1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/media/i2c/ccs/ccs-core.c
4 *
5 * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors
6 *
7 * Copyright (C) 2020 Intel Corporation
8 * Copyright (C) 2010--2012 Nokia Corporation
9 * Contact: Sakari Ailus <sakari.ailus@linux.intel.com>
10 *
11 * Based on smiapp driver by Vimarsh Zutshi
12 * Based on jt8ev1.c by Vimarsh Zutshi
13 * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
14 */
15
16#include <linux/clk.h>
17#include <linux/delay.h>
18#include <linux/device.h>
19#include <linux/firmware.h>
20#include <linux/gpio/consumer.h>
21#include <linux/module.h>
22#include <linux/pm_runtime.h>
23#include <linux/property.h>
24#include <linux/regulator/consumer.h>
25#include <linux/slab.h>
26#include <linux/smiapp.h>
27#include <linux/v4l2-mediabus.h>
28#include <media/v4l2-cci.h>
29#include <media/v4l2-device.h>
30#include <media/v4l2-fwnode.h>
31#include <uapi/linux/ccs.h>
32
33#include "ccs.h"
34
35#define CCS_ALIGN_DIM(dim, flags) \
36 ((flags) & V4L2_SEL_FLAG_GE \
37 ? ALIGN((dim), 2) \
38 : (dim) & ~1)
39
40static struct ccs_limit_offset {
41 u16 lim;
42 u16 info;
43} ccs_limit_offsets[CCS_L_LAST + 1];
44
45/*
46 * ccs_module_idents - supported camera modules
47 */
48static const struct ccs_module_ident ccs_module_idents[] = {
49 CCS_IDENT_L(0x01, 0x022b, -1, "vs6555"),
50 CCS_IDENT_L(0x01, 0x022e, -1, "vw6558"),
51 CCS_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
52 CCS_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
53 CCS_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
54 CCS_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
55 CCS_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
56 CCS_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
57 CCS_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
58 CCS_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
59 CCS_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
60};
61
62#define CCS_DEVICE_FLAG_IS_SMIA BIT(0)
63
64struct ccs_device {
65 unsigned char flags;
66};
67
68static const char * const ccs_regulators[] = { "vcore", "vio", "vana" };
69
70/*
71 *
72 * Dynamic Capability Identification
73 *
74 */
75
76static void ccs_assign_limit(void *ptr, unsigned int width, u32 val)
77{
78 switch (width) {
79 case sizeof(u8):
80 *(u8 *)ptr = val;
81 break;
82 case sizeof(u16):
83 *(u16 *)ptr = val;
84 break;
85 case sizeof(u32):
86 *(u32 *)ptr = val;
87 break;
88 }
89}
90
91static int ccs_limit_ptr(struct ccs_sensor *sensor, unsigned int limit,
92 unsigned int offset, void **__ptr)
93{
94 const struct ccs_limit *linfo;
95
96 if (WARN_ON(limit >= CCS_L_LAST))
97 return -EINVAL;
98
99 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
100
101 if (WARN_ON(!sensor->ccs_limits) ||
102 WARN_ON(offset + CCI_REG_WIDTH_BYTES(linfo->reg) >
103 ccs_limit_offsets[limit + 1].lim))
104 return -EINVAL;
105
106 *__ptr = sensor->ccs_limits + ccs_limit_offsets[limit].lim + offset;
107
108 return 0;
109}
110
111void ccs_replace_limit(struct ccs_sensor *sensor,
112 unsigned int limit, unsigned int offset, u32 val)
113{
114 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
115 const struct ccs_limit *linfo;
116 void *ptr;
117 int ret;
118
119 ret = ccs_limit_ptr(sensor, limit, offset, ptr: &ptr);
120 if (ret)
121 return;
122
123 linfo = &ccs_limits[ccs_limit_offsets[limit].info];
124
125 dev_dbg(&client->dev, "quirk: 0x%8.8x \"%s\" %u = %u, 0x%x\n",
126 linfo->reg, linfo->name, offset, val, val);
127
128 ccs_assign_limit(ptr, CCI_REG_WIDTH_BYTES(linfo->reg), val);
129}
130
131u32 ccs_get_limit(struct ccs_sensor *sensor, unsigned int limit,
132 unsigned int offset)
133{
134 void *ptr;
135 u32 val;
136 int ret;
137
138 ret = ccs_limit_ptr(sensor, limit, offset, ptr: &ptr);
139 if (ret)
140 return 0;
141
142 switch (CCI_REG_WIDTH_BYTES(ccs_limits[ccs_limit_offsets[limit].info].reg)) {
143 case sizeof(u8):
144 val = *(u8 *)ptr;
145 break;
146 case sizeof(u16):
147 val = *(u16 *)ptr;
148 break;
149 case sizeof(u32):
150 val = *(u32 *)ptr;
151 break;
152 default:
153 WARN_ON(1);
154 return 0;
155 }
156
157 return ccs_reg_conv(sensor, reg: ccs_limits[limit].reg, val);
158}
159
160static int ccs_read_all_limits(struct ccs_sensor *sensor)
161{
162 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
163 void *ptr, *alloc, *end;
164 unsigned int i, l;
165 int ret;
166
167 kfree(objp: sensor->ccs_limits);
168 sensor->ccs_limits = NULL;
169
170 alloc = kzalloc(size: ccs_limit_offsets[CCS_L_LAST].lim, GFP_KERNEL);
171 if (!alloc)
172 return -ENOMEM;
173
174 end = alloc + ccs_limit_offsets[CCS_L_LAST].lim;
175
176 sensor->ccs_limits = alloc;
177
178 for (i = 0, l = 0, ptr = alloc; ccs_limits[i].size; i++) {
179 u32 reg = ccs_limits[i].reg;
180 unsigned int width = CCI_REG_WIDTH_BYTES(reg);
181 unsigned int j;
182
183 if (l == CCS_L_LAST) {
184 dev_err(&client->dev,
185 "internal error --- end of limit array\n");
186 ret = -EINVAL;
187 goto out_err;
188 }
189
190 for (j = 0; j < ccs_limits[i].size / width;
191 j++, reg += width, ptr += width) {
192 char str[16] = "";
193 u32 val;
194
195 ret = ccs_read_addr_noconv(sensor, reg, val: &val);
196 if (ret)
197 goto out_err;
198
199 if (ptr + width > end) {
200 dev_err(&client->dev,
201 "internal error --- no room for regs\n");
202 ret = -EINVAL;
203 goto out_err;
204 }
205
206 if (!val && j)
207 break;
208
209 ccs_assign_limit(ptr, width, val);
210
211#ifdef CONFIG_DYNAMIC_DEBUG
212 if (reg & (CCS_FL_FLOAT_IREAL | CCS_FL_IREAL))
213 snprintf(buf: str, size: sizeof(str), fmt: ", %u",
214 ccs_reg_conv(sensor, reg, val));
215#endif
216
217 dev_dbg(&client->dev,
218 "0x%8.8x \"%s\" = %u, 0x%x%s\n",
219 reg, ccs_limits[i].name, val, val, str);
220 }
221
222 if (ccs_limits[i].flags & CCS_L_FL_SAME_REG)
223 continue;
224
225 l++;
226 ptr = alloc + ccs_limit_offsets[l].lim;
227 }
228
229 if (l != CCS_L_LAST) {
230 dev_err(&client->dev,
231 "internal error --- insufficient limits\n");
232 ret = -EINVAL;
233 goto out_err;
234 }
235
236 if (CCS_LIM(sensor, SCALER_N_MIN) < 16)
237 ccs_replace_limit(sensor, CCS_L_SCALER_N_MIN, offset: 0, val: 16);
238
239 return 0;
240
241out_err:
242 sensor->ccs_limits = NULL;
243 kfree(objp: alloc);
244
245 return ret;
246}
247
248static int ccs_read_frame_fmt(struct ccs_sensor *sensor)
249{
250 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
251 u8 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
252 unsigned int i;
253 int pixel_count = 0;
254 int line_count = 0;
255
256 fmt_model_type = CCS_LIM(sensor, FRAME_FORMAT_MODEL_TYPE);
257 fmt_model_subtype = CCS_LIM(sensor, FRAME_FORMAT_MODEL_SUBTYPE);
258
259 ncol_desc = (fmt_model_subtype
260 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_MASK)
261 >> CCS_FRAME_FORMAT_MODEL_SUBTYPE_COLUMNS_SHIFT;
262 nrow_desc = fmt_model_subtype
263 & CCS_FRAME_FORMAT_MODEL_SUBTYPE_ROWS_MASK;
264
265 dev_dbg(&client->dev, "format_model_type %s\n",
266 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE
267 ? "2 byte" :
268 fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE
269 ? "4 byte" : "is simply bad");
270
271 dev_dbg(&client->dev, "%u column and %u row descriptors\n",
272 ncol_desc, nrow_desc);
273
274 for (i = 0; i < ncol_desc + nrow_desc; i++) {
275 u32 desc;
276 u32 pixelcode;
277 u32 pixels;
278 char *which;
279 char *what;
280
281 if (fmt_model_type == CCS_FRAME_FORMAT_MODEL_TYPE_2_BYTE) {
282 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR, i);
283
284 pixelcode =
285 (desc
286 & CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_MASK)
287 >> CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_SHIFT;
288 pixels = desc & CCS_FRAME_FORMAT_DESCRIPTOR_PIXELS_MASK;
289 } else if (fmt_model_type
290 == CCS_FRAME_FORMAT_MODEL_TYPE_4_BYTE) {
291 desc = CCS_LIM_AT(sensor, FRAME_FORMAT_DESCRIPTOR_4, i);
292
293 pixelcode =
294 (desc
295 & CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_MASK)
296 >> CCS_FRAME_FORMAT_DESCRIPTOR_4_PCODE_SHIFT;
297 pixels = desc &
298 CCS_FRAME_FORMAT_DESCRIPTOR_4_PIXELS_MASK;
299 } else {
300 dev_dbg(&client->dev,
301 "invalid frame format model type %u\n",
302 fmt_model_type);
303 return -EINVAL;
304 }
305
306 if (i < ncol_desc)
307 which = "columns";
308 else
309 which = "rows";
310
311 switch (pixelcode) {
312 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
313 what = "embedded";
314 break;
315 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DUMMY_PIXEL:
316 what = "dummy";
317 break;
318 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_BLACK_PIXEL:
319 what = "black";
320 break;
321 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_DARK_PIXEL:
322 what = "dark";
323 break;
324 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
325 what = "visible";
326 break;
327 default:
328 what = "invalid";
329 break;
330 }
331
332 dev_dbg(&client->dev,
333 "%s pixels: %u %s (pixelcode %u)\n",
334 what, pixels, which, pixelcode);
335
336 if (i < ncol_desc) {
337 if (pixelcode ==
338 CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL)
339 sensor->visible_pixel_start = pixel_count;
340 pixel_count += pixels;
341 continue;
342 }
343
344 /* Handle row descriptors */
345 switch (pixelcode) {
346 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_EMBEDDED:
347 if (sensor->embedded_end)
348 break;
349 sensor->embedded_start = line_count;
350 sensor->embedded_end = line_count + pixels;
351 break;
352 case CCS_FRAME_FORMAT_DESCRIPTOR_PCODE_VISIBLE_PIXEL:
353 sensor->image_start = line_count;
354 break;
355 }
356 line_count += pixels;
357 }
358
359 if (sensor->embedded_end > sensor->image_start) {
360 dev_dbg(&client->dev,
361 "adjusting image start line to %u (was %u)\n",
362 sensor->embedded_end, sensor->image_start);
363 sensor->image_start = sensor->embedded_end;
364 }
365
366 dev_dbg(&client->dev, "embedded data from lines %u to %u\n",
367 sensor->embedded_start, sensor->embedded_end);
368 dev_dbg(&client->dev, "image data starts at line %u\n",
369 sensor->image_start);
370
371 return 0;
372}
373
374static int ccs_pll_configure(struct ccs_sensor *sensor)
375{
376 struct ccs_pll *pll = &sensor->pll;
377 int rval;
378
379 rval = ccs_write(sensor, VT_PIX_CLK_DIV, pll->vt_bk.pix_clk_div);
380 if (rval < 0)
381 return rval;
382
383 rval = ccs_write(sensor, VT_SYS_CLK_DIV, pll->vt_bk.sys_clk_div);
384 if (rval < 0)
385 return rval;
386
387 rval = ccs_write(sensor, PRE_PLL_CLK_DIV, pll->vt_fr.pre_pll_clk_div);
388 if (rval < 0)
389 return rval;
390
391 rval = ccs_write(sensor, PLL_MULTIPLIER, pll->vt_fr.pll_multiplier);
392 if (rval < 0)
393 return rval;
394
395 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
396 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL)) {
397 /* Lane op clock ratio does not apply here. */
398 rval = ccs_write(sensor, REQUESTED_LINK_RATE,
399 DIV_ROUND_UP(pll->op_bk.sys_clk_freq_hz,
400 1000000 / 256 / 256) *
401 (pll->flags & CCS_PLL_FLAG_LANE_SPEED_MODEL ?
402 sensor->pll.csi2.lanes : 1) <<
403 (pll->flags & CCS_PLL_FLAG_OP_SYS_DDR ?
404 1 : 0));
405 if (rval < 0)
406 return rval;
407 }
408
409 if (sensor->pll.flags & CCS_PLL_FLAG_NO_OP_CLOCKS)
410 return 0;
411
412 rval = ccs_write(sensor, OP_PIX_CLK_DIV, pll->op_bk.pix_clk_div);
413 if (rval < 0)
414 return rval;
415
416 rval = ccs_write(sensor, OP_SYS_CLK_DIV, pll->op_bk.sys_clk_div);
417 if (rval < 0)
418 return rval;
419
420 if (!(pll->flags & CCS_PLL_FLAG_DUAL_PLL))
421 return 0;
422
423 rval = ccs_write(sensor, PLL_MODE, CCS_PLL_MODE_DUAL);
424 if (rval < 0)
425 return rval;
426
427 rval = ccs_write(sensor, OP_PRE_PLL_CLK_DIV,
428 pll->op_fr.pre_pll_clk_div);
429 if (rval < 0)
430 return rval;
431
432 return ccs_write(sensor, OP_PLL_MULTIPLIER, pll->op_fr.pll_multiplier);
433}
434
435static int ccs_pll_try(struct ccs_sensor *sensor, struct ccs_pll *pll)
436{
437 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
438 struct ccs_pll_limits lim = {
439 .vt_fr = {
440 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
441 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
442 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_IP_CLK_FREQ_MHZ),
443 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_IP_CLK_FREQ_MHZ),
444 .min_pll_multiplier = CCS_LIM(sensor, MIN_PLL_MULTIPLIER),
445 .max_pll_multiplier = CCS_LIM(sensor, MAX_PLL_MULTIPLIER),
446 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_PLL_OP_CLK_FREQ_MHZ),
447 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_PLL_OP_CLK_FREQ_MHZ),
448 },
449 .op_fr = {
450 .min_pre_pll_clk_div = CCS_LIM(sensor, MIN_OP_PRE_PLL_CLK_DIV),
451 .max_pre_pll_clk_div = CCS_LIM(sensor, MAX_OP_PRE_PLL_CLK_DIV),
452 .min_pll_ip_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_IP_CLK_FREQ_MHZ),
453 .max_pll_ip_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_IP_CLK_FREQ_MHZ),
454 .min_pll_multiplier = CCS_LIM(sensor, MIN_OP_PLL_MULTIPLIER),
455 .max_pll_multiplier = CCS_LIM(sensor, MAX_OP_PLL_MULTIPLIER),
456 .min_pll_op_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PLL_OP_CLK_FREQ_MHZ),
457 .max_pll_op_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PLL_OP_CLK_FREQ_MHZ),
458 },
459 .op_bk = {
460 .min_sys_clk_div = CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV),
461 .max_sys_clk_div = CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV),
462 .min_pix_clk_div = CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV),
463 .max_pix_clk_div = CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV),
464 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_OP_SYS_CLK_FREQ_MHZ),
465 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_OP_SYS_CLK_FREQ_MHZ),
466 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_OP_PIX_CLK_FREQ_MHZ),
467 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_OP_PIX_CLK_FREQ_MHZ),
468 },
469 .vt_bk = {
470 .min_sys_clk_div = CCS_LIM(sensor, MIN_VT_SYS_CLK_DIV),
471 .max_sys_clk_div = CCS_LIM(sensor, MAX_VT_SYS_CLK_DIV),
472 .min_pix_clk_div = CCS_LIM(sensor, MIN_VT_PIX_CLK_DIV),
473 .max_pix_clk_div = CCS_LIM(sensor, MAX_VT_PIX_CLK_DIV),
474 .min_sys_clk_freq_hz = CCS_LIM(sensor, MIN_VT_SYS_CLK_FREQ_MHZ),
475 .max_sys_clk_freq_hz = CCS_LIM(sensor, MAX_VT_SYS_CLK_FREQ_MHZ),
476 .min_pix_clk_freq_hz = CCS_LIM(sensor, MIN_VT_PIX_CLK_FREQ_MHZ),
477 .max_pix_clk_freq_hz = CCS_LIM(sensor, MAX_VT_PIX_CLK_FREQ_MHZ),
478 },
479 .min_line_length_pck_bin = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
480 .min_line_length_pck = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK),
481 };
482
483 return ccs_pll_calculate(dev: &client->dev, limits: &lim, pll);
484}
485
486static int ccs_pll_update(struct ccs_sensor *sensor)
487{
488 struct ccs_pll *pll = &sensor->pll;
489 int rval;
490
491 pll->binning_horizontal = sensor->binning_horizontal;
492 pll->binning_vertical = sensor->binning_vertical;
493 pll->link_freq =
494 sensor->link_freq->qmenu_int[sensor->link_freq->val];
495 pll->scale_m = sensor->scale_m;
496 pll->bits_per_pixel = sensor->csi_format->compressed;
497
498 rval = ccs_pll_try(sensor, pll);
499 if (rval < 0)
500 return rval;
501
502 __v4l2_ctrl_s_ctrl_int64(ctrl: sensor->pixel_rate_parray,
503 val: pll->pixel_rate_pixel_array);
504 __v4l2_ctrl_s_ctrl_int64(ctrl: sensor->pixel_rate_csi, val: pll->pixel_rate_csi);
505
506 return 0;
507}
508
509
510/*
511 *
512 * V4L2 Controls handling
513 *
514 */
515
516static void __ccs_update_exposure_limits(struct ccs_sensor *sensor)
517{
518 struct v4l2_ctrl *ctrl = sensor->exposure;
519 int max;
520
521 max = sensor->pa_src.height + sensor->vblank->val -
522 CCS_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
523
524 __v4l2_ctrl_modify_range(ctrl, min: ctrl->minimum, max, step: ctrl->step, def: max);
525}
526
527/*
528 * Order matters.
529 *
530 * 1. Bits-per-pixel, descending.
531 * 2. Bits-per-pixel compressed, descending.
532 * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
533 * orders must be defined.
534 */
535static const struct ccs_csi_data_format ccs_csi_data_formats[] = {
536 { MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, CCS_PIXEL_ORDER_GRBG, },
537 { MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, CCS_PIXEL_ORDER_RGGB, },
538 { MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, CCS_PIXEL_ORDER_BGGR, },
539 { MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, CCS_PIXEL_ORDER_GBRG, },
540 { MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, CCS_PIXEL_ORDER_GRBG, },
541 { MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, CCS_PIXEL_ORDER_RGGB, },
542 { MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, CCS_PIXEL_ORDER_BGGR, },
543 { MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, CCS_PIXEL_ORDER_GBRG, },
544 { MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, CCS_PIXEL_ORDER_GRBG, },
545 { MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, CCS_PIXEL_ORDER_RGGB, },
546 { MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, CCS_PIXEL_ORDER_BGGR, },
547 { MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, CCS_PIXEL_ORDER_GBRG, },
548 { MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, CCS_PIXEL_ORDER_GRBG, },
549 { MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, CCS_PIXEL_ORDER_RGGB, },
550 { MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, CCS_PIXEL_ORDER_BGGR, },
551 { MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, CCS_PIXEL_ORDER_GBRG, },
552 { MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GRBG, },
553 { MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_RGGB, },
554 { MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_BGGR, },
555 { MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, CCS_PIXEL_ORDER_GBRG, },
556 { MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, CCS_PIXEL_ORDER_GRBG, },
557 { MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, CCS_PIXEL_ORDER_RGGB, },
558 { MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, CCS_PIXEL_ORDER_BGGR, },
559 { MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, CCS_PIXEL_ORDER_GBRG, },
560};
561
562static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
563
564#define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
565 - (unsigned long)ccs_csi_data_formats) \
566 / sizeof(*ccs_csi_data_formats))
567
568static u32 ccs_pixel_order(struct ccs_sensor *sensor)
569{
570 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
571 int flip = 0;
572
573 if (sensor->hflip) {
574 if (sensor->hflip->val)
575 flip |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
576
577 if (sensor->vflip->val)
578 flip |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
579 }
580
581 dev_dbg(&client->dev, "flip %u\n", flip);
582 return sensor->default_pixel_order ^ flip;
583}
584
585static void ccs_update_mbus_formats(struct ccs_sensor *sensor)
586{
587 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
588 unsigned int csi_format_idx =
589 to_csi_format_idx(sensor->csi_format) & ~3;
590 unsigned int internal_csi_format_idx =
591 to_csi_format_idx(sensor->internal_csi_format) & ~3;
592 unsigned int pixel_order = ccs_pixel_order(sensor);
593
594 if (WARN_ON_ONCE(max(internal_csi_format_idx, csi_format_idx) +
595 pixel_order >= ARRAY_SIZE(ccs_csi_data_formats)))
596 return;
597
598 sensor->mbus_frame_fmts =
599 sensor->default_mbus_frame_fmts << pixel_order;
600 sensor->csi_format =
601 &ccs_csi_data_formats[csi_format_idx + pixel_order];
602 sensor->internal_csi_format =
603 &ccs_csi_data_formats[internal_csi_format_idx
604 + pixel_order];
605
606 dev_dbg(&client->dev, "new pixel order %s\n",
607 pixel_order_str[pixel_order]);
608}
609
610static const char * const ccs_test_patterns[] = {
611 "Disabled",
612 "Solid Colour",
613 "Eight Vertical Colour Bars",
614 "Colour Bars With Fade to Grey",
615 "Pseudorandom Sequence (PN9)",
616};
617
618static int ccs_set_ctrl(struct v4l2_ctrl *ctrl)
619{
620 struct ccs_sensor *sensor =
621 container_of(ctrl->handler, struct ccs_subdev, ctrl_handler)
622 ->sensor;
623 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
624 int pm_status;
625 u32 orient = 0;
626 unsigned int i;
627 int exposure;
628 int rval;
629
630 switch (ctrl->id) {
631 case V4L2_CID_HFLIP:
632 case V4L2_CID_VFLIP:
633 if (sensor->streaming)
634 return -EBUSY;
635
636 if (sensor->hflip->val)
637 orient |= CCS_IMAGE_ORIENTATION_HORIZONTAL_MIRROR;
638
639 if (sensor->vflip->val)
640 orient |= CCS_IMAGE_ORIENTATION_VERTICAL_FLIP;
641
642 ccs_update_mbus_formats(sensor);
643
644 break;
645 case V4L2_CID_VBLANK:
646 exposure = sensor->exposure->val;
647
648 __ccs_update_exposure_limits(sensor);
649
650 if (exposure > sensor->exposure->maximum) {
651 sensor->exposure->val = sensor->exposure->maximum;
652 rval = ccs_set_ctrl(ctrl: sensor->exposure);
653 if (rval < 0)
654 return rval;
655 }
656
657 break;
658 case V4L2_CID_LINK_FREQ:
659 if (sensor->streaming)
660 return -EBUSY;
661
662 rval = ccs_pll_update(sensor);
663 if (rval)
664 return rval;
665
666 return 0;
667 case V4L2_CID_TEST_PATTERN:
668 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
669 v4l2_ctrl_activate(
670 ctrl: sensor->test_data[i],
671 active: ctrl->val ==
672 V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
673
674 break;
675 }
676
677 pm_status = pm_runtime_get_if_active(dev: &client->dev);
678 if (!pm_status)
679 return 0;
680
681 switch (ctrl->id) {
682 case V4L2_CID_ANALOGUE_GAIN:
683 rval = ccs_write(sensor, ANALOG_GAIN_CODE_GLOBAL, ctrl->val);
684
685 break;
686
687 case V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN:
688 rval = ccs_write(sensor, ANALOG_LINEAR_GAIN_GLOBAL, ctrl->val);
689
690 break;
691
692 case V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN:
693 rval = ccs_write(sensor, ANALOG_EXPONENTIAL_GAIN_GLOBAL,
694 ctrl->val);
695
696 break;
697
698 case V4L2_CID_DIGITAL_GAIN:
699 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
700 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL) {
701 rval = ccs_write(sensor, DIGITAL_GAIN_GLOBAL,
702 ctrl->val);
703 break;
704 }
705
706 rval = ccs_write_addr(sensor,
707 SMIAPP_REG_U16_DIGITAL_GAIN_GREENR,
708 val: ctrl->val);
709 if (rval)
710 break;
711
712 rval = ccs_write_addr(sensor,
713 SMIAPP_REG_U16_DIGITAL_GAIN_RED,
714 val: ctrl->val);
715 if (rval)
716 break;
717
718 rval = ccs_write_addr(sensor,
719 SMIAPP_REG_U16_DIGITAL_GAIN_BLUE,
720 val: ctrl->val);
721 if (rval)
722 break;
723
724 rval = ccs_write_addr(sensor,
725 SMIAPP_REG_U16_DIGITAL_GAIN_GREENB,
726 val: ctrl->val);
727
728 break;
729 case V4L2_CID_EXPOSURE:
730 rval = ccs_write(sensor, COARSE_INTEGRATION_TIME, ctrl->val);
731
732 break;
733 case V4L2_CID_HFLIP:
734 case V4L2_CID_VFLIP:
735 rval = ccs_write(sensor, IMAGE_ORIENTATION, orient);
736
737 break;
738 case V4L2_CID_VBLANK:
739 rval = ccs_write(sensor, FRAME_LENGTH_LINES,
740 sensor->pa_src.height + ctrl->val);
741
742 break;
743 case V4L2_CID_HBLANK:
744 rval = ccs_write(sensor, LINE_LENGTH_PCK,
745 sensor->pa_src.width + ctrl->val);
746
747 break;
748 case V4L2_CID_TEST_PATTERN:
749 rval = ccs_write(sensor, TEST_PATTERN_MODE, ctrl->val);
750
751 break;
752 case V4L2_CID_TEST_PATTERN_RED:
753 rval = ccs_write(sensor, TEST_DATA_RED, ctrl->val);
754
755 break;
756 case V4L2_CID_TEST_PATTERN_GREENR:
757 rval = ccs_write(sensor, TEST_DATA_GREENR, ctrl->val);
758
759 break;
760 case V4L2_CID_TEST_PATTERN_BLUE:
761 rval = ccs_write(sensor, TEST_DATA_BLUE, ctrl->val);
762
763 break;
764 case V4L2_CID_TEST_PATTERN_GREENB:
765 rval = ccs_write(sensor, TEST_DATA_GREENB, ctrl->val);
766
767 break;
768 case V4L2_CID_CCS_SHADING_CORRECTION:
769 rval = ccs_write(sensor, SHADING_CORRECTION_EN,
770 ctrl->val ? CCS_SHADING_CORRECTION_EN_ENABLE :
771 0);
772
773 if (!rval && sensor->luminance_level)
774 v4l2_ctrl_activate(ctrl: sensor->luminance_level, active: ctrl->val);
775
776 break;
777 case V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL:
778 rval = ccs_write(sensor, LUMINANCE_CORRECTION_LEVEL, ctrl->val);
779
780 break;
781 case V4L2_CID_PIXEL_RATE:
782 /* For v4l2_ctrl_s_ctrl_int64() used internally. */
783 rval = 0;
784
785 break;
786 default:
787 rval = -EINVAL;
788 }
789
790 if (pm_status > 0) {
791 pm_runtime_mark_last_busy(dev: &client->dev);
792 pm_runtime_put_autosuspend(dev: &client->dev);
793 }
794
795 return rval;
796}
797
798static const struct v4l2_ctrl_ops ccs_ctrl_ops = {
799 .s_ctrl = ccs_set_ctrl,
800};
801
802static int ccs_init_controls(struct ccs_sensor *sensor)
803{
804 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
805 struct v4l2_fwnode_device_properties props;
806 int rval;
807
808 rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 19);
809 if (rval)
810 return rval;
811
812 sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
813
814 rval = v4l2_fwnode_device_parse(dev: &client->dev, props: &props);
815 if (rval)
816 return rval;
817
818 rval = v4l2_ctrl_new_fwnode_properties(hdl: &sensor->pixel_array->ctrl_handler,
819 ctrl_ops: &ccs_ctrl_ops, p: &props);
820 if (rval)
821 return rval;
822
823 switch (CCS_LIM(sensor, ANALOG_GAIN_CAPABILITY)) {
824 case CCS_ANALOG_GAIN_CAPABILITY_GLOBAL: {
825 struct {
826 const char *name;
827 u32 id;
828 s32 value;
829 } const gain_ctrls[] = {
830 { "Analogue Gain m0", V4L2_CID_CCS_ANALOGUE_GAIN_M0,
831 CCS_LIM(sensor, ANALOG_GAIN_M0), },
832 { "Analogue Gain c0", V4L2_CID_CCS_ANALOGUE_GAIN_C0,
833 CCS_LIM(sensor, ANALOG_GAIN_C0), },
834 { "Analogue Gain m1", V4L2_CID_CCS_ANALOGUE_GAIN_M1,
835 CCS_LIM(sensor, ANALOG_GAIN_M1), },
836 { "Analogue Gain c1", V4L2_CID_CCS_ANALOGUE_GAIN_C1,
837 CCS_LIM(sensor, ANALOG_GAIN_C1), },
838 };
839 struct v4l2_ctrl_config ctrl_cfg = {
840 .type = V4L2_CTRL_TYPE_INTEGER,
841 .ops = &ccs_ctrl_ops,
842 .flags = V4L2_CTRL_FLAG_READ_ONLY,
843 .step = 1,
844 };
845 unsigned int i;
846
847 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
848 ctrl_cfg.name = gain_ctrls[i].name;
849 ctrl_cfg.id = gain_ctrls[i].id;
850 ctrl_cfg.min = ctrl_cfg.max = ctrl_cfg.def =
851 gain_ctrls[i].value;
852
853 v4l2_ctrl_new_custom(hdl: &sensor->pixel_array->ctrl_handler,
854 cfg: &ctrl_cfg, NULL);
855 }
856
857 v4l2_ctrl_new_std(hdl: &sensor->pixel_array->ctrl_handler,
858 ops: &ccs_ctrl_ops, V4L2_CID_ANALOGUE_GAIN,
859 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN),
860 CCS_LIM(sensor, ANALOG_GAIN_CODE_MAX),
861 max(CCS_LIM(sensor, ANALOG_GAIN_CODE_STEP),
862 1U),
863 CCS_LIM(sensor, ANALOG_GAIN_CODE_MIN));
864 }
865 break;
866
867 case CCS_ANALOG_GAIN_CAPABILITY_ALTERNATE_GLOBAL: {
868 struct {
869 const char *name;
870 u32 id;
871 u16 min, max, step;
872 } const gain_ctrls[] = {
873 {
874 "Analogue Linear Gain",
875 V4L2_CID_CCS_ANALOGUE_LINEAR_GAIN,
876 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MIN),
877 CCS_LIM(sensor, ANALOG_LINEAR_GAIN_MAX),
878 max(CCS_LIM(sensor,
879 ANALOG_LINEAR_GAIN_STEP_SIZE),
880 1U),
881 },
882 {
883 "Analogue Exponential Gain",
884 V4L2_CID_CCS_ANALOGUE_EXPONENTIAL_GAIN,
885 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MIN),
886 CCS_LIM(sensor, ANALOG_EXPONENTIAL_GAIN_MAX),
887 max(CCS_LIM(sensor,
888 ANALOG_EXPONENTIAL_GAIN_STEP_SIZE),
889 1U),
890 },
891 };
892 struct v4l2_ctrl_config ctrl_cfg = {
893 .type = V4L2_CTRL_TYPE_INTEGER,
894 .ops = &ccs_ctrl_ops,
895 };
896 unsigned int i;
897
898 for (i = 0; i < ARRAY_SIZE(gain_ctrls); i++) {
899 ctrl_cfg.name = gain_ctrls[i].name;
900 ctrl_cfg.min = ctrl_cfg.def = gain_ctrls[i].min;
901 ctrl_cfg.max = gain_ctrls[i].max;
902 ctrl_cfg.step = gain_ctrls[i].step;
903 ctrl_cfg.id = gain_ctrls[i].id;
904
905 v4l2_ctrl_new_custom(hdl: &sensor->pixel_array->ctrl_handler,
906 cfg: &ctrl_cfg, NULL);
907 }
908 }
909 }
910
911 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
912 (CCS_SHADING_CORRECTION_CAPABILITY_COLOR_SHADING |
913 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION)) {
914 const struct v4l2_ctrl_config ctrl_cfg = {
915 .name = "Shading Correction",
916 .type = V4L2_CTRL_TYPE_BOOLEAN,
917 .id = V4L2_CID_CCS_SHADING_CORRECTION,
918 .ops = &ccs_ctrl_ops,
919 .max = 1,
920 .step = 1,
921 };
922
923 v4l2_ctrl_new_custom(hdl: &sensor->pixel_array->ctrl_handler,
924 cfg: &ctrl_cfg, NULL);
925 }
926
927 if (CCS_LIM(sensor, SHADING_CORRECTION_CAPABILITY) &
928 CCS_SHADING_CORRECTION_CAPABILITY_LUMINANCE_CORRECTION) {
929 const struct v4l2_ctrl_config ctrl_cfg = {
930 .name = "Luminance Correction Level",
931 .type = V4L2_CTRL_TYPE_BOOLEAN,
932 .id = V4L2_CID_CCS_LUMINANCE_CORRECTION_LEVEL,
933 .ops = &ccs_ctrl_ops,
934 .max = 255,
935 .step = 1,
936 .def = 128,
937 };
938
939 sensor->luminance_level =
940 v4l2_ctrl_new_custom(hdl: &sensor->pixel_array->ctrl_handler,
941 cfg: &ctrl_cfg, NULL);
942 }
943
944 if (CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
945 CCS_DIGITAL_GAIN_CAPABILITY_GLOBAL ||
946 CCS_LIM(sensor, DIGITAL_GAIN_CAPABILITY) ==
947 SMIAPP_DIGITAL_GAIN_CAPABILITY_PER_CHANNEL)
948 v4l2_ctrl_new_std(hdl: &sensor->pixel_array->ctrl_handler,
949 ops: &ccs_ctrl_ops, V4L2_CID_DIGITAL_GAIN,
950 CCS_LIM(sensor, DIGITAL_GAIN_MIN),
951 CCS_LIM(sensor, DIGITAL_GAIN_MAX),
952 max(CCS_LIM(sensor, DIGITAL_GAIN_STEP_SIZE),
953 1U),
954 def: 0x100);
955
956 /* Exposure limits will be updated soon, use just something here. */
957 sensor->exposure = v4l2_ctrl_new_std(
958 hdl: &sensor->pixel_array->ctrl_handler, ops: &ccs_ctrl_ops,
959 V4L2_CID_EXPOSURE, min: 0, max: 0, step: 1, def: 0);
960
961 sensor->hflip = v4l2_ctrl_new_std(
962 hdl: &sensor->pixel_array->ctrl_handler, ops: &ccs_ctrl_ops,
963 V4L2_CID_HFLIP, min: 0, max: 1, step: 1, def: 0);
964 sensor->vflip = v4l2_ctrl_new_std(
965 hdl: &sensor->pixel_array->ctrl_handler, ops: &ccs_ctrl_ops,
966 V4L2_CID_VFLIP, min: 0, max: 1, step: 1, def: 0);
967
968 sensor->vblank = v4l2_ctrl_new_std(
969 hdl: &sensor->pixel_array->ctrl_handler, ops: &ccs_ctrl_ops,
970 V4L2_CID_VBLANK, min: 0, max: 1, step: 1, def: 0);
971
972 if (sensor->vblank)
973 sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
974
975 sensor->hblank = v4l2_ctrl_new_std(
976 hdl: &sensor->pixel_array->ctrl_handler, ops: &ccs_ctrl_ops,
977 V4L2_CID_HBLANK, min: 0, max: 1, step: 1, def: 0);
978
979 if (sensor->hblank)
980 sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
981
982 sensor->pixel_rate_parray = v4l2_ctrl_new_std(
983 hdl: &sensor->pixel_array->ctrl_handler, ops: &ccs_ctrl_ops,
984 V4L2_CID_PIXEL_RATE, min: 1, INT_MAX, step: 1, def: 1);
985
986 v4l2_ctrl_new_std_menu_items(hdl: &sensor->pixel_array->ctrl_handler,
987 ops: &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN,
988 ARRAY_SIZE(ccs_test_patterns) - 1,
989 mask: 0, def: 0, qmenu: ccs_test_patterns);
990
991 if (sensor->pixel_array->ctrl_handler.error) {
992 dev_err(&client->dev,
993 "pixel array controls initialization failed (%d)\n",
994 sensor->pixel_array->ctrl_handler.error);
995 return sensor->pixel_array->ctrl_handler.error;
996 }
997
998 sensor->pixel_array->sd.ctrl_handler =
999 &sensor->pixel_array->ctrl_handler;
1000
1001 v4l2_ctrl_cluster(ncontrols: 2, controls: &sensor->hflip);
1002
1003 rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
1004 if (rval)
1005 return rval;
1006
1007 sensor->src->ctrl_handler.lock = &sensor->mutex;
1008
1009 sensor->pixel_rate_csi = v4l2_ctrl_new_std(
1010 hdl: &sensor->src->ctrl_handler, ops: &ccs_ctrl_ops,
1011 V4L2_CID_PIXEL_RATE, min: 1, INT_MAX, step: 1, def: 1);
1012
1013 if (sensor->src->ctrl_handler.error) {
1014 dev_err(&client->dev,
1015 "src controls initialization failed (%d)\n",
1016 sensor->src->ctrl_handler.error);
1017 return sensor->src->ctrl_handler.error;
1018 }
1019
1020 sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
1021
1022 return 0;
1023}
1024
1025/*
1026 * For controls that require information on available media bus codes
1027 * and linke frequencies.
1028 */
1029static int ccs_init_late_controls(struct ccs_sensor *sensor)
1030{
1031 unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
1032 sensor->csi_format->compressed - sensor->compressed_min_bpp];
1033 unsigned int i;
1034
1035 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
1036 int max_value = (1 << sensor->csi_format->width) - 1;
1037
1038 sensor->test_data[i] = v4l2_ctrl_new_std(
1039 hdl: &sensor->pixel_array->ctrl_handler,
1040 ops: &ccs_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
1041 min: 0, max: max_value, step: 1, def: max_value);
1042 }
1043
1044 sensor->link_freq = v4l2_ctrl_new_int_menu(
1045 hdl: &sensor->src->ctrl_handler, ops: &ccs_ctrl_ops,
1046 V4L2_CID_LINK_FREQ, max: __fls(word: *valid_link_freqs),
1047 __ffs(*valid_link_freqs), qmenu_int: sensor->hwcfg.op_sys_clock);
1048
1049 return sensor->src->ctrl_handler.error;
1050}
1051
1052static void ccs_free_controls(struct ccs_sensor *sensor)
1053{
1054 unsigned int i;
1055
1056 for (i = 0; i < sensor->ssds_used; i++)
1057 v4l2_ctrl_handler_free(hdl: &sensor->ssds[i].ctrl_handler);
1058}
1059
1060static int ccs_get_mbus_formats(struct ccs_sensor *sensor)
1061{
1062 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1063 struct ccs_pll *pll = &sensor->pll;
1064 u8 compressed_max_bpp = 0;
1065 unsigned int type, n;
1066 unsigned int i, pixel_order;
1067 int rval;
1068
1069 type = CCS_LIM(sensor, DATA_FORMAT_MODEL_TYPE);
1070
1071 dev_dbg(&client->dev, "data_format_model_type %u\n", type);
1072
1073 rval = ccs_read(sensor, PIXEL_ORDER, &pixel_order);
1074 if (rval)
1075 return rval;
1076
1077 if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
1078 dev_dbg(&client->dev, "bad pixel order %u\n", pixel_order);
1079 return -EINVAL;
1080 }
1081
1082 dev_dbg(&client->dev, "pixel order %u (%s)\n", pixel_order,
1083 pixel_order_str[pixel_order]);
1084
1085 switch (type) {
1086 case CCS_DATA_FORMAT_MODEL_TYPE_NORMAL:
1087 n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
1088 break;
1089 case CCS_DATA_FORMAT_MODEL_TYPE_EXTENDED:
1090 n = CCS_LIM_DATA_FORMAT_DESCRIPTOR_MAX_N + 1;
1091 break;
1092 default:
1093 return -EINVAL;
1094 }
1095
1096 sensor->default_pixel_order = pixel_order;
1097 sensor->mbus_frame_fmts = 0;
1098
1099 for (i = 0; i < n; i++) {
1100 unsigned int fmt, j;
1101
1102 fmt = CCS_LIM_AT(sensor, DATA_FORMAT_DESCRIPTOR, i);
1103
1104 dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
1105 i, fmt >> 8, (u8)fmt);
1106
1107 for (j = 0; j < ARRAY_SIZE(ccs_csi_data_formats); j++) {
1108 const struct ccs_csi_data_format *f =
1109 &ccs_csi_data_formats[j];
1110
1111 if (f->pixel_order != CCS_PIXEL_ORDER_GRBG)
1112 continue;
1113
1114 if (f->width != fmt >>
1115 CCS_DATA_FORMAT_DESCRIPTOR_UNCOMPRESSED_SHIFT ||
1116 f->compressed !=
1117 (fmt & CCS_DATA_FORMAT_DESCRIPTOR_COMPRESSED_MASK))
1118 continue;
1119
1120 dev_dbg(&client->dev, "jolly good! %u\n", j);
1121
1122 sensor->default_mbus_frame_fmts |= 1 << j;
1123 }
1124 }
1125
1126 /* Figure out which BPP values can be used with which formats. */
1127 pll->binning_horizontal = 1;
1128 pll->binning_vertical = 1;
1129 pll->scale_m = sensor->scale_m;
1130
1131 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1132 sensor->compressed_min_bpp =
1133 min(ccs_csi_data_formats[i].compressed,
1134 sensor->compressed_min_bpp);
1135 compressed_max_bpp =
1136 max(ccs_csi_data_formats[i].compressed,
1137 compressed_max_bpp);
1138 }
1139
1140 sensor->valid_link_freqs = devm_kcalloc(
1141 dev: &client->dev,
1142 n: compressed_max_bpp - sensor->compressed_min_bpp + 1,
1143 size: sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
1144 if (!sensor->valid_link_freqs)
1145 return -ENOMEM;
1146
1147 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
1148 const struct ccs_csi_data_format *f =
1149 &ccs_csi_data_formats[i];
1150 unsigned long *valid_link_freqs =
1151 &sensor->valid_link_freqs[
1152 f->compressed - sensor->compressed_min_bpp];
1153 unsigned int j;
1154
1155 if (!(sensor->default_mbus_frame_fmts & 1 << i))
1156 continue;
1157
1158 pll->bits_per_pixel = f->compressed;
1159
1160 for (j = 0; sensor->hwcfg.op_sys_clock[j]; j++) {
1161 pll->link_freq = sensor->hwcfg.op_sys_clock[j];
1162
1163 rval = ccs_pll_try(sensor, pll);
1164 dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
1165 pll->link_freq, pll->bits_per_pixel,
1166 rval ? "not ok" : "ok");
1167 if (rval)
1168 continue;
1169
1170 set_bit(nr: j, addr: valid_link_freqs);
1171 }
1172
1173 if (!*valid_link_freqs) {
1174 dev_info(&client->dev,
1175 "no valid link frequencies for %u bpp\n",
1176 f->compressed);
1177 sensor->default_mbus_frame_fmts &= ~BIT(i);
1178 continue;
1179 }
1180
1181 if (!sensor->csi_format
1182 || f->width > sensor->csi_format->width
1183 || (f->width == sensor->csi_format->width
1184 && f->compressed > sensor->csi_format->compressed)) {
1185 sensor->csi_format = f;
1186 sensor->internal_csi_format = f;
1187 }
1188 }
1189
1190 if (!sensor->csi_format) {
1191 dev_err(&client->dev, "no supported mbus code found\n");
1192 return -EINVAL;
1193 }
1194
1195 ccs_update_mbus_formats(sensor);
1196
1197 return 0;
1198}
1199
1200static void ccs_update_blanking(struct ccs_sensor *sensor)
1201{
1202 struct v4l2_ctrl *vblank = sensor->vblank;
1203 struct v4l2_ctrl *hblank = sensor->hblank;
1204 u16 min_fll, max_fll, min_llp, max_llp, min_lbp;
1205 int min, max;
1206
1207 if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
1208 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
1209 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
1210 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
1211 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
1212 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
1213 } else {
1214 min_fll = CCS_LIM(sensor, MIN_FRAME_LENGTH_LINES);
1215 max_fll = CCS_LIM(sensor, MAX_FRAME_LENGTH_LINES);
1216 min_llp = CCS_LIM(sensor, MIN_LINE_LENGTH_PCK);
1217 max_llp = CCS_LIM(sensor, MAX_LINE_LENGTH_PCK);
1218 min_lbp = CCS_LIM(sensor, MIN_LINE_BLANKING_PCK);
1219 }
1220
1221 min = max_t(int,
1222 CCS_LIM(sensor, MIN_FRAME_BLANKING_LINES),
1223 min_fll - sensor->pa_src.height);
1224 max = max_fll - sensor->pa_src.height;
1225
1226 __v4l2_ctrl_modify_range(ctrl: vblank, min, max, step: vblank->step, def: min);
1227
1228 min = max_t(int, min_llp - sensor->pa_src.width, min_lbp);
1229 max = max_llp - sensor->pa_src.width;
1230
1231 __v4l2_ctrl_modify_range(ctrl: hblank, min, max, step: hblank->step, def: min);
1232
1233 __ccs_update_exposure_limits(sensor);
1234}
1235
1236static int ccs_pll_blanking_update(struct ccs_sensor *sensor)
1237{
1238 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1239 int rval;
1240
1241 rval = ccs_pll_update(sensor);
1242 if (rval < 0)
1243 return rval;
1244
1245 /* Output from pixel array, including blanking */
1246 ccs_update_blanking(sensor);
1247
1248 dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
1249 dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
1250
1251 dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
1252 sensor->pll.pixel_rate_pixel_array /
1253 ((sensor->pa_src.width + sensor->hblank->val) *
1254 (sensor->pa_src.height + sensor->vblank->val) / 100));
1255
1256 return 0;
1257}
1258
1259/*
1260 *
1261 * SMIA++ NVM handling
1262 *
1263 */
1264
1265static int ccs_read_nvm_page(struct ccs_sensor *sensor, u32 p, u8 *nvm,
1266 u8 *status)
1267{
1268 unsigned int i;
1269 int rval;
1270 u32 s;
1271
1272 *status = 0;
1273
1274 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_PAGE_SELECT, p);
1275 if (rval)
1276 return rval;
1277
1278 rval = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL,
1279 CCS_DATA_TRANSFER_IF_1_CTRL_ENABLE);
1280 if (rval)
1281 return rval;
1282
1283 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1284 if (rval)
1285 return rval;
1286
1287 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE) {
1288 *status = s;
1289 return -ENODATA;
1290 }
1291
1292 if (CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
1293 CCS_DATA_TRANSFER_IF_CAPABILITY_POLLING) {
1294 for (i = 1000; i > 0; i--) {
1295 if (s & CCS_DATA_TRANSFER_IF_1_STATUS_READ_IF_READY)
1296 break;
1297
1298 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_STATUS, &s);
1299 if (rval)
1300 return rval;
1301 }
1302
1303 if (!i)
1304 return -ETIMEDOUT;
1305 }
1306
1307 for (i = 0; i <= CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P; i++) {
1308 u32 v;
1309
1310 rval = ccs_read(sensor, DATA_TRANSFER_IF_1_DATA(i), &v);
1311 if (rval)
1312 return rval;
1313
1314 *nvm++ = v;
1315 }
1316
1317 return 0;
1318}
1319
1320static int ccs_read_nvm(struct ccs_sensor *sensor, unsigned char *nvm,
1321 size_t nvm_size)
1322{
1323 u8 status = 0;
1324 u32 p;
1325 int rval = 0, rval2;
1326
1327 for (p = 0; p < nvm_size / (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1)
1328 && !rval; p++) {
1329 rval = ccs_read_nvm_page(sensor, p, nvm, status: &status);
1330 nvm += CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1;
1331 }
1332
1333 if (rval == -ENODATA &&
1334 status & CCS_DATA_TRANSFER_IF_1_STATUS_IMPROPER_IF_USAGE)
1335 rval = 0;
1336
1337 rval2 = ccs_write(sensor, DATA_TRANSFER_IF_1_CTRL, 0);
1338 if (rval < 0)
1339 return rval;
1340 else
1341 return rval2 ?: p * (CCS_LIM_DATA_TRANSFER_IF_1_DATA_MAX_P + 1);
1342}
1343
1344/*
1345 *
1346 * SMIA++ CCI address control
1347 *
1348 */
1349static int ccs_change_cci_addr(struct ccs_sensor *sensor)
1350{
1351 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1352 int rval;
1353 u32 val;
1354
1355 client->addr = sensor->hwcfg.i2c_addr_dfl;
1356
1357 rval = ccs_write(sensor, CCI_ADDRESS_CTRL,
1358 sensor->hwcfg.i2c_addr_alt << 1);
1359 if (rval)
1360 return rval;
1361
1362 client->addr = sensor->hwcfg.i2c_addr_alt;
1363
1364 /* verify addr change went ok */
1365 rval = ccs_read(sensor, CCI_ADDRESS_CTRL, &val);
1366 if (rval)
1367 return rval;
1368
1369 if (val != sensor->hwcfg.i2c_addr_alt << 1)
1370 return -ENODEV;
1371
1372 return 0;
1373}
1374
1375/*
1376 *
1377 * SMIA++ Mode Control
1378 *
1379 */
1380static int ccs_setup_flash_strobe(struct ccs_sensor *sensor)
1381{
1382 struct ccs_flash_strobe_parms *strobe_setup;
1383 unsigned int ext_freq = sensor->hwcfg.ext_clk;
1384 u32 tmp;
1385 u32 strobe_adjustment;
1386 u32 strobe_width_high_rs;
1387 int rval;
1388
1389 strobe_setup = sensor->hwcfg.strobe_setup;
1390
1391 /*
1392 * How to calculate registers related to strobe length. Please
1393 * do not change, or if you do at least know what you're
1394 * doing. :-)
1395 *
1396 * Sakari Ailus <sakari.ailus@linux.intel.com> 2010-10-25
1397 *
1398 * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
1399 * / EXTCLK freq [Hz]) * flash_strobe_adjustment
1400 *
1401 * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
1402 * flash_strobe_adjustment E N, [1 - 0xff]
1403 *
1404 * The formula above is written as below to keep it on one
1405 * line:
1406 *
1407 * l / 10^6 = w / e * a
1408 *
1409 * Let's mark w * a by x:
1410 *
1411 * x = w * a
1412 *
1413 * Thus, we get:
1414 *
1415 * x = l * e / 10^6
1416 *
1417 * The strobe width must be at least as long as requested,
1418 * thus rounding upwards is needed.
1419 *
1420 * x = (l * e + 10^6 - 1) / 10^6
1421 * -----------------------------
1422 *
1423 * Maximum possible accuracy is wanted at all times. Thus keep
1424 * a as small as possible.
1425 *
1426 * Calculate a, assuming maximum w, with rounding upwards:
1427 *
1428 * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
1429 * -------------------------------------
1430 *
1431 * Thus, we also get w, with that a, with rounding upwards:
1432 *
1433 * w = (x + a - 1) / a
1434 * -------------------
1435 *
1436 * To get limits:
1437 *
1438 * x E [1, (2^16 - 1) * (2^8 - 1)]
1439 *
1440 * Substituting maximum x to the original formula (with rounding),
1441 * the maximum l is thus
1442 *
1443 * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
1444 *
1445 * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
1446 * --------------------------------------------------
1447 *
1448 * flash_strobe_length must be clamped between 1 and
1449 * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
1450 *
1451 * Then,
1452 *
1453 * flash_strobe_adjustment = ((flash_strobe_length *
1454 * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
1455 *
1456 * tFlash_strobe_width_ctrl = ((flash_strobe_length *
1457 * EXTCLK freq + 10^6 - 1) / 10^6 +
1458 * flash_strobe_adjustment - 1) / flash_strobe_adjustment
1459 */
1460 tmp = div_u64(dividend: 1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
1461 1000000 + 1, divisor: ext_freq);
1462 strobe_setup->strobe_width_high_us =
1463 clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
1464
1465 tmp = div_u64(dividend: ((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
1466 1000000 - 1), divisor: 1000000ULL);
1467 strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
1468 strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
1469 strobe_adjustment;
1470
1471 rval = ccs_write(sensor, FLASH_MODE_RS, strobe_setup->mode);
1472 if (rval < 0)
1473 goto out;
1474
1475 rval = ccs_write(sensor, FLASH_STROBE_ADJUSTMENT, strobe_adjustment);
1476 if (rval < 0)
1477 goto out;
1478
1479 rval = ccs_write(sensor, TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
1480 strobe_width_high_rs);
1481 if (rval < 0)
1482 goto out;
1483
1484 rval = ccs_write(sensor, TFLASH_STROBE_DELAY_RS_CTRL,
1485 strobe_setup->strobe_delay);
1486 if (rval < 0)
1487 goto out;
1488
1489 rval = ccs_write(sensor, FLASH_STROBE_START_POINT,
1490 strobe_setup->stobe_start_point);
1491 if (rval < 0)
1492 goto out;
1493
1494 rval = ccs_write(sensor, FLASH_TRIGGER_RS, strobe_setup->trigger);
1495
1496out:
1497 sensor->hwcfg.strobe_setup->trigger = 0;
1498
1499 return rval;
1500}
1501
1502/* -----------------------------------------------------------------------------
1503 * Power management
1504 */
1505
1506static int ccs_write_msr_regs(struct ccs_sensor *sensor)
1507{
1508 int rval;
1509
1510 rval = ccs_write_data_regs(sensor,
1511 regs: sensor->sdata.sensor_manufacturer_regs,
1512 num_regs: sensor->sdata.num_sensor_manufacturer_regs);
1513 if (rval)
1514 return rval;
1515
1516 return ccs_write_data_regs(sensor,
1517 regs: sensor->mdata.module_manufacturer_regs,
1518 num_regs: sensor->mdata.num_module_manufacturer_regs);
1519}
1520
1521static int ccs_update_phy_ctrl(struct ccs_sensor *sensor)
1522{
1523 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1524 u8 val;
1525
1526 if (!sensor->ccs_limits)
1527 return 0;
1528
1529 if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1530 CCS_PHY_CTRL_CAPABILITY_AUTO_PHY_CTL) {
1531 val = CCS_PHY_CTRL_AUTO;
1532 } else if (CCS_LIM(sensor, PHY_CTRL_CAPABILITY) &
1533 CCS_PHY_CTRL_CAPABILITY_UI_PHY_CTL) {
1534 val = CCS_PHY_CTRL_UI;
1535 } else {
1536 dev_err(&client->dev, "manual PHY control not supported\n");
1537 return -EINVAL;
1538 }
1539
1540 return ccs_write(sensor, PHY_CTRL, val);
1541}
1542
1543static int ccs_power_on(struct device *dev)
1544{
1545 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1546 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1547 /*
1548 * The sub-device related to the I2C device is always the
1549 * source one, i.e. ssds[0].
1550 */
1551 struct ccs_sensor *sensor =
1552 container_of(ssd, struct ccs_sensor, ssds[0]);
1553 const struct ccs_device *ccsdev = device_get_match_data(dev);
1554 int rval;
1555
1556 rval = regulator_bulk_enable(ARRAY_SIZE(ccs_regulators),
1557 consumers: sensor->regulators);
1558 if (rval) {
1559 dev_err(dev, "failed to enable vana regulator\n");
1560 return rval;
1561 }
1562
1563 if (sensor->reset || sensor->xshutdown || sensor->ext_clk) {
1564 unsigned int sleep;
1565
1566 rval = clk_prepare_enable(clk: sensor->ext_clk);
1567 if (rval < 0) {
1568 dev_dbg(dev, "failed to enable xclk\n");
1569 goto out_xclk_fail;
1570 }
1571
1572 gpiod_set_value(desc: sensor->reset, value: 0);
1573 gpiod_set_value(desc: sensor->xshutdown, value: 1);
1574
1575 if (ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA)
1576 sleep = SMIAPP_RESET_DELAY(sensor->hwcfg.ext_clk);
1577 else
1578 sleep = 5000;
1579
1580 usleep_range(min: sleep, max: sleep);
1581 }
1582
1583 /*
1584 * Failures to respond to the address change command have been noticed.
1585 * Those failures seem to be caused by the sensor requiring a longer
1586 * boot time than advertised. An additional 10ms delay seems to work
1587 * around the issue, but the SMIA++ I2C write retry hack makes the delay
1588 * unnecessary. The failures need to be investigated to find a proper
1589 * fix, and a delay will likely need to be added here if the I2C write
1590 * retry hack is reverted before the root cause of the boot time issue
1591 * is found.
1592 */
1593
1594 if (!sensor->reset && !sensor->xshutdown) {
1595 u8 retry = 100;
1596 u32 reset;
1597
1598 rval = ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1599 if (rval < 0) {
1600 dev_err(dev, "software reset failed\n");
1601 goto out_cci_addr_fail;
1602 }
1603
1604 do {
1605 rval = ccs_read(sensor, SOFTWARE_RESET, &reset);
1606 reset = !rval && reset == CCS_SOFTWARE_RESET_OFF;
1607 if (reset)
1608 break;
1609
1610 usleep_range(min: 1000, max: 2000);
1611 } while (--retry);
1612
1613 if (!reset) {
1614 dev_err(dev, "software reset failed\n");
1615 rval = -EIO;
1616 goto out_cci_addr_fail;
1617 }
1618 }
1619
1620 if (sensor->hwcfg.i2c_addr_alt) {
1621 rval = ccs_change_cci_addr(sensor);
1622 if (rval) {
1623 dev_err(dev, "cci address change error\n");
1624 goto out_cci_addr_fail;
1625 }
1626 }
1627
1628 rval = ccs_write(sensor, COMPRESSION_MODE,
1629 CCS_COMPRESSION_MODE_DPCM_PCM_SIMPLE);
1630 if (rval) {
1631 dev_err(dev, "compression mode set failed\n");
1632 goto out_cci_addr_fail;
1633 }
1634
1635 rval = ccs_write(sensor, EXTCLK_FREQUENCY_MHZ,
1636 sensor->hwcfg.ext_clk / (1000000 / (1 << 8)));
1637 if (rval) {
1638 dev_err(dev, "extclk frequency set failed\n");
1639 goto out_cci_addr_fail;
1640 }
1641
1642 rval = ccs_write(sensor, CSI_LANE_MODE, sensor->hwcfg.lanes - 1);
1643 if (rval) {
1644 dev_err(dev, "csi lane mode set failed\n");
1645 goto out_cci_addr_fail;
1646 }
1647
1648 rval = ccs_write(sensor, FAST_STANDBY_CTRL,
1649 CCS_FAST_STANDBY_CTRL_FRAME_TRUNCATION);
1650 if (rval) {
1651 dev_err(dev, "fast standby set failed\n");
1652 goto out_cci_addr_fail;
1653 }
1654
1655 rval = ccs_write(sensor, CSI_SIGNALING_MODE,
1656 sensor->hwcfg.csi_signalling_mode);
1657 if (rval) {
1658 dev_err(dev, "csi signalling mode set failed\n");
1659 goto out_cci_addr_fail;
1660 }
1661
1662 rval = ccs_update_phy_ctrl(sensor);
1663 if (rval < 0)
1664 goto out_cci_addr_fail;
1665
1666 rval = ccs_write_msr_regs(sensor);
1667 if (rval)
1668 goto out_cci_addr_fail;
1669
1670 rval = ccs_call_quirk(sensor, post_poweron);
1671 if (rval) {
1672 dev_err(dev, "post_poweron quirks failed\n");
1673 goto out_cci_addr_fail;
1674 }
1675
1676 return 0;
1677
1678out_cci_addr_fail:
1679 gpiod_set_value(desc: sensor->reset, value: 1);
1680 gpiod_set_value(desc: sensor->xshutdown, value: 0);
1681 clk_disable_unprepare(clk: sensor->ext_clk);
1682
1683out_xclk_fail:
1684 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1685 consumers: sensor->regulators);
1686
1687 return rval;
1688}
1689
1690static int ccs_power_off(struct device *dev)
1691{
1692 struct v4l2_subdev *subdev = dev_get_drvdata(dev);
1693 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
1694 struct ccs_sensor *sensor =
1695 container_of(ssd, struct ccs_sensor, ssds[0]);
1696
1697 /*
1698 * Currently power/clock to lens are enable/disabled separately
1699 * but they are essentially the same signals. So if the sensor is
1700 * powered off while the lens is powered on the sensor does not
1701 * really see a power off and next time the cci address change
1702 * will fail. So do a soft reset explicitly here.
1703 */
1704 if (sensor->hwcfg.i2c_addr_alt)
1705 ccs_write(sensor, SOFTWARE_RESET, CCS_SOFTWARE_RESET_ON);
1706
1707 gpiod_set_value(desc: sensor->reset, value: 1);
1708 gpiod_set_value(desc: sensor->xshutdown, value: 0);
1709 clk_disable_unprepare(clk: sensor->ext_clk);
1710 usleep_range(min: 5000, max: 5000);
1711 regulator_bulk_disable(ARRAY_SIZE(ccs_regulators),
1712 consumers: sensor->regulators);
1713 sensor->streaming = false;
1714
1715 return 0;
1716}
1717
1718/* -----------------------------------------------------------------------------
1719 * Video stream management
1720 */
1721
1722static int ccs_start_streaming(struct ccs_sensor *sensor)
1723{
1724 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1725 unsigned int binning_mode;
1726 int rval;
1727
1728 mutex_lock(&sensor->mutex);
1729
1730 rval = ccs_write(sensor, CSI_DATA_FORMAT,
1731 (sensor->csi_format->width << 8) |
1732 sensor->csi_format->compressed);
1733 if (rval)
1734 goto out;
1735
1736 /* Binning configuration */
1737 if (sensor->binning_horizontal == 1 &&
1738 sensor->binning_vertical == 1) {
1739 binning_mode = 0;
1740 } else {
1741 u8 binning_type =
1742 (sensor->binning_horizontal << 4)
1743 | sensor->binning_vertical;
1744
1745 rval = ccs_write(sensor, BINNING_TYPE, binning_type);
1746 if (rval < 0)
1747 goto out;
1748
1749 binning_mode = 1;
1750 }
1751 rval = ccs_write(sensor, BINNING_MODE, binning_mode);
1752 if (rval < 0)
1753 goto out;
1754
1755 /* Set up PLL */
1756 rval = ccs_pll_configure(sensor);
1757 if (rval)
1758 goto out;
1759
1760 /* Analog crop start coordinates */
1761 rval = ccs_write(sensor, X_ADDR_START, sensor->pa_src.left);
1762 if (rval < 0)
1763 goto out;
1764
1765 rval = ccs_write(sensor, Y_ADDR_START, sensor->pa_src.top);
1766 if (rval < 0)
1767 goto out;
1768
1769 /* Analog crop end coordinates */
1770 rval = ccs_write(sensor, X_ADDR_END,
1771 sensor->pa_src.left + sensor->pa_src.width - 1);
1772 if (rval < 0)
1773 goto out;
1774
1775 rval = ccs_write(sensor, Y_ADDR_END,
1776 sensor->pa_src.top + sensor->pa_src.height - 1);
1777 if (rval < 0)
1778 goto out;
1779
1780 /*
1781 * Output from pixel array, including blanking, is set using
1782 * controls below. No need to set here.
1783 */
1784
1785 /* Digital crop */
1786 if (CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
1787 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
1788 rval = ccs_write(sensor, DIGITAL_CROP_X_OFFSET,
1789 sensor->scaler_sink.left);
1790 if (rval < 0)
1791 goto out;
1792
1793 rval = ccs_write(sensor, DIGITAL_CROP_Y_OFFSET,
1794 sensor->scaler_sink.top);
1795 if (rval < 0)
1796 goto out;
1797
1798 rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_WIDTH,
1799 sensor->scaler_sink.width);
1800 if (rval < 0)
1801 goto out;
1802
1803 rval = ccs_write(sensor, DIGITAL_CROP_IMAGE_HEIGHT,
1804 sensor->scaler_sink.height);
1805 if (rval < 0)
1806 goto out;
1807 }
1808
1809 /* Scaling */
1810 if (CCS_LIM(sensor, SCALING_CAPABILITY)
1811 != CCS_SCALING_CAPABILITY_NONE) {
1812 rval = ccs_write(sensor, SCALING_MODE, sensor->scaling_mode);
1813 if (rval < 0)
1814 goto out;
1815
1816 rval = ccs_write(sensor, SCALE_M, sensor->scale_m);
1817 if (rval < 0)
1818 goto out;
1819 }
1820
1821 /* Output size from sensor */
1822 rval = ccs_write(sensor, X_OUTPUT_SIZE, sensor->src_src.width);
1823 if (rval < 0)
1824 goto out;
1825 rval = ccs_write(sensor, Y_OUTPUT_SIZE, sensor->src_src.height);
1826 if (rval < 0)
1827 goto out;
1828
1829 if (CCS_LIM(sensor, FLASH_MODE_CAPABILITY) &
1830 (CCS_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
1831 SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE) &&
1832 sensor->hwcfg.strobe_setup != NULL &&
1833 sensor->hwcfg.strobe_setup->trigger != 0) {
1834 rval = ccs_setup_flash_strobe(sensor);
1835 if (rval)
1836 goto out;
1837 }
1838
1839 rval = ccs_call_quirk(sensor, pre_streamon);
1840 if (rval) {
1841 dev_err(&client->dev, "pre_streamon quirks failed\n");
1842 goto out;
1843 }
1844
1845 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_STREAMING);
1846
1847out:
1848 mutex_unlock(lock: &sensor->mutex);
1849
1850 return rval;
1851}
1852
1853static int ccs_stop_streaming(struct ccs_sensor *sensor)
1854{
1855 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1856 int rval;
1857
1858 mutex_lock(&sensor->mutex);
1859 rval = ccs_write(sensor, MODE_SELECT, CCS_MODE_SELECT_SOFTWARE_STANDBY);
1860 if (rval)
1861 goto out;
1862
1863 rval = ccs_call_quirk(sensor, post_streamoff);
1864 if (rval)
1865 dev_err(&client->dev, "post_streamoff quirks failed\n");
1866
1867out:
1868 mutex_unlock(lock: &sensor->mutex);
1869 return rval;
1870}
1871
1872/* -----------------------------------------------------------------------------
1873 * V4L2 subdev video operations
1874 */
1875
1876static int ccs_pm_get_init(struct ccs_sensor *sensor)
1877{
1878 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1879 int rval;
1880
1881 /*
1882 * It can't use pm_runtime_resume_and_get() here, as the driver
1883 * relies at the returned value to detect if the device was already
1884 * active or not.
1885 */
1886 rval = pm_runtime_get_sync(dev: &client->dev);
1887 if (rval < 0)
1888 goto error;
1889
1890 /* Device was already active, so don't set controls */
1891 if (rval == 1 && !sensor->handler_setup_needed)
1892 return 0;
1893
1894 sensor->handler_setup_needed = false;
1895
1896 /* Restore V4L2 controls to the previously suspended device */
1897 rval = v4l2_ctrl_handler_setup(hdl: &sensor->pixel_array->ctrl_handler);
1898 if (rval)
1899 goto error;
1900
1901 rval = v4l2_ctrl_handler_setup(hdl: &sensor->src->ctrl_handler);
1902 if (rval)
1903 goto error;
1904
1905 /* Keep PM runtime usage_count incremented on success */
1906 return 0;
1907error:
1908 pm_runtime_put(dev: &client->dev);
1909 return rval;
1910}
1911
1912static int ccs_set_stream(struct v4l2_subdev *subdev, int enable)
1913{
1914 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1915 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1916 int rval;
1917
1918 if (!enable) {
1919 ccs_stop_streaming(sensor);
1920 sensor->streaming = false;
1921 pm_runtime_mark_last_busy(dev: &client->dev);
1922 pm_runtime_put_autosuspend(dev: &client->dev);
1923
1924 return 0;
1925 }
1926
1927 rval = ccs_pm_get_init(sensor);
1928 if (rval)
1929 return rval;
1930
1931 sensor->streaming = true;
1932
1933 rval = ccs_start_streaming(sensor);
1934 if (rval < 0) {
1935 sensor->streaming = false;
1936 pm_runtime_mark_last_busy(dev: &client->dev);
1937 pm_runtime_put_autosuspend(dev: &client->dev);
1938 }
1939
1940 return rval;
1941}
1942
1943static int ccs_pre_streamon(struct v4l2_subdev *subdev, u32 flags)
1944{
1945 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1946 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1947 int rval;
1948
1949 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1950 switch (sensor->hwcfg.csi_signalling_mode) {
1951 case CCS_CSI_SIGNALING_MODE_CSI_2_DPHY:
1952 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1953 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_DPHY))
1954 return -EACCES;
1955 break;
1956 case CCS_CSI_SIGNALING_MODE_CSI_2_CPHY:
1957 if (!(CCS_LIM(sensor, PHY_CTRL_CAPABILITY_2) &
1958 CCS_PHY_CTRL_CAPABILITY_2_MANUAL_LP_CPHY))
1959 return -EACCES;
1960 break;
1961 default:
1962 return -EACCES;
1963 }
1964 }
1965
1966 rval = ccs_pm_get_init(sensor);
1967 if (rval)
1968 return rval;
1969
1970 if (flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP) {
1971 rval = ccs_write(sensor, MANUAL_LP_CTRL,
1972 CCS_MANUAL_LP_CTRL_ENABLE);
1973 if (rval)
1974 pm_runtime_put(dev: &client->dev);
1975 }
1976
1977 return rval;
1978}
1979
1980static int ccs_post_streamoff(struct v4l2_subdev *subdev)
1981{
1982 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1983 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
1984
1985 return pm_runtime_put(dev: &client->dev);
1986}
1987
1988static int ccs_enum_mbus_code(struct v4l2_subdev *subdev,
1989 struct v4l2_subdev_state *sd_state,
1990 struct v4l2_subdev_mbus_code_enum *code)
1991{
1992 struct i2c_client *client = v4l2_get_subdevdata(sd: subdev);
1993 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
1994 unsigned int i;
1995 int idx = -1;
1996 int rval = -EINVAL;
1997
1998 mutex_lock(&sensor->mutex);
1999
2000 dev_err(&client->dev, "subdev %s, pad %u, index %u\n",
2001 subdev->name, code->pad, code->index);
2002
2003 if (subdev != &sensor->src->sd || code->pad != CCS_PAD_SRC) {
2004 if (code->index)
2005 goto out;
2006
2007 code->code = sensor->internal_csi_format->code;
2008 rval = 0;
2009 goto out;
2010 }
2011
2012 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2013 if (sensor->mbus_frame_fmts & (1 << i))
2014 idx++;
2015
2016 if (idx == code->index) {
2017 code->code = ccs_csi_data_formats[i].code;
2018 dev_err(&client->dev, "found index %u, i %u, code %x\n",
2019 code->index, i, code->code);
2020 rval = 0;
2021 break;
2022 }
2023 }
2024
2025out:
2026 mutex_unlock(lock: &sensor->mutex);
2027
2028 return rval;
2029}
2030
2031static u32 __ccs_get_mbus_code(struct v4l2_subdev *subdev, unsigned int pad)
2032{
2033 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2034
2035 if (subdev == &sensor->src->sd && pad == CCS_PAD_SRC)
2036 return sensor->csi_format->code;
2037 else
2038 return sensor->internal_csi_format->code;
2039}
2040
2041static int __ccs_get_format(struct v4l2_subdev *subdev,
2042 struct v4l2_subdev_state *sd_state,
2043 struct v4l2_subdev_format *fmt)
2044{
2045 fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad);
2046 fmt->format.code = __ccs_get_mbus_code(subdev, pad: fmt->pad);
2047
2048 return 0;
2049}
2050
2051static int ccs_get_format(struct v4l2_subdev *subdev,
2052 struct v4l2_subdev_state *sd_state,
2053 struct v4l2_subdev_format *fmt)
2054{
2055 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2056 int rval;
2057
2058 mutex_lock(&sensor->mutex);
2059 rval = __ccs_get_format(subdev, sd_state, fmt);
2060 mutex_unlock(lock: &sensor->mutex);
2061
2062 return rval;
2063}
2064
2065static void ccs_get_crop_compose(struct v4l2_subdev *subdev,
2066 struct v4l2_subdev_state *sd_state,
2067 struct v4l2_rect **crops,
2068 struct v4l2_rect **comps)
2069{
2070 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2071 unsigned int i;
2072
2073 if (crops)
2074 for (i = 0; i < subdev->entity.num_pads; i++)
2075 crops[i] =
2076 v4l2_subdev_state_get_crop(sd_state, i);
2077 if (comps)
2078 *comps = v4l2_subdev_state_get_compose(sd_state,
2079 ssd->sink_pad);
2080}
2081
2082/* Changes require propagation only on sink pad. */
2083static void ccs_propagate(struct v4l2_subdev *subdev,
2084 struct v4l2_subdev_state *sd_state, int which,
2085 int target)
2086{
2087 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2088 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2089 struct v4l2_rect *comp, *crops[CCS_PADS];
2090 struct v4l2_mbus_framefmt *fmt;
2091
2092 ccs_get_crop_compose(subdev, sd_state, crops, comps: &comp);
2093
2094 switch (target) {
2095 case V4L2_SEL_TGT_CROP:
2096 comp->width = crops[CCS_PAD_SINK]->width;
2097 comp->height = crops[CCS_PAD_SINK]->height;
2098 if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2099 if (ssd == sensor->scaler) {
2100 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2101 sensor->scaling_mode =
2102 CCS_SCALING_MODE_NO_SCALING;
2103 sensor->scaler_sink = *comp;
2104 } else if (ssd == sensor->binner) {
2105 sensor->binning_horizontal = 1;
2106 sensor->binning_vertical = 1;
2107 }
2108 }
2109 fallthrough;
2110 case V4L2_SEL_TGT_COMPOSE:
2111 *crops[CCS_PAD_SRC] = *comp;
2112 fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
2113 fmt->width = comp->width;
2114 fmt->height = comp->height;
2115 if (which == V4L2_SUBDEV_FORMAT_ACTIVE && ssd == sensor->src)
2116 sensor->src_src = *crops[CCS_PAD_SRC];
2117 break;
2118 default:
2119 WARN_ON_ONCE(1);
2120 }
2121}
2122
2123static const struct ccs_csi_data_format
2124*ccs_validate_csi_data_format(struct ccs_sensor *sensor, u32 code)
2125{
2126 unsigned int i;
2127
2128 for (i = 0; i < ARRAY_SIZE(ccs_csi_data_formats); i++) {
2129 if (sensor->mbus_frame_fmts & (1 << i) &&
2130 ccs_csi_data_formats[i].code == code)
2131 return &ccs_csi_data_formats[i];
2132 }
2133
2134 return sensor->csi_format;
2135}
2136
2137static int ccs_set_format_source(struct v4l2_subdev *subdev,
2138 struct v4l2_subdev_state *sd_state,
2139 struct v4l2_subdev_format *fmt)
2140{
2141 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2142 const struct ccs_csi_data_format *csi_format,
2143 *old_csi_format = sensor->csi_format;
2144 unsigned long *valid_link_freqs;
2145 u32 code = fmt->format.code;
2146 unsigned int i;
2147 int rval;
2148
2149 rval = __ccs_get_format(subdev, sd_state, fmt);
2150 if (rval)
2151 return rval;
2152
2153 /*
2154 * Media bus code is changeable on src subdev's source pad. On
2155 * other source pads we just get format here.
2156 */
2157 if (subdev != &sensor->src->sd)
2158 return 0;
2159
2160 csi_format = ccs_validate_csi_data_format(sensor, code);
2161
2162 fmt->format.code = csi_format->code;
2163
2164 if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
2165 return 0;
2166
2167 sensor->csi_format = csi_format;
2168
2169 if (csi_format->width != old_csi_format->width)
2170 for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
2171 __v4l2_ctrl_modify_range(
2172 ctrl: sensor->test_data[i], min: 0,
2173 max: (1 << csi_format->width) - 1, step: 1, def: 0);
2174
2175 if (csi_format->compressed == old_csi_format->compressed)
2176 return 0;
2177
2178 valid_link_freqs =
2179 &sensor->valid_link_freqs[sensor->csi_format->compressed
2180 - sensor->compressed_min_bpp];
2181
2182 __v4l2_ctrl_modify_range(
2183 ctrl: sensor->link_freq, min: 0,
2184 max: __fls(word: *valid_link_freqs), step: ~*valid_link_freqs,
2185 __ffs(*valid_link_freqs));
2186
2187 return ccs_pll_update(sensor);
2188}
2189
2190static int ccs_set_format(struct v4l2_subdev *subdev,
2191 struct v4l2_subdev_state *sd_state,
2192 struct v4l2_subdev_format *fmt)
2193{
2194 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2195 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2196 struct v4l2_rect *crops[CCS_PADS];
2197
2198 mutex_lock(&sensor->mutex);
2199
2200 if (fmt->pad == ssd->source_pad) {
2201 int rval;
2202
2203 rval = ccs_set_format_source(subdev, sd_state, fmt);
2204
2205 mutex_unlock(lock: &sensor->mutex);
2206
2207 return rval;
2208 }
2209
2210 /* Sink pad. Width and height are changeable here. */
2211 fmt->format.code = __ccs_get_mbus_code(subdev, pad: fmt->pad);
2212 fmt->format.width &= ~1;
2213 fmt->format.height &= ~1;
2214 fmt->format.field = V4L2_FIELD_NONE;
2215
2216 fmt->format.width =
2217 clamp(fmt->format.width,
2218 CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2219 CCS_LIM(sensor, MAX_X_OUTPUT_SIZE));
2220 fmt->format.height =
2221 clamp(fmt->format.height,
2222 CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2223 CCS_LIM(sensor, MAX_Y_OUTPUT_SIZE));
2224
2225 ccs_get_crop_compose(subdev, sd_state, crops, NULL);
2226
2227 crops[ssd->sink_pad]->left = 0;
2228 crops[ssd->sink_pad]->top = 0;
2229 crops[ssd->sink_pad]->width = fmt->format.width;
2230 crops[ssd->sink_pad]->height = fmt->format.height;
2231 ccs_propagate(subdev, sd_state, which: fmt->which, V4L2_SEL_TGT_CROP);
2232
2233 mutex_unlock(lock: &sensor->mutex);
2234
2235 return 0;
2236}
2237
2238/*
2239 * Calculate goodness of scaled image size compared to expected image
2240 * size and flags provided.
2241 */
2242#define SCALING_GOODNESS 100000
2243#define SCALING_GOODNESS_EXTREME 100000000
2244static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
2245 int h, int ask_h, u32 flags)
2246{
2247 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2248 struct i2c_client *client = v4l2_get_subdevdata(sd: subdev);
2249 int val = 0;
2250
2251 w &= ~1;
2252 ask_w &= ~1;
2253 h &= ~1;
2254 ask_h &= ~1;
2255
2256 if (flags & V4L2_SEL_FLAG_GE) {
2257 if (w < ask_w)
2258 val -= SCALING_GOODNESS;
2259 if (h < ask_h)
2260 val -= SCALING_GOODNESS;
2261 }
2262
2263 if (flags & V4L2_SEL_FLAG_LE) {
2264 if (w > ask_w)
2265 val -= SCALING_GOODNESS;
2266 if (h > ask_h)
2267 val -= SCALING_GOODNESS;
2268 }
2269
2270 val -= abs(w - ask_w);
2271 val -= abs(h - ask_h);
2272
2273 if (w < CCS_LIM(sensor, MIN_X_OUTPUT_SIZE))
2274 val -= SCALING_GOODNESS_EXTREME;
2275
2276 dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
2277 w, ask_w, h, ask_h, val);
2278
2279 return val;
2280}
2281
2282static void ccs_set_compose_binner(struct v4l2_subdev *subdev,
2283 struct v4l2_subdev_state *sd_state,
2284 struct v4l2_subdev_selection *sel,
2285 struct v4l2_rect **crops,
2286 struct v4l2_rect *comp)
2287{
2288 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2289 unsigned int i;
2290 unsigned int binh = 1, binv = 1;
2291 int best = scaling_goodness(
2292 subdev,
2293 w: crops[CCS_PAD_SINK]->width, ask_w: sel->r.width,
2294 h: crops[CCS_PAD_SINK]->height, ask_h: sel->r.height, flags: sel->flags);
2295
2296 for (i = 0; i < sensor->nbinning_subtypes; i++) {
2297 int this = scaling_goodness(
2298 subdev,
2299 w: crops[CCS_PAD_SINK]->width
2300 / sensor->binning_subtypes[i].horizontal,
2301 ask_w: sel->r.width,
2302 h: crops[CCS_PAD_SINK]->height
2303 / sensor->binning_subtypes[i].vertical,
2304 ask_h: sel->r.height, flags: sel->flags);
2305
2306 if (this > best) {
2307 binh = sensor->binning_subtypes[i].horizontal;
2308 binv = sensor->binning_subtypes[i].vertical;
2309 best = this;
2310 }
2311 }
2312 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2313 sensor->binning_vertical = binv;
2314 sensor->binning_horizontal = binh;
2315 }
2316
2317 sel->r.width = (crops[CCS_PAD_SINK]->width / binh) & ~1;
2318 sel->r.height = (crops[CCS_PAD_SINK]->height / binv) & ~1;
2319}
2320
2321/*
2322 * Calculate best scaling ratio and mode for given output resolution.
2323 *
2324 * Try all of these: horizontal ratio, vertical ratio and smallest
2325 * size possible (horizontally).
2326 *
2327 * Also try whether horizontal scaler or full scaler gives a better
2328 * result.
2329 */
2330static void ccs_set_compose_scaler(struct v4l2_subdev *subdev,
2331 struct v4l2_subdev_state *sd_state,
2332 struct v4l2_subdev_selection *sel,
2333 struct v4l2_rect **crops,
2334 struct v4l2_rect *comp)
2335{
2336 struct i2c_client *client = v4l2_get_subdevdata(sd: subdev);
2337 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2338 u32 min, max, a, b, max_m;
2339 u32 scale_m = CCS_LIM(sensor, SCALER_N_MIN);
2340 int mode = CCS_SCALING_MODE_HORIZONTAL;
2341 u32 try[4];
2342 u32 ntry = 0;
2343 unsigned int i;
2344 int best = INT_MIN;
2345
2346 sel->r.width = min_t(unsigned int, sel->r.width,
2347 crops[CCS_PAD_SINK]->width);
2348 sel->r.height = min_t(unsigned int, sel->r.height,
2349 crops[CCS_PAD_SINK]->height);
2350
2351 a = crops[CCS_PAD_SINK]->width
2352 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.width;
2353 b = crops[CCS_PAD_SINK]->height
2354 * CCS_LIM(sensor, SCALER_N_MIN) / sel->r.height;
2355 max_m = crops[CCS_PAD_SINK]->width
2356 * CCS_LIM(sensor, SCALER_N_MIN)
2357 / CCS_LIM(sensor, MIN_X_OUTPUT_SIZE);
2358
2359 a = clamp(a, CCS_LIM(sensor, SCALER_M_MIN),
2360 CCS_LIM(sensor, SCALER_M_MAX));
2361 b = clamp(b, CCS_LIM(sensor, SCALER_M_MIN),
2362 CCS_LIM(sensor, SCALER_M_MAX));
2363 max_m = clamp(max_m, CCS_LIM(sensor, SCALER_M_MIN),
2364 CCS_LIM(sensor, SCALER_M_MAX));
2365
2366 dev_dbg(&client->dev, "scaling: a %u b %u max_m %u\n", a, b, max_m);
2367
2368 min = min(max_m, min(a, b));
2369 max = min(max_m, max(a, b));
2370
2371 try[ntry] = min;
2372 ntry++;
2373 if (min != max) {
2374 try[ntry] = max;
2375 ntry++;
2376 }
2377 if (max != max_m) {
2378 try[ntry] = min + 1;
2379 ntry++;
2380 if (min != max) {
2381 try[ntry] = max + 1;
2382 ntry++;
2383 }
2384 }
2385
2386 for (i = 0; i < ntry; i++) {
2387 int this = scaling_goodness(
2388 subdev,
2389 w: crops[CCS_PAD_SINK]->width
2390 / try[i] * CCS_LIM(sensor, SCALER_N_MIN),
2391 ask_w: sel->r.width,
2392 h: crops[CCS_PAD_SINK]->height,
2393 ask_h: sel->r.height,
2394 flags: sel->flags);
2395
2396 dev_dbg(&client->dev, "trying factor %u (%u)\n", try[i], i);
2397
2398 if (this > best) {
2399 scale_m = try[i];
2400 mode = CCS_SCALING_MODE_HORIZONTAL;
2401 best = this;
2402 }
2403
2404 if (CCS_LIM(sensor, SCALING_CAPABILITY)
2405 == CCS_SCALING_CAPABILITY_HORIZONTAL)
2406 continue;
2407
2408 this = scaling_goodness(
2409 subdev, w: crops[CCS_PAD_SINK]->width
2410 / try[i]
2411 * CCS_LIM(sensor, SCALER_N_MIN),
2412 ask_w: sel->r.width,
2413 h: crops[CCS_PAD_SINK]->height
2414 / try[i]
2415 * CCS_LIM(sensor, SCALER_N_MIN),
2416 ask_h: sel->r.height,
2417 flags: sel->flags);
2418
2419 if (this > best) {
2420 scale_m = try[i];
2421 mode = SMIAPP_SCALING_MODE_BOTH;
2422 best = this;
2423 }
2424 }
2425
2426 sel->r.width =
2427 (crops[CCS_PAD_SINK]->width
2428 / scale_m
2429 * CCS_LIM(sensor, SCALER_N_MIN)) & ~1;
2430 if (mode == SMIAPP_SCALING_MODE_BOTH)
2431 sel->r.height =
2432 (crops[CCS_PAD_SINK]->height
2433 / scale_m
2434 * CCS_LIM(sensor, SCALER_N_MIN))
2435 & ~1;
2436 else
2437 sel->r.height = crops[CCS_PAD_SINK]->height;
2438
2439 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
2440 sensor->scale_m = scale_m;
2441 sensor->scaling_mode = mode;
2442 }
2443}
2444/* We're only called on source pads. This function sets scaling. */
2445static int ccs_set_compose(struct v4l2_subdev *subdev,
2446 struct v4l2_subdev_state *sd_state,
2447 struct v4l2_subdev_selection *sel)
2448{
2449 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2450 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2451 struct v4l2_rect *comp, *crops[CCS_PADS];
2452
2453 ccs_get_crop_compose(subdev, sd_state, crops, comps: &comp);
2454
2455 sel->r.top = 0;
2456 sel->r.left = 0;
2457
2458 if (ssd == sensor->binner)
2459 ccs_set_compose_binner(subdev, sd_state, sel, crops, comp);
2460 else
2461 ccs_set_compose_scaler(subdev, sd_state, sel, crops, comp);
2462
2463 *comp = sel->r;
2464 ccs_propagate(subdev, sd_state, which: sel->which, V4L2_SEL_TGT_COMPOSE);
2465
2466 if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
2467 return ccs_pll_blanking_update(sensor);
2468
2469 return 0;
2470}
2471
2472static int ccs_sel_supported(struct v4l2_subdev *subdev,
2473 struct v4l2_subdev_selection *sel)
2474{
2475 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2476 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2477
2478 /* We only implement crop in three places. */
2479 switch (sel->target) {
2480 case V4L2_SEL_TGT_CROP:
2481 case V4L2_SEL_TGT_CROP_BOUNDS:
2482 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2483 return 0;
2484 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC)
2485 return 0;
2486 if (ssd == sensor->scaler && sel->pad == CCS_PAD_SINK &&
2487 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
2488 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
2489 return 0;
2490 return -EINVAL;
2491 case V4L2_SEL_TGT_NATIVE_SIZE:
2492 if (ssd == sensor->pixel_array && sel->pad == CCS_PA_PAD_SRC)
2493 return 0;
2494 return -EINVAL;
2495 case V4L2_SEL_TGT_COMPOSE:
2496 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2497 if (sel->pad == ssd->source_pad)
2498 return -EINVAL;
2499 if (ssd == sensor->binner)
2500 return 0;
2501 if (ssd == sensor->scaler && CCS_LIM(sensor, SCALING_CAPABILITY)
2502 != CCS_SCALING_CAPABILITY_NONE)
2503 return 0;
2504 fallthrough;
2505 default:
2506 return -EINVAL;
2507 }
2508}
2509
2510static int ccs_set_crop(struct v4l2_subdev *subdev,
2511 struct v4l2_subdev_state *sd_state,
2512 struct v4l2_subdev_selection *sel)
2513{
2514 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2515 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2516 struct v4l2_rect src_size = { 0 }, *crops[CCS_PADS], *comp;
2517
2518 ccs_get_crop_compose(subdev, sd_state, crops, comps: &comp);
2519
2520 if (sel->pad == ssd->sink_pad) {
2521 struct v4l2_mbus_framefmt *mfmt =
2522 v4l2_subdev_state_get_format(sd_state, sel->pad);
2523
2524 src_size.width = mfmt->width;
2525 src_size.height = mfmt->height;
2526 } else {
2527 src_size = *comp;
2528 }
2529
2530 if (ssd == sensor->src && sel->pad == CCS_PAD_SRC) {
2531 sel->r.left = 0;
2532 sel->r.top = 0;
2533 }
2534
2535 sel->r.width = min(sel->r.width, src_size.width);
2536 sel->r.height = min(sel->r.height, src_size.height);
2537
2538 sel->r.left = min_t(int, sel->r.left, src_size.width - sel->r.width);
2539 sel->r.top = min_t(int, sel->r.top, src_size.height - sel->r.height);
2540
2541 *crops[sel->pad] = sel->r;
2542
2543 if (ssd != sensor->pixel_array && sel->pad == CCS_PAD_SINK)
2544 ccs_propagate(subdev, sd_state, which: sel->which, V4L2_SEL_TGT_CROP);
2545 else if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
2546 ssd == sensor->pixel_array)
2547 sensor->pa_src = sel->r;
2548
2549 return 0;
2550}
2551
2552static void ccs_get_native_size(struct ccs_subdev *ssd, struct v4l2_rect *r)
2553{
2554 r->top = 0;
2555 r->left = 0;
2556 r->width = CCS_LIM(ssd->sensor, X_ADDR_MAX) + 1;
2557 r->height = CCS_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
2558}
2559
2560static int ccs_get_selection(struct v4l2_subdev *subdev,
2561 struct v4l2_subdev_state *sd_state,
2562 struct v4l2_subdev_selection *sel)
2563{
2564 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2565 struct ccs_subdev *ssd = to_ccs_subdev(subdev);
2566 struct v4l2_rect *comp, *crops[CCS_PADS];
2567 int ret;
2568
2569 ret = ccs_sel_supported(subdev, sel);
2570 if (ret)
2571 return ret;
2572
2573 ccs_get_crop_compose(subdev, sd_state, crops, comps: &comp);
2574
2575 switch (sel->target) {
2576 case V4L2_SEL_TGT_CROP_BOUNDS:
2577 case V4L2_SEL_TGT_NATIVE_SIZE:
2578 if (ssd == sensor->pixel_array) {
2579 ccs_get_native_size(ssd, r: &sel->r);
2580 } else if (sel->pad == ssd->sink_pad) {
2581 struct v4l2_mbus_framefmt *sink_fmt =
2582 v4l2_subdev_state_get_format(sd_state,
2583 ssd->sink_pad);
2584 sel->r.top = sel->r.left = 0;
2585 sel->r.width = sink_fmt->width;
2586 sel->r.height = sink_fmt->height;
2587 } else {
2588 sel->r = *comp;
2589 }
2590 break;
2591 case V4L2_SEL_TGT_CROP:
2592 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
2593 sel->r = *crops[sel->pad];
2594 break;
2595 case V4L2_SEL_TGT_COMPOSE:
2596 sel->r = *comp;
2597 break;
2598 }
2599
2600 return 0;
2601}
2602
2603static int ccs_set_selection(struct v4l2_subdev *subdev,
2604 struct v4l2_subdev_state *sd_state,
2605 struct v4l2_subdev_selection *sel)
2606{
2607 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2608 int ret;
2609
2610 ret = ccs_sel_supported(subdev, sel);
2611 if (ret)
2612 return ret;
2613
2614 mutex_lock(&sensor->mutex);
2615
2616 sel->r.left = max(0, sel->r.left & ~1);
2617 sel->r.top = max(0, sel->r.top & ~1);
2618 sel->r.width = CCS_ALIGN_DIM(sel->r.width, sel->flags);
2619 sel->r.height = CCS_ALIGN_DIM(sel->r.height, sel->flags);
2620
2621 sel->r.width = max_t(unsigned int, CCS_LIM(sensor, MIN_X_OUTPUT_SIZE),
2622 sel->r.width);
2623 sel->r.height = max_t(unsigned int, CCS_LIM(sensor, MIN_Y_OUTPUT_SIZE),
2624 sel->r.height);
2625
2626 switch (sel->target) {
2627 case V4L2_SEL_TGT_CROP:
2628 ret = ccs_set_crop(subdev, sd_state, sel);
2629 break;
2630 case V4L2_SEL_TGT_COMPOSE:
2631 ret = ccs_set_compose(subdev, sd_state, sel);
2632 break;
2633 default:
2634 ret = -EINVAL;
2635 }
2636
2637 mutex_unlock(lock: &sensor->mutex);
2638 return ret;
2639}
2640
2641static int ccs_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
2642{
2643 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2644
2645 *frames = sensor->frame_skip;
2646 return 0;
2647}
2648
2649static int ccs_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
2650{
2651 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2652
2653 *lines = sensor->image_start;
2654
2655 return 0;
2656}
2657
2658/* -----------------------------------------------------------------------------
2659 * sysfs attributes
2660 */
2661
2662static ssize_t
2663nvm_show(struct device *dev, struct device_attribute *attr, char *buf)
2664{
2665 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2666 struct i2c_client *client = v4l2_get_subdevdata(sd: subdev);
2667 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2668 int rval;
2669
2670 if (!sensor->dev_init_done)
2671 return -EBUSY;
2672
2673 rval = ccs_pm_get_init(sensor);
2674 if (rval < 0)
2675 return -ENODEV;
2676
2677 rval = ccs_read_nvm(sensor, nvm: buf, PAGE_SIZE);
2678 if (rval < 0) {
2679 pm_runtime_put(dev: &client->dev);
2680 dev_err(&client->dev, "nvm read failed\n");
2681 return -ENODEV;
2682 }
2683
2684 pm_runtime_mark_last_busy(dev: &client->dev);
2685 pm_runtime_put_autosuspend(dev: &client->dev);
2686
2687 /*
2688 * NVM is still way below a PAGE_SIZE, so we can safely
2689 * assume this for now.
2690 */
2691 return rval;
2692}
2693static DEVICE_ATTR_RO(nvm);
2694
2695static ssize_t
2696ident_show(struct device *dev, struct device_attribute *attr, char *buf)
2697{
2698 struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
2699 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2700 struct ccs_module_info *minfo = &sensor->minfo;
2701
2702 if (minfo->mipi_manufacturer_id)
2703 return sysfs_emit(buf, fmt: "%4.4x%4.4x%2.2x\n",
2704 minfo->mipi_manufacturer_id, minfo->model_id,
2705 minfo->revision_number) + 1;
2706 else
2707 return sysfs_emit(buf, fmt: "%2.2x%4.4x%2.2x\n",
2708 minfo->smia_manufacturer_id, minfo->model_id,
2709 minfo->revision_number) + 1;
2710}
2711static DEVICE_ATTR_RO(ident);
2712
2713/* -----------------------------------------------------------------------------
2714 * V4L2 subdev core operations
2715 */
2716
2717static int ccs_identify_module(struct ccs_sensor *sensor)
2718{
2719 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
2720 struct ccs_module_info *minfo = &sensor->minfo;
2721 unsigned int i;
2722 u32 rev;
2723 int rval = 0;
2724
2725 /* Module info */
2726 rval = ccs_read(sensor, MODULE_MANUFACTURER_ID,
2727 &minfo->mipi_manufacturer_id);
2728 if (!rval && !minfo->mipi_manufacturer_id)
2729 rval = ccs_read_addr(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
2730 val: &minfo->smia_manufacturer_id);
2731 if (!rval)
2732 rval = ccs_read(sensor, MODULE_MODEL_ID, &minfo->model_id);
2733 if (!rval)
2734 rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MAJOR, &rev);
2735 if (!rval) {
2736 rval = ccs_read(sensor, MODULE_REVISION_NUMBER_MINOR,
2737 &minfo->revision_number);
2738 minfo->revision_number |= rev << 8;
2739 }
2740 if (!rval)
2741 rval = ccs_read(sensor, MODULE_DATE_YEAR, &minfo->module_year);
2742 if (!rval)
2743 rval = ccs_read(sensor, MODULE_DATE_MONTH,
2744 &minfo->module_month);
2745 if (!rval)
2746 rval = ccs_read(sensor, MODULE_DATE_DAY, &minfo->module_day);
2747
2748 /* Sensor info */
2749 if (!rval)
2750 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2751 &minfo->sensor_mipi_manufacturer_id);
2752 if (!rval && !minfo->sensor_mipi_manufacturer_id)
2753 rval = ccs_read(sensor, SENSOR_MANUFACTURER_ID,
2754 &minfo->sensor_smia_manufacturer_id);
2755 if (!rval)
2756 rval = ccs_read(sensor, SENSOR_MODEL_ID,
2757 &minfo->sensor_model_id);
2758 if (!rval)
2759 rval = ccs_read(sensor, SENSOR_REVISION_NUMBER,
2760 &minfo->sensor_revision_number);
2761 if (!rval && !minfo->sensor_revision_number)
2762 rval = ccs_read(sensor, SENSOR_REVISION_NUMBER_16,
2763 &minfo->sensor_revision_number);
2764 if (!rval)
2765 rval = ccs_read(sensor, SENSOR_FIRMWARE_VERSION,
2766 &minfo->sensor_firmware_version);
2767
2768 /* SMIA */
2769 if (!rval)
2770 rval = ccs_read(sensor, MIPI_CCS_VERSION, &minfo->ccs_version);
2771 if (!rval && !minfo->ccs_version)
2772 rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIA_VERSION,
2773 val: &minfo->smia_version);
2774 if (!rval && !minfo->ccs_version)
2775 rval = ccs_read_addr(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
2776 val: &minfo->smiapp_version);
2777
2778 if (rval) {
2779 dev_err(&client->dev, "sensor detection failed\n");
2780 return -ENODEV;
2781 }
2782
2783 if (minfo->mipi_manufacturer_id)
2784 dev_dbg(&client->dev, "MIPI CCS module 0x%4.4x-0x%4.4x\n",
2785 minfo->mipi_manufacturer_id, minfo->model_id);
2786 else
2787 dev_dbg(&client->dev, "SMIA module 0x%2.2x-0x%4.4x\n",
2788 minfo->smia_manufacturer_id, minfo->model_id);
2789
2790 dev_dbg(&client->dev,
2791 "module revision 0x%4.4x date %2.2d-%2.2d-%2.2d\n",
2792 minfo->revision_number, minfo->module_year, minfo->module_month,
2793 minfo->module_day);
2794
2795 if (minfo->sensor_mipi_manufacturer_id)
2796 dev_dbg(&client->dev, "MIPI CCS sensor 0x%4.4x-0x%4.4x\n",
2797 minfo->sensor_mipi_manufacturer_id,
2798 minfo->sensor_model_id);
2799 else
2800 dev_dbg(&client->dev, "SMIA sensor 0x%2.2x-0x%4.4x\n",
2801 minfo->sensor_smia_manufacturer_id,
2802 minfo->sensor_model_id);
2803
2804 dev_dbg(&client->dev,
2805 "sensor revision 0x%4.4x firmware version 0x%2.2x\n",
2806 minfo->sensor_revision_number, minfo->sensor_firmware_version);
2807
2808 if (minfo->ccs_version) {
2809 dev_dbg(&client->dev, "MIPI CCS version %u.%u",
2810 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MAJOR_MASK)
2811 >> CCS_MIPI_CCS_VERSION_MAJOR_SHIFT,
2812 (minfo->ccs_version & CCS_MIPI_CCS_VERSION_MINOR_MASK));
2813 minfo->name = CCS_NAME;
2814 } else {
2815 dev_dbg(&client->dev,
2816 "smia version %2.2d smiapp version %2.2d\n",
2817 minfo->smia_version, minfo->smiapp_version);
2818 minfo->name = SMIAPP_NAME;
2819 /*
2820 * Some modules have bad data in the lvalues below. Hope the
2821 * rvalues have better stuff. The lvalues are module
2822 * parameters whereas the rvalues are sensor parameters.
2823 */
2824 if (minfo->sensor_smia_manufacturer_id &&
2825 !minfo->smia_manufacturer_id && !minfo->model_id) {
2826 minfo->smia_manufacturer_id =
2827 minfo->sensor_smia_manufacturer_id;
2828 minfo->model_id = minfo->sensor_model_id;
2829 minfo->revision_number = minfo->sensor_revision_number;
2830 }
2831 }
2832
2833 for (i = 0; i < ARRAY_SIZE(ccs_module_idents); i++) {
2834 if (ccs_module_idents[i].mipi_manufacturer_id &&
2835 ccs_module_idents[i].mipi_manufacturer_id
2836 != minfo->mipi_manufacturer_id)
2837 continue;
2838 if (ccs_module_idents[i].smia_manufacturer_id &&
2839 ccs_module_idents[i].smia_manufacturer_id
2840 != minfo->smia_manufacturer_id)
2841 continue;
2842 if (ccs_module_idents[i].model_id != minfo->model_id)
2843 continue;
2844 if (ccs_module_idents[i].flags
2845 & CCS_MODULE_IDENT_FLAG_REV_LE) {
2846 if (ccs_module_idents[i].revision_number_major
2847 < (minfo->revision_number >> 8))
2848 continue;
2849 } else {
2850 if (ccs_module_idents[i].revision_number_major
2851 != (minfo->revision_number >> 8))
2852 continue;
2853 }
2854
2855 minfo->name = ccs_module_idents[i].name;
2856 minfo->quirk = ccs_module_idents[i].quirk;
2857 break;
2858 }
2859
2860 if (i >= ARRAY_SIZE(ccs_module_idents))
2861 dev_warn(&client->dev,
2862 "no quirks for this module; let's hope it's fully compliant\n");
2863
2864 dev_dbg(&client->dev, "the sensor is called %s\n", minfo->name);
2865
2866 return 0;
2867}
2868
2869static const struct v4l2_subdev_ops ccs_ops;
2870static const struct media_entity_operations ccs_entity_ops;
2871
2872static int ccs_register_subdev(struct ccs_sensor *sensor,
2873 struct ccs_subdev *ssd,
2874 struct ccs_subdev *sink_ssd,
2875 u16 source_pad, u16 sink_pad, u32 link_flags)
2876{
2877 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
2878 int rval;
2879
2880 if (!sink_ssd)
2881 return 0;
2882
2883 rval = v4l2_device_register_subdev(v4l2_dev: sensor->src->sd.v4l2_dev, sd: &ssd->sd);
2884 if (rval) {
2885 dev_err(&client->dev, "v4l2_device_register_subdev failed\n");
2886 return rval;
2887 }
2888
2889 rval = media_create_pad_link(source: &ssd->sd.entity, source_pad,
2890 sink: &sink_ssd->sd.entity, sink_pad,
2891 flags: link_flags);
2892 if (rval) {
2893 dev_err(&client->dev, "media_create_pad_link failed\n");
2894 v4l2_device_unregister_subdev(sd: &ssd->sd);
2895 return rval;
2896 }
2897
2898 return 0;
2899}
2900
2901static void ccs_unregistered(struct v4l2_subdev *subdev)
2902{
2903 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2904 unsigned int i;
2905
2906 for (i = 1; i < sensor->ssds_used; i++)
2907 v4l2_device_unregister_subdev(sd: &sensor->ssds[i].sd);
2908}
2909
2910static int ccs_registered(struct v4l2_subdev *subdev)
2911{
2912 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
2913 int rval;
2914
2915 if (sensor->scaler) {
2916 rval = ccs_register_subdev(sensor, ssd: sensor->binner,
2917 sink_ssd: sensor->scaler,
2918 CCS_PAD_SRC, CCS_PAD_SINK,
2919 MEDIA_LNK_FL_ENABLED |
2920 MEDIA_LNK_FL_IMMUTABLE);
2921 if (rval < 0)
2922 return rval;
2923 }
2924
2925 rval = ccs_register_subdev(sensor, ssd: sensor->pixel_array, sink_ssd: sensor->binner,
2926 CCS_PA_PAD_SRC, CCS_PAD_SINK,
2927 MEDIA_LNK_FL_ENABLED |
2928 MEDIA_LNK_FL_IMMUTABLE);
2929 if (rval)
2930 goto out_err;
2931
2932 return 0;
2933
2934out_err:
2935 ccs_unregistered(subdev);
2936
2937 return rval;
2938}
2939
2940static void ccs_cleanup(struct ccs_sensor *sensor)
2941{
2942 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
2943 unsigned int i;
2944
2945 for (i = 0; i < sensor->ssds_used; i++) {
2946 v4l2_subdev_cleanup(sd: &sensor->ssds[2].sd);
2947 media_entity_cleanup(entity: &sensor->ssds[i].sd.entity);
2948 }
2949
2950 device_remove_file(dev: &client->dev, attr: &dev_attr_nvm);
2951 device_remove_file(dev: &client->dev, attr: &dev_attr_ident);
2952
2953 ccs_free_controls(sensor);
2954}
2955
2956static int ccs_init_subdev(struct ccs_sensor *sensor,
2957 struct ccs_subdev *ssd, const char *name,
2958 unsigned short num_pads, u32 function,
2959 const char *lock_name,
2960 struct lock_class_key *lock_key)
2961{
2962 struct i2c_client *client = v4l2_get_subdevdata(sd: &sensor->src->sd);
2963 int rval;
2964
2965 if (!ssd)
2966 return 0;
2967
2968 if (ssd != sensor->src)
2969 v4l2_subdev_init(sd: &ssd->sd, ops: &ccs_ops);
2970
2971 ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2972 ssd->sd.entity.function = function;
2973 ssd->sensor = sensor;
2974
2975 ssd->npads = num_pads;
2976 ssd->source_pad = num_pads - 1;
2977
2978 v4l2_i2c_subdev_set_name(sd: &ssd->sd, client, devname: sensor->minfo.name, postfix: name);
2979
2980 ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2981 if (ssd != sensor->pixel_array)
2982 ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
2983
2984 ssd->sd.entity.ops = &ccs_entity_ops;
2985
2986 if (ssd != sensor->src) {
2987 ssd->sd.owner = THIS_MODULE;
2988 ssd->sd.dev = &client->dev;
2989 v4l2_set_subdevdata(sd: &ssd->sd, p: client);
2990 }
2991
2992 rval = media_entity_pads_init(entity: &ssd->sd.entity, num_pads: ssd->npads, pads: ssd->pads);
2993 if (rval) {
2994 dev_err(&client->dev, "media_entity_pads_init failed\n");
2995 return rval;
2996 }
2997
2998 rval = __v4l2_subdev_init_finalize(sd: &ssd->sd, name: lock_name, key: lock_key);
2999 if (rval) {
3000 media_entity_cleanup(entity: &ssd->sd.entity);
3001 return rval;
3002 }
3003
3004 return 0;
3005}
3006
3007static int ccs_init_state(struct v4l2_subdev *sd,
3008 struct v4l2_subdev_state *sd_state)
3009{
3010 struct ccs_subdev *ssd = to_ccs_subdev(sd);
3011 struct ccs_sensor *sensor = ssd->sensor;
3012 unsigned int pad = ssd == sensor->pixel_array ?
3013 CCS_PA_PAD_SRC : CCS_PAD_SINK;
3014 struct v4l2_mbus_framefmt *fmt =
3015 v4l2_subdev_state_get_format(sd_state, pad);
3016 struct v4l2_rect *crop =
3017 v4l2_subdev_state_get_crop(sd_state, pad);
3018 bool is_active = !sd->active_state || sd->active_state == sd_state;
3019
3020 mutex_lock(&sensor->mutex);
3021
3022 ccs_get_native_size(ssd, r: crop);
3023
3024 fmt->width = crop->width;
3025 fmt->height = crop->height;
3026 fmt->code = sensor->internal_csi_format->code;
3027 fmt->field = V4L2_FIELD_NONE;
3028
3029 if (ssd == sensor->pixel_array) {
3030 if (is_active)
3031 sensor->pa_src = *crop;
3032
3033 mutex_unlock(lock: &sensor->mutex);
3034 return 0;
3035 }
3036
3037 fmt = v4l2_subdev_state_get_format(sd_state, CCS_PAD_SRC);
3038 fmt->code = ssd == sensor->src ?
3039 sensor->csi_format->code : sensor->internal_csi_format->code;
3040 fmt->field = V4L2_FIELD_NONE;
3041
3042 ccs_propagate(subdev: sd, sd_state, which: is_active, V4L2_SEL_TGT_CROP);
3043
3044 mutex_unlock(lock: &sensor->mutex);
3045
3046 return 0;
3047}
3048
3049static const struct v4l2_subdev_video_ops ccs_video_ops = {
3050 .s_stream = ccs_set_stream,
3051 .pre_streamon = ccs_pre_streamon,
3052 .post_streamoff = ccs_post_streamoff,
3053};
3054
3055static const struct v4l2_subdev_pad_ops ccs_pad_ops = {
3056 .enum_mbus_code = ccs_enum_mbus_code,
3057 .get_fmt = ccs_get_format,
3058 .set_fmt = ccs_set_format,
3059 .get_selection = ccs_get_selection,
3060 .set_selection = ccs_set_selection,
3061};
3062
3063static const struct v4l2_subdev_sensor_ops ccs_sensor_ops = {
3064 .g_skip_frames = ccs_get_skip_frames,
3065 .g_skip_top_lines = ccs_get_skip_top_lines,
3066};
3067
3068static const struct v4l2_subdev_ops ccs_ops = {
3069 .video = &ccs_video_ops,
3070 .pad = &ccs_pad_ops,
3071 .sensor = &ccs_sensor_ops,
3072};
3073
3074static const struct media_entity_operations ccs_entity_ops = {
3075 .link_validate = v4l2_subdev_link_validate,
3076};
3077
3078static const struct v4l2_subdev_internal_ops ccs_internal_src_ops = {
3079 .init_state = ccs_init_state,
3080 .registered = ccs_registered,
3081 .unregistered = ccs_unregistered,
3082};
3083
3084/* -----------------------------------------------------------------------------
3085 * I2C Driver
3086 */
3087
3088static int ccs_get_hwconfig(struct ccs_sensor *sensor, struct device *dev)
3089{
3090 struct ccs_hwconfig *hwcfg = &sensor->hwcfg;
3091 struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_UNKNOWN };
3092 struct fwnode_handle *ep;
3093 struct fwnode_handle *fwnode = dev_fwnode(dev);
3094 unsigned int i;
3095 int rval;
3096
3097 ep = fwnode_graph_get_endpoint_by_id(fwnode, port: 0, endpoint: 0,
3098 FWNODE_GRAPH_ENDPOINT_NEXT);
3099 if (!ep)
3100 return -ENODEV;
3101
3102 /*
3103 * Note that we do need to rely on detecting the bus type between CSI-2
3104 * D-PHY and CCP2 as the old bindings did not require it.
3105 */
3106 rval = v4l2_fwnode_endpoint_alloc_parse(fwnode: ep, vep: &bus_cfg);
3107 if (rval)
3108 goto out_err;
3109
3110 switch (bus_cfg.bus_type) {
3111 case V4L2_MBUS_CSI2_DPHY:
3112 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_DPHY;
3113 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3114 break;
3115 case V4L2_MBUS_CSI2_CPHY:
3116 hwcfg->csi_signalling_mode = CCS_CSI_SIGNALING_MODE_CSI_2_CPHY;
3117 hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
3118 break;
3119 case V4L2_MBUS_CSI1:
3120 case V4L2_MBUS_CCP2:
3121 hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
3122 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
3123 SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
3124 hwcfg->lanes = 1;
3125 break;
3126 default:
3127 dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
3128 rval = -EINVAL;
3129 goto out_err;
3130 }
3131
3132 rval = fwnode_property_read_u32(dev_fwnode(dev), propname: "clock-frequency",
3133 val: &hwcfg->ext_clk);
3134 if (rval)
3135 dev_info(dev, "can't get clock-frequency\n");
3136
3137 dev_dbg(dev, "clk %u, mode %u\n", hwcfg->ext_clk,
3138 hwcfg->csi_signalling_mode);
3139
3140 if (!bus_cfg.nr_of_link_frequencies) {
3141 dev_warn(dev, "no link frequencies defined\n");
3142 rval = -EINVAL;
3143 goto out_err;
3144 }
3145
3146 hwcfg->op_sys_clock = devm_kcalloc(
3147 dev, n: bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
3148 size: sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
3149 if (!hwcfg->op_sys_clock) {
3150 rval = -ENOMEM;
3151 goto out_err;
3152 }
3153
3154 for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
3155 hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
3156 dev_dbg(dev, "freq %u: %lld\n", i, hwcfg->op_sys_clock[i]);
3157 }
3158
3159 v4l2_fwnode_endpoint_free(vep: &bus_cfg);
3160 fwnode_handle_put(fwnode: ep);
3161
3162 return 0;
3163
3164out_err:
3165 v4l2_fwnode_endpoint_free(vep: &bus_cfg);
3166 fwnode_handle_put(fwnode: ep);
3167
3168 return rval;
3169}
3170
3171static int ccs_firmware_name(struct i2c_client *client,
3172 struct ccs_sensor *sensor, char *filename,
3173 size_t filename_size, bool is_module)
3174{
3175 const struct ccs_device *ccsdev = device_get_match_data(dev: &client->dev);
3176 bool is_ccs = !(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA);
3177 bool is_smiapp = sensor->minfo.smiapp_version;
3178 u16 manufacturer_id;
3179 u16 model_id;
3180 u16 revision_number;
3181
3182 /*
3183 * Old SMIA is module-agnostic. Its sensor identification is based on
3184 * what now are those of the module.
3185 */
3186 if (is_module || (!is_ccs && !is_smiapp)) {
3187 manufacturer_id = is_ccs ?
3188 sensor->minfo.mipi_manufacturer_id :
3189 sensor->minfo.smia_manufacturer_id;
3190 model_id = sensor->minfo.model_id;
3191 revision_number = sensor->minfo.revision_number;
3192 } else {
3193 manufacturer_id = is_ccs ?
3194 sensor->minfo.sensor_mipi_manufacturer_id :
3195 sensor->minfo.sensor_smia_manufacturer_id;
3196 model_id = sensor->minfo.sensor_model_id;
3197 revision_number = sensor->minfo.sensor_revision_number;
3198 }
3199
3200 return snprintf(buf: filename, size: filename_size,
3201 fmt: "ccs/%s-%s-%0*x-%4.4x-%0*x.fw",
3202 is_ccs ? "ccs" : is_smiapp ? "smiapp" : "smia",
3203 is_module || (!is_ccs && !is_smiapp) ?
3204 "module" : "sensor",
3205 is_ccs ? 4 : 2, manufacturer_id, model_id,
3206 !is_ccs && !is_module ? 2 : 4, revision_number);
3207}
3208
3209static int ccs_probe(struct i2c_client *client)
3210{
3211 static struct lock_class_key pixel_array_lock_key, binner_lock_key,
3212 scaler_lock_key;
3213 const struct ccs_device *ccsdev = device_get_match_data(dev: &client->dev);
3214 struct ccs_sensor *sensor;
3215 const struct firmware *fw;
3216 char filename[40];
3217 unsigned int i;
3218 int rval;
3219
3220 sensor = devm_kzalloc(dev: &client->dev, size: sizeof(*sensor), GFP_KERNEL);
3221 if (sensor == NULL)
3222 return -ENOMEM;
3223
3224 rval = ccs_get_hwconfig(sensor, dev: &client->dev);
3225 if (rval)
3226 return rval;
3227
3228 sensor->src = &sensor->ssds[sensor->ssds_used];
3229
3230 v4l2_i2c_subdev_init(sd: &sensor->src->sd, client, ops: &ccs_ops);
3231 sensor->src->sd.internal_ops = &ccs_internal_src_ops;
3232
3233 sensor->regulators = devm_kcalloc(dev: &client->dev,
3234 ARRAY_SIZE(ccs_regulators),
3235 size: sizeof(*sensor->regulators),
3236 GFP_KERNEL);
3237 if (!sensor->regulators)
3238 return -ENOMEM;
3239
3240 for (i = 0; i < ARRAY_SIZE(ccs_regulators); i++)
3241 sensor->regulators[i].supply = ccs_regulators[i];
3242
3243 rval = devm_regulator_bulk_get(dev: &client->dev, ARRAY_SIZE(ccs_regulators),
3244 consumers: sensor->regulators);
3245 if (rval) {
3246 dev_err(&client->dev, "could not get regulators\n");
3247 return rval;
3248 }
3249
3250 sensor->ext_clk = devm_clk_get(dev: &client->dev, NULL);
3251 if (PTR_ERR(ptr: sensor->ext_clk) == -ENOENT) {
3252 dev_info(&client->dev, "no clock defined, continuing...\n");
3253 sensor->ext_clk = NULL;
3254 } else if (IS_ERR(ptr: sensor->ext_clk)) {
3255 dev_err(&client->dev, "could not get clock (%ld)\n",
3256 PTR_ERR(sensor->ext_clk));
3257 return -EPROBE_DEFER;
3258 }
3259
3260 if (sensor->ext_clk) {
3261 if (sensor->hwcfg.ext_clk) {
3262 unsigned long rate;
3263
3264 rval = clk_set_rate(clk: sensor->ext_clk,
3265 rate: sensor->hwcfg.ext_clk);
3266 if (rval < 0) {
3267 dev_err(&client->dev,
3268 "unable to set clock freq to %u\n",
3269 sensor->hwcfg.ext_clk);
3270 return rval;
3271 }
3272
3273 rate = clk_get_rate(clk: sensor->ext_clk);
3274 if (rate != sensor->hwcfg.ext_clk) {
3275 dev_err(&client->dev,
3276 "can't set clock freq, asked for %u but got %lu\n",
3277 sensor->hwcfg.ext_clk, rate);
3278 return -EINVAL;
3279 }
3280 } else {
3281 sensor->hwcfg.ext_clk = clk_get_rate(clk: sensor->ext_clk);
3282 dev_dbg(&client->dev, "obtained clock freq %u\n",
3283 sensor->hwcfg.ext_clk);
3284 }
3285 } else if (sensor->hwcfg.ext_clk) {
3286 dev_dbg(&client->dev, "assuming clock freq %u\n",
3287 sensor->hwcfg.ext_clk);
3288 } else {
3289 dev_err(&client->dev, "unable to obtain clock freq\n");
3290 return -EINVAL;
3291 }
3292
3293 if (!sensor->hwcfg.ext_clk) {
3294 dev_err(&client->dev, "cannot work with xclk frequency 0\n");
3295 return -EINVAL;
3296 }
3297
3298 sensor->reset = devm_gpiod_get_optional(dev: &client->dev, con_id: "reset",
3299 flags: GPIOD_OUT_HIGH);
3300 if (IS_ERR(ptr: sensor->reset))
3301 return PTR_ERR(ptr: sensor->reset);
3302 /* Support old users that may have used "xshutdown" property. */
3303 if (!sensor->reset)
3304 sensor->xshutdown = devm_gpiod_get_optional(dev: &client->dev,
3305 con_id: "xshutdown",
3306 flags: GPIOD_OUT_LOW);
3307 if (IS_ERR(ptr: sensor->xshutdown))
3308 return PTR_ERR(ptr: sensor->xshutdown);
3309
3310 sensor->regmap = devm_cci_regmap_init_i2c(client, reg_addr_bits: 16);
3311 if (IS_ERR(ptr: sensor->regmap)) {
3312 dev_err(&client->dev, "can't initialise CCI (%ld)\n",
3313 PTR_ERR(sensor->regmap));
3314 return PTR_ERR(ptr: sensor->regmap);
3315 }
3316
3317 rval = ccs_power_on(dev: &client->dev);
3318 if (rval < 0)
3319 return rval;
3320
3321 mutex_init(&sensor->mutex);
3322
3323 rval = ccs_identify_module(sensor);
3324 if (rval) {
3325 rval = -ENODEV;
3326 goto out_power_off;
3327 }
3328
3329 rval = ccs_firmware_name(client, sensor, filename, filename_size: sizeof(filename),
3330 is_module: false);
3331 if (rval >= sizeof(filename)) {
3332 rval = -ENOMEM;
3333 goto out_power_off;
3334 }
3335
3336 rval = request_firmware(fw: &fw, name: filename, device: &client->dev);
3337 if (!rval) {
3338 ccs_data_parse(ccsdata: &sensor->sdata, data: fw->data, len: fw->size, dev: &client->dev,
3339 verbose: true);
3340 release_firmware(fw);
3341 }
3342
3343 if (!(ccsdev->flags & CCS_DEVICE_FLAG_IS_SMIA) ||
3344 sensor->minfo.smiapp_version) {
3345 rval = ccs_firmware_name(client, sensor, filename,
3346 filename_size: sizeof(filename), is_module: true);
3347 if (rval >= sizeof(filename)) {
3348 rval = -ENOMEM;
3349 goto out_release_sdata;
3350 }
3351
3352 rval = request_firmware(fw: &fw, name: filename, device: &client->dev);
3353 if (!rval) {
3354 ccs_data_parse(ccsdata: &sensor->mdata, data: fw->data, len: fw->size,
3355 dev: &client->dev, verbose: true);
3356 release_firmware(fw);
3357 }
3358 }
3359
3360 rval = ccs_read_all_limits(sensor);
3361 if (rval)
3362 goto out_release_mdata;
3363
3364 rval = ccs_read_frame_fmt(sensor);
3365 if (rval) {
3366 rval = -ENODEV;
3367 goto out_free_ccs_limits;
3368 }
3369
3370 rval = ccs_update_phy_ctrl(sensor);
3371 if (rval < 0)
3372 goto out_free_ccs_limits;
3373
3374 rval = ccs_call_quirk(sensor, limits);
3375 if (rval) {
3376 dev_err(&client->dev, "limits quirks failed\n");
3377 goto out_free_ccs_limits;
3378 }
3379
3380 if (CCS_LIM(sensor, BINNING_CAPABILITY)) {
3381 sensor->nbinning_subtypes =
3382 min_t(u8, CCS_LIM(sensor, BINNING_SUB_TYPES),
3383 CCS_LIM_BINNING_SUB_TYPE_MAX_N);
3384
3385 for (i = 0; i < sensor->nbinning_subtypes; i++) {
3386 sensor->binning_subtypes[i].horizontal =
3387 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) >>
3388 CCS_BINNING_SUB_TYPE_COLUMN_SHIFT;
3389 sensor->binning_subtypes[i].vertical =
3390 CCS_LIM_AT(sensor, BINNING_SUB_TYPE, i) &
3391 CCS_BINNING_SUB_TYPE_ROW_MASK;
3392
3393 dev_dbg(&client->dev, "binning %xx%x\n",
3394 sensor->binning_subtypes[i].horizontal,
3395 sensor->binning_subtypes[i].vertical);
3396 }
3397 }
3398 sensor->binning_horizontal = 1;
3399 sensor->binning_vertical = 1;
3400
3401 if (device_create_file(device: &client->dev, entry: &dev_attr_ident) != 0) {
3402 dev_err(&client->dev, "sysfs ident entry creation failed\n");
3403 rval = -ENOENT;
3404 goto out_free_ccs_limits;
3405 }
3406
3407 if (sensor->minfo.smiapp_version &&
3408 CCS_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
3409 CCS_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
3410 if (device_create_file(device: &client->dev, entry: &dev_attr_nvm) != 0) {
3411 dev_err(&client->dev, "sysfs nvm entry failed\n");
3412 rval = -EBUSY;
3413 goto out_cleanup;
3414 }
3415 }
3416
3417 if (!CCS_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
3418 !CCS_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
3419 !CCS_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
3420 !CCS_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
3421 /* No OP clock branch */
3422 sensor->pll.flags |= CCS_PLL_FLAG_NO_OP_CLOCKS;
3423 } else if (CCS_LIM(sensor, SCALING_CAPABILITY)
3424 != CCS_SCALING_CAPABILITY_NONE ||
3425 CCS_LIM(sensor, DIGITAL_CROP_CAPABILITY)
3426 == CCS_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
3427 /* We have a scaler or digital crop. */
3428 sensor->scaler = &sensor->ssds[sensor->ssds_used];
3429 sensor->ssds_used++;
3430 }
3431 sensor->binner = &sensor->ssds[sensor->ssds_used];
3432 sensor->ssds_used++;
3433 sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
3434 sensor->ssds_used++;
3435
3436 sensor->scale_m = CCS_LIM(sensor, SCALER_N_MIN);
3437
3438 /* prepare PLL configuration input values */
3439 sensor->pll.bus_type = CCS_PLL_BUS_TYPE_CSI2_DPHY;
3440 sensor->pll.csi2.lanes = sensor->hwcfg.lanes;
3441 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3442 CCS_CLOCK_CALCULATION_LANE_SPEED) {
3443 sensor->pll.flags |= CCS_PLL_FLAG_LANE_SPEED_MODEL;
3444 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3445 CCS_CLOCK_CALCULATION_LINK_DECOUPLED) {
3446 sensor->pll.vt_lanes =
3447 CCS_LIM(sensor, NUM_OF_VT_LANES) + 1;
3448 sensor->pll.op_lanes =
3449 CCS_LIM(sensor, NUM_OF_OP_LANES) + 1;
3450 sensor->pll.flags |= CCS_PLL_FLAG_LINK_DECOUPLED;
3451 } else {
3452 sensor->pll.vt_lanes = sensor->pll.csi2.lanes;
3453 sensor->pll.op_lanes = sensor->pll.csi2.lanes;
3454 }
3455 }
3456 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3457 CCS_CLOCK_TREE_PLL_CAPABILITY_EXT_DIVIDER)
3458 sensor->pll.flags |= CCS_PLL_FLAG_EXT_IP_PLL_DIVIDER;
3459 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3460 CCS_CLOCK_TREE_PLL_CAPABILITY_FLEXIBLE_OP_PIX_CLK_DIV)
3461 sensor->pll.flags |= CCS_PLL_FLAG_FLEXIBLE_OP_PIX_CLK_DIV;
3462 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3463 CCS_FIFO_SUPPORT_CAPABILITY_DERATING)
3464 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING;
3465 if (CCS_LIM(sensor, FIFO_SUPPORT_CAPABILITY) &
3466 CCS_FIFO_SUPPORT_CAPABILITY_DERATING_OVERRATING)
3467 sensor->pll.flags |= CCS_PLL_FLAG_FIFO_DERATING |
3468 CCS_PLL_FLAG_FIFO_OVERRATING;
3469 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3470 CCS_CLOCK_TREE_PLL_CAPABILITY_DUAL_PLL) {
3471 if (CCS_LIM(sensor, CLOCK_TREE_PLL_CAPABILITY) &
3472 CCS_CLOCK_TREE_PLL_CAPABILITY_SINGLE_PLL) {
3473 u32 v;
3474
3475 /* Use sensor default in PLL mode selection */
3476 rval = ccs_read(sensor, PLL_MODE, &v);
3477 if (rval)
3478 goto out_cleanup;
3479
3480 if (v == CCS_PLL_MODE_DUAL)
3481 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3482 } else {
3483 sensor->pll.flags |= CCS_PLL_FLAG_DUAL_PLL;
3484 }
3485 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3486 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_SYS_DDR)
3487 sensor->pll.flags |= CCS_PLL_FLAG_OP_SYS_DDR;
3488 if (CCS_LIM(sensor, CLOCK_CALCULATION) &
3489 CCS_CLOCK_CALCULATION_DUAL_PLL_OP_PIX_DDR)
3490 sensor->pll.flags |= CCS_PLL_FLAG_OP_PIX_DDR;
3491 }
3492 sensor->pll.op_bits_per_lane = CCS_LIM(sensor, OP_BITS_PER_LANE);
3493 sensor->pll.ext_clk_freq_hz = sensor->hwcfg.ext_clk;
3494 sensor->pll.scale_n = CCS_LIM(sensor, SCALER_N_MIN);
3495
3496 rval = ccs_get_mbus_formats(sensor);
3497 if (rval) {
3498 rval = -ENODEV;
3499 goto out_cleanup;
3500 }
3501
3502 rval = ccs_init_subdev(sensor, ssd: sensor->scaler, name: " scaler", num_pads: 2,
3503 MEDIA_ENT_F_PROC_VIDEO_SCALER,
3504 lock_name: "ccs scaler mutex", lock_key: &scaler_lock_key);
3505 if (rval)
3506 goto out_cleanup;
3507 rval = ccs_init_subdev(sensor, ssd: sensor->binner, name: " binner", num_pads: 2,
3508 MEDIA_ENT_F_PROC_VIDEO_SCALER,
3509 lock_name: "ccs binner mutex", lock_key: &binner_lock_key);
3510 if (rval)
3511 goto out_cleanup;
3512 rval = ccs_init_subdev(sensor, ssd: sensor->pixel_array, name: " pixel_array", num_pads: 1,
3513 MEDIA_ENT_F_CAM_SENSOR, lock_name: "ccs pixel array mutex",
3514 lock_key: &pixel_array_lock_key);
3515 if (rval)
3516 goto out_cleanup;
3517
3518 rval = ccs_init_controls(sensor);
3519 if (rval < 0)
3520 goto out_cleanup;
3521
3522 rval = ccs_call_quirk(sensor, init);
3523 if (rval)
3524 goto out_cleanup;
3525
3526 rval = ccs_init_late_controls(sensor);
3527 if (rval) {
3528 rval = -ENODEV;
3529 goto out_cleanup;
3530 }
3531
3532 mutex_lock(&sensor->mutex);
3533 rval = ccs_pll_blanking_update(sensor);
3534 mutex_unlock(lock: &sensor->mutex);
3535 if (rval) {
3536 dev_err(&client->dev, "update mode failed\n");
3537 goto out_cleanup;
3538 }
3539
3540 sensor->streaming = false;
3541 sensor->dev_init_done = true;
3542 sensor->handler_setup_needed = true;
3543
3544 rval = ccs_write_msr_regs(sensor);
3545 if (rval)
3546 goto out_cleanup;
3547
3548 pm_runtime_set_active(dev: &client->dev);
3549 pm_runtime_get_noresume(dev: &client->dev);
3550 pm_runtime_enable(dev: &client->dev);
3551
3552 rval = v4l2_async_register_subdev_sensor(sd: &sensor->src->sd);
3553 if (rval < 0)
3554 goto out_disable_runtime_pm;
3555
3556 pm_runtime_set_autosuspend_delay(dev: &client->dev, delay: 1000);
3557 pm_runtime_use_autosuspend(dev: &client->dev);
3558 pm_runtime_put_autosuspend(dev: &client->dev);
3559
3560 return 0;
3561
3562out_disable_runtime_pm:
3563 pm_runtime_put_noidle(dev: &client->dev);
3564 pm_runtime_disable(dev: &client->dev);
3565
3566out_cleanup:
3567 ccs_cleanup(sensor);
3568
3569out_release_mdata:
3570 kvfree(addr: sensor->mdata.backing);
3571
3572out_release_sdata:
3573 kvfree(addr: sensor->sdata.backing);
3574
3575out_free_ccs_limits:
3576 kfree(objp: sensor->ccs_limits);
3577
3578out_power_off:
3579 ccs_power_off(dev: &client->dev);
3580 mutex_destroy(lock: &sensor->mutex);
3581
3582 return rval;
3583}
3584
3585static void ccs_remove(struct i2c_client *client)
3586{
3587 struct v4l2_subdev *subdev = i2c_get_clientdata(client);
3588 struct ccs_sensor *sensor = to_ccs_sensor(subdev);
3589 unsigned int i;
3590
3591 v4l2_async_unregister_subdev(sd: subdev);
3592
3593 pm_runtime_disable(dev: &client->dev);
3594 if (!pm_runtime_status_suspended(dev: &client->dev))
3595 ccs_power_off(dev: &client->dev);
3596 pm_runtime_set_suspended(dev: &client->dev);
3597
3598 for (i = 0; i < sensor->ssds_used; i++)
3599 v4l2_device_unregister_subdev(sd: &sensor->ssds[i].sd);
3600 ccs_cleanup(sensor);
3601 mutex_destroy(lock: &sensor->mutex);
3602 kfree(objp: sensor->ccs_limits);
3603 kvfree(addr: sensor->sdata.backing);
3604 kvfree(addr: sensor->mdata.backing);
3605}
3606
3607static const struct ccs_device smia_device = {
3608 .flags = CCS_DEVICE_FLAG_IS_SMIA,
3609};
3610
3611static const struct ccs_device ccs_device = {};
3612
3613static const struct acpi_device_id ccs_acpi_table[] = {
3614 { .id = "MIPI0200", .driver_data = (unsigned long)&ccs_device },
3615 { },
3616};
3617MODULE_DEVICE_TABLE(acpi, ccs_acpi_table);
3618
3619static const struct of_device_id ccs_of_table[] = {
3620 { .compatible = "mipi-ccs-1.1", .data = &ccs_device },
3621 { .compatible = "mipi-ccs-1.0", .data = &ccs_device },
3622 { .compatible = "mipi-ccs", .data = &ccs_device },
3623 { .compatible = "nokia,smia", .data = &smia_device },
3624 { },
3625};
3626MODULE_DEVICE_TABLE(of, ccs_of_table);
3627
3628static const struct dev_pm_ops ccs_pm_ops = {
3629 SET_RUNTIME_PM_OPS(ccs_power_off, ccs_power_on, NULL)
3630};
3631
3632static struct i2c_driver ccs_i2c_driver = {
3633 .driver = {
3634 .acpi_match_table = ccs_acpi_table,
3635 .of_match_table = ccs_of_table,
3636 .name = CCS_NAME,
3637 .pm = &ccs_pm_ops,
3638 },
3639 .probe = ccs_probe,
3640 .remove = ccs_remove,
3641};
3642
3643static int ccs_module_init(void)
3644{
3645 unsigned int i, l;
3646
3647 CCS_BUILD_BUG;
3648
3649 for (i = 0, l = 0; ccs_limits[i].size && l < CCS_L_LAST; i++) {
3650 if (!(ccs_limits[i].flags & CCS_L_FL_SAME_REG)) {
3651 ccs_limit_offsets[l + 1].lim =
3652 ALIGN(ccs_limit_offsets[l].lim +
3653 ccs_limits[i].size,
3654 ccs_limits[i + 1].reg ?
3655 CCI_REG_WIDTH_BYTES(ccs_limits[i + 1].reg) :
3656 1U);
3657 ccs_limit_offsets[l].info = i;
3658 l++;
3659 } else {
3660 ccs_limit_offsets[l].lim += ccs_limits[i].size;
3661 }
3662 }
3663
3664 if (WARN_ON(ccs_limits[i].size))
3665 return -EINVAL;
3666
3667 if (WARN_ON(l != CCS_L_LAST))
3668 return -EINVAL;
3669
3670 return i2c_register_driver(THIS_MODULE, driver: &ccs_i2c_driver);
3671}
3672
3673static void ccs_module_cleanup(void)
3674{
3675 i2c_del_driver(driver: &ccs_i2c_driver);
3676}
3677
3678module_init(ccs_module_init);
3679module_exit(ccs_module_cleanup);
3680
3681MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
3682MODULE_DESCRIPTION("Generic MIPI CCS/SMIA/SMIA++ camera sensor driver");
3683MODULE_LICENSE("GPL v2");
3684MODULE_ALIAS("smiapp");
3685

source code of linux/drivers/media/i2c/ccs/ccs-core.c