1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
4 *
5 * Author: Angus Clark <angus.clark@st.com>
6 *
7 * Copyright (C) 2010-2014 STMicroelectronics Limited
8 *
9 * JEDEC probe based on drivers/mtd/devices/m25p80.c
10 */
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/regmap.h>
14#include <linux/platform_device.h>
15#include <linux/mfd/syscon.h>
16#include <linux/mtd/mtd.h>
17#include <linux/mtd/partitions.h>
18#include <linux/mtd/spi-nor.h>
19#include <linux/sched.h>
20#include <linux/delay.h>
21#include <linux/io.h>
22#include <linux/of.h>
23#include <linux/clk.h>
24
25#include "serial_flash_cmds.h"
26
27/*
28 * FSM SPI Controller Registers
29 */
30#define SPI_CLOCKDIV 0x0010
31#define SPI_MODESELECT 0x0018
32#define SPI_CONFIGDATA 0x0020
33#define SPI_STA_MODE_CHANGE 0x0028
34#define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
35#define SPI_FAST_SEQ_ADD1 0x0104
36#define SPI_FAST_SEQ_ADD2 0x0108
37#define SPI_FAST_SEQ_ADD_CFG 0x010c
38#define SPI_FAST_SEQ_OPC1 0x0110
39#define SPI_FAST_SEQ_OPC2 0x0114
40#define SPI_FAST_SEQ_OPC3 0x0118
41#define SPI_FAST_SEQ_OPC4 0x011c
42#define SPI_FAST_SEQ_OPC5 0x0120
43#define SPI_MODE_BITS 0x0124
44#define SPI_DUMMY_BITS 0x0128
45#define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
46#define SPI_FAST_SEQ_1 0x0130
47#define SPI_FAST_SEQ_2 0x0134
48#define SPI_FAST_SEQ_3 0x0138
49#define SPI_FAST_SEQ_4 0x013c
50#define SPI_FAST_SEQ_CFG 0x0140
51#define SPI_FAST_SEQ_STA 0x0144
52#define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
53#define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
54#define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
55#define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
56#define SPI_PROGRAM_ERASE_TIME 0x0158
57#define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
58#define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
59#define SPI_STATUS_WR_TIME_REG 0x0164
60#define SPI_FAST_SEQ_DATA_REG 0x0300
61
62/*
63 * Register: SPI_MODESELECT
64 */
65#define SPI_MODESELECT_CONTIG 0x01
66#define SPI_MODESELECT_FASTREAD 0x02
67#define SPI_MODESELECT_DUALIO 0x04
68#define SPI_MODESELECT_FSM 0x08
69#define SPI_MODESELECT_QUADBOOT 0x10
70
71/*
72 * Register: SPI_CONFIGDATA
73 */
74#define SPI_CFG_DEVICE_ST 0x1
75#define SPI_CFG_DEVICE_ATMEL 0x4
76#define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
77#define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
78#define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
79
80#define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
81#define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
82#define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
83
84/*
85 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
86 */
87#define TRANSFER_SIZE(x) ((x) * 8)
88
89/*
90 * Register: SPI_FAST_SEQ_ADD_CFG
91 */
92#define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
93#define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
94#define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
95#define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
96#define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
97#define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
98#define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
99#define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
100#define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
101#define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
102
103/*
104 * Register: SPI_FAST_SEQ_n
105 */
106#define SEQ_OPC_OPCODE(x) ((x) << 0)
107#define SEQ_OPC_CYCLES(x) ((x) << 8)
108#define SEQ_OPC_PADS_1 (0x0 << 14)
109#define SEQ_OPC_PADS_2 (0x1 << 14)
110#define SEQ_OPC_PADS_4 (0x3 << 14)
111#define SEQ_OPC_CSDEASSERT (1 << 16)
112
113/*
114 * Register: SPI_FAST_SEQ_CFG
115 */
116#define SEQ_CFG_STARTSEQ (1 << 0)
117#define SEQ_CFG_SWRESET (1 << 5)
118#define SEQ_CFG_CSDEASSERT (1 << 6)
119#define SEQ_CFG_READNOTWRITE (1 << 7)
120#define SEQ_CFG_ERASE (1 << 8)
121#define SEQ_CFG_PADS_1 (0x0 << 16)
122#define SEQ_CFG_PADS_2 (0x1 << 16)
123#define SEQ_CFG_PADS_4 (0x3 << 16)
124
125/*
126 * Register: SPI_MODE_BITS
127 */
128#define MODE_DATA(x) (x & 0xff)
129#define MODE_CYCLES(x) ((x & 0x3f) << 16)
130#define MODE_PADS_1 (0x0 << 22)
131#define MODE_PADS_2 (0x1 << 22)
132#define MODE_PADS_4 (0x3 << 22)
133#define DUMMY_CSDEASSERT (1 << 24)
134
135/*
136 * Register: SPI_DUMMY_BITS
137 */
138#define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
139#define DUMMY_PADS_1 (0x0 << 22)
140#define DUMMY_PADS_2 (0x1 << 22)
141#define DUMMY_PADS_4 (0x3 << 22)
142#define DUMMY_CSDEASSERT (1 << 24)
143
144/*
145 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
146 */
147#define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
148#define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
149#define STA_PADS_1 (0x0 << 16)
150#define STA_PADS_2 (0x1 << 16)
151#define STA_PADS_4 (0x3 << 16)
152#define STA_CSDEASSERT (0x1 << 20)
153#define STA_RDNOTWR (0x1 << 21)
154
155/*
156 * FSM SPI Instruction Opcodes
157 */
158#define STFSM_OPC_CMD 0x1
159#define STFSM_OPC_ADD 0x2
160#define STFSM_OPC_STA 0x3
161#define STFSM_OPC_MODE 0x4
162#define STFSM_OPC_DUMMY 0x5
163#define STFSM_OPC_DATA 0x6
164#define STFSM_OPC_WAIT 0x7
165#define STFSM_OPC_JUMP 0x8
166#define STFSM_OPC_GOTO 0x9
167#define STFSM_OPC_STOP 0xF
168
169/*
170 * FSM SPI Instructions (== opcode + operand).
171 */
172#define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
173
174#define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
175#define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
176#define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
177#define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
178#define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
179#define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
180#define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
181
182#define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
183#define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
184
185#define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
186#define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
187#define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
188#define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
189
190#define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
191#define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
192#define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
193#define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
194
195#define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
196#define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
197
198#define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
199
200#define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
201
202/* S25FLxxxS commands */
203#define S25FL_CMD_WRITE4_1_1_4 0x34
204#define S25FL_CMD_SE4 0xdc
205#define S25FL_CMD_CLSR 0x30
206#define S25FL_CMD_DYBWR 0xe1
207#define S25FL_CMD_DYBRD 0xe0
208#define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
209 * 'SPINOR_OP_WRITE_1_4_4'
210 * as found on N25Qxxx devices! */
211
212/* Status register */
213#define FLASH_STATUS_BUSY 0x01
214#define FLASH_STATUS_WEL 0x02
215#define FLASH_STATUS_BP0 0x04
216#define FLASH_STATUS_BP1 0x08
217#define FLASH_STATUS_BP2 0x10
218#define FLASH_STATUS_SRWP0 0x80
219#define FLASH_STATUS_TIMEOUT 0xff
220/* S25FL Error Flags */
221#define S25FL_STATUS_E_ERR 0x20
222#define S25FL_STATUS_P_ERR 0x40
223
224#define N25Q_CMD_WRVCR 0x81
225#define N25Q_CMD_RDVCR 0x85
226#define N25Q_CMD_RDVECR 0x65
227#define N25Q_CMD_RDNVCR 0xb5
228#define N25Q_CMD_WRNVCR 0xb1
229
230#define FLASH_PAGESIZE 256 /* In Bytes */
231#define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
232#define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
233
234/*
235 * Flags to tweak operation of default read/write/erase routines
236 */
237#define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
238#define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
239#define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
240#define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
241
242struct stfsm_seq {
243 uint32_t data_size;
244 uint32_t addr1;
245 uint32_t addr2;
246 uint32_t addr_cfg;
247 uint32_t seq_opc[5];
248 uint32_t mode;
249 uint32_t dummy;
250 uint32_t status;
251 uint8_t seq[16];
252 uint32_t seq_cfg;
253} __packed __aligned(4);
254
255struct stfsm {
256 struct device *dev;
257 void __iomem *base;
258 struct mtd_info mtd;
259 struct mutex lock;
260 struct flash_info *info;
261 struct clk *clk;
262
263 uint32_t configuration;
264 uint32_t fifo_dir_delay;
265 bool booted_from_spi;
266 bool reset_signal;
267 bool reset_por;
268
269 struct stfsm_seq stfsm_seq_read;
270 struct stfsm_seq stfsm_seq_write;
271 struct stfsm_seq stfsm_seq_en_32bit_addr;
272};
273
274/* Parameters to configure a READ or WRITE FSM sequence */
275struct seq_rw_config {
276 uint32_t flags; /* flags to support config */
277 uint8_t cmd; /* FLASH command */
278 int write; /* Write Sequence */
279 uint8_t addr_pads; /* No. of addr pads (MODE & DUMMY) */
280 uint8_t data_pads; /* No. of data pads */
281 uint8_t mode_data; /* MODE data */
282 uint8_t mode_cycles; /* No. of MODE cycles */
283 uint8_t dummy_cycles; /* No. of DUMMY cycles */
284};
285
286/* SPI Flash Device Table */
287struct flash_info {
288 char *name;
289 /*
290 * JEDEC id zero means "no ID" (most older chips); otherwise it has
291 * a high byte of zero plus three data bytes: the manufacturer id,
292 * then a two byte device id.
293 */
294 u32 jedec_id;
295 u16 ext_id;
296 /*
297 * The size listed here is what works with SPINOR_OP_SE, which isn't
298 * necessarily called a "sector" by the vendor.
299 */
300 unsigned sector_size;
301 u16 n_sectors;
302 u32 flags;
303 /*
304 * Note, where FAST_READ is supported, freq_max specifies the
305 * FAST_READ frequency, not the READ frequency.
306 */
307 u32 max_freq;
308 int (*config)(struct stfsm *);
309};
310
311static int stfsm_n25q_config(struct stfsm *fsm);
312static int stfsm_mx25_config(struct stfsm *fsm);
313static int stfsm_s25fl_config(struct stfsm *fsm);
314static int stfsm_w25q_config(struct stfsm *fsm);
315
316static struct flash_info flash_types[] = {
317 /*
318 * ST Microelectronics/Numonyx --
319 * (newer production versions may have feature updates
320 * (eg faster operating frequency)
321 */
322#define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
323 { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG, 25, NULL },
324 { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG, 25, NULL },
325 { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG, 25, NULL },
326 { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG, 50, NULL },
327 { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG, 50, NULL },
328 { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG, 50, NULL },
329
330#define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
331 FLASH_FLAG_READ_FAST | \
332 FLASH_FLAG_READ_1_1_2 | \
333 FLASH_FLAG_WRITE_1_1_2)
334 { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG, 75, NULL },
335 { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG, 75, NULL },
336
337 /* Macronix MX25xxx
338 * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
339 * where operating frequency must be reduced.
340 */
341#define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
342 FLASH_FLAG_READ_FAST | \
343 FLASH_FLAG_READ_1_1_2 | \
344 FLASH_FLAG_READ_1_2_2 | \
345 FLASH_FLAG_READ_1_1_4 | \
346 FLASH_FLAG_SE_4K | \
347 FLASH_FLAG_SE_32K)
348 { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
349 (MX25_FLAG | FLASH_FLAG_WRITE_1_4_4), 86,
350 stfsm_mx25_config},
351 { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
352 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
353 stfsm_mx25_config },
354 { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
355 (MX25_FLAG | FLASH_FLAG_32BIT_ADDR | FLASH_FLAG_RESET), 70,
356 stfsm_mx25_config},
357
358#define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
359 FLASH_FLAG_READ_FAST | \
360 FLASH_FLAG_READ_1_1_2 | \
361 FLASH_FLAG_READ_1_2_2 | \
362 FLASH_FLAG_READ_1_1_4 | \
363 FLASH_FLAG_READ_1_4_4 | \
364 FLASH_FLAG_WRITE_1_1_2 | \
365 FLASH_FLAG_WRITE_1_2_2 | \
366 FLASH_FLAG_WRITE_1_1_4 | \
367 FLASH_FLAG_WRITE_1_4_4)
368 { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG, 108,
369 stfsm_n25q_config },
370 { "n25q256", 0x20ba19, 0, 64 * 1024, 512,
371 N25Q_FLAG | FLASH_FLAG_32BIT_ADDR, 108, stfsm_n25q_config },
372
373 /*
374 * Spansion S25FLxxxP
375 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
376 */
377#define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
378 FLASH_FLAG_READ_1_1_2 | \
379 FLASH_FLAG_READ_1_2_2 | \
380 FLASH_FLAG_READ_1_1_4 | \
381 FLASH_FLAG_READ_1_4_4 | \
382 FLASH_FLAG_WRITE_1_1_4 | \
383 FLASH_FLAG_READ_FAST)
384 { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG, 80,
385 stfsm_s25fl_config},
386 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG, 80,
387 stfsm_s25fl_config },
388 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG, 80,
389 stfsm_s25fl_config },
390
391 /*
392 * Spansion S25FLxxxS
393 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
394 * - RESET# signal supported by die but not bristled out on all
395 * package types. The package type is a function of board design,
396 * so this information is captured in the board's flags.
397 * - Supports 'DYB' sector protection. Depending on variant, sectors
398 * may default to locked state on power-on.
399 */
400#define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
401 FLASH_FLAG_RESET | \
402 FLASH_FLAG_DYB_LOCKING)
403 { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG, 80,
404 stfsm_s25fl_config },
405 { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG, 80,
406 stfsm_s25fl_config },
407 { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
408 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
409 { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
410 S25FLXXXS_FLAG | FLASH_FLAG_32BIT_ADDR, 80, stfsm_s25fl_config },
411
412 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
413#define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
414 FLASH_FLAG_READ_FAST | \
415 FLASH_FLAG_READ_1_1_2 | \
416 FLASH_FLAG_WRITE_1_1_2)
417 { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG, 75, NULL },
418 { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG, 75, NULL },
419 { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG, 75, NULL },
420 { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG, 75, NULL },
421 { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG, 75, NULL },
422
423 /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
424#define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
425 FLASH_FLAG_READ_FAST | \
426 FLASH_FLAG_READ_1_1_2 | \
427 FLASH_FLAG_READ_1_2_2 | \
428 FLASH_FLAG_READ_1_1_4 | \
429 FLASH_FLAG_READ_1_4_4 | \
430 FLASH_FLAG_WRITE_1_1_4)
431 { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG, 80,
432 stfsm_w25q_config },
433 { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG, 80,
434 stfsm_w25q_config },
435 { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG, 80,
436 stfsm_w25q_config },
437 { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG, 80,
438 stfsm_w25q_config },
439
440 /* Sentinel */
441 { NULL, 0x000000, 0, 0, 0, 0, 0, NULL },
442};
443
444/*
445 * FSM message sequence configurations:
446 *
447 * All configs are presented in order of preference
448 */
449
450/* Default READ configurations, in order of preference */
451static struct seq_rw_config default_read_configs[] = {
452 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 2, 4},
453 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 4, 0},
454 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 4, 0},
455 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
456 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
457 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
458 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
459};
460
461/* Default WRITE configurations */
462static struct seq_rw_config default_write_configs[] = {
463 {FLASH_FLAG_WRITE_1_4_4, SPINOR_OP_WRITE_1_4_4, 1, 4, 4, 0x00, 0, 0},
464 {FLASH_FLAG_WRITE_1_1_4, SPINOR_OP_WRITE_1_1_4, 1, 1, 4, 0x00, 0, 0},
465 {FLASH_FLAG_WRITE_1_2_2, SPINOR_OP_WRITE_1_2_2, 1, 2, 2, 0x00, 0, 0},
466 {FLASH_FLAG_WRITE_1_1_2, SPINOR_OP_WRITE_1_1_2, 1, 1, 2, 0x00, 0, 0},
467 {FLASH_FLAG_READ_WRITE, SPINOR_OP_WRITE, 1, 1, 1, 0x00, 0, 0},
468 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
469};
470
471/*
472 * [N25Qxxx] Configuration
473 */
474#define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
475#define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
476#define N25Q_VCR_WRAP_CONT 0x3
477
478/* N25Q 3-byte Address READ configurations
479 * - 'FAST' variants configured for 8 dummy cycles.
480 *
481 * Note, the number of dummy cycles used for 'FAST' READ operations is
482 * configurable and would normally be tuned according to the READ command and
483 * operating frequency. However, this applies universally to all 'FAST' READ
484 * commands, including those used by the SPIBoot controller, and remains in
485 * force until the device is power-cycled. Since the SPIBoot controller is
486 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
487 * cycles.
488 */
489static struct seq_rw_config n25q_read3_configs[] = {
490 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4, 0, 4, 4, 0x00, 0, 8},
491 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4, 0, 1, 4, 0x00, 0, 8},
492 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2, 0, 2, 2, 0x00, 0, 8},
493 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2, 0, 1, 2, 0x00, 0, 8},
494 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST, 0, 1, 1, 0x00, 0, 8},
495 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ, 0, 1, 1, 0x00, 0, 0},
496 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
497};
498
499/* N25Q 4-byte Address READ configurations
500 * - use special 4-byte address READ commands (reduces overheads, and
501 * reduces risk of hitting watchdog reset issues).
502 * - 'FAST' variants configured for 8 dummy cycles (see note above.)
503 */
504static struct seq_rw_config n25q_read4_configs[] = {
505 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 0, 8},
506 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
507 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 0, 8},
508 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
509 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
510 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
511 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
512};
513
514/*
515 * [MX25xxx] Configuration
516 */
517#define MX25_STATUS_QE (0x1 << 6)
518
519static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq *seq)
520{
521 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
522 SEQ_OPC_CYCLES(8) |
523 SEQ_OPC_OPCODE(SPINOR_OP_EN4B) |
524 SEQ_OPC_CSDEASSERT);
525
526 seq->seq[0] = STFSM_INST_CMD1;
527 seq->seq[1] = STFSM_INST_WAIT;
528 seq->seq[2] = STFSM_INST_STOP;
529
530 seq->seq_cfg = (SEQ_CFG_PADS_1 |
531 SEQ_CFG_ERASE |
532 SEQ_CFG_READNOTWRITE |
533 SEQ_CFG_CSDEASSERT |
534 SEQ_CFG_STARTSEQ);
535
536 return 0;
537}
538
539/*
540 * [S25FLxxx] Configuration
541 */
542#define STFSM_S25FL_CONFIG_QE (0x1 << 1)
543
544/*
545 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
546 * Register, Extended Address Modes, and a 32-bit address command set. The
547 * 32-bit address command set is used here, since it avoids any problems with
548 * entering a state that is incompatible with the SPIBoot Controller.
549 */
550static struct seq_rw_config stfsm_s25fl_read4_configs[] = {
551 {FLASH_FLAG_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B, 0, 4, 4, 0x00, 2, 4},
552 {FLASH_FLAG_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B, 0, 1, 4, 0x00, 0, 8},
553 {FLASH_FLAG_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B, 0, 2, 2, 0x00, 4, 0},
554 {FLASH_FLAG_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B, 0, 1, 2, 0x00, 0, 8},
555 {FLASH_FLAG_READ_FAST, SPINOR_OP_READ_FAST_4B, 0, 1, 1, 0x00, 0, 8},
556 {FLASH_FLAG_READ_WRITE, SPINOR_OP_READ_4B, 0, 1, 1, 0x00, 0, 0},
557 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
558};
559
560static struct seq_rw_config stfsm_s25fl_write4_configs[] = {
561 {FLASH_FLAG_WRITE_1_1_4, S25FL_CMD_WRITE4_1_1_4, 1, 1, 4, 0x00, 0, 0},
562 {FLASH_FLAG_READ_WRITE, S25FL_CMD_WRITE4, 1, 1, 1, 0x00, 0, 0},
563 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
564};
565
566/*
567 * [W25Qxxx] Configuration
568 */
569#define W25Q_STATUS_QE (0x1 << 1)
570
571static struct stfsm_seq stfsm_seq_read_jedec = {
572 .data_size = TRANSFER_SIZE(8),
573 .seq_opc[0] = (SEQ_OPC_PADS_1 |
574 SEQ_OPC_CYCLES(8) |
575 SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
576 .seq = {
577 STFSM_INST_CMD1,
578 STFSM_INST_DATA_READ,
579 STFSM_INST_STOP,
580 },
581 .seq_cfg = (SEQ_CFG_PADS_1 |
582 SEQ_CFG_READNOTWRITE |
583 SEQ_CFG_CSDEASSERT |
584 SEQ_CFG_STARTSEQ),
585};
586
587static struct stfsm_seq stfsm_seq_read_status_fifo = {
588 .data_size = TRANSFER_SIZE(4),
589 .seq_opc[0] = (SEQ_OPC_PADS_1 |
590 SEQ_OPC_CYCLES(8) |
591 SEQ_OPC_OPCODE(SPINOR_OP_RDSR)),
592 .seq = {
593 STFSM_INST_CMD1,
594 STFSM_INST_DATA_READ,
595 STFSM_INST_STOP,
596 },
597 .seq_cfg = (SEQ_CFG_PADS_1 |
598 SEQ_CFG_READNOTWRITE |
599 SEQ_CFG_CSDEASSERT |
600 SEQ_CFG_STARTSEQ),
601};
602
603static struct stfsm_seq stfsm_seq_erase_sector = {
604 /* 'addr_cfg' configured during initialisation */
605 .seq_opc = {
606 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
607 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
608
609 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
610 SEQ_OPC_OPCODE(SPINOR_OP_SE)),
611 },
612 .seq = {
613 STFSM_INST_CMD1,
614 STFSM_INST_CMD2,
615 STFSM_INST_ADD1,
616 STFSM_INST_ADD2,
617 STFSM_INST_STOP,
618 },
619 .seq_cfg = (SEQ_CFG_PADS_1 |
620 SEQ_CFG_READNOTWRITE |
621 SEQ_CFG_CSDEASSERT |
622 SEQ_CFG_STARTSEQ),
623};
624
625static struct stfsm_seq stfsm_seq_erase_chip = {
626 .seq_opc = {
627 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
628 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
629
630 (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
631 SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE) | SEQ_OPC_CSDEASSERT),
632 },
633 .seq = {
634 STFSM_INST_CMD1,
635 STFSM_INST_CMD2,
636 STFSM_INST_WAIT,
637 STFSM_INST_STOP,
638 },
639 .seq_cfg = (SEQ_CFG_PADS_1 |
640 SEQ_CFG_ERASE |
641 SEQ_CFG_READNOTWRITE |
642 SEQ_CFG_CSDEASSERT |
643 SEQ_CFG_STARTSEQ),
644};
645
646static struct stfsm_seq stfsm_seq_write_status = {
647 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
648 SEQ_OPC_OPCODE(SPINOR_OP_WREN) | SEQ_OPC_CSDEASSERT),
649 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
650 SEQ_OPC_OPCODE(SPINOR_OP_WRSR)),
651 .seq = {
652 STFSM_INST_CMD1,
653 STFSM_INST_CMD2,
654 STFSM_INST_STA_WR1,
655 STFSM_INST_STOP,
656 },
657 .seq_cfg = (SEQ_CFG_PADS_1 |
658 SEQ_CFG_READNOTWRITE |
659 SEQ_CFG_CSDEASSERT |
660 SEQ_CFG_STARTSEQ),
661};
662
663/* Dummy sequence to read one byte of data from flash into the FIFO */
664static const struct stfsm_seq stfsm_seq_load_fifo_byte = {
665 .data_size = TRANSFER_SIZE(1),
666 .seq_opc[0] = (SEQ_OPC_PADS_1 |
667 SEQ_OPC_CYCLES(8) |
668 SEQ_OPC_OPCODE(SPINOR_OP_RDID)),
669 .seq = {
670 STFSM_INST_CMD1,
671 STFSM_INST_DATA_READ,
672 STFSM_INST_STOP,
673 },
674 .seq_cfg = (SEQ_CFG_PADS_1 |
675 SEQ_CFG_READNOTWRITE |
676 SEQ_CFG_CSDEASSERT |
677 SEQ_CFG_STARTSEQ),
678};
679
680static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq *seq)
681{
682 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
683 SEQ_OPC_OPCODE(SPINOR_OP_EN4B));
684 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
685 SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
686 SEQ_OPC_CSDEASSERT);
687
688 seq->seq[0] = STFSM_INST_CMD2;
689 seq->seq[1] = STFSM_INST_CMD1;
690 seq->seq[2] = STFSM_INST_WAIT;
691 seq->seq[3] = STFSM_INST_STOP;
692
693 seq->seq_cfg = (SEQ_CFG_PADS_1 |
694 SEQ_CFG_ERASE |
695 SEQ_CFG_READNOTWRITE |
696 SEQ_CFG_CSDEASSERT |
697 SEQ_CFG_STARTSEQ);
698
699 return 0;
700}
701
702static inline int stfsm_is_idle(struct stfsm *fsm)
703{
704 return readl(addr: fsm->base + SPI_FAST_SEQ_STA) & 0x10;
705}
706
707static inline uint32_t stfsm_fifo_available(struct stfsm *fsm)
708{
709 return (readl(addr: fsm->base + SPI_FAST_SEQ_STA) >> 5) & 0x7f;
710}
711
712static inline void stfsm_load_seq(struct stfsm *fsm,
713 const struct stfsm_seq *seq)
714{
715 void __iomem *dst = fsm->base + SPI_FAST_SEQ_TRANSFER_SIZE;
716 const uint32_t *src = (const uint32_t *)seq;
717 int words = sizeof(*seq) / sizeof(*src);
718
719 BUG_ON(!stfsm_is_idle(fsm));
720
721 while (words--) {
722 writel(val: *src, addr: dst);
723 src++;
724 dst += 4;
725 }
726}
727
728static void stfsm_wait_seq(struct stfsm *fsm)
729{
730 unsigned long deadline;
731 int timeout = 0;
732
733 deadline = jiffies + msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS);
734
735 while (!timeout) {
736 if (time_after_eq(jiffies, deadline))
737 timeout = 1;
738
739 if (stfsm_is_idle(fsm))
740 return;
741
742 cond_resched();
743 }
744
745 dev_err(fsm->dev, "timeout on sequence completion\n");
746}
747
748static void stfsm_read_fifo(struct stfsm *fsm, uint32_t *buf, uint32_t size)
749{
750 uint32_t remaining = size >> 2;
751 uint32_t avail;
752 uint32_t words;
753
754 dev_dbg(fsm->dev, "Reading %d bytes from FIFO\n", size);
755
756 BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
757
758 while (remaining) {
759 for (;;) {
760 avail = stfsm_fifo_available(fsm);
761 if (avail)
762 break;
763 udelay(1);
764 }
765 words = min(avail, remaining);
766 remaining -= words;
767
768 readsl(addr: fsm->base + SPI_FAST_SEQ_DATA_REG, buffer: buf, count: words);
769 buf += words;
770 }
771}
772
773/*
774 * Clear the data FIFO
775 *
776 * Typically, this is only required during driver initialisation, where no
777 * assumptions can be made regarding the state of the FIFO.
778 *
779 * The process of clearing the FIFO is complicated by fact that while it is
780 * possible for the FIFO to contain an arbitrary number of bytes [1], the
781 * SPI_FAST_SEQ_STA register only reports the number of complete 32-bit words
782 * present. Furthermore, data can only be drained from the FIFO by reading
783 * complete 32-bit words.
784 *
785 * With this in mind, a two stage process is used to the clear the FIFO:
786 *
787 * 1. Read any complete 32-bit words from the FIFO, as reported by the
788 * SPI_FAST_SEQ_STA register.
789 *
790 * 2. Mop up any remaining bytes. At this point, it is not known if there
791 * are 0, 1, 2, or 3 bytes in the FIFO. To handle all cases, a dummy FSM
792 * sequence is used to load one byte at a time, until a complete 32-bit
793 * word is formed; at most, 4 bytes will need to be loaded.
794 *
795 * [1] It is theoretically possible for the FIFO to contain an arbitrary number
796 * of bits. However, since there are no known use-cases that leave
797 * incomplete bytes in the FIFO, only words and bytes are considered here.
798 */
799static void stfsm_clear_fifo(struct stfsm *fsm)
800{
801 const struct stfsm_seq *seq = &stfsm_seq_load_fifo_byte;
802 uint32_t words, i;
803
804 /* 1. Clear any 32-bit words */
805 words = stfsm_fifo_available(fsm);
806 if (words) {
807 for (i = 0; i < words; i++)
808 readl(addr: fsm->base + SPI_FAST_SEQ_DATA_REG);
809 dev_dbg(fsm->dev, "cleared %d words from FIFO\n", words);
810 }
811
812 /*
813 * 2. Clear any remaining bytes
814 * - Load the FIFO, one byte at a time, until a complete 32-bit word
815 * is available.
816 */
817 for (i = 0, words = 0; i < 4 && !words; i++) {
818 stfsm_load_seq(fsm, seq);
819 stfsm_wait_seq(fsm);
820 words = stfsm_fifo_available(fsm);
821 }
822
823 /* - A single word must be available now */
824 if (words != 1) {
825 dev_err(fsm->dev, "failed to clear bytes from the data FIFO\n");
826 return;
827 }
828
829 /* - Read the 32-bit word */
830 readl(addr: fsm->base + SPI_FAST_SEQ_DATA_REG);
831
832 dev_dbg(fsm->dev, "cleared %d byte(s) from the data FIFO\n", 4 - i);
833}
834
835static int stfsm_write_fifo(struct stfsm *fsm, const uint32_t *buf,
836 uint32_t size)
837{
838 uint32_t words = size >> 2;
839
840 dev_dbg(fsm->dev, "writing %d bytes to FIFO\n", size);
841
842 BUG_ON((((uintptr_t)buf) & 0x3) || (size & 0x3));
843
844 writesl(addr: fsm->base + SPI_FAST_SEQ_DATA_REG, buffer: buf, count: words);
845
846 return size;
847}
848
849static int stfsm_enter_32bit_addr(struct stfsm *fsm, int enter)
850{
851 struct stfsm_seq *seq = &fsm->stfsm_seq_en_32bit_addr;
852 uint32_t cmd = enter ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
853
854 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
855 SEQ_OPC_CYCLES(8) |
856 SEQ_OPC_OPCODE(cmd) |
857 SEQ_OPC_CSDEASSERT);
858
859 stfsm_load_seq(fsm, seq);
860
861 stfsm_wait_seq(fsm);
862
863 return 0;
864}
865
866static uint8_t stfsm_wait_busy(struct stfsm *fsm)
867{
868 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
869 unsigned long deadline;
870 uint32_t status;
871 int timeout = 0;
872
873 /* Use RDRS1 */
874 seq->seq_opc[0] = (SEQ_OPC_PADS_1 |
875 SEQ_OPC_CYCLES(8) |
876 SEQ_OPC_OPCODE(SPINOR_OP_RDSR));
877
878 /* Load read_status sequence */
879 stfsm_load_seq(fsm, seq);
880
881 /*
882 * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
883 */
884 deadline = jiffies + FLASH_MAX_BUSY_WAIT;
885 while (!timeout) {
886 if (time_after_eq(jiffies, deadline))
887 timeout = 1;
888
889 stfsm_wait_seq(fsm);
890
891 stfsm_read_fifo(fsm, buf: &status, size: 4);
892
893 if ((status & FLASH_STATUS_BUSY) == 0)
894 return 0;
895
896 if ((fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS) &&
897 ((status & S25FL_STATUS_P_ERR) ||
898 (status & S25FL_STATUS_E_ERR)))
899 return (uint8_t)(status & 0xff);
900
901 if (!timeout)
902 /* Restart */
903 writel(val: seq->seq_cfg, addr: fsm->base + SPI_FAST_SEQ_CFG);
904
905 cond_resched();
906 }
907
908 dev_err(fsm->dev, "timeout on wait_busy\n");
909
910 return FLASH_STATUS_TIMEOUT;
911}
912
913static int stfsm_read_status(struct stfsm *fsm, uint8_t cmd,
914 uint8_t *data, int bytes)
915{
916 struct stfsm_seq *seq = &stfsm_seq_read_status_fifo;
917 uint32_t tmp;
918 uint8_t *t = (uint8_t *)&tmp;
919 int i;
920
921 dev_dbg(fsm->dev, "read 'status' register [0x%02x], %d byte(s)\n",
922 cmd, bytes);
923
924 BUG_ON(bytes != 1 && bytes != 2);
925
926 seq->seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
927 SEQ_OPC_OPCODE(cmd));
928
929 stfsm_load_seq(fsm, seq);
930
931 stfsm_read_fifo(fsm, buf: &tmp, size: 4);
932
933 for (i = 0; i < bytes; i++)
934 data[i] = t[i];
935
936 stfsm_wait_seq(fsm);
937
938 return 0;
939}
940
941static int stfsm_write_status(struct stfsm *fsm, uint8_t cmd,
942 uint16_t data, int bytes, int wait_busy)
943{
944 struct stfsm_seq *seq = &stfsm_seq_write_status;
945
946 dev_dbg(fsm->dev,
947 "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
948 " %s wait-busy\n", cmd, bytes, data, wait_busy ? "with" : "no");
949
950 BUG_ON(bytes != 1 && bytes != 2);
951
952 seq->seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
953 SEQ_OPC_OPCODE(cmd));
954
955 seq->status = (uint32_t)data | STA_PADS_1 | STA_CSDEASSERT;
956 seq->seq[2] = (bytes == 1) ? STFSM_INST_STA_WR1 : STFSM_INST_STA_WR1_2;
957
958 stfsm_load_seq(fsm, seq);
959
960 stfsm_wait_seq(fsm);
961
962 if (wait_busy)
963 stfsm_wait_busy(fsm);
964
965 return 0;
966}
967
968/*
969 * SoC reset on 'boot-from-spi' systems
970 *
971 * Certain modes of operation cause the Flash device to enter a particular state
972 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
973 * Addr' commands). On boot-from-spi systems, it is important to consider what
974 * happens if a warm reset occurs during this period. The SPIBoot controller
975 * assumes that Flash device is in its default reset state, 24-bit address mode,
976 * and ready to accept commands. This can be achieved using some form of
977 * on-board logic/controller to force a device POR in response to a SoC-level
978 * reset or by making use of the device reset signal if available (limited
979 * number of devices only).
980 *
981 * Failure to take such precautions can cause problems following a warm reset.
982 * For some operations (e.g. ERASE), there is little that can be done. For
983 * other modes of operation (e.g. 32-bit addressing), options are often
984 * available that can help minimise the window in which a reset could cause a
985 * problem.
986 *
987 */
988static bool stfsm_can_handle_soc_reset(struct stfsm *fsm)
989{
990 /* Reset signal is available on the board and supported by the device */
991 if (fsm->reset_signal && fsm->info->flags & FLASH_FLAG_RESET)
992 return true;
993
994 /* Board-level logic forces a power-on-reset */
995 if (fsm->reset_por)
996 return true;
997
998 /* Reset is not properly handled and may result in failure to reboot */
999 return false;
1000}
1001
1002/* Configure 'addr_cfg' according to addressing mode */
1003static void stfsm_prepare_erasesec_seq(struct stfsm *fsm,
1004 struct stfsm_seq *seq)
1005{
1006 int addr1_cycles = fsm->info->flags & FLASH_FLAG_32BIT_ADDR ? 16 : 8;
1007
1008 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(addr1_cycles) |
1009 ADR_CFG_PADS_1_ADD1 |
1010 ADR_CFG_CYCLES_ADD2(16) |
1011 ADR_CFG_PADS_1_ADD2 |
1012 ADR_CFG_CSDEASSERT_ADD2);
1013}
1014
1015/* Search for preferred configuration based on available flags */
1016static struct seq_rw_config *
1017stfsm_search_seq_rw_configs(struct stfsm *fsm,
1018 struct seq_rw_config cfgs[])
1019{
1020 struct seq_rw_config *config;
1021 int flags = fsm->info->flags;
1022
1023 for (config = cfgs; config->cmd != 0; config++)
1024 if ((config->flags & flags) == config->flags)
1025 return config;
1026
1027 return NULL;
1028}
1029
1030/* Prepare a READ/WRITE sequence according to configuration parameters */
1031static void stfsm_prepare_rw_seq(struct stfsm *fsm,
1032 struct stfsm_seq *seq,
1033 struct seq_rw_config *cfg)
1034{
1035 int addr1_cycles, addr2_cycles;
1036 int i = 0;
1037
1038 memset(seq, 0, sizeof(*seq));
1039
1040 /* Add READ/WRITE OPC */
1041 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1042 SEQ_OPC_CYCLES(8) |
1043 SEQ_OPC_OPCODE(cfg->cmd));
1044
1045 /* Add WREN OPC for a WRITE sequence */
1046 if (cfg->write)
1047 seq->seq_opc[i++] = (SEQ_OPC_PADS_1 |
1048 SEQ_OPC_CYCLES(8) |
1049 SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1050 SEQ_OPC_CSDEASSERT);
1051
1052 /* Address configuration (24 or 32-bit addresses) */
1053 addr1_cycles = (fsm->info->flags & FLASH_FLAG_32BIT_ADDR) ? 16 : 8;
1054 addr1_cycles /= cfg->addr_pads;
1055 addr2_cycles = 16 / cfg->addr_pads;
1056 seq->addr_cfg = ((addr1_cycles & 0x3f) << 0 | /* ADD1 cycles */
1057 (cfg->addr_pads - 1) << 6 | /* ADD1 pads */
1058 (addr2_cycles & 0x3f) << 16 | /* ADD2 cycles */
1059 ((cfg->addr_pads - 1) << 22)); /* ADD2 pads */
1060
1061 /* Data/Sequence configuration */
1062 seq->seq_cfg = ((cfg->data_pads - 1) << 16 |
1063 SEQ_CFG_STARTSEQ |
1064 SEQ_CFG_CSDEASSERT);
1065 if (!cfg->write)
1066 seq->seq_cfg |= SEQ_CFG_READNOTWRITE;
1067
1068 /* Mode configuration (no. of pads taken from addr cfg) */
1069 seq->mode = ((cfg->mode_data & 0xff) << 0 | /* data */
1070 (cfg->mode_cycles & 0x3f) << 16 | /* cycles */
1071 (cfg->addr_pads - 1) << 22); /* pads */
1072
1073 /* Dummy configuration (no. of pads taken from addr cfg) */
1074 seq->dummy = ((cfg->dummy_cycles & 0x3f) << 16 | /* cycles */
1075 (cfg->addr_pads - 1) << 22); /* pads */
1076
1077
1078 /* Instruction sequence */
1079 i = 0;
1080 if (cfg->write)
1081 seq->seq[i++] = STFSM_INST_CMD2;
1082
1083 seq->seq[i++] = STFSM_INST_CMD1;
1084
1085 seq->seq[i++] = STFSM_INST_ADD1;
1086 seq->seq[i++] = STFSM_INST_ADD2;
1087
1088 if (cfg->mode_cycles)
1089 seq->seq[i++] = STFSM_INST_MODE;
1090
1091 if (cfg->dummy_cycles)
1092 seq->seq[i++] = STFSM_INST_DUMMY;
1093
1094 seq->seq[i++] =
1095 cfg->write ? STFSM_INST_DATA_WRITE : STFSM_INST_DATA_READ;
1096 seq->seq[i++] = STFSM_INST_STOP;
1097}
1098
1099static int stfsm_search_prepare_rw_seq(struct stfsm *fsm,
1100 struct stfsm_seq *seq,
1101 struct seq_rw_config *cfgs)
1102{
1103 struct seq_rw_config *config;
1104
1105 config = stfsm_search_seq_rw_configs(fsm, cfgs);
1106 if (!config) {
1107 dev_err(fsm->dev, "failed to find suitable config\n");
1108 return -EINVAL;
1109 }
1110
1111 stfsm_prepare_rw_seq(fsm, seq, cfg: config);
1112
1113 return 0;
1114}
1115
1116/* Prepare a READ/WRITE/ERASE 'default' sequences */
1117static int stfsm_prepare_rwe_seqs_default(struct stfsm *fsm)
1118{
1119 uint32_t flags = fsm->info->flags;
1120 int ret;
1121
1122 /* Configure 'READ' sequence */
1123 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_read,
1124 cfgs: default_read_configs);
1125 if (ret) {
1126 dev_err(fsm->dev,
1127 "failed to prep READ sequence with flags [0x%08x]\n",
1128 flags);
1129 return ret;
1130 }
1131
1132 /* Configure 'WRITE' sequence */
1133 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_write,
1134 cfgs: default_write_configs);
1135 if (ret) {
1136 dev_err(fsm->dev,
1137 "failed to prep WRITE sequence with flags [0x%08x]\n",
1138 flags);
1139 return ret;
1140 }
1141
1142 /* Configure 'ERASE_SECTOR' sequence */
1143 stfsm_prepare_erasesec_seq(fsm, seq: &stfsm_seq_erase_sector);
1144
1145 return 0;
1146}
1147
1148static int stfsm_mx25_config(struct stfsm *fsm)
1149{
1150 uint32_t flags = fsm->info->flags;
1151 uint32_t data_pads;
1152 uint8_t sta;
1153 int ret;
1154 bool soc_reset;
1155
1156 /*
1157 * Use default READ/WRITE sequences
1158 */
1159 ret = stfsm_prepare_rwe_seqs_default(fsm);
1160 if (ret)
1161 return ret;
1162
1163 /*
1164 * Configure 32-bit Address Support
1165 */
1166 if (flags & FLASH_FLAG_32BIT_ADDR) {
1167 /* Configure 'enter_32bitaddr' FSM sequence */
1168 stfsm_mx25_en_32bit_addr_seq(seq: &fsm->stfsm_seq_en_32bit_addr);
1169
1170 soc_reset = stfsm_can_handle_soc_reset(fsm);
1171 if (soc_reset || !fsm->booted_from_spi)
1172 /* If we can handle SoC resets, we enable 32-bit address
1173 * mode pervasively */
1174 stfsm_enter_32bit_addr(fsm, enter: 1);
1175
1176 else
1177 /* Else, enable/disable 32-bit addressing before/after
1178 * each operation */
1179 fsm->configuration = (CFG_READ_TOGGLE_32BIT_ADDR |
1180 CFG_WRITE_TOGGLE_32BIT_ADDR |
1181 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1182 }
1183
1184 /* Check status of 'QE' bit, update if required. */
1185 stfsm_read_status(fsm, SPINOR_OP_RDSR, data: &sta, bytes: 1);
1186 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1187 if (data_pads == 4) {
1188 if (!(sta & MX25_STATUS_QE)) {
1189 /* Set 'QE' */
1190 sta |= MX25_STATUS_QE;
1191
1192 stfsm_write_status(fsm, SPINOR_OP_WRSR, data: sta, bytes: 1, wait_busy: 1);
1193 }
1194 } else {
1195 if (sta & MX25_STATUS_QE) {
1196 /* Clear 'QE' */
1197 sta &= ~MX25_STATUS_QE;
1198
1199 stfsm_write_status(fsm, SPINOR_OP_WRSR, data: sta, bytes: 1, wait_busy: 1);
1200 }
1201 }
1202
1203 return 0;
1204}
1205
1206static int stfsm_n25q_config(struct stfsm *fsm)
1207{
1208 uint32_t flags = fsm->info->flags;
1209 uint8_t vcr;
1210 int ret = 0;
1211 bool soc_reset;
1212
1213 /* Configure 'READ' sequence */
1214 if (flags & FLASH_FLAG_32BIT_ADDR)
1215 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_read,
1216 cfgs: n25q_read4_configs);
1217 else
1218 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_read,
1219 cfgs: n25q_read3_configs);
1220 if (ret) {
1221 dev_err(fsm->dev,
1222 "failed to prepare READ sequence with flags [0x%08x]\n",
1223 flags);
1224 return ret;
1225 }
1226
1227 /* Configure 'WRITE' sequence (default configs) */
1228 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_write,
1229 cfgs: default_write_configs);
1230 if (ret) {
1231 dev_err(fsm->dev,
1232 "preparing WRITE sequence using flags [0x%08x] failed\n",
1233 flags);
1234 return ret;
1235 }
1236
1237 /* * Configure 'ERASE_SECTOR' sequence */
1238 stfsm_prepare_erasesec_seq(fsm, seq: &stfsm_seq_erase_sector);
1239
1240 /* Configure 32-bit address support */
1241 if (flags & FLASH_FLAG_32BIT_ADDR) {
1242 stfsm_n25q_en_32bit_addr_seq(seq: &fsm->stfsm_seq_en_32bit_addr);
1243
1244 soc_reset = stfsm_can_handle_soc_reset(fsm);
1245 if (soc_reset || !fsm->booted_from_spi) {
1246 /*
1247 * If we can handle SoC resets, we enable 32-bit
1248 * address mode pervasively
1249 */
1250 stfsm_enter_32bit_addr(fsm, enter: 1);
1251 } else {
1252 /*
1253 * If not, enable/disable for WRITE and ERASE
1254 * operations (READ uses special commands)
1255 */
1256 fsm->configuration = (CFG_WRITE_TOGGLE_32BIT_ADDR |
1257 CFG_ERASESEC_TOGGLE_32BIT_ADDR);
1258 }
1259 }
1260
1261 /*
1262 * Configure device to use 8 dummy cycles
1263 */
1264 vcr = (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED |
1265 N25Q_VCR_WRAP_CONT);
1266 stfsm_write_status(fsm, N25Q_CMD_WRVCR, data: vcr, bytes: 1, wait_busy: 0);
1267
1268 return 0;
1269}
1270
1271static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq *seq)
1272{
1273 seq->seq_opc[1] = (SEQ_OPC_PADS_1 |
1274 SEQ_OPC_CYCLES(8) |
1275 SEQ_OPC_OPCODE(S25FL_CMD_SE4));
1276
1277 seq->addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1278 ADR_CFG_PADS_1_ADD1 |
1279 ADR_CFG_CYCLES_ADD2(16) |
1280 ADR_CFG_PADS_1_ADD2 |
1281 ADR_CFG_CSDEASSERT_ADD2);
1282}
1283
1284static void stfsm_s25fl_read_dyb(struct stfsm *fsm, uint32_t offs, uint8_t *dby)
1285{
1286 uint32_t tmp;
1287 struct stfsm_seq seq = {
1288 .data_size = TRANSFER_SIZE(4),
1289 .seq_opc[0] = (SEQ_OPC_PADS_1 |
1290 SEQ_OPC_CYCLES(8) |
1291 SEQ_OPC_OPCODE(S25FL_CMD_DYBRD)),
1292 .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1293 ADR_CFG_PADS_1_ADD1 |
1294 ADR_CFG_CYCLES_ADD2(16) |
1295 ADR_CFG_PADS_1_ADD2),
1296 .addr1 = (offs >> 16) & 0xffff,
1297 .addr2 = offs & 0xffff,
1298 .seq = {
1299 STFSM_INST_CMD1,
1300 STFSM_INST_ADD1,
1301 STFSM_INST_ADD2,
1302 STFSM_INST_DATA_READ,
1303 STFSM_INST_STOP,
1304 },
1305 .seq_cfg = (SEQ_CFG_PADS_1 |
1306 SEQ_CFG_READNOTWRITE |
1307 SEQ_CFG_CSDEASSERT |
1308 SEQ_CFG_STARTSEQ),
1309 };
1310
1311 stfsm_load_seq(fsm, seq: &seq);
1312
1313 stfsm_read_fifo(fsm, buf: &tmp, size: 4);
1314
1315 *dby = (uint8_t)(tmp >> 24);
1316
1317 stfsm_wait_seq(fsm);
1318}
1319
1320static void stfsm_s25fl_write_dyb(struct stfsm *fsm, uint32_t offs, uint8_t dby)
1321{
1322 struct stfsm_seq seq = {
1323 .seq_opc[0] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1324 SEQ_OPC_OPCODE(SPINOR_OP_WREN) |
1325 SEQ_OPC_CSDEASSERT),
1326 .seq_opc[1] = (SEQ_OPC_PADS_1 | SEQ_OPC_CYCLES(8) |
1327 SEQ_OPC_OPCODE(S25FL_CMD_DYBWR)),
1328 .addr_cfg = (ADR_CFG_CYCLES_ADD1(16) |
1329 ADR_CFG_PADS_1_ADD1 |
1330 ADR_CFG_CYCLES_ADD2(16) |
1331 ADR_CFG_PADS_1_ADD2),
1332 .status = (uint32_t)dby | STA_PADS_1 | STA_CSDEASSERT,
1333 .addr1 = (offs >> 16) & 0xffff,
1334 .addr2 = offs & 0xffff,
1335 .seq = {
1336 STFSM_INST_CMD1,
1337 STFSM_INST_CMD2,
1338 STFSM_INST_ADD1,
1339 STFSM_INST_ADD2,
1340 STFSM_INST_STA_WR1,
1341 STFSM_INST_STOP,
1342 },
1343 .seq_cfg = (SEQ_CFG_PADS_1 |
1344 SEQ_CFG_READNOTWRITE |
1345 SEQ_CFG_CSDEASSERT |
1346 SEQ_CFG_STARTSEQ),
1347 };
1348
1349 stfsm_load_seq(fsm, seq: &seq);
1350 stfsm_wait_seq(fsm);
1351
1352 stfsm_wait_busy(fsm);
1353}
1354
1355static int stfsm_s25fl_clear_status_reg(struct stfsm *fsm)
1356{
1357 struct stfsm_seq seq = {
1358 .seq_opc[0] = (SEQ_OPC_PADS_1 |
1359 SEQ_OPC_CYCLES(8) |
1360 SEQ_OPC_OPCODE(S25FL_CMD_CLSR) |
1361 SEQ_OPC_CSDEASSERT),
1362 .seq_opc[1] = (SEQ_OPC_PADS_1 |
1363 SEQ_OPC_CYCLES(8) |
1364 SEQ_OPC_OPCODE(SPINOR_OP_WRDI) |
1365 SEQ_OPC_CSDEASSERT),
1366 .seq = {
1367 STFSM_INST_CMD1,
1368 STFSM_INST_CMD2,
1369 STFSM_INST_WAIT,
1370 STFSM_INST_STOP,
1371 },
1372 .seq_cfg = (SEQ_CFG_PADS_1 |
1373 SEQ_CFG_ERASE |
1374 SEQ_CFG_READNOTWRITE |
1375 SEQ_CFG_CSDEASSERT |
1376 SEQ_CFG_STARTSEQ),
1377 };
1378
1379 stfsm_load_seq(fsm, seq: &seq);
1380
1381 stfsm_wait_seq(fsm);
1382
1383 return 0;
1384}
1385
1386static int stfsm_s25fl_config(struct stfsm *fsm)
1387{
1388 struct flash_info *info = fsm->info;
1389 uint32_t flags = info->flags;
1390 uint32_t data_pads;
1391 uint32_t offs;
1392 uint16_t sta_wr;
1393 uint8_t sr1, cr1, dyb;
1394 int update_sr = 0;
1395 int ret;
1396
1397 if (flags & FLASH_FLAG_32BIT_ADDR) {
1398 /*
1399 * Prepare Read/Write/Erase sequences according to S25FLxxx
1400 * 32-bit address command set
1401 */
1402 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_read,
1403 cfgs: stfsm_s25fl_read4_configs);
1404 if (ret)
1405 return ret;
1406
1407 ret = stfsm_search_prepare_rw_seq(fsm, seq: &fsm->stfsm_seq_write,
1408 cfgs: stfsm_s25fl_write4_configs);
1409 if (ret)
1410 return ret;
1411
1412 stfsm_s25fl_prepare_erasesec_seq_32(seq: &stfsm_seq_erase_sector);
1413
1414 } else {
1415 /* Use default configurations for 24-bit addressing */
1416 ret = stfsm_prepare_rwe_seqs_default(fsm);
1417 if (ret)
1418 return ret;
1419 }
1420
1421 /*
1422 * For devices that support 'DYB' sector locking, check lock status and
1423 * unlock sectors if necessary (some variants power-on with sectors
1424 * locked by default)
1425 */
1426 if (flags & FLASH_FLAG_DYB_LOCKING) {
1427 offs = 0;
1428 for (offs = 0; offs < info->sector_size * info->n_sectors;) {
1429 stfsm_s25fl_read_dyb(fsm, offs, dby: &dyb);
1430 if (dyb == 0x00)
1431 stfsm_s25fl_write_dyb(fsm, offs, dby: 0xff);
1432
1433 /* Handle bottom/top 4KiB parameter sectors */
1434 if ((offs < info->sector_size * 2) ||
1435 (offs >= (info->sector_size - info->n_sectors * 4)))
1436 offs += 0x1000;
1437 else
1438 offs += 0x10000;
1439 }
1440 }
1441
1442 /* Check status of 'QE' bit, update if required. */
1443 stfsm_read_status(fsm, SPINOR_OP_RDCR, data: &cr1, bytes: 1);
1444 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1445 if (data_pads == 4) {
1446 if (!(cr1 & STFSM_S25FL_CONFIG_QE)) {
1447 /* Set 'QE' */
1448 cr1 |= STFSM_S25FL_CONFIG_QE;
1449
1450 update_sr = 1;
1451 }
1452 } else {
1453 if (cr1 & STFSM_S25FL_CONFIG_QE) {
1454 /* Clear 'QE' */
1455 cr1 &= ~STFSM_S25FL_CONFIG_QE;
1456
1457 update_sr = 1;
1458 }
1459 }
1460 if (update_sr) {
1461 stfsm_read_status(fsm, SPINOR_OP_RDSR, data: &sr1, bytes: 1);
1462 sta_wr = ((uint16_t)cr1 << 8) | sr1;
1463 stfsm_write_status(fsm, SPINOR_OP_WRSR, data: sta_wr, bytes: 2, wait_busy: 1);
1464 }
1465
1466 /*
1467 * S25FLxxx devices support Program and Error error flags.
1468 * Configure driver to check flags and clear if necessary.
1469 */
1470 fsm->configuration |= CFG_S25FL_CHECK_ERROR_FLAGS;
1471
1472 return 0;
1473}
1474
1475static int stfsm_w25q_config(struct stfsm *fsm)
1476{
1477 uint32_t data_pads;
1478 uint8_t sr1, sr2;
1479 uint16_t sr_wr;
1480 int update_sr = 0;
1481 int ret;
1482
1483 ret = stfsm_prepare_rwe_seqs_default(fsm);
1484 if (ret)
1485 return ret;
1486
1487 /* Check status of 'QE' bit, update if required. */
1488 stfsm_read_status(fsm, SPINOR_OP_RDCR, data: &sr2, bytes: 1);
1489 data_pads = ((fsm->stfsm_seq_read.seq_cfg >> 16) & 0x3) + 1;
1490 if (data_pads == 4) {
1491 if (!(sr2 & W25Q_STATUS_QE)) {
1492 /* Set 'QE' */
1493 sr2 |= W25Q_STATUS_QE;
1494 update_sr = 1;
1495 }
1496 } else {
1497 if (sr2 & W25Q_STATUS_QE) {
1498 /* Clear 'QE' */
1499 sr2 &= ~W25Q_STATUS_QE;
1500 update_sr = 1;
1501 }
1502 }
1503 if (update_sr) {
1504 /* Write status register */
1505 stfsm_read_status(fsm, SPINOR_OP_RDSR, data: &sr1, bytes: 1);
1506 sr_wr = ((uint16_t)sr2 << 8) | sr1;
1507 stfsm_write_status(fsm, SPINOR_OP_WRSR, data: sr_wr, bytes: 2, wait_busy: 1);
1508 }
1509
1510 return 0;
1511}
1512
1513static int stfsm_read(struct stfsm *fsm, uint8_t *buf, uint32_t size,
1514 uint32_t offset)
1515{
1516 struct stfsm_seq *seq = &fsm->stfsm_seq_read;
1517 uint32_t data_pads;
1518 uint32_t read_mask;
1519 uint32_t size_ub;
1520 uint32_t size_lb;
1521 uint32_t size_mop;
1522 uint32_t tmp[4];
1523 uint32_t page_buf[FLASH_PAGESIZE_32];
1524 uint8_t *p;
1525
1526 dev_dbg(fsm->dev, "reading %d bytes from 0x%08x\n", size, offset);
1527
1528 /* Enter 32-bit address mode, if required */
1529 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1530 stfsm_enter_32bit_addr(fsm, enter: 1);
1531
1532 /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1533 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1534 read_mask = (data_pads << 2) - 1;
1535
1536 /* Handle non-aligned buf */
1537 p = ((uintptr_t)buf & 0x3) ? (uint8_t *)page_buf : buf;
1538
1539 /* Handle non-aligned size */
1540 size_ub = (size + read_mask) & ~read_mask;
1541 size_lb = size & ~read_mask;
1542 size_mop = size & read_mask;
1543
1544 seq->data_size = TRANSFER_SIZE(size_ub);
1545 seq->addr1 = (offset >> 16) & 0xffff;
1546 seq->addr2 = offset & 0xffff;
1547
1548 stfsm_load_seq(fsm, seq);
1549
1550 if (size_lb)
1551 stfsm_read_fifo(fsm, buf: (uint32_t *)p, size: size_lb);
1552
1553 if (size_mop) {
1554 stfsm_read_fifo(fsm, buf: tmp, size: read_mask + 1);
1555 memcpy(p + size_lb, &tmp, size_mop);
1556 }
1557
1558 /* Handle non-aligned buf */
1559 if ((uintptr_t)buf & 0x3)
1560 memcpy(buf, page_buf, size);
1561
1562 /* Wait for sequence to finish */
1563 stfsm_wait_seq(fsm);
1564
1565 stfsm_clear_fifo(fsm);
1566
1567 /* Exit 32-bit address mode, if required */
1568 if (fsm->configuration & CFG_READ_TOGGLE_32BIT_ADDR)
1569 stfsm_enter_32bit_addr(fsm, enter: 0);
1570
1571 return 0;
1572}
1573
1574static int stfsm_write(struct stfsm *fsm, const uint8_t *buf,
1575 uint32_t size, uint32_t offset)
1576{
1577 struct stfsm_seq *seq = &fsm->stfsm_seq_write;
1578 uint32_t data_pads;
1579 uint32_t write_mask;
1580 uint32_t size_ub;
1581 uint32_t size_lb;
1582 uint32_t size_mop;
1583 uint32_t tmp[4];
1584 uint32_t i;
1585 uint32_t page_buf[FLASH_PAGESIZE_32];
1586 uint8_t *t = (uint8_t *)&tmp;
1587 const uint8_t *p;
1588 int ret;
1589
1590 dev_dbg(fsm->dev, "writing %d bytes to 0x%08x\n", size, offset);
1591
1592 /* Enter 32-bit address mode, if required */
1593 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1594 stfsm_enter_32bit_addr(fsm, enter: 1);
1595
1596 /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1597 data_pads = ((seq->seq_cfg >> 16) & 0x3) + 1;
1598 write_mask = (data_pads << 2) - 1;
1599
1600 /* Handle non-aligned buf */
1601 if ((uintptr_t)buf & 0x3) {
1602 memcpy(page_buf, buf, size);
1603 p = (uint8_t *)page_buf;
1604 } else {
1605 p = buf;
1606 }
1607
1608 /* Handle non-aligned size */
1609 size_ub = (size + write_mask) & ~write_mask;
1610 size_lb = size & ~write_mask;
1611 size_mop = size & write_mask;
1612
1613 seq->data_size = TRANSFER_SIZE(size_ub);
1614 seq->addr1 = (offset >> 16) & 0xffff;
1615 seq->addr2 = offset & 0xffff;
1616
1617 /* Need to set FIFO to write mode, before writing data to FIFO (see
1618 * GNBvb79594)
1619 */
1620 writel(val: 0x00040000, addr: fsm->base + SPI_FAST_SEQ_CFG);
1621
1622 /*
1623 * Before writing data to the FIFO, apply a small delay to allow a
1624 * potential change of FIFO direction to complete.
1625 */
1626 if (fsm->fifo_dir_delay == 0)
1627 readl(addr: fsm->base + SPI_FAST_SEQ_CFG);
1628 else
1629 udelay(fsm->fifo_dir_delay);
1630
1631
1632 /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1633 if (size_lb) {
1634 stfsm_write_fifo(fsm, buf: (uint32_t *)p, size: size_lb);
1635 p += size_lb;
1636 }
1637
1638 /* Handle non-aligned size */
1639 if (size_mop) {
1640 memset(t, 0xff, write_mask + 1); /* fill with 0xff's */
1641 for (i = 0; i < size_mop; i++)
1642 t[i] = *p++;
1643
1644 stfsm_write_fifo(fsm, buf: tmp, size: write_mask + 1);
1645 }
1646
1647 /* Start sequence */
1648 stfsm_load_seq(fsm, seq);
1649
1650 /* Wait for sequence to finish */
1651 stfsm_wait_seq(fsm);
1652
1653 /* Wait for completion */
1654 ret = stfsm_wait_busy(fsm);
1655 if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1656 stfsm_s25fl_clear_status_reg(fsm);
1657
1658 /* Exit 32-bit address mode, if required */
1659 if (fsm->configuration & CFG_WRITE_TOGGLE_32BIT_ADDR)
1660 stfsm_enter_32bit_addr(fsm, enter: 0);
1661
1662 return 0;
1663}
1664
1665/*
1666 * Read an address range from the flash chip. The address range
1667 * may be any size provided it is within the physical boundaries.
1668 */
1669static int stfsm_mtd_read(struct mtd_info *mtd, loff_t from, size_t len,
1670 size_t *retlen, u_char *buf)
1671{
1672 struct stfsm *fsm = dev_get_drvdata(dev: mtd->dev.parent);
1673 uint32_t bytes;
1674
1675 dev_dbg(fsm->dev, "%s from 0x%08x, len %zd\n",
1676 __func__, (u32)from, len);
1677
1678 mutex_lock(&fsm->lock);
1679
1680 while (len > 0) {
1681 bytes = min_t(size_t, len, FLASH_PAGESIZE);
1682
1683 stfsm_read(fsm, buf, size: bytes, offset: from);
1684
1685 buf += bytes;
1686 from += bytes;
1687 len -= bytes;
1688
1689 *retlen += bytes;
1690 }
1691
1692 mutex_unlock(lock: &fsm->lock);
1693
1694 return 0;
1695}
1696
1697static int stfsm_erase_sector(struct stfsm *fsm, uint32_t offset)
1698{
1699 struct stfsm_seq *seq = &stfsm_seq_erase_sector;
1700 int ret;
1701
1702 dev_dbg(fsm->dev, "erasing sector at 0x%08x\n", offset);
1703
1704 /* Enter 32-bit address mode, if required */
1705 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1706 stfsm_enter_32bit_addr(fsm, enter: 1);
1707
1708 seq->addr1 = (offset >> 16) & 0xffff;
1709 seq->addr2 = offset & 0xffff;
1710
1711 stfsm_load_seq(fsm, seq);
1712
1713 stfsm_wait_seq(fsm);
1714
1715 /* Wait for completion */
1716 ret = stfsm_wait_busy(fsm);
1717 if (ret && fsm->configuration & CFG_S25FL_CHECK_ERROR_FLAGS)
1718 stfsm_s25fl_clear_status_reg(fsm);
1719
1720 /* Exit 32-bit address mode, if required */
1721 if (fsm->configuration & CFG_ERASESEC_TOGGLE_32BIT_ADDR)
1722 stfsm_enter_32bit_addr(fsm, enter: 0);
1723
1724 return ret;
1725}
1726
1727static int stfsm_erase_chip(struct stfsm *fsm)
1728{
1729 const struct stfsm_seq *seq = &stfsm_seq_erase_chip;
1730
1731 dev_dbg(fsm->dev, "erasing chip\n");
1732
1733 stfsm_load_seq(fsm, seq);
1734
1735 stfsm_wait_seq(fsm);
1736
1737 return stfsm_wait_busy(fsm);
1738}
1739
1740/*
1741 * Write an address range to the flash chip. Data must be written in
1742 * FLASH_PAGESIZE chunks. The address range may be any size provided
1743 * it is within the physical boundaries.
1744 */
1745static int stfsm_mtd_write(struct mtd_info *mtd, loff_t to, size_t len,
1746 size_t *retlen, const u_char *buf)
1747{
1748 struct stfsm *fsm = dev_get_drvdata(dev: mtd->dev.parent);
1749
1750 u32 page_offs;
1751 u32 bytes;
1752 uint8_t *b = (uint8_t *)buf;
1753 int ret = 0;
1754
1755 dev_dbg(fsm->dev, "%s to 0x%08x, len %zd\n", __func__, (u32)to, len);
1756
1757 /* Offset within page */
1758 page_offs = to % FLASH_PAGESIZE;
1759
1760 mutex_lock(&fsm->lock);
1761
1762 while (len) {
1763 /* Write up to page boundary */
1764 bytes = min_t(size_t, FLASH_PAGESIZE - page_offs, len);
1765
1766 ret = stfsm_write(fsm, buf: b, size: bytes, offset: to);
1767 if (ret)
1768 goto out1;
1769
1770 b += bytes;
1771 len -= bytes;
1772 to += bytes;
1773
1774 /* We are now page-aligned */
1775 page_offs = 0;
1776
1777 *retlen += bytes;
1778
1779 }
1780
1781out1:
1782 mutex_unlock(lock: &fsm->lock);
1783
1784 return ret;
1785}
1786
1787/*
1788 * Erase an address range on the flash chip. The address range may extend
1789 * one or more erase sectors. Return an error is there is a problem erasing.
1790 */
1791static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1792{
1793 struct stfsm *fsm = dev_get_drvdata(dev: mtd->dev.parent);
1794 u32 addr, len;
1795 int ret;
1796
1797 dev_dbg(fsm->dev, "%s at 0x%llx, len %lld\n", __func__,
1798 (long long)instr->addr, (long long)instr->len);
1799
1800 addr = instr->addr;
1801 len = instr->len;
1802
1803 mutex_lock(&fsm->lock);
1804
1805 /* Whole-chip erase? */
1806 if (len == mtd->size) {
1807 ret = stfsm_erase_chip(fsm);
1808 if (ret)
1809 goto out1;
1810 } else {
1811 while (len) {
1812 ret = stfsm_erase_sector(fsm, offset: addr);
1813 if (ret)
1814 goto out1;
1815
1816 addr += mtd->erasesize;
1817 len -= mtd->erasesize;
1818 }
1819 }
1820
1821 mutex_unlock(lock: &fsm->lock);
1822
1823 return 0;
1824
1825out1:
1826 mutex_unlock(lock: &fsm->lock);
1827
1828 return ret;
1829}
1830
1831static void stfsm_read_jedec(struct stfsm *fsm, uint8_t *jedec)
1832{
1833 const struct stfsm_seq *seq = &stfsm_seq_read_jedec;
1834 uint32_t tmp[2];
1835
1836 stfsm_load_seq(fsm, seq);
1837
1838 stfsm_read_fifo(fsm, buf: tmp, size: 8);
1839
1840 memcpy(jedec, tmp, 5);
1841
1842 stfsm_wait_seq(fsm);
1843}
1844
1845static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm)
1846{
1847 struct flash_info *info;
1848 u16 ext_jedec;
1849 u32 jedec;
1850 u8 id[5];
1851
1852 stfsm_read_jedec(fsm, jedec: id);
1853
1854 jedec = id[0] << 16 | id[1] << 8 | id[2];
1855 /*
1856 * JEDEC also defines an optional "extended device information"
1857 * string for after vendor-specific data, after the three bytes
1858 * we use here. Supporting some chips might require using it.
1859 */
1860 ext_jedec = id[3] << 8 | id[4];
1861
1862 dev_dbg(fsm->dev, "JEDEC = 0x%08x [%5ph]\n", jedec, id);
1863
1864 for (info = flash_types; info->name; info++) {
1865 if (info->jedec_id == jedec) {
1866 if (info->ext_id && info->ext_id != ext_jedec)
1867 continue;
1868 return info;
1869 }
1870 }
1871 dev_err(fsm->dev, "Unrecognized JEDEC id %06x\n", jedec);
1872
1873 return NULL;
1874}
1875
1876static int stfsm_set_mode(struct stfsm *fsm, uint32_t mode)
1877{
1878 int ret, timeout = 10;
1879
1880 /* Wait for controller to accept mode change */
1881 while (--timeout) {
1882 ret = readl(addr: fsm->base + SPI_STA_MODE_CHANGE);
1883 if (ret & 0x1)
1884 break;
1885 udelay(1);
1886 }
1887
1888 if (!timeout)
1889 return -EBUSY;
1890
1891 writel(val: mode, addr: fsm->base + SPI_MODESELECT);
1892
1893 return 0;
1894}
1895
1896static void stfsm_set_freq(struct stfsm *fsm, uint32_t spi_freq)
1897{
1898 uint32_t emi_freq;
1899 uint32_t clk_div;
1900
1901 emi_freq = clk_get_rate(clk: fsm->clk);
1902
1903 /*
1904 * Calculate clk_div - values between 2 and 128
1905 * Multiple of 2, rounded up
1906 */
1907 clk_div = 2 * DIV_ROUND_UP(emi_freq, 2 * spi_freq);
1908 if (clk_div < 2)
1909 clk_div = 2;
1910 else if (clk_div > 128)
1911 clk_div = 128;
1912
1913 /*
1914 * Determine a suitable delay for the IP to complete a change of
1915 * direction of the FIFO. The required delay is related to the clock
1916 * divider used. The following heuristics are based on empirical tests,
1917 * using a 100MHz EMI clock.
1918 */
1919 if (clk_div <= 4)
1920 fsm->fifo_dir_delay = 0;
1921 else if (clk_div <= 10)
1922 fsm->fifo_dir_delay = 1;
1923 else
1924 fsm->fifo_dir_delay = DIV_ROUND_UP(clk_div, 10);
1925
1926 dev_dbg(fsm->dev, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1927 emi_freq, spi_freq, clk_div);
1928
1929 writel(val: clk_div, addr: fsm->base + SPI_CLOCKDIV);
1930}
1931
1932static int stfsm_init(struct stfsm *fsm)
1933{
1934 int ret;
1935
1936 /* Perform a soft reset of the FSM controller */
1937 writel(SEQ_CFG_SWRESET, addr: fsm->base + SPI_FAST_SEQ_CFG);
1938 udelay(1);
1939 writel(val: 0, addr: fsm->base + SPI_FAST_SEQ_CFG);
1940
1941 /* Set clock to 'safe' frequency initially */
1942 stfsm_set_freq(fsm, STFSM_FLASH_SAFE_FREQ);
1943
1944 /* Switch to FSM */
1945 ret = stfsm_set_mode(fsm, SPI_MODESELECT_FSM);
1946 if (ret)
1947 return ret;
1948
1949 /* Set timing parameters */
1950 writel(SPI_CFG_DEVICE_ST |
1951 SPI_CFG_DEFAULT_MIN_CS_HIGH |
1952 SPI_CFG_DEFAULT_CS_SETUPHOLD |
1953 SPI_CFG_DEFAULT_DATA_HOLD,
1954 addr: fsm->base + SPI_CONFIGDATA);
1955 writel(STFSM_DEFAULT_WR_TIME, addr: fsm->base + SPI_STATUS_WR_TIME_REG);
1956
1957 /*
1958 * Set the FSM 'WAIT' delay to the minimum workable value. Note, for
1959 * our purposes, the WAIT instruction is used purely to achieve
1960 * "sequence validity" rather than actually implement a delay.
1961 */
1962 writel(val: 0x00000001, addr: fsm->base + SPI_PROGRAM_ERASE_TIME);
1963
1964 /* Clear FIFO, just in case */
1965 stfsm_clear_fifo(fsm);
1966
1967 return 0;
1968}
1969
1970static void stfsm_fetch_platform_configs(struct platform_device *pdev)
1971{
1972 struct stfsm *fsm = platform_get_drvdata(pdev);
1973 struct device_node *np = pdev->dev.of_node;
1974 struct regmap *regmap;
1975 uint32_t boot_device_reg;
1976 uint32_t boot_device_spi;
1977 uint32_t boot_device; /* Value we read from *boot_device_reg */
1978 int ret;
1979
1980 /* Booting from SPI NOR Flash is the default */
1981 fsm->booted_from_spi = true;
1982
1983 regmap = syscon_regmap_lookup_by_phandle(np, property: "st,syscfg");
1984 if (IS_ERR(ptr: regmap))
1985 goto boot_device_fail;
1986
1987 fsm->reset_signal = of_property_read_bool(np, propname: "st,reset-signal");
1988
1989 fsm->reset_por = of_property_read_bool(np, propname: "st,reset-por");
1990
1991 /* Where in the syscon the boot device information lives */
1992 ret = of_property_read_u32(np, propname: "st,boot-device-reg", out_value: &boot_device_reg);
1993 if (ret)
1994 goto boot_device_fail;
1995
1996 /* Boot device value when booted from SPI NOR */
1997 ret = of_property_read_u32(np, propname: "st,boot-device-spi", out_value: &boot_device_spi);
1998 if (ret)
1999 goto boot_device_fail;
2000
2001 ret = regmap_read(map: regmap, reg: boot_device_reg, val: &boot_device);
2002 if (ret)
2003 goto boot_device_fail;
2004
2005 if (boot_device != boot_device_spi)
2006 fsm->booted_from_spi = false;
2007
2008 return;
2009
2010boot_device_fail:
2011 dev_warn(&pdev->dev,
2012 "failed to fetch boot device, assuming boot from SPI\n");
2013}
2014
2015static int stfsm_probe(struct platform_device *pdev)
2016{
2017 struct device_node *np = pdev->dev.of_node;
2018 struct flash_info *info;
2019 struct stfsm *fsm;
2020 int ret;
2021
2022 if (!np) {
2023 dev_err(&pdev->dev, "No DT found\n");
2024 return -EINVAL;
2025 }
2026
2027 fsm = devm_kzalloc(dev: &pdev->dev, size: sizeof(*fsm), GFP_KERNEL);
2028 if (!fsm)
2029 return -ENOMEM;
2030
2031 fsm->dev = &pdev->dev;
2032
2033 platform_set_drvdata(pdev, data: fsm);
2034
2035 fsm->base = devm_platform_ioremap_resource(pdev, index: 0);
2036 if (IS_ERR(ptr: fsm->base))
2037 return PTR_ERR(ptr: fsm->base);
2038
2039 fsm->clk = devm_clk_get_enabled(dev: &pdev->dev, NULL);
2040 if (IS_ERR(ptr: fsm->clk)) {
2041 dev_err(fsm->dev, "Couldn't find EMI clock.\n");
2042 return PTR_ERR(ptr: fsm->clk);
2043 }
2044
2045 mutex_init(&fsm->lock);
2046
2047 ret = stfsm_init(fsm);
2048 if (ret) {
2049 dev_err(&pdev->dev, "Failed to initialise FSM Controller\n");
2050 return ret;
2051 }
2052
2053 stfsm_fetch_platform_configs(pdev);
2054
2055 /* Detect SPI FLASH device */
2056 info = stfsm_jedec_probe(fsm);
2057 if (!info)
2058 return -ENODEV;
2059 fsm->info = info;
2060
2061 /* Use device size to determine address width */
2062 if (info->sector_size * info->n_sectors > 0x1000000)
2063 info->flags |= FLASH_FLAG_32BIT_ADDR;
2064
2065 /*
2066 * Configure READ/WRITE/ERASE sequences according to platform and
2067 * device flags.
2068 */
2069 if (info->config)
2070 ret = info->config(fsm);
2071 else
2072 ret = stfsm_prepare_rwe_seqs_default(fsm);
2073 if (ret)
2074 return ret;
2075
2076 fsm->mtd.name = info->name;
2077 fsm->mtd.dev.parent = &pdev->dev;
2078 mtd_set_of_node(mtd: &fsm->mtd, np);
2079 fsm->mtd.type = MTD_NORFLASH;
2080 fsm->mtd.writesize = 4;
2081 fsm->mtd.writebufsize = fsm->mtd.writesize;
2082 fsm->mtd.flags = MTD_CAP_NORFLASH;
2083 fsm->mtd.size = info->sector_size * info->n_sectors;
2084 fsm->mtd.erasesize = info->sector_size;
2085
2086 fsm->mtd._read = stfsm_mtd_read;
2087 fsm->mtd._write = stfsm_mtd_write;
2088 fsm->mtd._erase = stfsm_mtd_erase;
2089
2090 dev_info(&pdev->dev,
2091 "Found serial flash device: %s\n"
2092 " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2093 info->name,
2094 (long long)fsm->mtd.size, (long long)(fsm->mtd.size >> 20),
2095 fsm->mtd.erasesize, (fsm->mtd.erasesize >> 10));
2096
2097 return mtd_device_register(&fsm->mtd, NULL, 0);
2098}
2099
2100static void stfsm_remove(struct platform_device *pdev)
2101{
2102 struct stfsm *fsm = platform_get_drvdata(pdev);
2103
2104 WARN_ON(mtd_device_unregister(&fsm->mtd));
2105}
2106
2107#ifdef CONFIG_PM_SLEEP
2108static int stfsmfsm_suspend(struct device *dev)
2109{
2110 struct stfsm *fsm = dev_get_drvdata(dev);
2111
2112 clk_disable_unprepare(clk: fsm->clk);
2113
2114 return 0;
2115}
2116
2117static int stfsmfsm_resume(struct device *dev)
2118{
2119 struct stfsm *fsm = dev_get_drvdata(dev);
2120
2121 return clk_prepare_enable(clk: fsm->clk);
2122}
2123#endif
2124
2125static SIMPLE_DEV_PM_OPS(stfsm_pm_ops, stfsmfsm_suspend, stfsmfsm_resume);
2126
2127static const struct of_device_id stfsm_match[] = {
2128 { .compatible = "st,spi-fsm", },
2129 {},
2130};
2131MODULE_DEVICE_TABLE(of, stfsm_match);
2132
2133static struct platform_driver stfsm_driver = {
2134 .probe = stfsm_probe,
2135 .remove_new = stfsm_remove,
2136 .driver = {
2137 .name = "st-spi-fsm",
2138 .of_match_table = stfsm_match,
2139 .pm = &stfsm_pm_ops,
2140 },
2141};
2142module_platform_driver(stfsm_driver);
2143
2144MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2145MODULE_DESCRIPTION("ST SPI FSM driver");
2146MODULE_LICENSE("GPL");
2147

source code of linux/drivers/mtd/devices/st_spi_fsm.c