730
731 return IRQ_HANDLED;
732}
733
734static int adux1020_chip_init(struct adux1020_data *data)
735{
736 struct i2c_client *client = data->client;
737 int ret;
738 unsigned int val;
739
740 ret = regmap_read(map: data->regmap, ADUX1020_REG_CHIP_ID, val: &val);
741 if (ret < 0)
742 return ret;
743
744 if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) {
745 dev_err(&client->dev, "invalid chip id 0x%04x\n", val);
746 return -ENODEV;
747 }
748
749 dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val);
750
751 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_SW_RESET,
752 ADUX1020_SW_RESET, ADUX1020_SW_RESET);
753 if (ret < 0)
754 return ret;
755
756 /* Load default configuration */
757 ret = regmap_multi_reg_write(map: data->regmap, regs: adux1020_def_conf,
758 ARRAY_SIZE(adux1020_def_conf));
759 if (ret < 0)
760 return ret;
761
762 ret = adux1020_flush_fifo(data);
763 if (ret < 0)
764 return ret;
765
766 /* Use LED_IREF for proximity mode */
767 ret = regmap_update_bits(map: data->regmap, ADUX1020_REG_LED_CURRENT,
768 ADUX1020_LED_PIREF_EN, val: 0);
769 if (ret < 0)
770 return ret;
771
772 /* Mask all interrupts */
773 return regmap_update_bits(map: data->regmap, ADUX1020_REG_INT_MASK,
774 ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE);
775}
776
777static int adux1020_probe(struct i2c_client *client)
778{
779 struct adux1020_data *data;
780 struct iio_dev *indio_dev;
781 int ret;
782
783 indio_dev = devm_iio_device_alloc(parent: &client->dev, sizeof_priv: sizeof(*data));
784 if (!indio_dev)
785 return -ENOMEM;
786
787 indio_dev->info = &adux1020_info;
788 indio_dev->name = ADUX1020_DRV_NAME;
789 indio_dev->channels = adux1020_channels;
790 indio_dev->num_channels = ARRAY_SIZE(adux1020_channels);
791 indio_dev->modes = INDIO_DIRECT_MODE;
792
793 data = iio_priv(indio_dev);
794
795 data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config);
796 if (IS_ERR(ptr: data->regmap)) {
797 dev_err(&client->dev, "regmap initialization failed.\n");
798 return PTR_ERR(ptr: data->regmap);
799 }
800
801 data->client = client;
802 data->indio_dev = indio_dev;
803 mutex_init(&data->lock);
804
805 ret = adux1020_chip_init(data);
806 if (ret)
807 return ret;
808
809 if (client->irq) {
810 ret = devm_request_threaded_irq(dev: &client->dev, irq: client->irq,
811 NULL, thread_fn: adux1020_interrupt_handler,
812 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
813 ADUX1020_DRV_NAME, dev_id: indio_dev);
814 if (ret) {
815 dev_err(&client->dev, "irq request error %d\n", -ret);
816 return ret;
817 }
818 }
819
820 return devm_iio_device_register(&client->dev, indio_dev);
821}
822
823static const struct i2c_device_id adux1020_id[] = {
824 { "adux1020", 0 },
825 {}
826};
827MODULE_DEVICE_TABLE(i2c, adux1020_id);
828
829static const struct of_device_id adux1020_of_match[] = {
830 { .compatible = "adi,adux1020" },
831 { }
832};
833MODULE_DEVICE_TABLE(of, adux1020_of_match);
834
835static struct i2c_driver adux1020_driver = {
836 .driver = {
837 .name = ADUX1020_DRV_NAME,
838 .of_match_table = adux1020_of_match,
839 },
840 .probe = adux1020_probe,
841 .id_table = adux1020_id,
842};
843module_i2c_driver(adux1020_driver);
844
845MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
846MODULE_DESCRIPTION("ADUX1020 photometric sensor");
847MODULE_LICENSE("GPL");
848

source code of linux/drivers/iio/light/adux1020.c