1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CQHCI crypto engine (inline encryption) support
4 *
5 * Copyright 2020 Google LLC
6 */
7
8#include <linux/blk-crypto.h>
9#include <linux/blk-crypto-profile.h>
10#include <linux/mmc/host.h>
11
12#include "cqhci-crypto.h"
13
14/* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */
15static const struct cqhci_crypto_alg_entry {
16 enum cqhci_crypto_alg alg;
17 enum cqhci_crypto_key_size key_size;
18} cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = {
19 [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
20 .alg = CQHCI_CRYPTO_ALG_AES_XTS,
21 .key_size = CQHCI_CRYPTO_KEY_SIZE_256,
22 },
23};
24
25static inline struct cqhci_host *
26cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile)
27{
28 struct mmc_host *mmc =
29 container_of(profile, struct mmc_host, crypto_profile);
30
31 return mmc->cqe_private;
32}
33
34static int cqhci_crypto_program_key(struct cqhci_host *cq_host,
35 const union cqhci_crypto_cfg_entry *cfg,
36 int slot)
37{
38 u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg);
39 int i;
40
41 if (cq_host->ops->program_key)
42 return cq_host->ops->program_key(cq_host, cfg, slot);
43
44 /* Clear CFGE */
45 cqhci_writel(host: cq_host, val: 0, reg: slot_offset + 16 * sizeof(cfg->reg_val[0]));
46
47 /* Write the key */
48 for (i = 0; i < 16; i++) {
49 cqhci_writel(host: cq_host, le32_to_cpu(cfg->reg_val[i]),
50 reg: slot_offset + i * sizeof(cfg->reg_val[0]));
51 }
52 /* Write dword 17 */
53 cqhci_writel(host: cq_host, le32_to_cpu(cfg->reg_val[17]),
54 reg: slot_offset + 17 * sizeof(cfg->reg_val[0]));
55 /* Write dword 16, which includes the new value of CFGE */
56 cqhci_writel(host: cq_host, le32_to_cpu(cfg->reg_val[16]),
57 reg: slot_offset + 16 * sizeof(cfg->reg_val[0]));
58 return 0;
59}
60
61static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile,
62 const struct blk_crypto_key *key,
63 unsigned int slot)
64
65{
66 struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
67 const union cqhci_crypto_cap_entry *ccap_array =
68 cq_host->crypto_cap_array;
69 const struct cqhci_crypto_alg_entry *alg =
70 &cqhci_crypto_algs[key->crypto_cfg.crypto_mode];
71 u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512;
72 int i;
73 int cap_idx = -1;
74 union cqhci_crypto_cfg_entry cfg = {};
75 int err;
76
77 BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
78 for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) {
79 if (ccap_array[i].algorithm_id == alg->alg &&
80 ccap_array[i].key_size == alg->key_size &&
81 (ccap_array[i].sdus_mask & data_unit_mask)) {
82 cap_idx = i;
83 break;
84 }
85 }
86 if (WARN_ON(cap_idx < 0))
87 return -EOPNOTSUPP;
88
89 cfg.data_unit_size = data_unit_mask;
90 cfg.crypto_cap_idx = cap_idx;
91 cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE;
92
93 if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) {
94 /* In XTS mode, the blk_crypto_key's size is already doubled */
95 memcpy(cfg.crypto_key, key->raw, key->size/2);
96 memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2,
97 key->raw + key->size/2, key->size/2);
98 } else {
99 memcpy(cfg.crypto_key, key->raw, key->size);
100 }
101
102 err = cqhci_crypto_program_key(cq_host, cfg: &cfg, slot);
103
104 memzero_explicit(s: &cfg, count: sizeof(cfg));
105 return err;
106}
107
108static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot)
109{
110 /*
111 * Clear the crypto cfg on the device. Clearing CFGE
112 * might not be sufficient, so just clear the entire cfg.
113 */
114 union cqhci_crypto_cfg_entry cfg = {};
115
116 return cqhci_crypto_program_key(cq_host, cfg: &cfg, slot);
117}
118
119static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile,
120 const struct blk_crypto_key *key,
121 unsigned int slot)
122{
123 struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile);
124
125 return cqhci_crypto_clear_keyslot(cq_host, slot);
126}
127
128/*
129 * The keyslot management operations for CQHCI crypto.
130 *
131 * Note that the block layer ensures that these are never called while the host
132 * controller is runtime-suspended. However, the CQE won't necessarily be
133 * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the
134 * CQHCI_CFG register. But the hardware allows that.
135 */
136static const struct blk_crypto_ll_ops cqhci_crypto_ops = {
137 .keyslot_program = cqhci_crypto_keyslot_program,
138 .keyslot_evict = cqhci_crypto_keyslot_evict,
139};
140
141static enum blk_crypto_mode_num
142cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap)
143{
144 int i;
145
146 for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) {
147 BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0);
148 if (cqhci_crypto_algs[i].alg == cap.algorithm_id &&
149 cqhci_crypto_algs[i].key_size == cap.key_size)
150 return i;
151 }
152 return BLK_ENCRYPTION_MODE_INVALID;
153}
154
155/**
156 * cqhci_crypto_init - initialize CQHCI crypto support
157 * @cq_host: a cqhci host
158 *
159 * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares
160 * CQHCI_CAP_CS, initialize the crypto support. This involves reading the
161 * crypto capability registers, initializing the blk_crypto_profile, clearing
162 * all keyslots, and enabling 128-bit task descriptors.
163 *
164 * Return: 0 if crypto was initialized or isn't supported; whether
165 * MMC_CAP2_CRYPTO remains set indicates which one of those cases it is.
166 * Also can return a negative errno value on unexpected error.
167 */
168int cqhci_crypto_init(struct cqhci_host *cq_host)
169{
170 struct mmc_host *mmc = cq_host->mmc;
171 struct device *dev = mmc_dev(mmc);
172 struct blk_crypto_profile *profile = &mmc->crypto_profile;
173 unsigned int num_keyslots;
174 unsigned int cap_idx;
175 enum blk_crypto_mode_num blk_mode_num;
176 unsigned int slot;
177 int err = 0;
178
179 if (!(mmc->caps2 & MMC_CAP2_CRYPTO) ||
180 !(cqhci_readl(host: cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
181 goto out;
182
183 cq_host->crypto_capabilities.reg_val =
184 cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP));
185
186 cq_host->crypto_cfg_register =
187 (u32)cq_host->crypto_capabilities.config_array_ptr * 0x100;
188
189 cq_host->crypto_cap_array =
190 devm_kcalloc(dev, n: cq_host->crypto_capabilities.num_crypto_cap,
191 size: sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL);
192 if (!cq_host->crypto_cap_array) {
193 err = -ENOMEM;
194 goto out;
195 }
196
197 /*
198 * CCAP.CFGC is off by one, so the actual number of crypto
199 * configurations (a.k.a. keyslots) is CCAP.CFGC + 1.
200 */
201 num_keyslots = cq_host->crypto_capabilities.config_count + 1;
202
203 err = devm_blk_crypto_profile_init(dev, profile, num_slots: num_keyslots);
204 if (err)
205 goto out;
206
207 profile->ll_ops = cqhci_crypto_ops;
208 profile->dev = dev;
209
210 /* Unfortunately, CQHCI crypto only supports 32 DUN bits. */
211 profile->max_dun_bytes_supported = 4;
212
213 /*
214 * Cache all the crypto capabilities and advertise the supported crypto
215 * modes and data unit sizes to the block layer.
216 */
217 for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap;
218 cap_idx++) {
219 cq_host->crypto_cap_array[cap_idx].reg_val =
220 cpu_to_le32(cqhci_readl(cq_host,
221 CQHCI_CRYPTOCAP +
222 cap_idx * sizeof(__le32)));
223 blk_mode_num = cqhci_find_blk_crypto_mode(
224 cap: cq_host->crypto_cap_array[cap_idx]);
225 if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID)
226 continue;
227 profile->modes_supported[blk_mode_num] |=
228 cq_host->crypto_cap_array[cap_idx].sdus_mask * 512;
229 }
230
231 /* Clear all the keyslots so that we start in a known state. */
232 for (slot = 0; slot < num_keyslots; slot++)
233 cqhci_crypto_clear_keyslot(cq_host, slot);
234
235 /* CQHCI crypto requires the use of 128-bit task descriptors. */
236 cq_host->caps |= CQHCI_TASK_DESC_SZ_128;
237
238 return 0;
239
240out:
241 mmc->caps2 &= ~MMC_CAP2_CRYPTO;
242 return err;
243}
244

source code of linux/drivers/mmc/host/cqhci-crypto.c