1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Memory-to-memory device framework for Video for Linux 2 and vb2.
4 *
5 * Helper functions for devices that use vb2 buffers for both their
6 * source and destination.
7 *
8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
9 * Pawel Osciak, <pawel@osciak.com>
10 * Marek Szyprowski, <m.szyprowski@samsung.com>
11 */
12#include <linux/module.h>
13#include <linux/sched.h>
14#include <linux/slab.h>
15
16#include <media/media-device.h>
17#include <media/videobuf2-v4l2.h>
18#include <media/v4l2-mem2mem.h>
19#include <media/v4l2-dev.h>
20#include <media/v4l2-device.h>
21#include <media/v4l2-fh.h>
22#include <media/v4l2-event.h>
23
24MODULE_DESCRIPTION("Mem to mem device framework for vb2");
25MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
26MODULE_LICENSE("GPL");
27
28static bool debug;
29module_param(debug, bool, 0644);
30
31#define dprintk(fmt, arg...) \
32 do { \
33 if (debug) \
34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
35 } while (0)
36
37
38/* Instance is already queued on the job_queue */
39#define TRANS_QUEUED (1 << 0)
40/* Instance is currently running in hardware */
41#define TRANS_RUNNING (1 << 1)
42/* Instance is currently aborting */
43#define TRANS_ABORT (1 << 2)
44
45
46/* The job queue is not running new jobs */
47#define QUEUE_PAUSED (1 << 0)
48
49
50/* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53#define DST_QUEUE_OFF_BASE (1 << 30)
54
55enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
58 MEM2MEM_ENT_TYPE_PROC
59};
60
61static const char * const m2m_entity_name[] = {
62 "source",
63 "sink",
64 "proc"
65};
66
67/**
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_register_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_register_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_register_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_register_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
92 * @m2m_ops: driver callbacks
93 */
94struct v4l2_m2m_dev {
95 struct v4l2_m2m_ctx *curr_ctx;
96#ifdef CONFIG_MEDIA_CONTROLLER
97 struct media_entity *source;
98 struct media_pad source_pad;
99 struct media_entity sink;
100 struct media_pad sink_pad;
101 struct media_entity proc;
102 struct media_pad proc_pads[2];
103 struct media_intf_devnode *intf_devnode;
104#endif
105
106 struct list_head job_queue;
107 spinlock_t job_spinlock;
108 struct work_struct job_work;
109 unsigned long job_queue_flags;
110
111 const struct v4l2_m2m_ops *m2m_ops;
112};
113
114static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
115 enum v4l2_buf_type type)
116{
117 if (V4L2_TYPE_IS_OUTPUT(type))
118 return &m2m_ctx->out_q_ctx;
119 else
120 return &m2m_ctx->cap_q_ctx;
121}
122
123struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
124 enum v4l2_buf_type type)
125{
126 struct v4l2_m2m_queue_ctx *q_ctx;
127
128 q_ctx = get_queue_ctx(m2m_ctx, type);
129 if (!q_ctx)
130 return NULL;
131
132 return &q_ctx->q;
133}
134EXPORT_SYMBOL(v4l2_m2m_get_vq);
135
136struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
137{
138 struct v4l2_m2m_buffer *b;
139 unsigned long flags;
140
141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
142
143 if (list_empty(head: &q_ctx->rdy_queue)) {
144 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
145 return NULL;
146 }
147
148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
149 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
150 return &b->vb;
151}
152EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
153
154struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
155{
156 struct v4l2_m2m_buffer *b;
157 unsigned long flags;
158
159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
160
161 if (list_empty(head: &q_ctx->rdy_queue)) {
162 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
163 return NULL;
164 }
165
166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
167 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
168 return &b->vb;
169}
170EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
171
172struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
173{
174 struct v4l2_m2m_buffer *b;
175 unsigned long flags;
176
177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
178 if (list_empty(head: &q_ctx->rdy_queue)) {
179 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
180 return NULL;
181 }
182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
183 list_del(entry: &b->list);
184 q_ctx->num_rdy--;
185 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
186
187 return &b->vb;
188}
189EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
190
191void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
192 struct vb2_v4l2_buffer *vbuf)
193{
194 struct v4l2_m2m_buffer *b;
195 unsigned long flags;
196
197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
199 list_del(entry: &b->list);
200 q_ctx->num_rdy--;
201 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
202}
203EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
204
205struct vb2_v4l2_buffer *
206v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
207
208{
209 struct v4l2_m2m_buffer *b, *tmp;
210 struct vb2_v4l2_buffer *ret = NULL;
211 unsigned long flags;
212
213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
215 if (b->vb.vb2_buf.index == idx) {
216 list_del(entry: &b->list);
217 q_ctx->num_rdy--;
218 ret = &b->vb;
219 break;
220 }
221 }
222 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
223
224 return ret;
225}
226EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
227
228/*
229 * Scheduling handlers
230 */
231
232void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
233{
234 unsigned long flags;
235 void *ret = NULL;
236
237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
238 if (m2m_dev->curr_ctx)
239 ret = m2m_dev->curr_ctx->priv;
240 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
241
242 return ret;
243}
244EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
245
246/**
247 * v4l2_m2m_try_run() - select next job to perform and run it if possible
248 * @m2m_dev: per-device context
249 *
250 * Get next transaction (if present) from the waiting jobs list and run it.
251 *
252 * Note that this function can run on a given v4l2_m2m_ctx context,
253 * but call .device_run for another context.
254 */
255static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
256{
257 unsigned long flags;
258
259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
260 if (NULL != m2m_dev->curr_ctx) {
261 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
262 dprintk("Another instance is running, won't run now\n");
263 return;
264 }
265
266 if (list_empty(head: &m2m_dev->job_queue)) {
267 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
268 dprintk("No job pending\n");
269 return;
270 }
271
272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
273 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
274 dprintk("Running new jobs is paused\n");
275 return;
276 }
277
278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
279 struct v4l2_m2m_ctx, queue);
280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
281 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
282
283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
285}
286
287/*
288 * __v4l2_m2m_try_queue() - queue a job
289 * @m2m_dev: m2m device
290 * @m2m_ctx: m2m context
291 *
292 * Check if this context is ready to queue a job.
293 *
294 * This function can run in interrupt context.
295 */
296static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
297 struct v4l2_m2m_ctx *m2m_ctx)
298{
299 unsigned long flags_job;
300 struct vb2_v4l2_buffer *dst, *src;
301
302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
303
304 if (!m2m_ctx->out_q_ctx.q.streaming ||
305 (!m2m_ctx->cap_q_ctx.q.streaming && !m2m_ctx->ignore_cap_streaming)) {
306 if (!m2m_ctx->ignore_cap_streaming)
307 dprintk("Streaming needs to be on for both queues\n");
308 else
309 dprintk("Streaming needs to be on for the OUTPUT queue\n");
310 return;
311 }
312
313 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
314
315 /* If the context is aborted then don't schedule it */
316 if (m2m_ctx->job_flags & TRANS_ABORT) {
317 dprintk("Aborted context\n");
318 goto job_unlock;
319 }
320
321 if (m2m_ctx->job_flags & TRANS_QUEUED) {
322 dprintk("On job queue already\n");
323 goto job_unlock;
324 }
325
326 src = v4l2_m2m_next_src_buf(m2m_ctx);
327 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
328 if (!src && !m2m_ctx->out_q_ctx.buffered) {
329 dprintk("No input buffers available\n");
330 goto job_unlock;
331 }
332 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
333 dprintk("No output buffers available\n");
334 goto job_unlock;
335 }
336
337 m2m_ctx->new_frame = true;
338
339 if (src && dst && dst->is_held &&
340 dst->vb2_buf.copied_timestamp &&
341 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
342 dprintk("Timestamp mismatch, returning held capture buffer\n");
343 dst->is_held = false;
344 v4l2_m2m_dst_buf_remove(m2m_ctx);
345 v4l2_m2m_buf_done(buf: dst, state: VB2_BUF_STATE_DONE);
346 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
347
348 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
349 dprintk("No output buffers available after returning held buffer\n");
350 goto job_unlock;
351 }
352 }
353
354 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
355 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
356 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
357 dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
358
359 if (m2m_ctx->has_stopped) {
360 dprintk("Device has stopped\n");
361 goto job_unlock;
362 }
363
364 if (m2m_dev->m2m_ops->job_ready
365 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
366 dprintk("Driver not ready\n");
367 goto job_unlock;
368 }
369
370 list_add_tail(new: &m2m_ctx->queue, head: &m2m_dev->job_queue);
371 m2m_ctx->job_flags |= TRANS_QUEUED;
372
373job_unlock:
374 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags: flags_job);
375}
376
377/**
378 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
379 * @m2m_ctx: m2m context
380 *
381 * Check if this context is ready to queue a job. If suitable,
382 * run the next queued job on the mem2mem device.
383 *
384 * This function shouldn't run in interrupt context.
385 *
386 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
387 * and then run another job for another context.
388 */
389void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
390{
391 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
392
393 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
394 v4l2_m2m_try_run(m2m_dev);
395}
396EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
397
398/**
399 * v4l2_m2m_device_run_work() - run pending jobs for the context
400 * @work: Work structure used for scheduling the execution of this function.
401 */
402static void v4l2_m2m_device_run_work(struct work_struct *work)
403{
404 struct v4l2_m2m_dev *m2m_dev =
405 container_of(work, struct v4l2_m2m_dev, job_work);
406
407 v4l2_m2m_try_run(m2m_dev);
408}
409
410/**
411 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
412 * @m2m_ctx: m2m context with jobs to be canceled
413 *
414 * In case of streamoff or release called on any context,
415 * 1] If the context is currently running, then abort job will be called
416 * 2] If the context is queued, then the context will be removed from
417 * the job_queue
418 */
419static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
420{
421 struct v4l2_m2m_dev *m2m_dev;
422 unsigned long flags;
423
424 m2m_dev = m2m_ctx->m2m_dev;
425 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
426
427 m2m_ctx->job_flags |= TRANS_ABORT;
428 if (m2m_ctx->job_flags & TRANS_RUNNING) {
429 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
430 if (m2m_dev->m2m_ops->job_abort)
431 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
432 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
433 wait_event(m2m_ctx->finished,
434 !(m2m_ctx->job_flags & TRANS_RUNNING));
435 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
436 list_del(entry: &m2m_ctx->queue);
437 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
438 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
439 dprintk("m2m_ctx: %p had been on queue and was removed\n",
440 m2m_ctx);
441 } else {
442 /* Do nothing, was not on queue/running */
443 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
444 }
445}
446
447/*
448 * Schedule the next job, called from v4l2_m2m_job_finish() or
449 * v4l2_m2m_buf_done_and_job_finish().
450 */
451static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
452 struct v4l2_m2m_ctx *m2m_ctx)
453{
454 /*
455 * This instance might have more buffers ready, but since we do not
456 * allow more than one job on the job_queue per instance, each has
457 * to be scheduled separately after the previous one finishes.
458 */
459 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
460
461 /*
462 * We might be running in atomic context,
463 * but the job must be run in non-atomic context.
464 */
465 schedule_work(work: &m2m_dev->job_work);
466}
467
468/*
469 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
470 * v4l2_m2m_buf_done_and_job_finish().
471 */
472static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
473 struct v4l2_m2m_ctx *m2m_ctx)
474{
475 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
476 dprintk("Called by an instance not currently running\n");
477 return false;
478 }
479
480 list_del(entry: &m2m_dev->curr_ctx->queue);
481 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
482 wake_up(&m2m_dev->curr_ctx->finished);
483 m2m_dev->curr_ctx = NULL;
484 return true;
485}
486
487void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
488 struct v4l2_m2m_ctx *m2m_ctx)
489{
490 unsigned long flags;
491 bool schedule_next;
492
493 /*
494 * This function should not be used for drivers that support
495 * holding capture buffers. Those should use
496 * v4l2_m2m_buf_done_and_job_finish() instead.
497 */
498 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
499 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
500 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
501 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
502 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
503
504 if (schedule_next)
505 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
506}
507EXPORT_SYMBOL(v4l2_m2m_job_finish);
508
509void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
510 struct v4l2_m2m_ctx *m2m_ctx,
511 enum vb2_buffer_state state)
512{
513 struct vb2_v4l2_buffer *src_buf, *dst_buf;
514 bool schedule_next = false;
515 unsigned long flags;
516
517 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
518 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
519 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
520
521 if (WARN_ON(!src_buf || !dst_buf))
522 goto unlock;
523 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
524 if (!dst_buf->is_held) {
525 v4l2_m2m_dst_buf_remove(m2m_ctx);
526 v4l2_m2m_buf_done(buf: dst_buf, state);
527 }
528 /*
529 * If the request API is being used, returning the OUTPUT
530 * (src) buffer will wake-up any process waiting on the
531 * request file descriptor.
532 *
533 * Therefore, return the CAPTURE (dst) buffer first,
534 * to avoid signalling the request file descriptor
535 * before the CAPTURE buffer is done.
536 */
537 v4l2_m2m_buf_done(buf: src_buf, state);
538 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
539unlock:
540 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
541
542 if (schedule_next)
543 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
544}
545EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
546
547void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
548{
549 unsigned long flags;
550 struct v4l2_m2m_ctx *curr_ctx;
551
552 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
553 m2m_dev->job_queue_flags |= QUEUE_PAUSED;
554 curr_ctx = m2m_dev->curr_ctx;
555 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
556
557 if (curr_ctx)
558 wait_event(curr_ctx->finished,
559 !(curr_ctx->job_flags & TRANS_RUNNING));
560}
561EXPORT_SYMBOL(v4l2_m2m_suspend);
562
563void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
564{
565 unsigned long flags;
566
567 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
568 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
569 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
570
571 v4l2_m2m_try_run(m2m_dev);
572}
573EXPORT_SYMBOL(v4l2_m2m_resume);
574
575int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
576 struct v4l2_requestbuffers *reqbufs)
577{
578 struct vb2_queue *vq;
579 int ret;
580
581 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
582 ret = vb2_reqbufs(q: vq, req: reqbufs);
583 /* If count == 0, then the owner has released all buffers and he
584 is no longer owner of the queue. Otherwise we have an owner. */
585 if (ret == 0)
586 vq->owner = reqbufs->count ? file->private_data : NULL;
587
588 return ret;
589}
590EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
591
592static void v4l2_m2m_adjust_mem_offset(struct vb2_queue *vq,
593 struct v4l2_buffer *buf)
594{
595 /* Adjust MMAP memory offsets for the CAPTURE queue */
596 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
597 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
598 unsigned int i;
599
600 for (i = 0; i < buf->length; ++i)
601 buf->m.planes[i].m.mem_offset
602 += DST_QUEUE_OFF_BASE;
603 } else {
604 buf->m.offset += DST_QUEUE_OFF_BASE;
605 }
606 }
607}
608
609int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
610 struct v4l2_buffer *buf)
611{
612 struct vb2_queue *vq;
613 int ret;
614
615 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
616 ret = vb2_querybuf(q: vq, b: buf);
617 if (ret)
618 return ret;
619
620 /* Adjust MMAP memory offsets for the CAPTURE queue */
621 v4l2_m2m_adjust_mem_offset(vq, buf);
622
623 return 0;
624}
625EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
626
627/*
628 * This will add the LAST flag and mark the buffer management
629 * state as stopped.
630 * This is called when the last capture buffer must be flagged as LAST
631 * in draining mode from the encoder/decoder driver buf_queue() callback
632 * or from v4l2_update_last_buf_state() when a capture buffer is available.
633 */
634void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
635 struct vb2_v4l2_buffer *vbuf)
636{
637 vbuf->flags |= V4L2_BUF_FLAG_LAST;
638 vb2_buffer_done(vb: &vbuf->vb2_buf, state: VB2_BUF_STATE_DONE);
639
640 v4l2_m2m_mark_stopped(m2m_ctx);
641}
642EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
643
644/* When stop command is issued, update buffer management state */
645static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
646{
647 struct vb2_v4l2_buffer *next_dst_buf;
648
649 if (m2m_ctx->is_draining)
650 return -EBUSY;
651
652 if (m2m_ctx->has_stopped)
653 return 0;
654
655 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
656 m2m_ctx->is_draining = true;
657
658 /*
659 * The processing of the last output buffer queued before
660 * the STOP command is expected to mark the buffer management
661 * state as stopped with v4l2_m2m_mark_stopped().
662 */
663 if (m2m_ctx->last_src_buf)
664 return 0;
665
666 /*
667 * In case the output queue is empty, try to mark the last capture
668 * buffer as LAST.
669 */
670 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
671 if (!next_dst_buf) {
672 /*
673 * Wait for the next queued one in encoder/decoder driver
674 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
675 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
676 * streaming.
677 */
678 m2m_ctx->next_buf_last = true;
679 return 0;
680 }
681
682 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
683
684 return 0;
685}
686
687/*
688 * Updates the encoding/decoding buffer management state, should
689 * be called from encoder/decoder drivers start_streaming()
690 */
691void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
692 struct vb2_queue *q)
693{
694 /* If start streaming again, untag the last output buffer */
695 if (V4L2_TYPE_IS_OUTPUT(q->type))
696 m2m_ctx->last_src_buf = NULL;
697}
698EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
699
700/*
701 * Updates the encoding/decoding buffer management state, should
702 * be called from encoder/decoder driver stop_streaming()
703 */
704void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
705 struct vb2_queue *q)
706{
707 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
708 /*
709 * If in draining state, either mark next dst buffer as
710 * done or flag next one to be marked as done either
711 * in encoder/decoder driver buf_queue() callback using
712 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
713 * if encoder/decoder is not yet streaming
714 */
715 if (m2m_ctx->is_draining) {
716 struct vb2_v4l2_buffer *next_dst_buf;
717
718 m2m_ctx->last_src_buf = NULL;
719 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
720 if (!next_dst_buf)
721 m2m_ctx->next_buf_last = true;
722 else
723 v4l2_m2m_last_buffer_done(m2m_ctx,
724 next_dst_buf);
725 }
726 } else {
727 v4l2_m2m_clear_state(m2m_ctx);
728 }
729}
730EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
731
732static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
733 struct vb2_queue *q)
734{
735 struct vb2_buffer *vb;
736 struct vb2_v4l2_buffer *vbuf;
737 unsigned int i;
738
739 if (WARN_ON(q->is_output))
740 return;
741 if (list_empty(head: &q->queued_list))
742 return;
743
744 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
745 for (i = 0; i < vb->num_planes; i++)
746 vb2_set_plane_payload(vb, plane_no: i, size: 0);
747
748 /*
749 * Since the buffer hasn't been queued to the ready queue,
750 * mark is active and owned before marking it LAST and DONE
751 */
752 vb->state = VB2_BUF_STATE_ACTIVE;
753 atomic_inc(v: &q->owned_by_drv_count);
754
755 vbuf = to_vb2_v4l2_buffer(vb);
756 vbuf->field = V4L2_FIELD_NONE;
757
758 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
759}
760
761int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
762 struct v4l2_buffer *buf)
763{
764 struct video_device *vdev = video_devdata(file);
765 struct vb2_queue *vq;
766 int ret;
767
768 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
769 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
770 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
771 dprintk("%s: requests cannot be used with capture buffers\n",
772 __func__);
773 return -EPERM;
774 }
775
776 ret = vb2_qbuf(q: vq, mdev: vdev->v4l2_dev->mdev, b: buf);
777 if (ret)
778 return ret;
779
780 /* Adjust MMAP memory offsets for the CAPTURE queue */
781 v4l2_m2m_adjust_mem_offset(vq, buf);
782
783 /*
784 * If the capture queue is streaming, but streaming hasn't started
785 * on the device, but was asked to stop, mark the previously queued
786 * buffer as DONE with LAST flag since it won't be queued on the
787 * device.
788 */
789 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
790 vb2_is_streaming(q: vq) && !vb2_start_streaming_called(q: vq) &&
791 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
792 v4l2_m2m_force_last_buf_done(m2m_ctx, q: vq);
793 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
794 v4l2_m2m_try_schedule(m2m_ctx);
795
796 return 0;
797}
798EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
799
800int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
801 struct v4l2_buffer *buf)
802{
803 struct vb2_queue *vq;
804 int ret;
805
806 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
807 ret = vb2_dqbuf(q: vq, b: buf, nonblocking: file->f_flags & O_NONBLOCK);
808 if (ret)
809 return ret;
810
811 /* Adjust MMAP memory offsets for the CAPTURE queue */
812 v4l2_m2m_adjust_mem_offset(vq, buf);
813
814 return 0;
815}
816EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
817
818int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
819 struct v4l2_buffer *buf)
820{
821 struct video_device *vdev = video_devdata(file);
822 struct vb2_queue *vq;
823 int ret;
824
825 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
826 ret = vb2_prepare_buf(q: vq, mdev: vdev->v4l2_dev->mdev, b: buf);
827 if (ret)
828 return ret;
829
830 /* Adjust MMAP memory offsets for the CAPTURE queue */
831 v4l2_m2m_adjust_mem_offset(vq, buf);
832
833 return 0;
834}
835EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
836
837int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
838 struct v4l2_create_buffers *create)
839{
840 struct vb2_queue *vq;
841
842 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
843 return vb2_create_bufs(q: vq, create);
844}
845EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
846
847int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
848 struct v4l2_exportbuffer *eb)
849{
850 struct vb2_queue *vq;
851
852 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
853 return vb2_expbuf(q: vq, eb);
854}
855EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
856
857int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
858 enum v4l2_buf_type type)
859{
860 struct vb2_queue *vq;
861 int ret;
862
863 vq = v4l2_m2m_get_vq(m2m_ctx, type);
864 ret = vb2_streamon(q: vq, type);
865 if (!ret)
866 v4l2_m2m_try_schedule(m2m_ctx);
867
868 return ret;
869}
870EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
871
872int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
873 enum v4l2_buf_type type)
874{
875 struct v4l2_m2m_dev *m2m_dev;
876 struct v4l2_m2m_queue_ctx *q_ctx;
877 unsigned long flags_job, flags;
878 int ret;
879
880 /* wait until the current context is dequeued from job_queue */
881 v4l2_m2m_cancel_job(m2m_ctx);
882
883 q_ctx = get_queue_ctx(m2m_ctx, type);
884 ret = vb2_streamoff(q: &q_ctx->q, type);
885 if (ret)
886 return ret;
887
888 m2m_dev = m2m_ctx->m2m_dev;
889 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
890 /* We should not be scheduled anymore, since we're dropping a queue. */
891 if (m2m_ctx->job_flags & TRANS_QUEUED)
892 list_del(entry: &m2m_ctx->queue);
893 m2m_ctx->job_flags = 0;
894
895 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
896 /* Drop queue, since streamoff returns device to the same state as after
897 * calling reqbufs. */
898 INIT_LIST_HEAD(list: &q_ctx->rdy_queue);
899 q_ctx->num_rdy = 0;
900 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
901
902 if (m2m_dev->curr_ctx == m2m_ctx) {
903 m2m_dev->curr_ctx = NULL;
904 wake_up(&m2m_ctx->finished);
905 }
906 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags: flags_job);
907
908 return 0;
909}
910EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
911
912static __poll_t v4l2_m2m_poll_for_data(struct file *file,
913 struct v4l2_m2m_ctx *m2m_ctx,
914 struct poll_table_struct *wait)
915{
916 struct vb2_queue *src_q, *dst_q;
917 __poll_t rc = 0;
918 unsigned long flags;
919
920 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
921 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
922
923 /*
924 * There has to be at least one buffer queued on each queued_list, which
925 * means either in driver already or waiting for driver to claim it
926 * and start processing.
927 */
928 if ((!vb2_is_streaming(q: src_q) || src_q->error ||
929 list_empty(head: &src_q->queued_list)) &&
930 (!vb2_is_streaming(q: dst_q) || dst_q->error ||
931 (list_empty(head: &dst_q->queued_list) && !dst_q->last_buffer_dequeued)))
932 return EPOLLERR;
933
934 spin_lock_irqsave(&src_q->done_lock, flags);
935 if (!list_empty(head: &src_q->done_list))
936 rc |= EPOLLOUT | EPOLLWRNORM;
937 spin_unlock_irqrestore(lock: &src_q->done_lock, flags);
938
939 spin_lock_irqsave(&dst_q->done_lock, flags);
940 /*
941 * If the last buffer was dequeued from the capture queue, signal
942 * userspace. DQBUF(CAPTURE) will return -EPIPE.
943 */
944 if (!list_empty(head: &dst_q->done_list) || dst_q->last_buffer_dequeued)
945 rc |= EPOLLIN | EPOLLRDNORM;
946 spin_unlock_irqrestore(lock: &dst_q->done_lock, flags);
947
948 return rc;
949}
950
951__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
952 struct poll_table_struct *wait)
953{
954 struct video_device *vfd = video_devdata(file);
955 struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx);
956 struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
957 __poll_t req_events = poll_requested_events(p: wait);
958 __poll_t rc = 0;
959
960 /*
961 * poll_wait() MUST be called on the first invocation on all the
962 * potential queues of interest, even if we are not interested in their
963 * events during this first call. Failure to do so will result in
964 * queue's events to be ignored because the poll_table won't be capable
965 * of adding new wait queues thereafter.
966 */
967 poll_wait(filp: file, wait_address: &src_q->done_wq, p: wait);
968 poll_wait(filp: file, wait_address: &dst_q->done_wq, p: wait);
969
970 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
971 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
972
973 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
974 struct v4l2_fh *fh = file->private_data;
975
976 poll_wait(filp: file, wait_address: &fh->wait, p: wait);
977 if (v4l2_event_pending(fh))
978 rc |= EPOLLPRI;
979 }
980
981 return rc;
982}
983EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
984
985int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
986 struct vm_area_struct *vma)
987{
988 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
989 struct vb2_queue *vq;
990
991 if (offset < DST_QUEUE_OFF_BASE) {
992 vq = v4l2_m2m_get_src_vq(m2m_ctx);
993 } else {
994 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
995 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
996 }
997
998 return vb2_mmap(q: vq, vma);
999}
1000EXPORT_SYMBOL(v4l2_m2m_mmap);
1001
1002#ifndef CONFIG_MMU
1003unsigned long v4l2_m2m_get_unmapped_area(struct file *file, unsigned long addr,
1004 unsigned long len, unsigned long pgoff,
1005 unsigned long flags)
1006{
1007 struct v4l2_fh *fh = file->private_data;
1008 unsigned long offset = pgoff << PAGE_SHIFT;
1009 struct vb2_queue *vq;
1010
1011 if (offset < DST_QUEUE_OFF_BASE) {
1012 vq = v4l2_m2m_get_src_vq(fh->m2m_ctx);
1013 } else {
1014 vq = v4l2_m2m_get_dst_vq(fh->m2m_ctx);
1015 pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
1016 }
1017
1018 return vb2_get_unmapped_area(vq, addr, len, pgoff, flags);
1019}
1020EXPORT_SYMBOL_GPL(v4l2_m2m_get_unmapped_area);
1021#endif
1022
1023#if defined(CONFIG_MEDIA_CONTROLLER)
1024void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
1025{
1026 media_remove_intf_links(intf: &m2m_dev->intf_devnode->intf);
1027 media_devnode_remove(devnode: m2m_dev->intf_devnode);
1028
1029 media_entity_remove_links(entity: m2m_dev->source);
1030 media_entity_remove_links(entity: &m2m_dev->sink);
1031 media_entity_remove_links(entity: &m2m_dev->proc);
1032 media_device_unregister_entity(entity: m2m_dev->source);
1033 media_device_unregister_entity(entity: &m2m_dev->sink);
1034 media_device_unregister_entity(entity: &m2m_dev->proc);
1035 kfree(objp: m2m_dev->source->name);
1036 kfree(objp: m2m_dev->sink.name);
1037 kfree(objp: m2m_dev->proc.name);
1038}
1039EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
1040
1041static int v4l2_m2m_register_entity(struct media_device *mdev,
1042 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
1043 struct video_device *vdev, int function)
1044{
1045 struct media_entity *entity;
1046 struct media_pad *pads;
1047 char *name;
1048 unsigned int len;
1049 int num_pads;
1050 int ret;
1051
1052 switch (type) {
1053 case MEM2MEM_ENT_TYPE_SOURCE:
1054 entity = m2m_dev->source;
1055 pads = &m2m_dev->source_pad;
1056 pads[0].flags = MEDIA_PAD_FL_SOURCE;
1057 num_pads = 1;
1058 break;
1059 case MEM2MEM_ENT_TYPE_SINK:
1060 entity = &m2m_dev->sink;
1061 pads = &m2m_dev->sink_pad;
1062 pads[0].flags = MEDIA_PAD_FL_SINK;
1063 num_pads = 1;
1064 break;
1065 case MEM2MEM_ENT_TYPE_PROC:
1066 entity = &m2m_dev->proc;
1067 pads = m2m_dev->proc_pads;
1068 pads[0].flags = MEDIA_PAD_FL_SINK;
1069 pads[1].flags = MEDIA_PAD_FL_SOURCE;
1070 num_pads = 2;
1071 break;
1072 default:
1073 return -EINVAL;
1074 }
1075
1076 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
1077 if (type != MEM2MEM_ENT_TYPE_PROC) {
1078 entity->info.dev.major = VIDEO_MAJOR;
1079 entity->info.dev.minor = vdev->minor;
1080 }
1081 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
1082 name = kmalloc(size: len, GFP_KERNEL);
1083 if (!name)
1084 return -ENOMEM;
1085 snprintf(buf: name, size: len, fmt: "%s-%s", vdev->name, m2m_entity_name[type]);
1086 entity->name = name;
1087 entity->function = function;
1088
1089 ret = media_entity_pads_init(entity, num_pads, pads);
1090 if (ret) {
1091 kfree(objp: entity->name);
1092 entity->name = NULL;
1093 return ret;
1094 }
1095 ret = media_device_register_entity(mdev, entity);
1096 if (ret) {
1097 kfree(objp: entity->name);
1098 entity->name = NULL;
1099 return ret;
1100 }
1101
1102 return 0;
1103}
1104
1105int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1106 struct video_device *vdev, int function)
1107{
1108 struct media_device *mdev = vdev->v4l2_dev->mdev;
1109 struct media_link *link;
1110 int ret;
1111
1112 if (!mdev)
1113 return 0;
1114
1115 /* A memory-to-memory device consists in two
1116 * DMA engine and one video processing entities.
1117 * The DMA engine entities are linked to a V4L interface
1118 */
1119
1120 /* Create the three entities with their pads */
1121 m2m_dev->source = &vdev->entity;
1122 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1123 type: MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1124 if (ret)
1125 return ret;
1126 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1127 type: MEM2MEM_ENT_TYPE_PROC, vdev, function);
1128 if (ret)
1129 goto err_rel_entity0;
1130 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1131 type: MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1132 if (ret)
1133 goto err_rel_entity1;
1134
1135 /* Connect the three entities */
1136 ret = media_create_pad_link(source: m2m_dev->source, source_pad: 0, sink: &m2m_dev->proc, sink_pad: 0,
1137 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1138 if (ret)
1139 goto err_rel_entity2;
1140
1141 ret = media_create_pad_link(source: &m2m_dev->proc, source_pad: 1, sink: &m2m_dev->sink, sink_pad: 0,
1142 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1143 if (ret)
1144 goto err_rm_links0;
1145
1146 /* Create video interface */
1147 m2m_dev->intf_devnode = media_devnode_create(mdev,
1148 MEDIA_INTF_T_V4L_VIDEO, flags: 0,
1149 VIDEO_MAJOR, minor: vdev->minor);
1150 if (!m2m_dev->intf_devnode) {
1151 ret = -ENOMEM;
1152 goto err_rm_links1;
1153 }
1154
1155 /* Connect the two DMA engines to the interface */
1156 link = media_create_intf_link(entity: m2m_dev->source,
1157 intf: &m2m_dev->intf_devnode->intf,
1158 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1159 if (!link) {
1160 ret = -ENOMEM;
1161 goto err_rm_devnode;
1162 }
1163
1164 link = media_create_intf_link(entity: &m2m_dev->sink,
1165 intf: &m2m_dev->intf_devnode->intf,
1166 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1167 if (!link) {
1168 ret = -ENOMEM;
1169 goto err_rm_intf_link;
1170 }
1171 return 0;
1172
1173err_rm_intf_link:
1174 media_remove_intf_links(intf: &m2m_dev->intf_devnode->intf);
1175err_rm_devnode:
1176 media_devnode_remove(devnode: m2m_dev->intf_devnode);
1177err_rm_links1:
1178 media_entity_remove_links(entity: &m2m_dev->sink);
1179err_rm_links0:
1180 media_entity_remove_links(entity: &m2m_dev->proc);
1181 media_entity_remove_links(entity: m2m_dev->source);
1182err_rel_entity2:
1183 media_device_unregister_entity(entity: &m2m_dev->proc);
1184 kfree(objp: m2m_dev->proc.name);
1185err_rel_entity1:
1186 media_device_unregister_entity(entity: &m2m_dev->sink);
1187 kfree(objp: m2m_dev->sink.name);
1188err_rel_entity0:
1189 media_device_unregister_entity(entity: m2m_dev->source);
1190 kfree(objp: m2m_dev->source->name);
1191 return ret;
1192 return 0;
1193}
1194EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1195#endif
1196
1197struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1198{
1199 struct v4l2_m2m_dev *m2m_dev;
1200
1201 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1202 return ERR_PTR(error: -EINVAL);
1203
1204 m2m_dev = kzalloc(size: sizeof *m2m_dev, GFP_KERNEL);
1205 if (!m2m_dev)
1206 return ERR_PTR(error: -ENOMEM);
1207
1208 m2m_dev->curr_ctx = NULL;
1209 m2m_dev->m2m_ops = m2m_ops;
1210 INIT_LIST_HEAD(list: &m2m_dev->job_queue);
1211 spin_lock_init(&m2m_dev->job_spinlock);
1212 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1213
1214 return m2m_dev;
1215}
1216EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1217
1218void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1219{
1220 kfree(objp: m2m_dev);
1221}
1222EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1223
1224struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1225 void *drv_priv,
1226 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1227{
1228 struct v4l2_m2m_ctx *m2m_ctx;
1229 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1230 int ret;
1231
1232 m2m_ctx = kzalloc(size: sizeof *m2m_ctx, GFP_KERNEL);
1233 if (!m2m_ctx)
1234 return ERR_PTR(error: -ENOMEM);
1235
1236 m2m_ctx->priv = drv_priv;
1237 m2m_ctx->m2m_dev = m2m_dev;
1238 init_waitqueue_head(&m2m_ctx->finished);
1239
1240 out_q_ctx = &m2m_ctx->out_q_ctx;
1241 cap_q_ctx = &m2m_ctx->cap_q_ctx;
1242
1243 INIT_LIST_HEAD(list: &out_q_ctx->rdy_queue);
1244 INIT_LIST_HEAD(list: &cap_q_ctx->rdy_queue);
1245 spin_lock_init(&out_q_ctx->rdy_spinlock);
1246 spin_lock_init(&cap_q_ctx->rdy_spinlock);
1247
1248 INIT_LIST_HEAD(list: &m2m_ctx->queue);
1249
1250 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1251
1252 if (ret)
1253 goto err;
1254 /*
1255 * Both queues should use same the mutex to lock the m2m context.
1256 * This lock is used in some v4l2_m2m_* helpers.
1257 */
1258 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1259 ret = -EINVAL;
1260 goto err;
1261 }
1262 m2m_ctx->q_lock = out_q_ctx->q.lock;
1263
1264 return m2m_ctx;
1265err:
1266 kfree(objp: m2m_ctx);
1267 return ERR_PTR(error: ret);
1268}
1269EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1270
1271void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1272{
1273 /* wait until the current context is dequeued from job_queue */
1274 v4l2_m2m_cancel_job(m2m_ctx);
1275
1276 vb2_queue_release(q: &m2m_ctx->cap_q_ctx.q);
1277 vb2_queue_release(q: &m2m_ctx->out_q_ctx.q);
1278
1279 kfree(objp: m2m_ctx);
1280}
1281EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1282
1283void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1284 struct vb2_v4l2_buffer *vbuf)
1285{
1286 struct v4l2_m2m_buffer *b = container_of(vbuf,
1287 struct v4l2_m2m_buffer, vb);
1288 struct v4l2_m2m_queue_ctx *q_ctx;
1289 unsigned long flags;
1290
1291 q_ctx = get_queue_ctx(m2m_ctx, type: vbuf->vb2_buf.vb2_queue->type);
1292 if (!q_ctx)
1293 return;
1294
1295 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1296 list_add_tail(new: &b->list, head: &q_ctx->rdy_queue);
1297 q_ctx->num_rdy++;
1298 spin_unlock_irqrestore(lock: &q_ctx->rdy_spinlock, flags);
1299}
1300EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1301
1302void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1303 struct vb2_v4l2_buffer *cap_vb,
1304 bool copy_frame_flags)
1305{
1306 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1307
1308 if (copy_frame_flags)
1309 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1310 V4L2_BUF_FLAG_BFRAME;
1311
1312 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1313
1314 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1315 cap_vb->timecode = out_vb->timecode;
1316 cap_vb->field = out_vb->field;
1317 cap_vb->flags &= ~mask;
1318 cap_vb->flags |= out_vb->flags & mask;
1319 cap_vb->vb2_buf.copied_timestamp = 1;
1320}
1321EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1322
1323void v4l2_m2m_request_queue(struct media_request *req)
1324{
1325 struct media_request_object *obj, *obj_safe;
1326 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1327
1328 /*
1329 * Queue all objects. Note that buffer objects are at the end of the
1330 * objects list, after all other object types. Once buffer objects
1331 * are queued, the driver might delete them immediately (if the driver
1332 * processes the buffer at once), so we have to use
1333 * list_for_each_entry_safe() to handle the case where the object we
1334 * queue is deleted.
1335 */
1336 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1337 struct v4l2_m2m_ctx *m2m_ctx_obj;
1338 struct vb2_buffer *vb;
1339
1340 if (!obj->ops->queue)
1341 continue;
1342
1343 if (vb2_request_object_is_buffer(obj)) {
1344 /* Sanity checks */
1345 vb = container_of(obj, struct vb2_buffer, req_obj);
1346 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1347 m2m_ctx_obj = container_of(vb->vb2_queue,
1348 struct v4l2_m2m_ctx,
1349 out_q_ctx.q);
1350 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1351 m2m_ctx = m2m_ctx_obj;
1352 }
1353
1354 /*
1355 * The buffer we queue here can in theory be immediately
1356 * unbound, hence the use of list_for_each_entry_safe()
1357 * above and why we call the queue op last.
1358 */
1359 obj->ops->queue(obj);
1360 }
1361
1362 WARN_ON(!m2m_ctx);
1363
1364 if (m2m_ctx)
1365 v4l2_m2m_try_schedule(m2m_ctx);
1366}
1367EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1368
1369/* Videobuf2 ioctl helpers */
1370
1371int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1372 struct v4l2_requestbuffers *rb)
1373{
1374 struct v4l2_fh *fh = file->private_data;
1375
1376 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1377}
1378EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1379
1380int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1381 struct v4l2_create_buffers *create)
1382{
1383 struct v4l2_fh *fh = file->private_data;
1384
1385 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1386}
1387EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1388
1389int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1390 struct v4l2_buffer *buf)
1391{
1392 struct v4l2_fh *fh = file->private_data;
1393
1394 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1395}
1396EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1397
1398int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1399 struct v4l2_buffer *buf)
1400{
1401 struct v4l2_fh *fh = file->private_data;
1402
1403 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1404}
1405EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1406
1407int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1408 struct v4l2_buffer *buf)
1409{
1410 struct v4l2_fh *fh = file->private_data;
1411
1412 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1413}
1414EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1415
1416int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1417 struct v4l2_buffer *buf)
1418{
1419 struct v4l2_fh *fh = file->private_data;
1420
1421 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1422}
1423EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1424
1425int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1426 struct v4l2_exportbuffer *eb)
1427{
1428 struct v4l2_fh *fh = file->private_data;
1429
1430 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1431}
1432EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1433
1434int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1435 enum v4l2_buf_type type)
1436{
1437 struct v4l2_fh *fh = file->private_data;
1438
1439 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1440}
1441EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1442
1443int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1444 enum v4l2_buf_type type)
1445{
1446 struct v4l2_fh *fh = file->private_data;
1447
1448 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1449}
1450EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1451
1452int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1453 struct v4l2_encoder_cmd *ec)
1454{
1455 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1456 return -EINVAL;
1457
1458 ec->flags = 0;
1459 return 0;
1460}
1461EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1462
1463int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1464 struct v4l2_decoder_cmd *dc)
1465{
1466 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1467 return -EINVAL;
1468
1469 dc->flags = 0;
1470
1471 if (dc->cmd == V4L2_DEC_CMD_STOP) {
1472 dc->stop.pts = 0;
1473 } else if (dc->cmd == V4L2_DEC_CMD_START) {
1474 dc->start.speed = 0;
1475 dc->start.format = V4L2_DEC_START_FMT_NONE;
1476 }
1477 return 0;
1478}
1479EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1480
1481/*
1482 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1483 * Should be called from the encoder driver encoder_cmd() callback
1484 */
1485int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1486 struct v4l2_encoder_cmd *ec)
1487{
1488 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1489 return -EINVAL;
1490
1491 if (ec->cmd == V4L2_ENC_CMD_STOP)
1492 return v4l2_update_last_buf_state(m2m_ctx);
1493
1494 if (m2m_ctx->is_draining)
1495 return -EBUSY;
1496
1497 if (m2m_ctx->has_stopped)
1498 m2m_ctx->has_stopped = false;
1499
1500 return 0;
1501}
1502EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1503
1504/*
1505 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1506 * Should be called from the decoder driver decoder_cmd() callback
1507 */
1508int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1509 struct v4l2_decoder_cmd *dc)
1510{
1511 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1512 return -EINVAL;
1513
1514 if (dc->cmd == V4L2_DEC_CMD_STOP)
1515 return v4l2_update_last_buf_state(m2m_ctx);
1516
1517 if (m2m_ctx->is_draining)
1518 return -EBUSY;
1519
1520 if (m2m_ctx->has_stopped)
1521 m2m_ctx->has_stopped = false;
1522
1523 return 0;
1524}
1525EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1526
1527int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1528 struct v4l2_encoder_cmd *ec)
1529{
1530 struct v4l2_fh *fh = file->private_data;
1531
1532 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1533}
1534EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1535
1536int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1537 struct v4l2_decoder_cmd *dc)
1538{
1539 struct v4l2_fh *fh = file->private_data;
1540
1541 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1542}
1543EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1544
1545int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1546 struct v4l2_decoder_cmd *dc)
1547{
1548 if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1549 return -EINVAL;
1550
1551 dc->flags = 0;
1552
1553 return 0;
1554}
1555EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1556
1557int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1558 struct v4l2_decoder_cmd *dc)
1559{
1560 struct v4l2_fh *fh = file->private_data;
1561 struct vb2_v4l2_buffer *out_vb, *cap_vb;
1562 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1563 unsigned long flags;
1564 int ret;
1565
1566 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1567 if (ret < 0)
1568 return ret;
1569
1570 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1571 out_vb = v4l2_m2m_last_src_buf(m2m_ctx: fh->m2m_ctx);
1572 cap_vb = v4l2_m2m_last_dst_buf(m2m_ctx: fh->m2m_ctx);
1573
1574 /*
1575 * If there is an out buffer pending, then clear any HOLD flag.
1576 *
1577 * By clearing this flag we ensure that when this output
1578 * buffer is processed any held capture buffer will be released.
1579 */
1580 if (out_vb) {
1581 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1582 } else if (cap_vb && cap_vb->is_held) {
1583 /*
1584 * If there were no output buffers, but there is a
1585 * capture buffer that is held, then release that
1586 * buffer.
1587 */
1588 cap_vb->is_held = false;
1589 v4l2_m2m_dst_buf_remove(m2m_ctx: fh->m2m_ctx);
1590 v4l2_m2m_buf_done(buf: cap_vb, state: VB2_BUF_STATE_DONE);
1591 }
1592 spin_unlock_irqrestore(lock: &m2m_dev->job_spinlock, flags);
1593
1594 return 0;
1595}
1596EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1597
1598/*
1599 * v4l2_file_operations helpers. It is assumed here same lock is used
1600 * for the output and the capture buffer queue.
1601 */
1602
1603int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1604{
1605 struct v4l2_fh *fh = file->private_data;
1606
1607 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1608}
1609EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1610
1611__poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1612{
1613 struct v4l2_fh *fh = file->private_data;
1614 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1615 __poll_t ret;
1616
1617 if (m2m_ctx->q_lock)
1618 mutex_lock(m2m_ctx->q_lock);
1619
1620 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1621
1622 if (m2m_ctx->q_lock)
1623 mutex_unlock(lock: m2m_ctx->q_lock);
1624
1625 return ret;
1626}
1627EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1628
1629

source code of linux/drivers/media/v4l2-core/v4l2-mem2mem.c