1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Driver for Renesas R-Car MIPI CSI-2 Receiver
4 *
5 * Copyright (C) 2018 Renesas Electronics Corp.
6 */
7
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/io.h>
11#include <linux/module.h>
12#include <linux/of.h>
13#include <linux/of_graph.h>
14#include <linux/platform_device.h>
15#include <linux/pm_runtime.h>
16#include <linux/reset.h>
17#include <linux/sys_soc.h>
18
19#include <media/mipi-csi2.h>
20#include <media/v4l2-ctrls.h>
21#include <media/v4l2-device.h>
22#include <media/v4l2-fwnode.h>
23#include <media/v4l2-mc.h>
24#include <media/v4l2-subdev.h>
25
26struct rcar_csi2;
27
28/* Register offsets and bits */
29
30/* Control Timing Select */
31#define TREF_REG 0x00
32#define TREF_TREF BIT(0)
33
34/* Software Reset */
35#define SRST_REG 0x04
36#define SRST_SRST BIT(0)
37
38/* PHY Operation Control */
39#define PHYCNT_REG 0x08
40#define PHYCNT_SHUTDOWNZ BIT(17)
41#define PHYCNT_RSTZ BIT(16)
42#define PHYCNT_ENABLECLK BIT(4)
43#define PHYCNT_ENABLE_3 BIT(3)
44#define PHYCNT_ENABLE_2 BIT(2)
45#define PHYCNT_ENABLE_1 BIT(1)
46#define PHYCNT_ENABLE_0 BIT(0)
47
48/* Checksum Control */
49#define CHKSUM_REG 0x0c
50#define CHKSUM_ECC_EN BIT(1)
51#define CHKSUM_CRC_EN BIT(0)
52
53/*
54 * Channel Data Type Select
55 * VCDT[0-15]: Channel 0 VCDT[16-31]: Channel 1
56 * VCDT2[0-15]: Channel 2 VCDT2[16-31]: Channel 3
57 */
58#define VCDT_REG 0x10
59#define VCDT2_REG 0x14
60#define VCDT_VCDTN_EN BIT(15)
61#define VCDT_SEL_VC(n) (((n) & 0x3) << 8)
62#define VCDT_SEL_DTN_ON BIT(6)
63#define VCDT_SEL_DT(n) (((n) & 0x3f) << 0)
64
65/* Frame Data Type Select */
66#define FRDT_REG 0x18
67
68/* Field Detection Control */
69#define FLD_REG 0x1c
70#define FLD_FLD_NUM(n) (((n) & 0xff) << 16)
71#define FLD_DET_SEL(n) (((n) & 0x3) << 4)
72#define FLD_FLD_EN4 BIT(3)
73#define FLD_FLD_EN3 BIT(2)
74#define FLD_FLD_EN2 BIT(1)
75#define FLD_FLD_EN BIT(0)
76
77/* Automatic Standby Control */
78#define ASTBY_REG 0x20
79
80/* Long Data Type Setting 0 */
81#define LNGDT0_REG 0x28
82
83/* Long Data Type Setting 1 */
84#define LNGDT1_REG 0x2c
85
86/* Interrupt Enable */
87#define INTEN_REG 0x30
88#define INTEN_INT_AFIFO_OF BIT(27)
89#define INTEN_INT_ERRSOTHS BIT(4)
90#define INTEN_INT_ERRSOTSYNCHS BIT(3)
91
92/* Interrupt Source Mask */
93#define INTCLOSE_REG 0x34
94
95/* Interrupt Status Monitor */
96#define INTSTATE_REG 0x38
97#define INTSTATE_INT_ULPS_START BIT(7)
98#define INTSTATE_INT_ULPS_END BIT(6)
99
100/* Interrupt Error Status Monitor */
101#define INTERRSTATE_REG 0x3c
102
103/* Short Packet Data */
104#define SHPDAT_REG 0x40
105
106/* Short Packet Count */
107#define SHPCNT_REG 0x44
108
109/* LINK Operation Control */
110#define LINKCNT_REG 0x48
111#define LINKCNT_MONITOR_EN BIT(31)
112#define LINKCNT_REG_MONI_PACT_EN BIT(25)
113#define LINKCNT_ICLK_NONSTOP BIT(24)
114
115/* Lane Swap */
116#define LSWAP_REG 0x4c
117#define LSWAP_L3SEL(n) (((n) & 0x3) << 6)
118#define LSWAP_L2SEL(n) (((n) & 0x3) << 4)
119#define LSWAP_L1SEL(n) (((n) & 0x3) << 2)
120#define LSWAP_L0SEL(n) (((n) & 0x3) << 0)
121
122/* PHY Test Interface Write Register */
123#define PHTW_REG 0x50
124#define PHTW_DWEN BIT(24)
125#define PHTW_TESTDIN_DATA(n) (((n & 0xff)) << 16)
126#define PHTW_CWEN BIT(8)
127#define PHTW_TESTDIN_CODE(n) ((n & 0xff))
128
129#define PHYFRX_REG 0x64
130#define PHYFRX_FORCERX_MODE_3 BIT(3)
131#define PHYFRX_FORCERX_MODE_2 BIT(2)
132#define PHYFRX_FORCERX_MODE_1 BIT(1)
133#define PHYFRX_FORCERX_MODE_0 BIT(0)
134
135/* V4H BASE registers */
136#define V4H_N_LANES_REG 0x0004
137#define V4H_CSI2_RESETN_REG 0x0008
138#define V4H_PHY_MODE_REG 0x001c
139#define V4H_PHY_SHUTDOWNZ_REG 0x0040
140#define V4H_DPHY_RSTZ_REG 0x0044
141#define V4H_FLDC_REG 0x0804
142#define V4H_FLDD_REG 0x0808
143#define V4H_IDIC_REG 0x0810
144#define V4H_PHY_EN_REG 0x2000
145
146#define V4H_ST_PHYST_REG 0x2814
147#define V4H_ST_PHYST_ST_PHY_READY BIT(31)
148#define V4H_ST_PHYST_ST_STOPSTATE_3 BIT(3)
149#define V4H_ST_PHYST_ST_STOPSTATE_2 BIT(2)
150#define V4H_ST_PHYST_ST_STOPSTATE_1 BIT(1)
151#define V4H_ST_PHYST_ST_STOPSTATE_0 BIT(0)
152
153/* V4H PPI registers */
154#define V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(n) (0x21800 + ((n) * 2)) /* n = 0 - 9 */
155#define V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG 0x21822
156#define V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG 0x2184c
157#define V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG 0x21c02
158#define V4H_PPI_RW_LPDCOCAL_NREF_REG 0x21c04
159#define V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG 0x21c06
160#define V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG 0x21c0a
161#define V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG 0x21c0c
162#define V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG 0x21c10
163#define V4H_PPI_RW_COMMON_CFG_REG 0x21c6c
164#define V4H_PPI_RW_TERMCAL_CFG_0_REG 0x21c80
165#define V4H_PPI_RW_OFFSETCAL_CFG_0_REG 0x21ca0
166
167/* V4H CORE registers */
168#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(n) (0x22040 + ((n) * 2)) /* n = 0 - 15 */
169#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(n) (0x22440 + ((n) * 2)) /* n = 0 - 15 */
170#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(n) (0x22840 + ((n) * 2)) /* n = 0 - 15 */
171#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(n) (0x22c40 + ((n) * 2)) /* n = 0 - 15 */
172#define V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(n) (0x23040 + ((n) * 2)) /* n = 0 - 15 */
173#define V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(n) (0x23840 + ((n) * 2)) /* n = 0 - 11 */
174#define V4H_CORE_DIG_RW_COMMON_REG(n) (0x23880 + ((n) * 2)) /* n = 0 - 15 */
175#define V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(n) (0x239e0 + ((n) * 2)) /* n = 0 - 3 */
176#define V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG 0x2a400
177#define V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG 0x2a60c
178
179/* V4H C-PHY */
180#define V4H_CORE_DIG_RW_TRIO0_REG(n) (0x22100 + ((n) * 2)) /* n = 0 - 3 */
181#define V4H_CORE_DIG_RW_TRIO1_REG(n) (0x22500 + ((n) * 2)) /* n = 0 - 3 */
182#define V4H_CORE_DIG_RW_TRIO2_REG(n) (0x22900 + ((n) * 2)) /* n = 0 - 3 */
183#define V4H_CORE_DIG_CLANE_0_RW_LP_0_REG 0x2a080
184#define V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(n) (0x2a100 + ((n) * 2)) /* n = 0 - 6 */
185#define V4H_CORE_DIG_CLANE_1_RW_LP_0_REG 0x2a480
186#define V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(n) (0x2a500 + ((n) * 2)) /* n = 0 - 6 */
187#define V4H_CORE_DIG_CLANE_2_RW_LP_0_REG 0x2a880
188#define V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(n) (0x2a900 + ((n) * 2)) /* n = 0 - 6 */
189
190struct rcsi2_cphy_setting {
191 u16 msps;
192 u16 rx2;
193 u16 trio0;
194 u16 trio1;
195 u16 trio2;
196 u16 lane27;
197 u16 lane29;
198};
199
200static const struct rcsi2_cphy_setting cphy_setting_table_r8a779g0[] = {
201 { .msps = 80, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0134, .trio2 = 0x6a, .lane27 = 0x0000, .lane29 = 0x0a24 },
202 { .msps = 100, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x00f5, .trio2 = 0x55, .lane27 = 0x0000, .lane29 = 0x0a24 },
203 { .msps = 200, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0077, .trio2 = 0x2b, .lane27 = 0x0000, .lane29 = 0x0a44 },
204 { .msps = 300, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x004d, .trio2 = 0x1d, .lane27 = 0x0000, .lane29 = 0x0a44 },
205 { .msps = 400, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0038, .trio2 = 0x16, .lane27 = 0x0000, .lane29 = 0x0a64 },
206 { .msps = 500, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x002b, .trio2 = 0x12, .lane27 = 0x0000, .lane29 = 0x0a64 },
207 { .msps = 600, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0023, .trio2 = 0x0f, .lane27 = 0x0000, .lane29 = 0x0a64 },
208 { .msps = 700, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x001d, .trio2 = 0x0d, .lane27 = 0x0000, .lane29 = 0x0a84 },
209 { .msps = 800, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0018, .trio2 = 0x0c, .lane27 = 0x0000, .lane29 = 0x0a84 },
210 { .msps = 900, .rx2 = 0x38, .trio0 = 0x024a, .trio1 = 0x0015, .trio2 = 0x0b, .lane27 = 0x0000, .lane29 = 0x0a84 },
211 { .msps = 1000, .rx2 = 0x3e, .trio0 = 0x024a, .trio1 = 0x0012, .trio2 = 0x0a, .lane27 = 0x0400, .lane29 = 0x0a84 },
212 { .msps = 1100, .rx2 = 0x44, .trio0 = 0x024a, .trio1 = 0x000f, .trio2 = 0x09, .lane27 = 0x0800, .lane29 = 0x0a84 },
213 { .msps = 1200, .rx2 = 0x4a, .trio0 = 0x024a, .trio1 = 0x000e, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0a84 },
214 { .msps = 1300, .rx2 = 0x51, .trio0 = 0x024a, .trio1 = 0x000c, .trio2 = 0x08, .lane27 = 0x0c00, .lane29 = 0x0aa4 },
215 { .msps = 1400, .rx2 = 0x57, .trio0 = 0x024a, .trio1 = 0x000b, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
216 { .msps = 1500, .rx2 = 0x5d, .trio0 = 0x044a, .trio1 = 0x0009, .trio2 = 0x07, .lane27 = 0x1000, .lane29 = 0x0aa4 },
217 { .msps = 1600, .rx2 = 0x63, .trio0 = 0x044a, .trio1 = 0x0008, .trio2 = 0x07, .lane27 = 0x1400, .lane29 = 0x0aa4 },
218 { .msps = 1700, .rx2 = 0x6a, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
219 { .msps = 1800, .rx2 = 0x70, .trio0 = 0x044a, .trio1 = 0x0007, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
220 { .msps = 1900, .rx2 = 0x76, .trio0 = 0x044a, .trio1 = 0x0006, .trio2 = 0x06, .lane27 = 0x1400, .lane29 = 0x0aa4 },
221 { .msps = 2000, .rx2 = 0x7c, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x06, .lane27 = 0x1800, .lane29 = 0x0aa4 },
222 { .msps = 2100, .rx2 = 0x83, .trio0 = 0x044a, .trio1 = 0x0005, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
223 { .msps = 2200, .rx2 = 0x89, .trio0 = 0x064a, .trio1 = 0x0004, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
224 { .msps = 2300, .rx2 = 0x8f, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
225 { .msps = 2400, .rx2 = 0x95, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1800, .lane29 = 0x0aa4 },
226 { .msps = 2500, .rx2 = 0x9c, .trio0 = 0x064a, .trio1 = 0x0003, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0aa4 },
227 { .msps = 2600, .rx2 = 0xa2, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
228 { .msps = 2700, .rx2 = 0xa8, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x05, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
229 { .msps = 2800, .rx2 = 0xae, .trio0 = 0x064a, .trio1 = 0x0002, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
230 { .msps = 2900, .rx2 = 0xb5, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
231 { .msps = 3000, .rx2 = 0xbb, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
232 { .msps = 3100, .rx2 = 0xc1, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
233 { .msps = 3200, .rx2 = 0xc7, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
234 { .msps = 3300, .rx2 = 0xce, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
235 { .msps = 3400, .rx2 = 0xd4, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
236 { .msps = 3500, .rx2 = 0xda, .trio0 = 0x084a, .trio1 = 0x0001, .trio2 = 0x04, .lane27 = 0x1c00, .lane29 = 0x0ad4 },
237 { /* sentinel */ },
238};
239
240struct phtw_value {
241 u16 data;
242 u16 code;
243};
244
245struct rcsi2_mbps_reg {
246 u16 mbps;
247 u16 reg;
248};
249
250static const struct rcsi2_mbps_reg phtw_mbps_v3u[] = {
251 { .mbps = 1500, .reg = 0xcc },
252 { .mbps = 1550, .reg = 0x1d },
253 { .mbps = 1600, .reg = 0x27 },
254 { .mbps = 1650, .reg = 0x30 },
255 { .mbps = 1700, .reg = 0x39 },
256 { .mbps = 1750, .reg = 0x42 },
257 { .mbps = 1800, .reg = 0x4b },
258 { .mbps = 1850, .reg = 0x55 },
259 { .mbps = 1900, .reg = 0x5e },
260 { .mbps = 1950, .reg = 0x67 },
261 { .mbps = 2000, .reg = 0x71 },
262 { .mbps = 2050, .reg = 0x79 },
263 { .mbps = 2100, .reg = 0x83 },
264 { .mbps = 2150, .reg = 0x8c },
265 { .mbps = 2200, .reg = 0x95 },
266 { .mbps = 2250, .reg = 0x9e },
267 { .mbps = 2300, .reg = 0xa7 },
268 { .mbps = 2350, .reg = 0xb0 },
269 { .mbps = 2400, .reg = 0xba },
270 { .mbps = 2450, .reg = 0xc3 },
271 { .mbps = 2500, .reg = 0xcc },
272 { /* sentinel */ },
273};
274
275static const struct rcsi2_mbps_reg phtw_mbps_h3_v3h_m3n[] = {
276 { .mbps = 80, .reg = 0x86 },
277 { .mbps = 90, .reg = 0x86 },
278 { .mbps = 100, .reg = 0x87 },
279 { .mbps = 110, .reg = 0x87 },
280 { .mbps = 120, .reg = 0x88 },
281 { .mbps = 130, .reg = 0x88 },
282 { .mbps = 140, .reg = 0x89 },
283 { .mbps = 150, .reg = 0x89 },
284 { .mbps = 160, .reg = 0x8a },
285 { .mbps = 170, .reg = 0x8a },
286 { .mbps = 180, .reg = 0x8b },
287 { .mbps = 190, .reg = 0x8b },
288 { .mbps = 205, .reg = 0x8c },
289 { .mbps = 220, .reg = 0x8d },
290 { .mbps = 235, .reg = 0x8e },
291 { .mbps = 250, .reg = 0x8e },
292 { /* sentinel */ },
293};
294
295static const struct rcsi2_mbps_reg phtw_mbps_v3m_e3[] = {
296 { .mbps = 80, .reg = 0x00 },
297 { .mbps = 90, .reg = 0x20 },
298 { .mbps = 100, .reg = 0x40 },
299 { .mbps = 110, .reg = 0x02 },
300 { .mbps = 130, .reg = 0x22 },
301 { .mbps = 140, .reg = 0x42 },
302 { .mbps = 150, .reg = 0x04 },
303 { .mbps = 170, .reg = 0x24 },
304 { .mbps = 180, .reg = 0x44 },
305 { .mbps = 200, .reg = 0x06 },
306 { .mbps = 220, .reg = 0x26 },
307 { .mbps = 240, .reg = 0x46 },
308 { .mbps = 250, .reg = 0x08 },
309 { .mbps = 270, .reg = 0x28 },
310 { .mbps = 300, .reg = 0x0a },
311 { .mbps = 330, .reg = 0x2a },
312 { .mbps = 360, .reg = 0x4a },
313 { .mbps = 400, .reg = 0x0c },
314 { .mbps = 450, .reg = 0x2c },
315 { .mbps = 500, .reg = 0x0e },
316 { .mbps = 550, .reg = 0x2e },
317 { .mbps = 600, .reg = 0x10 },
318 { .mbps = 650, .reg = 0x30 },
319 { .mbps = 700, .reg = 0x12 },
320 { .mbps = 750, .reg = 0x32 },
321 { .mbps = 800, .reg = 0x52 },
322 { .mbps = 850, .reg = 0x72 },
323 { .mbps = 900, .reg = 0x14 },
324 { .mbps = 950, .reg = 0x34 },
325 { .mbps = 1000, .reg = 0x54 },
326 { .mbps = 1050, .reg = 0x74 },
327 { .mbps = 1125, .reg = 0x16 },
328 { /* sentinel */ },
329};
330
331/* PHY Test Interface Clear */
332#define PHTC_REG 0x58
333#define PHTC_TESTCLR BIT(0)
334
335/* PHY Frequency Control */
336#define PHYPLL_REG 0x68
337#define PHYPLL_HSFREQRANGE(n) ((n) << 16)
338
339static const struct rcsi2_mbps_reg hsfreqrange_v3u[] = {
340 { .mbps = 80, .reg = 0x00 },
341 { .mbps = 90, .reg = 0x10 },
342 { .mbps = 100, .reg = 0x20 },
343 { .mbps = 110, .reg = 0x30 },
344 { .mbps = 120, .reg = 0x01 },
345 { .mbps = 130, .reg = 0x11 },
346 { .mbps = 140, .reg = 0x21 },
347 { .mbps = 150, .reg = 0x31 },
348 { .mbps = 160, .reg = 0x02 },
349 { .mbps = 170, .reg = 0x12 },
350 { .mbps = 180, .reg = 0x22 },
351 { .mbps = 190, .reg = 0x32 },
352 { .mbps = 205, .reg = 0x03 },
353 { .mbps = 220, .reg = 0x13 },
354 { .mbps = 235, .reg = 0x23 },
355 { .mbps = 250, .reg = 0x33 },
356 { .mbps = 275, .reg = 0x04 },
357 { .mbps = 300, .reg = 0x14 },
358 { .mbps = 325, .reg = 0x25 },
359 { .mbps = 350, .reg = 0x35 },
360 { .mbps = 400, .reg = 0x05 },
361 { .mbps = 450, .reg = 0x16 },
362 { .mbps = 500, .reg = 0x26 },
363 { .mbps = 550, .reg = 0x37 },
364 { .mbps = 600, .reg = 0x07 },
365 { .mbps = 650, .reg = 0x18 },
366 { .mbps = 700, .reg = 0x28 },
367 { .mbps = 750, .reg = 0x39 },
368 { .mbps = 800, .reg = 0x09 },
369 { .mbps = 850, .reg = 0x19 },
370 { .mbps = 900, .reg = 0x29 },
371 { .mbps = 950, .reg = 0x3a },
372 { .mbps = 1000, .reg = 0x0a },
373 { .mbps = 1050, .reg = 0x1a },
374 { .mbps = 1100, .reg = 0x2a },
375 { .mbps = 1150, .reg = 0x3b },
376 { .mbps = 1200, .reg = 0x0b },
377 { .mbps = 1250, .reg = 0x1b },
378 { .mbps = 1300, .reg = 0x2b },
379 { .mbps = 1350, .reg = 0x3c },
380 { .mbps = 1400, .reg = 0x0c },
381 { .mbps = 1450, .reg = 0x1c },
382 { .mbps = 1500, .reg = 0x2c },
383 { .mbps = 1550, .reg = 0x3d },
384 { .mbps = 1600, .reg = 0x0d },
385 { .mbps = 1650, .reg = 0x1d },
386 { .mbps = 1700, .reg = 0x2e },
387 { .mbps = 1750, .reg = 0x3e },
388 { .mbps = 1800, .reg = 0x0e },
389 { .mbps = 1850, .reg = 0x1e },
390 { .mbps = 1900, .reg = 0x2f },
391 { .mbps = 1950, .reg = 0x3f },
392 { .mbps = 2000, .reg = 0x0f },
393 { .mbps = 2050, .reg = 0x40 },
394 { .mbps = 2100, .reg = 0x41 },
395 { .mbps = 2150, .reg = 0x42 },
396 { .mbps = 2200, .reg = 0x43 },
397 { .mbps = 2300, .reg = 0x45 },
398 { .mbps = 2350, .reg = 0x46 },
399 { .mbps = 2400, .reg = 0x47 },
400 { .mbps = 2450, .reg = 0x48 },
401 { .mbps = 2500, .reg = 0x49 },
402 { /* sentinel */ },
403};
404
405static const struct rcsi2_mbps_reg hsfreqrange_h3_v3h_m3n[] = {
406 { .mbps = 80, .reg = 0x00 },
407 { .mbps = 90, .reg = 0x10 },
408 { .mbps = 100, .reg = 0x20 },
409 { .mbps = 110, .reg = 0x30 },
410 { .mbps = 120, .reg = 0x01 },
411 { .mbps = 130, .reg = 0x11 },
412 { .mbps = 140, .reg = 0x21 },
413 { .mbps = 150, .reg = 0x31 },
414 { .mbps = 160, .reg = 0x02 },
415 { .mbps = 170, .reg = 0x12 },
416 { .mbps = 180, .reg = 0x22 },
417 { .mbps = 190, .reg = 0x32 },
418 { .mbps = 205, .reg = 0x03 },
419 { .mbps = 220, .reg = 0x13 },
420 { .mbps = 235, .reg = 0x23 },
421 { .mbps = 250, .reg = 0x33 },
422 { .mbps = 275, .reg = 0x04 },
423 { .mbps = 300, .reg = 0x14 },
424 { .mbps = 325, .reg = 0x25 },
425 { .mbps = 350, .reg = 0x35 },
426 { .mbps = 400, .reg = 0x05 },
427 { .mbps = 450, .reg = 0x16 },
428 { .mbps = 500, .reg = 0x26 },
429 { .mbps = 550, .reg = 0x37 },
430 { .mbps = 600, .reg = 0x07 },
431 { .mbps = 650, .reg = 0x18 },
432 { .mbps = 700, .reg = 0x28 },
433 { .mbps = 750, .reg = 0x39 },
434 { .mbps = 800, .reg = 0x09 },
435 { .mbps = 850, .reg = 0x19 },
436 { .mbps = 900, .reg = 0x29 },
437 { .mbps = 950, .reg = 0x3a },
438 { .mbps = 1000, .reg = 0x0a },
439 { .mbps = 1050, .reg = 0x1a },
440 { .mbps = 1100, .reg = 0x2a },
441 { .mbps = 1150, .reg = 0x3b },
442 { .mbps = 1200, .reg = 0x0b },
443 { .mbps = 1250, .reg = 0x1b },
444 { .mbps = 1300, .reg = 0x2b },
445 { .mbps = 1350, .reg = 0x3c },
446 { .mbps = 1400, .reg = 0x0c },
447 { .mbps = 1450, .reg = 0x1c },
448 { .mbps = 1500, .reg = 0x2c },
449 { /* sentinel */ },
450};
451
452static const struct rcsi2_mbps_reg hsfreqrange_m3w[] = {
453 { .mbps = 80, .reg = 0x00 },
454 { .mbps = 90, .reg = 0x10 },
455 { .mbps = 100, .reg = 0x20 },
456 { .mbps = 110, .reg = 0x30 },
457 { .mbps = 120, .reg = 0x01 },
458 { .mbps = 130, .reg = 0x11 },
459 { .mbps = 140, .reg = 0x21 },
460 { .mbps = 150, .reg = 0x31 },
461 { .mbps = 160, .reg = 0x02 },
462 { .mbps = 170, .reg = 0x12 },
463 { .mbps = 180, .reg = 0x22 },
464 { .mbps = 190, .reg = 0x32 },
465 { .mbps = 205, .reg = 0x03 },
466 { .mbps = 220, .reg = 0x13 },
467 { .mbps = 235, .reg = 0x23 },
468 { .mbps = 250, .reg = 0x33 },
469 { .mbps = 275, .reg = 0x04 },
470 { .mbps = 300, .reg = 0x14 },
471 { .mbps = 325, .reg = 0x05 },
472 { .mbps = 350, .reg = 0x15 },
473 { .mbps = 400, .reg = 0x25 },
474 { .mbps = 450, .reg = 0x06 },
475 { .mbps = 500, .reg = 0x16 },
476 { .mbps = 550, .reg = 0x07 },
477 { .mbps = 600, .reg = 0x17 },
478 { .mbps = 650, .reg = 0x08 },
479 { .mbps = 700, .reg = 0x18 },
480 { .mbps = 750, .reg = 0x09 },
481 { .mbps = 800, .reg = 0x19 },
482 { .mbps = 850, .reg = 0x29 },
483 { .mbps = 900, .reg = 0x39 },
484 { .mbps = 950, .reg = 0x0a },
485 { .mbps = 1000, .reg = 0x1a },
486 { .mbps = 1050, .reg = 0x2a },
487 { .mbps = 1100, .reg = 0x3a },
488 { .mbps = 1150, .reg = 0x0b },
489 { .mbps = 1200, .reg = 0x1b },
490 { .mbps = 1250, .reg = 0x2b },
491 { .mbps = 1300, .reg = 0x3b },
492 { .mbps = 1350, .reg = 0x0c },
493 { .mbps = 1400, .reg = 0x1c },
494 { .mbps = 1450, .reg = 0x2c },
495 { .mbps = 1500, .reg = 0x3c },
496 { /* sentinel */ },
497};
498
499/* PHY ESC Error Monitor */
500#define PHEERM_REG 0x74
501
502/* PHY Clock Lane Monitor */
503#define PHCLM_REG 0x78
504#define PHCLM_STOPSTATECKL BIT(0)
505
506/* PHY Data Lane Monitor */
507#define PHDLM_REG 0x7c
508
509/* CSI0CLK Frequency Configuration Preset Register */
510#define CSI0CLKFCPR_REG 0x260
511#define CSI0CLKFREQRANGE(n) ((n & 0x3f) << 16)
512
513struct rcar_csi2_format {
514 u32 code;
515 unsigned int datatype;
516 unsigned int bpp;
517};
518
519static const struct rcar_csi2_format rcar_csi2_formats[] = {
520 {
521 .code = MEDIA_BUS_FMT_RGB888_1X24,
522 .datatype = MIPI_CSI2_DT_RGB888,
523 .bpp = 24,
524 }, {
525 .code = MEDIA_BUS_FMT_UYVY8_1X16,
526 .datatype = MIPI_CSI2_DT_YUV422_8B,
527 .bpp = 16,
528 }, {
529 .code = MEDIA_BUS_FMT_YUYV8_1X16,
530 .datatype = MIPI_CSI2_DT_YUV422_8B,
531 .bpp = 16,
532 }, {
533 .code = MEDIA_BUS_FMT_UYVY8_2X8,
534 .datatype = MIPI_CSI2_DT_YUV422_8B,
535 .bpp = 16,
536 }, {
537 .code = MEDIA_BUS_FMT_YUYV10_2X10,
538 .datatype = MIPI_CSI2_DT_YUV422_8B,
539 .bpp = 20,
540 }, {
541 .code = MEDIA_BUS_FMT_Y10_1X10,
542 .datatype = MIPI_CSI2_DT_RAW10,
543 .bpp = 10,
544 }, {
545 .code = MEDIA_BUS_FMT_SBGGR8_1X8,
546 .datatype = MIPI_CSI2_DT_RAW8,
547 .bpp = 8,
548 }, {
549 .code = MEDIA_BUS_FMT_SGBRG8_1X8,
550 .datatype = MIPI_CSI2_DT_RAW8,
551 .bpp = 8,
552 }, {
553 .code = MEDIA_BUS_FMT_SGRBG8_1X8,
554 .datatype = MIPI_CSI2_DT_RAW8,
555 .bpp = 8,
556 }, {
557 .code = MEDIA_BUS_FMT_SRGGB8_1X8,
558 .datatype = MIPI_CSI2_DT_RAW8,
559 .bpp = 8,
560 }, {
561 .code = MEDIA_BUS_FMT_Y8_1X8,
562 .datatype = MIPI_CSI2_DT_RAW8,
563 .bpp = 8,
564 },
565};
566
567static const struct rcar_csi2_format *rcsi2_code_to_fmt(unsigned int code)
568{
569 unsigned int i;
570
571 for (i = 0; i < ARRAY_SIZE(rcar_csi2_formats); i++)
572 if (rcar_csi2_formats[i].code == code)
573 return &rcar_csi2_formats[i];
574
575 return NULL;
576}
577
578enum rcar_csi2_pads {
579 RCAR_CSI2_SINK,
580 RCAR_CSI2_SOURCE_VC0,
581 RCAR_CSI2_SOURCE_VC1,
582 RCAR_CSI2_SOURCE_VC2,
583 RCAR_CSI2_SOURCE_VC3,
584 NR_OF_RCAR_CSI2_PAD,
585};
586
587struct rcar_csi2_info {
588 int (*init_phtw)(struct rcar_csi2 *priv, unsigned int mbps);
589 int (*phy_post_init)(struct rcar_csi2 *priv);
590 int (*start_receiver)(struct rcar_csi2 *priv);
591 void (*enter_standby)(struct rcar_csi2 *priv);
592 const struct rcsi2_mbps_reg *hsfreqrange;
593 unsigned int csi0clkfreqrange;
594 unsigned int num_channels;
595 bool clear_ulps;
596 bool use_isp;
597 bool support_dphy;
598 bool support_cphy;
599};
600
601struct rcar_csi2 {
602 struct device *dev;
603 void __iomem *base;
604 const struct rcar_csi2_info *info;
605 struct reset_control *rstc;
606
607 struct v4l2_subdev subdev;
608 struct media_pad pads[NR_OF_RCAR_CSI2_PAD];
609
610 struct v4l2_async_notifier notifier;
611 struct v4l2_subdev *remote;
612 unsigned int remote_pad;
613
614 int channel_vc[4];
615
616 struct mutex lock; /* Protects mf and stream_count. */
617 struct v4l2_mbus_framefmt mf;
618 int stream_count;
619
620 bool cphy;
621 unsigned short lanes;
622 unsigned char lane_swap[4];
623};
624
625static inline struct rcar_csi2 *sd_to_csi2(struct v4l2_subdev *sd)
626{
627 return container_of(sd, struct rcar_csi2, subdev);
628}
629
630static inline struct rcar_csi2 *notifier_to_csi2(struct v4l2_async_notifier *n)
631{
632 return container_of(n, struct rcar_csi2, notifier);
633}
634
635static u32 rcsi2_read(struct rcar_csi2 *priv, unsigned int reg)
636{
637 return ioread32(priv->base + reg);
638}
639
640static void rcsi2_write(struct rcar_csi2 *priv, unsigned int reg, u32 data)
641{
642 iowrite32(data, priv->base + reg);
643}
644
645static void rcsi2_write16(struct rcar_csi2 *priv, unsigned int reg, u16 data)
646{
647 iowrite16(data, priv->base + reg);
648}
649
650static void rcsi2_enter_standby_gen3(struct rcar_csi2 *priv)
651{
652 rcsi2_write(priv, PHYCNT_REG, data: 0);
653 rcsi2_write(priv, PHTC_REG, PHTC_TESTCLR);
654}
655
656static void rcsi2_enter_standby(struct rcar_csi2 *priv)
657{
658 if (priv->info->enter_standby)
659 priv->info->enter_standby(priv);
660
661 reset_control_assert(rstc: priv->rstc);
662 usleep_range(min: 100, max: 150);
663 pm_runtime_put(dev: priv->dev);
664}
665
666static int rcsi2_exit_standby(struct rcar_csi2 *priv)
667{
668 int ret;
669
670 ret = pm_runtime_resume_and_get(dev: priv->dev);
671 if (ret < 0)
672 return ret;
673
674 reset_control_deassert(rstc: priv->rstc);
675
676 return 0;
677}
678
679static int rcsi2_wait_phy_start(struct rcar_csi2 *priv,
680 unsigned int lanes)
681{
682 unsigned int timeout;
683
684 /* Wait for the clock and data lanes to enter LP-11 state. */
685 for (timeout = 0; timeout <= 20; timeout++) {
686 const u32 lane_mask = (1 << lanes) - 1;
687
688 if ((rcsi2_read(priv, PHCLM_REG) & PHCLM_STOPSTATECKL) &&
689 (rcsi2_read(priv, PHDLM_REG) & lane_mask) == lane_mask)
690 return 0;
691
692 usleep_range(min: 1000, max: 2000);
693 }
694
695 dev_err(priv->dev, "Timeout waiting for LP-11 state\n");
696
697 return -ETIMEDOUT;
698}
699
700static int rcsi2_set_phypll(struct rcar_csi2 *priv, unsigned int mbps)
701{
702 const struct rcsi2_mbps_reg *hsfreq;
703 const struct rcsi2_mbps_reg *hsfreq_prev = NULL;
704
705 if (mbps < priv->info->hsfreqrange->mbps)
706 dev_warn(priv->dev, "%u Mbps less than min PHY speed %u Mbps",
707 mbps, priv->info->hsfreqrange->mbps);
708
709 for (hsfreq = priv->info->hsfreqrange; hsfreq->mbps != 0; hsfreq++) {
710 if (hsfreq->mbps >= mbps)
711 break;
712 hsfreq_prev = hsfreq;
713 }
714
715 if (!hsfreq->mbps) {
716 dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
717 return -ERANGE;
718 }
719
720 if (hsfreq_prev &&
721 ((mbps - hsfreq_prev->mbps) <= (hsfreq->mbps - mbps)))
722 hsfreq = hsfreq_prev;
723
724 rcsi2_write(priv, PHYPLL_REG, PHYPLL_HSFREQRANGE(hsfreq->reg));
725
726 return 0;
727}
728
729static int rcsi2_calc_mbps(struct rcar_csi2 *priv, unsigned int bpp,
730 unsigned int lanes)
731{
732 struct v4l2_subdev *source;
733 struct v4l2_ctrl *ctrl;
734 u64 mbps;
735
736 if (!priv->remote)
737 return -ENODEV;
738
739 source = priv->remote;
740
741 /* Read the pixel rate control from remote. */
742 ctrl = v4l2_ctrl_find(hdl: source->ctrl_handler, V4L2_CID_PIXEL_RATE);
743 if (!ctrl) {
744 dev_err(priv->dev, "no pixel rate control in subdev %s\n",
745 source->name);
746 return -EINVAL;
747 }
748
749 /*
750 * Calculate the phypll in mbps.
751 * link_freq = (pixel_rate * bits_per_sample) / (2 * nr_of_lanes)
752 * bps = link_freq * 2
753 */
754 mbps = v4l2_ctrl_g_ctrl_int64(ctrl) * bpp;
755 do_div(mbps, lanes * 1000000);
756
757 /* Adjust for C-PHY, divide by 2.8. */
758 if (priv->cphy)
759 mbps = div_u64(dividend: mbps * 5, divisor: 14);
760
761 return mbps;
762}
763
764static int rcsi2_get_active_lanes(struct rcar_csi2 *priv,
765 unsigned int *lanes)
766{
767 struct v4l2_mbus_config mbus_config = { 0 };
768 int ret;
769
770 *lanes = priv->lanes;
771
772 ret = v4l2_subdev_call(priv->remote, pad, get_mbus_config,
773 priv->remote_pad, &mbus_config);
774 if (ret == -ENOIOCTLCMD) {
775 dev_dbg(priv->dev, "No remote mbus configuration available\n");
776 return 0;
777 }
778
779 if (ret) {
780 dev_err(priv->dev, "Failed to get remote mbus configuration\n");
781 return ret;
782 }
783
784 switch (mbus_config.type) {
785 case V4L2_MBUS_CSI2_CPHY:
786 if (!priv->cphy)
787 return -EINVAL;
788 break;
789 case V4L2_MBUS_CSI2_DPHY:
790 if (priv->cphy)
791 return -EINVAL;
792 break;
793 default:
794 dev_err(priv->dev, "Unsupported media bus type %u\n",
795 mbus_config.type);
796 return -EINVAL;
797 }
798
799 if (mbus_config.bus.mipi_csi2.num_data_lanes > priv->lanes) {
800 dev_err(priv->dev,
801 "Unsupported mbus config: too many data lanes %u\n",
802 mbus_config.bus.mipi_csi2.num_data_lanes);
803 return -EINVAL;
804 }
805
806 *lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
807
808 return 0;
809}
810
811static int rcsi2_start_receiver_gen3(struct rcar_csi2 *priv)
812{
813 const struct rcar_csi2_format *format;
814 u32 phycnt, vcdt = 0, vcdt2 = 0, fld = 0;
815 unsigned int lanes;
816 unsigned int i;
817 int mbps, ret;
818
819 dev_dbg(priv->dev, "Input size (%ux%u%c)\n",
820 priv->mf.width, priv->mf.height,
821 priv->mf.field == V4L2_FIELD_NONE ? 'p' : 'i');
822
823 /* Code is validated in set_fmt. */
824 format = rcsi2_code_to_fmt(code: priv->mf.code);
825 if (!format)
826 return -EINVAL;
827
828 /*
829 * Enable all supported CSI-2 channels with virtual channel and
830 * data type matching.
831 *
832 * NOTE: It's not possible to get individual datatype for each
833 * source virtual channel. Once this is possible in V4L2
834 * it should be used here.
835 */
836 for (i = 0; i < priv->info->num_channels; i++) {
837 u32 vcdt_part;
838
839 if (priv->channel_vc[i] < 0)
840 continue;
841
842 vcdt_part = VCDT_SEL_VC(priv->channel_vc[i]) | VCDT_VCDTN_EN |
843 VCDT_SEL_DTN_ON | VCDT_SEL_DT(format->datatype);
844
845 /* Store in correct reg and offset. */
846 if (i < 2)
847 vcdt |= vcdt_part << ((i % 2) * 16);
848 else
849 vcdt2 |= vcdt_part << ((i % 2) * 16);
850 }
851
852 if (priv->mf.field == V4L2_FIELD_ALTERNATE) {
853 fld = FLD_DET_SEL(1) | FLD_FLD_EN4 | FLD_FLD_EN3 | FLD_FLD_EN2
854 | FLD_FLD_EN;
855
856 if (priv->mf.height == 240)
857 fld |= FLD_FLD_NUM(0);
858 else
859 fld |= FLD_FLD_NUM(1);
860 }
861
862 /*
863 * Get the number of active data lanes inspecting the remote mbus
864 * configuration.
865 */
866 ret = rcsi2_get_active_lanes(priv, lanes: &lanes);
867 if (ret)
868 return ret;
869
870 phycnt = PHYCNT_ENABLECLK;
871 phycnt |= (1 << lanes) - 1;
872
873 mbps = rcsi2_calc_mbps(priv, bpp: format->bpp, lanes);
874 if (mbps < 0)
875 return mbps;
876
877 /* Enable interrupts. */
878 rcsi2_write(priv, INTEN_REG, INTEN_INT_AFIFO_OF | INTEN_INT_ERRSOTHS
879 | INTEN_INT_ERRSOTSYNCHS);
880
881 /* Init */
882 rcsi2_write(priv, TREF_REG, TREF_TREF);
883 rcsi2_write(priv, PHTC_REG, data: 0);
884
885 /* Configure */
886 if (!priv->info->use_isp) {
887 rcsi2_write(priv, VCDT_REG, data: vcdt);
888 if (vcdt2)
889 rcsi2_write(priv, VCDT2_REG, data: vcdt2);
890 }
891
892 /* Lanes are zero indexed. */
893 rcsi2_write(priv, LSWAP_REG,
894 LSWAP_L0SEL(priv->lane_swap[0] - 1) |
895 LSWAP_L1SEL(priv->lane_swap[1] - 1) |
896 LSWAP_L2SEL(priv->lane_swap[2] - 1) |
897 LSWAP_L3SEL(priv->lane_swap[3] - 1));
898
899 /* Start */
900 if (priv->info->init_phtw) {
901 ret = priv->info->init_phtw(priv, mbps);
902 if (ret)
903 return ret;
904 }
905
906 if (priv->info->hsfreqrange) {
907 ret = rcsi2_set_phypll(priv, mbps);
908 if (ret)
909 return ret;
910 }
911
912 if (priv->info->csi0clkfreqrange)
913 rcsi2_write(priv, CSI0CLKFCPR_REG,
914 CSI0CLKFREQRANGE(priv->info->csi0clkfreqrange));
915
916 if (priv->info->use_isp)
917 rcsi2_write(priv, PHYFRX_REG,
918 PHYFRX_FORCERX_MODE_3 | PHYFRX_FORCERX_MODE_2 |
919 PHYFRX_FORCERX_MODE_1 | PHYFRX_FORCERX_MODE_0);
920
921 rcsi2_write(priv, PHYCNT_REG, data: phycnt);
922 rcsi2_write(priv, LINKCNT_REG, LINKCNT_MONITOR_EN |
923 LINKCNT_REG_MONI_PACT_EN | LINKCNT_ICLK_NONSTOP);
924 rcsi2_write(priv, FLD_REG, data: fld);
925 rcsi2_write(priv, PHYCNT_REG, data: phycnt | PHYCNT_SHUTDOWNZ);
926 rcsi2_write(priv, PHYCNT_REG, data: phycnt | PHYCNT_SHUTDOWNZ | PHYCNT_RSTZ);
927
928 ret = rcsi2_wait_phy_start(priv, lanes);
929 if (ret)
930 return ret;
931
932 if (priv->info->use_isp)
933 rcsi2_write(priv, PHYFRX_REG, data: 0);
934
935 /* Run post PHY start initialization, if needed. */
936 if (priv->info->phy_post_init) {
937 ret = priv->info->phy_post_init(priv);
938 if (ret)
939 return ret;
940 }
941
942 /* Clear Ultra Low Power interrupt. */
943 if (priv->info->clear_ulps)
944 rcsi2_write(priv, INTSTATE_REG,
945 INTSTATE_INT_ULPS_START |
946 INTSTATE_INT_ULPS_END);
947 return 0;
948}
949
950static int rcsi2_wait_phy_start_v4h(struct rcar_csi2 *priv, u32 match)
951{
952 unsigned int timeout;
953 u32 status;
954
955 for (timeout = 0; timeout <= 10; timeout++) {
956 status = rcsi2_read(priv, V4H_ST_PHYST_REG);
957 if ((status & match) == match)
958 return 0;
959
960 usleep_range(min: 1000, max: 2000);
961 }
962
963 return -ETIMEDOUT;
964}
965
966static int rcsi2_c_phy_setting_v4h(struct rcar_csi2 *priv, int msps)
967{
968 const struct rcsi2_cphy_setting *conf;
969
970 for (conf = cphy_setting_table_r8a779g0; conf->msps != 0; conf++) {
971 if (conf->msps > msps)
972 break;
973 }
974
975 if (!conf->msps) {
976 dev_err(priv->dev, "Unsupported PHY speed for msps setting (%u Msps)", msps);
977 return -ERANGE;
978 }
979
980 /* C-PHY specific */
981 rcsi2_write16(priv, V4H_CORE_DIG_RW_COMMON_REG(7), data: 0x0155);
982 rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(7), data: 0x0068);
983 rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(8), data: 0x0010);
984
985 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_LP_0_REG, data: 0x463c);
986 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_LP_0_REG, data: 0x463c);
987 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_LP_0_REG, data: 0x463c);
988
989 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(0), data: 0x00d5);
990 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(0), data: 0x00d5);
991 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(0), data: 0x00d5);
992
993 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(1), data: 0x0013);
994 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(1), data: 0x0013);
995 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(1), data: 0x0013);
996
997 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(5), data: 0x0013);
998 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(5), data: 0x0013);
999 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(5), data: 0x0013);
1000
1001 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(6), data: 0x000a);
1002 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(6), data: 0x000a);
1003 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(6), data: 0x000a);
1004
1005 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_0_RW_HS_RX_REG(2), data: conf->rx2);
1006 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_RX_REG(2), data: conf->rx2);
1007 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_2_RW_HS_RX_REG(2), data: conf->rx2);
1008
1009 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(2), data: 0x0001);
1010 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE1_CTRL_2_REG(2), data: 0);
1011 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE2_CTRL_2_REG(2), data: 0x0001);
1012 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE3_CTRL_2_REG(2), data: 0x0001);
1013 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE4_CTRL_2_REG(2), data: 0);
1014
1015 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(0), data: conf->trio0);
1016 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(0), data: conf->trio0);
1017 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(0), data: conf->trio0);
1018
1019 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(2), data: conf->trio2);
1020 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(2), data: conf->trio2);
1021 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(2), data: conf->trio2);
1022
1023 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO0_REG(1), data: conf->trio1);
1024 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO1_REG(1), data: conf->trio1);
1025 rcsi2_write16(priv, V4H_CORE_DIG_RW_TRIO2_REG(1), data: conf->trio1);
1026
1027 /*
1028 * Configure pin-swap.
1029 * TODO: This registers is not documented yet, the values should depend
1030 * on the 'clock-lanes' and 'data-lanes' devicetree properties.
1031 */
1032 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_CFG_0_REG, data: 0xf5);
1033 rcsi2_write16(priv, V4H_CORE_DIG_CLANE_1_RW_HS_TX_6_REG, data: 0x5000);
1034
1035 /* Leave Shutdown mode */
1036 rcsi2_write(priv, V4H_DPHY_RSTZ_REG, BIT(0));
1037 rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, BIT(0));
1038
1039 /* Wait for calibration */
1040 if (rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_PHY_READY)) {
1041 dev_err(priv->dev, "PHY calibration failed\n");
1042 return -ETIMEDOUT;
1043 }
1044
1045 /* C-PHY setting - analog programing*/
1046 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(9), data: conf->lane29);
1047 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_LANE0_CTRL_2_REG(7), data: conf->lane27);
1048
1049 return 0;
1050}
1051
1052static int rcsi2_start_receiver_v4h(struct rcar_csi2 *priv)
1053{
1054 const struct rcar_csi2_format *format;
1055 unsigned int lanes;
1056 int msps;
1057 int ret;
1058
1059 /* Calculate parameters */
1060 format = rcsi2_code_to_fmt(code: priv->mf.code);
1061 if (!format)
1062 return -EINVAL;
1063
1064 ret = rcsi2_get_active_lanes(priv, lanes: &lanes);
1065 if (ret)
1066 return ret;
1067
1068 msps = rcsi2_calc_mbps(priv, bpp: format->bpp, lanes);
1069 if (msps < 0)
1070 return msps;
1071
1072 /* Reset LINK and PHY*/
1073 rcsi2_write(priv, V4H_CSI2_RESETN_REG, data: 0);
1074 rcsi2_write(priv, V4H_DPHY_RSTZ_REG, data: 0);
1075 rcsi2_write(priv, V4H_PHY_SHUTDOWNZ_REG, data: 0);
1076
1077 /* PHY static setting */
1078 rcsi2_write(priv, V4H_PHY_EN_REG, BIT(0));
1079 rcsi2_write(priv, V4H_FLDC_REG, data: 0);
1080 rcsi2_write(priv, V4H_FLDD_REG, data: 0);
1081 rcsi2_write(priv, V4H_IDIC_REG, data: 0);
1082 rcsi2_write(priv, V4H_PHY_MODE_REG, BIT(0));
1083 rcsi2_write(priv, V4H_N_LANES_REG, data: lanes - 1);
1084
1085 /* Reset CSI2 */
1086 rcsi2_write(priv, V4H_CSI2_RESETN_REG, BIT(0));
1087
1088 /* Registers static setting through APB */
1089 /* Common setting */
1090 rcsi2_write16(priv, V4H_CORE_DIG_ANACTRL_RW_COMMON_ANACTRL_REG(0), data: 0x1bfd);
1091 rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_STARTUP_1_1_REG, data: 0x0233);
1092 rcsi2_write16(priv, V4H_PPI_STARTUP_RW_COMMON_DPHY_REG(6), data: 0x0027);
1093 rcsi2_write16(priv, V4H_PPI_CALIBCTRL_RW_COMMON_BG_0_REG, data: 0x01f4);
1094 rcsi2_write16(priv, V4H_PPI_RW_TERMCAL_CFG_0_REG, data: 0x0013);
1095 rcsi2_write16(priv, V4H_PPI_RW_OFFSETCAL_CFG_0_REG, data: 0x0003);
1096 rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TIMEBASE_REG, data: 0x004f);
1097 rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_REG, data: 0x0320);
1098 rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_NREF_RANGE_REG, data: 0x000f);
1099 rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_TWAIT_CONFIG_REG, data: 0xfe18);
1100 rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_VT_CONFIG_REG, data: 0x0c3c);
1101 rcsi2_write16(priv, V4H_PPI_RW_LPDCOCAL_COARSE_CFG_REG, data: 0x0105);
1102 rcsi2_write16(priv, V4H_CORE_DIG_IOCTRL_RW_AFE_CB_CTRL_2_REG(6), data: 0x1000);
1103 rcsi2_write16(priv, V4H_PPI_RW_COMMON_CFG_REG, data: 0x0003);
1104
1105 /* C-PHY settings */
1106 ret = rcsi2_c_phy_setting_v4h(priv, msps);
1107 if (ret)
1108 return ret;
1109
1110 rcsi2_wait_phy_start_v4h(priv, V4H_ST_PHYST_ST_STOPSTATE_0 |
1111 V4H_ST_PHYST_ST_STOPSTATE_1 |
1112 V4H_ST_PHYST_ST_STOPSTATE_2);
1113
1114 return 0;
1115}
1116
1117static int rcsi2_start(struct rcar_csi2 *priv)
1118{
1119 int ret;
1120
1121 ret = rcsi2_exit_standby(priv);
1122 if (ret < 0)
1123 return ret;
1124
1125 ret = priv->info->start_receiver(priv);
1126 if (ret) {
1127 rcsi2_enter_standby(priv);
1128 return ret;
1129 }
1130
1131 ret = v4l2_subdev_call(priv->remote, video, s_stream, 1);
1132 if (ret) {
1133 rcsi2_enter_standby(priv);
1134 return ret;
1135 }
1136
1137 return 0;
1138}
1139
1140static void rcsi2_stop(struct rcar_csi2 *priv)
1141{
1142 rcsi2_enter_standby(priv);
1143 v4l2_subdev_call(priv->remote, video, s_stream, 0);
1144}
1145
1146static int rcsi2_s_stream(struct v4l2_subdev *sd, int enable)
1147{
1148 struct rcar_csi2 *priv = sd_to_csi2(sd);
1149 int ret = 0;
1150
1151 mutex_lock(&priv->lock);
1152
1153 if (!priv->remote) {
1154 ret = -ENODEV;
1155 goto out;
1156 }
1157
1158 if (enable && priv->stream_count == 0) {
1159 ret = rcsi2_start(priv);
1160 if (ret)
1161 goto out;
1162 } else if (!enable && priv->stream_count == 1) {
1163 rcsi2_stop(priv);
1164 }
1165
1166 priv->stream_count += enable ? 1 : -1;
1167out:
1168 mutex_unlock(lock: &priv->lock);
1169
1170 return ret;
1171}
1172
1173static int rcsi2_set_pad_format(struct v4l2_subdev *sd,
1174 struct v4l2_subdev_state *sd_state,
1175 struct v4l2_subdev_format *format)
1176{
1177 struct rcar_csi2 *priv = sd_to_csi2(sd);
1178 struct v4l2_mbus_framefmt *framefmt;
1179
1180 mutex_lock(&priv->lock);
1181
1182 if (!rcsi2_code_to_fmt(code: format->format.code))
1183 format->format.code = rcar_csi2_formats[0].code;
1184
1185 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
1186 priv->mf = format->format;
1187 } else {
1188 framefmt = v4l2_subdev_state_get_format(sd_state, 0);
1189 *framefmt = format->format;
1190 }
1191
1192 mutex_unlock(lock: &priv->lock);
1193
1194 return 0;
1195}
1196
1197static int rcsi2_get_pad_format(struct v4l2_subdev *sd,
1198 struct v4l2_subdev_state *sd_state,
1199 struct v4l2_subdev_format *format)
1200{
1201 struct rcar_csi2 *priv = sd_to_csi2(sd);
1202
1203 mutex_lock(&priv->lock);
1204
1205 if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE)
1206 format->format = priv->mf;
1207 else
1208 format->format = *v4l2_subdev_state_get_format(sd_state, 0);
1209
1210 mutex_unlock(lock: &priv->lock);
1211
1212 return 0;
1213}
1214
1215static const struct v4l2_subdev_video_ops rcar_csi2_video_ops = {
1216 .s_stream = rcsi2_s_stream,
1217};
1218
1219static const struct v4l2_subdev_pad_ops rcar_csi2_pad_ops = {
1220 .set_fmt = rcsi2_set_pad_format,
1221 .get_fmt = rcsi2_get_pad_format,
1222};
1223
1224static const struct v4l2_subdev_ops rcar_csi2_subdev_ops = {
1225 .video = &rcar_csi2_video_ops,
1226 .pad = &rcar_csi2_pad_ops,
1227};
1228
1229static irqreturn_t rcsi2_irq(int irq, void *data)
1230{
1231 struct rcar_csi2 *priv = data;
1232 u32 status, err_status;
1233
1234 status = rcsi2_read(priv, INTSTATE_REG);
1235 err_status = rcsi2_read(priv, INTERRSTATE_REG);
1236
1237 if (!status)
1238 return IRQ_HANDLED;
1239
1240 rcsi2_write(priv, INTSTATE_REG, data: status);
1241
1242 if (!err_status)
1243 return IRQ_HANDLED;
1244
1245 rcsi2_write(priv, INTERRSTATE_REG, data: err_status);
1246
1247 dev_info(priv->dev, "Transfer error, restarting CSI-2 receiver\n");
1248
1249 return IRQ_WAKE_THREAD;
1250}
1251
1252static irqreturn_t rcsi2_irq_thread(int irq, void *data)
1253{
1254 struct rcar_csi2 *priv = data;
1255
1256 mutex_lock(&priv->lock);
1257 rcsi2_stop(priv);
1258 usleep_range(min: 1000, max: 2000);
1259 if (rcsi2_start(priv))
1260 dev_warn(priv->dev, "Failed to restart CSI-2 receiver\n");
1261 mutex_unlock(lock: &priv->lock);
1262
1263 return IRQ_HANDLED;
1264}
1265
1266/* -----------------------------------------------------------------------------
1267 * Async handling and registration of subdevices and links.
1268 */
1269
1270static int rcsi2_notify_bound(struct v4l2_async_notifier *notifier,
1271 struct v4l2_subdev *subdev,
1272 struct v4l2_async_connection *asc)
1273{
1274 struct rcar_csi2 *priv = notifier_to_csi2(n: notifier);
1275 int pad;
1276
1277 pad = media_entity_get_fwnode_pad(entity: &subdev->entity, fwnode: asc->match.fwnode,
1278 MEDIA_PAD_FL_SOURCE);
1279 if (pad < 0) {
1280 dev_err(priv->dev, "Failed to find pad for %s\n", subdev->name);
1281 return pad;
1282 }
1283
1284 priv->remote = subdev;
1285 priv->remote_pad = pad;
1286
1287 dev_dbg(priv->dev, "Bound %s pad: %d\n", subdev->name, pad);
1288
1289 return media_create_pad_link(source: &subdev->entity, source_pad: pad,
1290 sink: &priv->subdev.entity, sink_pad: 0,
1291 MEDIA_LNK_FL_ENABLED |
1292 MEDIA_LNK_FL_IMMUTABLE);
1293}
1294
1295static void rcsi2_notify_unbind(struct v4l2_async_notifier *notifier,
1296 struct v4l2_subdev *subdev,
1297 struct v4l2_async_connection *asc)
1298{
1299 struct rcar_csi2 *priv = notifier_to_csi2(n: notifier);
1300
1301 priv->remote = NULL;
1302
1303 dev_dbg(priv->dev, "Unbind %s\n", subdev->name);
1304}
1305
1306static const struct v4l2_async_notifier_operations rcar_csi2_notify_ops = {
1307 .bound = rcsi2_notify_bound,
1308 .unbind = rcsi2_notify_unbind,
1309};
1310
1311static int rcsi2_parse_v4l2(struct rcar_csi2 *priv,
1312 struct v4l2_fwnode_endpoint *vep)
1313{
1314 unsigned int i;
1315
1316 /* Only port 0 endpoint 0 is valid. */
1317 if (vep->base.port || vep->base.id)
1318 return -ENOTCONN;
1319
1320 priv->lanes = vep->bus.mipi_csi2.num_data_lanes;
1321
1322 switch (vep->bus_type) {
1323 case V4L2_MBUS_CSI2_DPHY:
1324 if (!priv->info->support_dphy) {
1325 dev_err(priv->dev, "D-PHY not supported\n");
1326 return -EINVAL;
1327 }
1328
1329 if (priv->lanes != 1 && priv->lanes != 2 && priv->lanes != 4) {
1330 dev_err(priv->dev,
1331 "Unsupported number of data-lanes for D-PHY: %u\n",
1332 priv->lanes);
1333 return -EINVAL;
1334 }
1335
1336 priv->cphy = false;
1337 break;
1338 case V4L2_MBUS_CSI2_CPHY:
1339 if (!priv->info->support_cphy) {
1340 dev_err(priv->dev, "C-PHY not supported\n");
1341 return -EINVAL;
1342 }
1343
1344 if (priv->lanes != 3) {
1345 dev_err(priv->dev,
1346 "Unsupported number of data-lanes for C-PHY: %u\n",
1347 priv->lanes);
1348 return -EINVAL;
1349 }
1350
1351 priv->cphy = true;
1352 break;
1353 default:
1354 dev_err(priv->dev, "Unsupported bus: %u\n", vep->bus_type);
1355 return -EINVAL;
1356 }
1357
1358 for (i = 0; i < ARRAY_SIZE(priv->lane_swap); i++) {
1359 priv->lane_swap[i] = i < priv->lanes ?
1360 vep->bus.mipi_csi2.data_lanes[i] : i;
1361
1362 /* Check for valid lane number. */
1363 if (priv->lane_swap[i] < 1 || priv->lane_swap[i] > 4) {
1364 dev_err(priv->dev, "data-lanes must be in 1-4 range\n");
1365 return -EINVAL;
1366 }
1367 }
1368
1369 return 0;
1370}
1371
1372static int rcsi2_parse_dt(struct rcar_csi2 *priv)
1373{
1374 struct v4l2_async_connection *asc;
1375 struct fwnode_handle *fwnode;
1376 struct fwnode_handle *ep;
1377 struct v4l2_fwnode_endpoint v4l2_ep = {
1378 .bus_type = V4L2_MBUS_UNKNOWN,
1379 };
1380 int ret;
1381
1382 ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(priv->dev), port: 0, endpoint: 0, flags: 0);
1383 if (!ep) {
1384 dev_err(priv->dev, "Not connected to subdevice\n");
1385 return -EINVAL;
1386 }
1387
1388 ret = v4l2_fwnode_endpoint_parse(fwnode: ep, vep: &v4l2_ep);
1389 if (ret) {
1390 dev_err(priv->dev, "Could not parse v4l2 endpoint\n");
1391 fwnode_handle_put(fwnode: ep);
1392 return -EINVAL;
1393 }
1394
1395 ret = rcsi2_parse_v4l2(priv, vep: &v4l2_ep);
1396 if (ret) {
1397 fwnode_handle_put(fwnode: ep);
1398 return ret;
1399 }
1400
1401 fwnode = fwnode_graph_get_remote_endpoint(fwnode: ep);
1402 fwnode_handle_put(fwnode: ep);
1403
1404 dev_dbg(priv->dev, "Found '%pOF'\n", to_of_node(fwnode));
1405
1406 v4l2_async_subdev_nf_init(notifier: &priv->notifier, sd: &priv->subdev);
1407 priv->notifier.ops = &rcar_csi2_notify_ops;
1408
1409 asc = v4l2_async_nf_add_fwnode(&priv->notifier, fwnode,
1410 struct v4l2_async_connection);
1411 fwnode_handle_put(fwnode);
1412 if (IS_ERR(ptr: asc))
1413 return PTR_ERR(ptr: asc);
1414
1415 ret = v4l2_async_nf_register(notifier: &priv->notifier);
1416 if (ret)
1417 v4l2_async_nf_cleanup(notifier: &priv->notifier);
1418
1419 return ret;
1420}
1421
1422/* -----------------------------------------------------------------------------
1423 * PHTW initialization sequences.
1424 *
1425 * NOTE: Magic values are from the datasheet and lack documentation.
1426 */
1427
1428static int rcsi2_phtw_write(struct rcar_csi2 *priv, u16 data, u16 code)
1429{
1430 unsigned int timeout;
1431
1432 rcsi2_write(priv, PHTW_REG,
1433 PHTW_DWEN | PHTW_TESTDIN_DATA(data) |
1434 PHTW_CWEN | PHTW_TESTDIN_CODE(code));
1435
1436 /* Wait for DWEN and CWEN to be cleared by hardware. */
1437 for (timeout = 0; timeout <= 20; timeout++) {
1438 if (!(rcsi2_read(priv, PHTW_REG) & (PHTW_DWEN | PHTW_CWEN)))
1439 return 0;
1440
1441 usleep_range(min: 1000, max: 2000);
1442 }
1443
1444 dev_err(priv->dev, "Timeout waiting for PHTW_DWEN and/or PHTW_CWEN\n");
1445
1446 return -ETIMEDOUT;
1447}
1448
1449static int rcsi2_phtw_write_array(struct rcar_csi2 *priv,
1450 const struct phtw_value *values)
1451{
1452 const struct phtw_value *value;
1453 int ret;
1454
1455 for (value = values; value->data || value->code; value++) {
1456 ret = rcsi2_phtw_write(priv, data: value->data, code: value->code);
1457 if (ret)
1458 return ret;
1459 }
1460
1461 return 0;
1462}
1463
1464static int rcsi2_phtw_write_mbps(struct rcar_csi2 *priv, unsigned int mbps,
1465 const struct rcsi2_mbps_reg *values, u16 code)
1466{
1467 const struct rcsi2_mbps_reg *value;
1468 const struct rcsi2_mbps_reg *prev_value = NULL;
1469
1470 for (value = values; value->mbps; value++) {
1471 if (value->mbps >= mbps)
1472 break;
1473 prev_value = value;
1474 }
1475
1476 if (prev_value &&
1477 ((mbps - prev_value->mbps) <= (value->mbps - mbps)))
1478 value = prev_value;
1479
1480 if (!value->mbps) {
1481 dev_err(priv->dev, "Unsupported PHY speed (%u Mbps)", mbps);
1482 return -ERANGE;
1483 }
1484
1485 return rcsi2_phtw_write(priv, data: value->reg, code);
1486}
1487
1488static int __rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv,
1489 unsigned int mbps)
1490{
1491 static const struct phtw_value step1[] = {
1492 { .data = 0xcc, .code = 0xe2 },
1493 { .data = 0x01, .code = 0xe3 },
1494 { .data = 0x11, .code = 0xe4 },
1495 { .data = 0x01, .code = 0xe5 },
1496 { .data = 0x10, .code = 0x04 },
1497 { /* sentinel */ },
1498 };
1499
1500 static const struct phtw_value step2[] = {
1501 { .data = 0x38, .code = 0x08 },
1502 { .data = 0x01, .code = 0x00 },
1503 { .data = 0x4b, .code = 0xac },
1504 { .data = 0x03, .code = 0x00 },
1505 { .data = 0x80, .code = 0x07 },
1506 { /* sentinel */ },
1507 };
1508
1509 int ret;
1510
1511 ret = rcsi2_phtw_write_array(priv, values: step1);
1512 if (ret)
1513 return ret;
1514
1515 if (mbps != 0 && mbps <= 250) {
1516 ret = rcsi2_phtw_write(priv, data: 0x39, code: 0x05);
1517 if (ret)
1518 return ret;
1519
1520 ret = rcsi2_phtw_write_mbps(priv, mbps, values: phtw_mbps_h3_v3h_m3n,
1521 code: 0xf1);
1522 if (ret)
1523 return ret;
1524 }
1525
1526 return rcsi2_phtw_write_array(priv, values: step2);
1527}
1528
1529static int rcsi2_init_phtw_h3_v3h_m3n(struct rcar_csi2 *priv, unsigned int mbps)
1530{
1531 return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps);
1532}
1533
1534static int rcsi2_init_phtw_h3es2(struct rcar_csi2 *priv, unsigned int mbps)
1535{
1536 return __rcsi2_init_phtw_h3_v3h_m3n(priv, mbps: 0);
1537}
1538
1539static int rcsi2_init_phtw_v3m_e3(struct rcar_csi2 *priv, unsigned int mbps)
1540{
1541 return rcsi2_phtw_write_mbps(priv, mbps, values: phtw_mbps_v3m_e3, code: 0x44);
1542}
1543
1544static int rcsi2_phy_post_init_v3m_e3(struct rcar_csi2 *priv)
1545{
1546 static const struct phtw_value step1[] = {
1547 { .data = 0xee, .code = 0x34 },
1548 { .data = 0xee, .code = 0x44 },
1549 { .data = 0xee, .code = 0x54 },
1550 { .data = 0xee, .code = 0x84 },
1551 { .data = 0xee, .code = 0x94 },
1552 { /* sentinel */ },
1553 };
1554
1555 return rcsi2_phtw_write_array(priv, values: step1);
1556}
1557
1558static int rcsi2_init_phtw_v3u(struct rcar_csi2 *priv,
1559 unsigned int mbps)
1560{
1561 /* In case of 1500Mbps or less */
1562 static const struct phtw_value step1[] = {
1563 { .data = 0xcc, .code = 0xe2 },
1564 { /* sentinel */ },
1565 };
1566
1567 static const struct phtw_value step2[] = {
1568 { .data = 0x01, .code = 0xe3 },
1569 { .data = 0x11, .code = 0xe4 },
1570 { .data = 0x01, .code = 0xe5 },
1571 { /* sentinel */ },
1572 };
1573
1574 /* In case of 1500Mbps or less */
1575 static const struct phtw_value step3[] = {
1576 { .data = 0x38, .code = 0x08 },
1577 { /* sentinel */ },
1578 };
1579
1580 static const struct phtw_value step4[] = {
1581 { .data = 0x01, .code = 0x00 },
1582 { .data = 0x4b, .code = 0xac },
1583 { .data = 0x03, .code = 0x00 },
1584 { .data = 0x80, .code = 0x07 },
1585 { /* sentinel */ },
1586 };
1587
1588 int ret;
1589
1590 if (mbps != 0 && mbps <= 1500)
1591 ret = rcsi2_phtw_write_array(priv, values: step1);
1592 else
1593 ret = rcsi2_phtw_write_mbps(priv, mbps, values: phtw_mbps_v3u, code: 0xe2);
1594 if (ret)
1595 return ret;
1596
1597 ret = rcsi2_phtw_write_array(priv, values: step2);
1598 if (ret)
1599 return ret;
1600
1601 if (mbps != 0 && mbps <= 1500) {
1602 ret = rcsi2_phtw_write_array(priv, values: step3);
1603 if (ret)
1604 return ret;
1605 }
1606
1607 ret = rcsi2_phtw_write_array(priv, values: step4);
1608 if (ret)
1609 return ret;
1610
1611 return ret;
1612}
1613
1614/* -----------------------------------------------------------------------------
1615 * Platform Device Driver.
1616 */
1617
1618static int rcsi2_link_setup(struct media_entity *entity,
1619 const struct media_pad *local,
1620 const struct media_pad *remote, u32 flags)
1621{
1622 struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
1623 struct rcar_csi2 *priv = sd_to_csi2(sd);
1624 struct video_device *vdev;
1625 int channel, vc;
1626 u32 id;
1627
1628 if (!is_media_entity_v4l2_video_device(entity: remote->entity)) {
1629 dev_err(priv->dev, "Remote is not a video device\n");
1630 return -EINVAL;
1631 }
1632
1633 vdev = media_entity_to_video_device(remote->entity);
1634
1635 if (of_property_read_u32(np: vdev->dev_parent->of_node, propname: "renesas,id", out_value: &id)) {
1636 dev_err(priv->dev, "No renesas,id, can't configure routing\n");
1637 return -EINVAL;
1638 }
1639
1640 channel = id % 4;
1641
1642 if (flags & MEDIA_LNK_FL_ENABLED) {
1643 if (media_pad_remote_pad_first(pad: local)) {
1644 dev_dbg(priv->dev,
1645 "Each VC can only be routed to one output channel\n");
1646 return -EINVAL;
1647 }
1648
1649 vc = local->index - 1;
1650
1651 dev_dbg(priv->dev, "Route VC%d to VIN%u on output channel %d\n",
1652 vc, id, channel);
1653 } else {
1654 vc = -1;
1655 }
1656
1657 priv->channel_vc[channel] = vc;
1658
1659 return 0;
1660}
1661
1662static const struct media_entity_operations rcar_csi2_entity_ops = {
1663 .link_setup = rcsi2_link_setup,
1664 .link_validate = v4l2_subdev_link_validate,
1665};
1666
1667static int rcsi2_probe_resources(struct rcar_csi2 *priv,
1668 struct platform_device *pdev)
1669{
1670 int irq, ret;
1671
1672 priv->base = devm_platform_ioremap_resource(pdev, index: 0);
1673 if (IS_ERR(ptr: priv->base))
1674 return PTR_ERR(ptr: priv->base);
1675
1676 irq = platform_get_irq(pdev, 0);
1677 if (irq < 0)
1678 return irq;
1679
1680 ret = devm_request_threaded_irq(dev: &pdev->dev, irq, handler: rcsi2_irq,
1681 thread_fn: rcsi2_irq_thread, IRQF_SHARED,
1682 KBUILD_MODNAME, dev_id: priv);
1683 if (ret)
1684 return ret;
1685
1686 priv->rstc = devm_reset_control_get(dev: &pdev->dev, NULL);
1687
1688 return PTR_ERR_OR_ZERO(ptr: priv->rstc);
1689}
1690
1691static const struct rcar_csi2_info rcar_csi2_info_r8a7795 = {
1692 .init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1693 .start_receiver = rcsi2_start_receiver_gen3,
1694 .enter_standby = rcsi2_enter_standby_gen3,
1695 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1696 .csi0clkfreqrange = 0x20,
1697 .num_channels = 4,
1698 .clear_ulps = true,
1699 .support_dphy = true,
1700};
1701
1702static const struct rcar_csi2_info rcar_csi2_info_r8a7795es2 = {
1703 .init_phtw = rcsi2_init_phtw_h3es2,
1704 .start_receiver = rcsi2_start_receiver_gen3,
1705 .enter_standby = rcsi2_enter_standby_gen3,
1706 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1707 .csi0clkfreqrange = 0x20,
1708 .num_channels = 4,
1709 .clear_ulps = true,
1710 .support_dphy = true,
1711};
1712
1713static const struct rcar_csi2_info rcar_csi2_info_r8a7796 = {
1714 .start_receiver = rcsi2_start_receiver_gen3,
1715 .enter_standby = rcsi2_enter_standby_gen3,
1716 .hsfreqrange = hsfreqrange_m3w,
1717 .num_channels = 4,
1718 .support_dphy = true,
1719};
1720
1721static const struct rcar_csi2_info rcar_csi2_info_r8a77961 = {
1722 .start_receiver = rcsi2_start_receiver_gen3,
1723 .enter_standby = rcsi2_enter_standby_gen3,
1724 .hsfreqrange = hsfreqrange_m3w,
1725 .num_channels = 4,
1726 .support_dphy = true,
1727};
1728
1729static const struct rcar_csi2_info rcar_csi2_info_r8a77965 = {
1730 .init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1731 .start_receiver = rcsi2_start_receiver_gen3,
1732 .enter_standby = rcsi2_enter_standby_gen3,
1733 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1734 .csi0clkfreqrange = 0x20,
1735 .num_channels = 4,
1736 .clear_ulps = true,
1737 .support_dphy = true,
1738};
1739
1740static const struct rcar_csi2_info rcar_csi2_info_r8a77970 = {
1741 .init_phtw = rcsi2_init_phtw_v3m_e3,
1742 .phy_post_init = rcsi2_phy_post_init_v3m_e3,
1743 .start_receiver = rcsi2_start_receiver_gen3,
1744 .enter_standby = rcsi2_enter_standby_gen3,
1745 .num_channels = 4,
1746 .support_dphy = true,
1747};
1748
1749static const struct rcar_csi2_info rcar_csi2_info_r8a77980 = {
1750 .init_phtw = rcsi2_init_phtw_h3_v3h_m3n,
1751 .start_receiver = rcsi2_start_receiver_gen3,
1752 .enter_standby = rcsi2_enter_standby_gen3,
1753 .hsfreqrange = hsfreqrange_h3_v3h_m3n,
1754 .csi0clkfreqrange = 0x20,
1755 .clear_ulps = true,
1756 .support_dphy = true,
1757};
1758
1759static const struct rcar_csi2_info rcar_csi2_info_r8a77990 = {
1760 .init_phtw = rcsi2_init_phtw_v3m_e3,
1761 .phy_post_init = rcsi2_phy_post_init_v3m_e3,
1762 .start_receiver = rcsi2_start_receiver_gen3,
1763 .enter_standby = rcsi2_enter_standby_gen3,
1764 .num_channels = 2,
1765 .support_dphy = true,
1766};
1767
1768static const struct rcar_csi2_info rcar_csi2_info_r8a779a0 = {
1769 .init_phtw = rcsi2_init_phtw_v3u,
1770 .start_receiver = rcsi2_start_receiver_gen3,
1771 .enter_standby = rcsi2_enter_standby_gen3,
1772 .hsfreqrange = hsfreqrange_v3u,
1773 .csi0clkfreqrange = 0x20,
1774 .clear_ulps = true,
1775 .use_isp = true,
1776 .support_dphy = true,
1777};
1778
1779static const struct rcar_csi2_info rcar_csi2_info_r8a779g0 = {
1780 .start_receiver = rcsi2_start_receiver_v4h,
1781 .use_isp = true,
1782 .support_cphy = true,
1783};
1784
1785static const struct of_device_id rcar_csi2_of_table[] = {
1786 {
1787 .compatible = "renesas,r8a774a1-csi2",
1788 .data = &rcar_csi2_info_r8a7796,
1789 },
1790 {
1791 .compatible = "renesas,r8a774b1-csi2",
1792 .data = &rcar_csi2_info_r8a77965,
1793 },
1794 {
1795 .compatible = "renesas,r8a774c0-csi2",
1796 .data = &rcar_csi2_info_r8a77990,
1797 },
1798 {
1799 .compatible = "renesas,r8a774e1-csi2",
1800 .data = &rcar_csi2_info_r8a7795,
1801 },
1802 {
1803 .compatible = "renesas,r8a7795-csi2",
1804 .data = &rcar_csi2_info_r8a7795,
1805 },
1806 {
1807 .compatible = "renesas,r8a7796-csi2",
1808 .data = &rcar_csi2_info_r8a7796,
1809 },
1810 {
1811 .compatible = "renesas,r8a77961-csi2",
1812 .data = &rcar_csi2_info_r8a77961,
1813 },
1814 {
1815 .compatible = "renesas,r8a77965-csi2",
1816 .data = &rcar_csi2_info_r8a77965,
1817 },
1818 {
1819 .compatible = "renesas,r8a77970-csi2",
1820 .data = &rcar_csi2_info_r8a77970,
1821 },
1822 {
1823 .compatible = "renesas,r8a77980-csi2",
1824 .data = &rcar_csi2_info_r8a77980,
1825 },
1826 {
1827 .compatible = "renesas,r8a77990-csi2",
1828 .data = &rcar_csi2_info_r8a77990,
1829 },
1830 {
1831 .compatible = "renesas,r8a779a0-csi2",
1832 .data = &rcar_csi2_info_r8a779a0,
1833 },
1834 {
1835 .compatible = "renesas,r8a779g0-csi2",
1836 .data = &rcar_csi2_info_r8a779g0,
1837 },
1838 { /* sentinel */ },
1839};
1840MODULE_DEVICE_TABLE(of, rcar_csi2_of_table);
1841
1842static const struct soc_device_attribute r8a7795[] = {
1843 {
1844 .soc_id = "r8a7795", .revision = "ES2.*",
1845 .data = &rcar_csi2_info_r8a7795es2,
1846 },
1847 { /* sentinel */ }
1848};
1849
1850static int rcsi2_probe(struct platform_device *pdev)
1851{
1852 const struct soc_device_attribute *attr;
1853 struct rcar_csi2 *priv;
1854 unsigned int i, num_pads;
1855 int ret;
1856
1857 priv = devm_kzalloc(dev: &pdev->dev, size: sizeof(*priv), GFP_KERNEL);
1858 if (!priv)
1859 return -ENOMEM;
1860
1861 priv->info = of_device_get_match_data(dev: &pdev->dev);
1862
1863 /*
1864 * The different ES versions of r8a7795 (H3) behave differently but
1865 * share the same compatible string.
1866 */
1867 attr = soc_device_match(matches: r8a7795);
1868 if (attr)
1869 priv->info = attr->data;
1870
1871 priv->dev = &pdev->dev;
1872
1873 mutex_init(&priv->lock);
1874 priv->stream_count = 0;
1875
1876 ret = rcsi2_probe_resources(priv, pdev);
1877 if (ret) {
1878 dev_err(priv->dev, "Failed to get resources\n");
1879 goto error_mutex;
1880 }
1881
1882 platform_set_drvdata(pdev, data: priv);
1883
1884 ret = rcsi2_parse_dt(priv);
1885 if (ret)
1886 goto error_mutex;
1887
1888 priv->subdev.owner = THIS_MODULE;
1889 priv->subdev.dev = &pdev->dev;
1890 v4l2_subdev_init(sd: &priv->subdev, ops: &rcar_csi2_subdev_ops);
1891 v4l2_set_subdevdata(sd: &priv->subdev, p: &pdev->dev);
1892 snprintf(buf: priv->subdev.name, size: sizeof(priv->subdev.name), fmt: "%s %s",
1893 KBUILD_MODNAME, dev_name(dev: &pdev->dev));
1894 priv->subdev.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
1895
1896 priv->subdev.entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER;
1897 priv->subdev.entity.ops = &rcar_csi2_entity_ops;
1898
1899 num_pads = priv->info->use_isp ? 2 : NR_OF_RCAR_CSI2_PAD;
1900
1901 priv->pads[RCAR_CSI2_SINK].flags = MEDIA_PAD_FL_SINK;
1902 for (i = RCAR_CSI2_SOURCE_VC0; i < num_pads; i++)
1903 priv->pads[i].flags = MEDIA_PAD_FL_SOURCE;
1904
1905 ret = media_entity_pads_init(entity: &priv->subdev.entity, num_pads,
1906 pads: priv->pads);
1907 if (ret)
1908 goto error_async;
1909
1910 for (i = 0; i < ARRAY_SIZE(priv->channel_vc); i++)
1911 priv->channel_vc[i] = -1;
1912
1913 pm_runtime_enable(dev: &pdev->dev);
1914
1915 ret = v4l2_async_register_subdev(sd: &priv->subdev);
1916 if (ret < 0)
1917 goto error_async;
1918
1919 dev_info(priv->dev, "%d lanes found\n", priv->lanes);
1920
1921 return 0;
1922
1923error_async:
1924 v4l2_async_nf_unregister(notifier: &priv->notifier);
1925 v4l2_async_nf_cleanup(notifier: &priv->notifier);
1926error_mutex:
1927 mutex_destroy(lock: &priv->lock);
1928
1929 return ret;
1930}
1931
1932static void rcsi2_remove(struct platform_device *pdev)
1933{
1934 struct rcar_csi2 *priv = platform_get_drvdata(pdev);
1935
1936 v4l2_async_nf_unregister(notifier: &priv->notifier);
1937 v4l2_async_nf_cleanup(notifier: &priv->notifier);
1938 v4l2_async_unregister_subdev(sd: &priv->subdev);
1939
1940 pm_runtime_disable(dev: &pdev->dev);
1941
1942 mutex_destroy(lock: &priv->lock);
1943}
1944
1945static struct platform_driver rcar_csi2_pdrv = {
1946 .remove_new = rcsi2_remove,
1947 .probe = rcsi2_probe,
1948 .driver = {
1949 .name = "rcar-csi2",
1950 .suppress_bind_attrs = true,
1951 .of_match_table = rcar_csi2_of_table,
1952 },
1953};
1954
1955module_platform_driver(rcar_csi2_pdrv);
1956
1957MODULE_AUTHOR("Niklas Söderlund <niklas.soderlund@ragnatech.se>");
1958MODULE_DESCRIPTION("Renesas R-Car MIPI CSI-2 receiver driver");
1959MODULE_LICENSE("GPL");
1960

source code of linux/drivers/media/platform/renesas/rcar-csi2.c