1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright © 2005-2009 Samsung Electronics
4 * Copyright © 2007 Nokia Corporation
5 *
6 * Kyungmin Park <kyungmin.park@samsung.com>
7 *
8 * Credits:
9 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
10 * auto-placement support, read-while load support, various fixes
11 *
12 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
13 * Flex-OneNAND support
14 * Amul Kumar Saha <amul.saha at samsung.com>
15 * OTP support
16 */
17
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/moduleparam.h>
21#include <linux/slab.h>
22#include <linux/sched.h>
23#include <linux/delay.h>
24#include <linux/interrupt.h>
25#include <linux/jiffies.h>
26#include <linux/mtd/mtd.h>
27#include <linux/mtd/onenand.h>
28#include <linux/mtd/partitions.h>
29
30#include <asm/io.h>
31
32/*
33 * Multiblock erase if number of blocks to erase is 2 or more.
34 * Maximum number of blocks for simultaneous erase is 64.
35 */
36#define MB_ERASE_MIN_BLK_COUNT 2
37#define MB_ERASE_MAX_BLK_COUNT 64
38
39/* Default Flex-OneNAND boundary and lock respectively */
40static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 };
41
42module_param_array(flex_bdry, int, NULL, 0400);
43MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND"
44 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
45 "DIE_BDRY: SLC boundary of the die"
46 "LOCK: Locking information for SLC boundary"
47 " : 0->Set boundary in unlocked status"
48 " : 1->Set boundary in locked status");
49
50/* Default OneNAND/Flex-OneNAND OTP options*/
51static int otp;
52
53module_param(otp, int, 0400);
54MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP"
55 "Syntax : otp=LOCK_TYPE"
56 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
57 " : 0 -> Default (No Blocks Locked)"
58 " : 1 -> OTP Block lock"
59 " : 2 -> 1st Block lock"
60 " : 3 -> BOTH OTP Block and 1st Block lock");
61
62/*
63 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
64 * For now, we expose only 64 out of 80 ecc bytes
65 */
66static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section,
67 struct mtd_oob_region *oobregion)
68{
69 if (section > 7)
70 return -ERANGE;
71
72 oobregion->offset = (section * 16) + 6;
73 oobregion->length = 10;
74
75 return 0;
76}
77
78static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section,
79 struct mtd_oob_region *oobregion)
80{
81 if (section > 7)
82 return -ERANGE;
83
84 oobregion->offset = (section * 16) + 2;
85 oobregion->length = 4;
86
87 return 0;
88}
89
90static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = {
91 .ecc = flexonenand_ooblayout_ecc,
92 .free = flexonenand_ooblayout_free,
93};
94
95/*
96 * onenand_oob_128 - oob info for OneNAND with 4KB page
97 *
98 * Based on specification:
99 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
100 *
101 */
102static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section,
103 struct mtd_oob_region *oobregion)
104{
105 if (section > 7)
106 return -ERANGE;
107
108 oobregion->offset = (section * 16) + 7;
109 oobregion->length = 9;
110
111 return 0;
112}
113
114static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section,
115 struct mtd_oob_region *oobregion)
116{
117 if (section >= 8)
118 return -ERANGE;
119
120 /*
121 * free bytes are using the spare area fields marked as
122 * "Managed by internal ECC logic for Logical Sector Number area"
123 */
124 oobregion->offset = (section * 16) + 2;
125 oobregion->length = 3;
126
127 return 0;
128}
129
130static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = {
131 .ecc = onenand_ooblayout_128_ecc,
132 .free = onenand_ooblayout_128_free,
133};
134
135/*
136 * onenand_oob_32_64 - oob info for large (2KB) page
137 */
138static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section,
139 struct mtd_oob_region *oobregion)
140{
141 if (section > 3)
142 return -ERANGE;
143
144 oobregion->offset = (section * 16) + 8;
145 oobregion->length = 5;
146
147 return 0;
148}
149
150static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section,
151 struct mtd_oob_region *oobregion)
152{
153 int sections = (mtd->oobsize / 32) * 2;
154
155 if (section >= sections)
156 return -ERANGE;
157
158 if (section & 1) {
159 oobregion->offset = ((section - 1) * 16) + 14;
160 oobregion->length = 2;
161 } else {
162 oobregion->offset = (section * 16) + 2;
163 oobregion->length = 3;
164 }
165
166 return 0;
167}
168
169static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = {
170 .ecc = onenand_ooblayout_32_64_ecc,
171 .free = onenand_ooblayout_32_64_free,
172};
173
174static const unsigned char ffchars[] = {
175 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
176 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
177 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
178 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
179 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
191};
192
193/**
194 * onenand_readw - [OneNAND Interface] Read OneNAND register
195 * @addr: address to read
196 *
197 * Read OneNAND register
198 */
199static unsigned short onenand_readw(void __iomem *addr)
200{
201 return readw(addr);
202}
203
204/**
205 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
206 * @value: value to write
207 * @addr: address to write
208 *
209 * Write OneNAND register with value
210 */
211static void onenand_writew(unsigned short value, void __iomem *addr)
212{
213 writew(val: value, addr);
214}
215
216/**
217 * onenand_block_address - [DEFAULT] Get block address
218 * @this: onenand chip data structure
219 * @block: the block
220 * @return translated block address if DDP, otherwise same
221 *
222 * Setup Start Address 1 Register (F100h)
223 */
224static int onenand_block_address(struct onenand_chip *this, int block)
225{
226 /* Device Flash Core select, NAND Flash Block Address */
227 if (block & this->density_mask)
228 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
229
230 return block;
231}
232
233/**
234 * onenand_bufferram_address - [DEFAULT] Get bufferram address
235 * @this: onenand chip data structure
236 * @block: the block
237 * @return set DBS value if DDP, otherwise 0
238 *
239 * Setup Start Address 2 Register (F101h) for DDP
240 */
241static int onenand_bufferram_address(struct onenand_chip *this, int block)
242{
243 /* Device BufferRAM Select */
244 if (block & this->density_mask)
245 return ONENAND_DDP_CHIP1;
246
247 return ONENAND_DDP_CHIP0;
248}
249
250/**
251 * onenand_page_address - [DEFAULT] Get page address
252 * @page: the page address
253 * @sector: the sector address
254 * @return combined page and sector address
255 *
256 * Setup Start Address 8 Register (F107h)
257 */
258static int onenand_page_address(int page, int sector)
259{
260 /* Flash Page Address, Flash Sector Address */
261 int fpa, fsa;
262
263 fpa = page & ONENAND_FPA_MASK;
264 fsa = sector & ONENAND_FSA_MASK;
265
266 return ((fpa << ONENAND_FPA_SHIFT) | fsa);
267}
268
269/**
270 * onenand_buffer_address - [DEFAULT] Get buffer address
271 * @dataram1: DataRAM index
272 * @sectors: the sector address
273 * @count: the number of sectors
274 * Return: the start buffer value
275 *
276 * Setup Start Buffer Register (F200h)
277 */
278static int onenand_buffer_address(int dataram1, int sectors, int count)
279{
280 int bsa, bsc;
281
282 /* BufferRAM Sector Address */
283 bsa = sectors & ONENAND_BSA_MASK;
284
285 if (dataram1)
286 bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */
287 else
288 bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */
289
290 /* BufferRAM Sector Count */
291 bsc = count & ONENAND_BSC_MASK;
292
293 return ((bsa << ONENAND_BSA_SHIFT) | bsc);
294}
295
296/**
297 * flexonenand_block- For given address return block number
298 * @this: - OneNAND device structure
299 * @addr: - Address for which block number is needed
300 */
301static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr)
302{
303 unsigned boundary, blk, die = 0;
304
305 if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) {
306 die = 1;
307 addr -= this->diesize[0];
308 }
309
310 boundary = this->boundary[die];
311
312 blk = addr >> (this->erase_shift - 1);
313 if (blk > boundary)
314 blk = (blk + boundary + 1) >> 1;
315
316 blk += die ? this->density_mask : 0;
317 return blk;
318}
319
320inline unsigned onenand_block(struct onenand_chip *this, loff_t addr)
321{
322 if (!FLEXONENAND(this))
323 return addr >> this->erase_shift;
324 return flexonenand_block(this, addr);
325}
326
327/**
328 * flexonenand_addr - Return address of the block
329 * @this: OneNAND device structure
330 * @block: Block number on Flex-OneNAND
331 *
332 * Return address of the block
333 */
334static loff_t flexonenand_addr(struct onenand_chip *this, int block)
335{
336 loff_t ofs = 0;
337 int die = 0, boundary;
338
339 if (ONENAND_IS_DDP(this) && block >= this->density_mask) {
340 block -= this->density_mask;
341 die = 1;
342 ofs = this->diesize[0];
343 }
344
345 boundary = this->boundary[die];
346 ofs += (loff_t)block << (this->erase_shift - 1);
347 if (block > (boundary + 1))
348 ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1);
349 return ofs;
350}
351
352loff_t onenand_addr(struct onenand_chip *this, int block)
353{
354 if (!FLEXONENAND(this))
355 return (loff_t)block << this->erase_shift;
356 return flexonenand_addr(this, block);
357}
358EXPORT_SYMBOL(onenand_addr);
359
360/**
361 * onenand_get_density - [DEFAULT] Get OneNAND density
362 * @dev_id: OneNAND device ID
363 *
364 * Get OneNAND density from device ID
365 */
366static inline int onenand_get_density(int dev_id)
367{
368 int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
369 return (density & ONENAND_DEVICE_DENSITY_MASK);
370}
371
372/**
373 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
374 * @mtd: MTD device structure
375 * @addr: address whose erase region needs to be identified
376 */
377int flexonenand_region(struct mtd_info *mtd, loff_t addr)
378{
379 int i;
380
381 for (i = 0; i < mtd->numeraseregions; i++)
382 if (addr < mtd->eraseregions[i].offset)
383 break;
384 return i - 1;
385}
386EXPORT_SYMBOL(flexonenand_region);
387
388/**
389 * onenand_command - [DEFAULT] Send command to OneNAND device
390 * @mtd: MTD device structure
391 * @cmd: the command to be sent
392 * @addr: offset to read from or write to
393 * @len: number of bytes to read or write
394 *
395 * Send command to OneNAND device. This function is used for middle/large page
396 * devices (1KB/2KB Bytes per page)
397 */
398static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
399{
400 struct onenand_chip *this = mtd->priv;
401 int value, block, page;
402
403 /* Address translation */
404 switch (cmd) {
405 case ONENAND_CMD_UNLOCK:
406 case ONENAND_CMD_LOCK:
407 case ONENAND_CMD_LOCK_TIGHT:
408 case ONENAND_CMD_UNLOCK_ALL:
409 block = -1;
410 page = -1;
411 break;
412
413 case FLEXONENAND_CMD_PI_ACCESS:
414 /* addr contains die index */
415 block = addr * this->density_mask;
416 page = -1;
417 break;
418
419 case ONENAND_CMD_ERASE:
420 case ONENAND_CMD_MULTIBLOCK_ERASE:
421 case ONENAND_CMD_ERASE_VERIFY:
422 case ONENAND_CMD_BUFFERRAM:
423 case ONENAND_CMD_OTP_ACCESS:
424 block = onenand_block(this, addr);
425 page = -1;
426 break;
427
428 case FLEXONENAND_CMD_READ_PI:
429 cmd = ONENAND_CMD_READ;
430 block = addr * this->density_mask;
431 page = 0;
432 break;
433
434 default:
435 block = onenand_block(this, addr);
436 if (FLEXONENAND(this))
437 page = (int) (addr - onenand_addr(this, block))>>\
438 this->page_shift;
439 else
440 page = (int) (addr >> this->page_shift);
441 if (ONENAND_IS_2PLANE(this)) {
442 /* Make the even block number */
443 block &= ~1;
444 /* Is it the odd plane? */
445 if (addr & this->writesize)
446 block++;
447 page >>= 1;
448 }
449 page &= this->page_mask;
450 break;
451 }
452
453 /* NOTE: The setting order of the registers is very important! */
454 if (cmd == ONENAND_CMD_BUFFERRAM) {
455 /* Select DataRAM for DDP */
456 value = onenand_bufferram_address(this, block);
457 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
458
459 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
460 /* It is always BufferRAM0 */
461 ONENAND_SET_BUFFERRAM0(this);
462 else
463 /* Switch to the next data buffer */
464 ONENAND_SET_NEXT_BUFFERRAM(this);
465
466 return 0;
467 }
468
469 if (block != -1) {
470 /* Write 'DFS, FBA' of Flash */
471 value = onenand_block_address(this, block);
472 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
473
474 /* Select DataRAM for DDP */
475 value = onenand_bufferram_address(this, block);
476 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
477 }
478
479 if (page != -1) {
480 /* Now we use page size operation */
481 int sectors = 0, count = 0;
482 int dataram;
483
484 switch (cmd) {
485 case FLEXONENAND_CMD_RECOVER_LSB:
486 case ONENAND_CMD_READ:
487 case ONENAND_CMD_READOOB:
488 if (ONENAND_IS_4KB_PAGE(this))
489 /* It is always BufferRAM0 */
490 dataram = ONENAND_SET_BUFFERRAM0(this);
491 else
492 dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
493 break;
494
495 default:
496 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
497 cmd = ONENAND_CMD_2X_PROG;
498 dataram = ONENAND_CURRENT_BUFFERRAM(this);
499 break;
500 }
501
502 /* Write 'FPA, FSA' of Flash */
503 value = onenand_page_address(page, sector: sectors);
504 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
505
506 /* Write 'BSA, BSC' of DataRAM */
507 value = onenand_buffer_address(dataram1: dataram, sectors, count);
508 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
509 }
510
511 /* Interrupt clear */
512 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
513
514 /* Write command */
515 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
516
517 return 0;
518}
519
520/**
521 * onenand_read_ecc - return ecc status
522 * @this: onenand chip structure
523 */
524static inline int onenand_read_ecc(struct onenand_chip *this)
525{
526 int ecc, i, result = 0;
527
528 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
529 return this->read_word(this->base + ONENAND_REG_ECC_STATUS);
530
531 for (i = 0; i < 4; i++) {
532 ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2);
533 if (likely(!ecc))
534 continue;
535 if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR)
536 return ONENAND_ECC_2BIT_ALL;
537 else
538 result = ONENAND_ECC_1BIT_ALL;
539 }
540
541 return result;
542}
543
544/**
545 * onenand_wait - [DEFAULT] wait until the command is done
546 * @mtd: MTD device structure
547 * @state: state to select the max. timeout value
548 *
549 * Wait for command done. This applies to all OneNAND command
550 * Read can take up to 30us, erase up to 2ms and program up to 350us
551 * according to general OneNAND specs
552 */
553static int onenand_wait(struct mtd_info *mtd, int state)
554{
555 struct onenand_chip * this = mtd->priv;
556 unsigned long timeout;
557 unsigned int flags = ONENAND_INT_MASTER;
558 unsigned int interrupt = 0;
559 unsigned int ctrl;
560
561 /* The 20 msec is enough */
562 timeout = jiffies + msecs_to_jiffies(m: 20);
563 while (time_before(jiffies, timeout)) {
564 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
565
566 if (interrupt & flags)
567 break;
568
569 if (state != FL_READING && state != FL_PREPARING_ERASE)
570 cond_resched();
571 }
572 /* To get correct interrupt status in timeout case */
573 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
574
575 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
576
577 /*
578 * In the Spec. it checks the controller status first
579 * However if you get the correct information in case of
580 * power off recovery (POR) test, it should read ECC status first
581 */
582 if (interrupt & ONENAND_INT_READ) {
583 int ecc = onenand_read_ecc(this);
584 if (ecc) {
585 if (ecc & ONENAND_ECC_2BIT_ALL) {
586 printk(KERN_ERR "%s: ECC error = 0x%04x\n",
587 __func__, ecc);
588 mtd->ecc_stats.failed++;
589 return -EBADMSG;
590 } else if (ecc & ONENAND_ECC_1BIT_ALL) {
591 printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n",
592 __func__, ecc);
593 mtd->ecc_stats.corrected++;
594 }
595 }
596 } else if (state == FL_READING) {
597 printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
598 __func__, ctrl, interrupt);
599 return -EIO;
600 }
601
602 if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) {
603 printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
604 __func__, ctrl, interrupt);
605 return -EIO;
606 }
607
608 if (!(interrupt & ONENAND_INT_MASTER)) {
609 printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n",
610 __func__, ctrl, interrupt);
611 return -EIO;
612 }
613
614 /* If there's controller error, it's a real error */
615 if (ctrl & ONENAND_CTRL_ERROR) {
616 printk(KERN_ERR "%s: controller error = 0x%04x\n",
617 __func__, ctrl);
618 if (ctrl & ONENAND_CTRL_LOCK)
619 printk(KERN_ERR "%s: it's locked error.\n", __func__);
620 return -EIO;
621 }
622
623 return 0;
624}
625
626/*
627 * onenand_interrupt - [DEFAULT] onenand interrupt handler
628 * @irq: onenand interrupt number
629 * @dev_id: interrupt data
630 *
631 * complete the work
632 */
633static irqreturn_t onenand_interrupt(int irq, void *data)
634{
635 struct onenand_chip *this = data;
636
637 /* To handle shared interrupt */
638 if (!this->complete.done)
639 complete(&this->complete);
640
641 return IRQ_HANDLED;
642}
643
644/*
645 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
646 * @mtd: MTD device structure
647 * @state: state to select the max. timeout value
648 *
649 * Wait for command done.
650 */
651static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
652{
653 struct onenand_chip *this = mtd->priv;
654
655 wait_for_completion(&this->complete);
656
657 return onenand_wait(mtd, state);
658}
659
660/*
661 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
662 * @mtd: MTD device structure
663 * @state: state to select the max. timeout value
664 *
665 * Try interrupt based wait (It is used one-time)
666 */
667static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
668{
669 struct onenand_chip *this = mtd->priv;
670 unsigned long remain, timeout;
671
672 /* We use interrupt wait first */
673 this->wait = onenand_interrupt_wait;
674
675 timeout = msecs_to_jiffies(m: 100);
676 remain = wait_for_completion_timeout(x: &this->complete, timeout);
677 if (!remain) {
678 printk(KERN_INFO "OneNAND: There's no interrupt. "
679 "We use the normal wait\n");
680
681 /* Release the irq */
682 free_irq(this->irq, this);
683
684 this->wait = onenand_wait;
685 }
686
687 return onenand_wait(mtd, state);
688}
689
690/*
691 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
692 * @mtd: MTD device structure
693 *
694 * There's two method to wait onenand work
695 * 1. polling - read interrupt status register
696 * 2. interrupt - use the kernel interrupt method
697 */
698static void onenand_setup_wait(struct mtd_info *mtd)
699{
700 struct onenand_chip *this = mtd->priv;
701 int syscfg;
702
703 init_completion(x: &this->complete);
704
705 if (this->irq <= 0) {
706 this->wait = onenand_wait;
707 return;
708 }
709
710 if (request_irq(irq: this->irq, handler: &onenand_interrupt,
711 IRQF_SHARED, name: "onenand", dev: this)) {
712 /* If we can't get irq, use the normal wait */
713 this->wait = onenand_wait;
714 return;
715 }
716
717 /* Enable interrupt */
718 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
719 syscfg |= ONENAND_SYS_CFG1_IOBE;
720 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
721
722 this->wait = onenand_try_interrupt_wait;
723}
724
725/**
726 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
727 * @mtd: MTD data structure
728 * @area: BufferRAM area
729 * @return offset given area
730 *
731 * Return BufferRAM offset given area
732 */
733static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
734{
735 struct onenand_chip *this = mtd->priv;
736
737 if (ONENAND_CURRENT_BUFFERRAM(this)) {
738 /* Note: the 'this->writesize' is a real page size */
739 if (area == ONENAND_DATARAM)
740 return this->writesize;
741 if (area == ONENAND_SPARERAM)
742 return mtd->oobsize;
743 }
744
745 return 0;
746}
747
748/**
749 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
750 * @mtd: MTD data structure
751 * @area: BufferRAM area
752 * @buffer: the databuffer to put/get data
753 * @offset: offset to read from or write to
754 * @count: number of bytes to read/write
755 *
756 * Read the BufferRAM area
757 */
758static int onenand_read_bufferram(struct mtd_info *mtd, int area,
759 unsigned char *buffer, int offset, size_t count)
760{
761 struct onenand_chip *this = mtd->priv;
762 void __iomem *bufferram;
763
764 bufferram = this->base + area;
765
766 bufferram += onenand_bufferram_offset(mtd, area);
767
768 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
769 unsigned short word;
770
771 /* Align with word(16-bit) size */
772 count--;
773
774 /* Read word and save byte */
775 word = this->read_word(bufferram + offset + count);
776 buffer[count] = (word & 0xff);
777 }
778
779 memcpy(buffer, bufferram + offset, count);
780
781 return 0;
782}
783
784/**
785 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
786 * @mtd: MTD data structure
787 * @area: BufferRAM area
788 * @buffer: the databuffer to put/get data
789 * @offset: offset to read from or write to
790 * @count: number of bytes to read/write
791 *
792 * Read the BufferRAM area with Sync. Burst Mode
793 */
794static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
795 unsigned char *buffer, int offset, size_t count)
796{
797 struct onenand_chip *this = mtd->priv;
798 void __iomem *bufferram;
799
800 bufferram = this->base + area;
801
802 bufferram += onenand_bufferram_offset(mtd, area);
803
804 this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
805
806 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
807 unsigned short word;
808
809 /* Align with word(16-bit) size */
810 count--;
811
812 /* Read word and save byte */
813 word = this->read_word(bufferram + offset + count);
814 buffer[count] = (word & 0xff);
815 }
816
817 memcpy(buffer, bufferram + offset, count);
818
819 this->mmcontrol(mtd, 0);
820
821 return 0;
822}
823
824/**
825 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
826 * @mtd: MTD data structure
827 * @area: BufferRAM area
828 * @buffer: the databuffer to put/get data
829 * @offset: offset to read from or write to
830 * @count: number of bytes to read/write
831 *
832 * Write the BufferRAM area
833 */
834static int onenand_write_bufferram(struct mtd_info *mtd, int area,
835 const unsigned char *buffer, int offset, size_t count)
836{
837 struct onenand_chip *this = mtd->priv;
838 void __iomem *bufferram;
839
840 bufferram = this->base + area;
841
842 bufferram += onenand_bufferram_offset(mtd, area);
843
844 if (ONENAND_CHECK_BYTE_ACCESS(count)) {
845 unsigned short word;
846 int byte_offset;
847
848 /* Align with word(16-bit) size */
849 count--;
850
851 /* Calculate byte access offset */
852 byte_offset = offset + count;
853
854 /* Read word and save byte */
855 word = this->read_word(bufferram + byte_offset);
856 word = (word & ~0xff) | buffer[count];
857 this->write_word(word, bufferram + byte_offset);
858 }
859
860 memcpy(bufferram + offset, buffer, count);
861
862 return 0;
863}
864
865/**
866 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
867 * @mtd: MTD data structure
868 * @addr: address to check
869 * @return blockpage address
870 *
871 * Get blockpage address at 2x program mode
872 */
873static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr)
874{
875 struct onenand_chip *this = mtd->priv;
876 int blockpage, block, page;
877
878 /* Calculate the even block number */
879 block = (int) (addr >> this->erase_shift) & ~1;
880 /* Is it the odd plane? */
881 if (addr & this->writesize)
882 block++;
883 page = (int) (addr >> (this->page_shift + 1)) & this->page_mask;
884 blockpage = (block << 7) | page;
885
886 return blockpage;
887}
888
889/**
890 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
891 * @mtd: MTD data structure
892 * @addr: address to check
893 * @return 1 if there are valid data, otherwise 0
894 *
895 * Check bufferram if there is data we required
896 */
897static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
898{
899 struct onenand_chip *this = mtd->priv;
900 int blockpage, found = 0;
901 unsigned int i;
902
903 if (ONENAND_IS_2PLANE(this))
904 blockpage = onenand_get_2x_blockpage(mtd, addr);
905 else
906 blockpage = (int) (addr >> this->page_shift);
907
908 /* Is there valid data? */
909 i = ONENAND_CURRENT_BUFFERRAM(this);
910 if (this->bufferram[i].blockpage == blockpage)
911 found = 1;
912 else {
913 /* Check another BufferRAM */
914 i = ONENAND_NEXT_BUFFERRAM(this);
915 if (this->bufferram[i].blockpage == blockpage) {
916 ONENAND_SET_NEXT_BUFFERRAM(this);
917 found = 1;
918 }
919 }
920
921 if (found && ONENAND_IS_DDP(this)) {
922 /* Select DataRAM for DDP */
923 int block = onenand_block(this, addr);
924 int value = onenand_bufferram_address(this, block);
925 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
926 }
927
928 return found;
929}
930
931/**
932 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
933 * @mtd: MTD data structure
934 * @addr: address to update
935 * @valid: valid flag
936 *
937 * Update BufferRAM information
938 */
939static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
940 int valid)
941{
942 struct onenand_chip *this = mtd->priv;
943 int blockpage;
944 unsigned int i;
945
946 if (ONENAND_IS_2PLANE(this))
947 blockpage = onenand_get_2x_blockpage(mtd, addr);
948 else
949 blockpage = (int) (addr >> this->page_shift);
950
951 /* Invalidate another BufferRAM */
952 i = ONENAND_NEXT_BUFFERRAM(this);
953 if (this->bufferram[i].blockpage == blockpage)
954 this->bufferram[i].blockpage = -1;
955
956 /* Update BufferRAM */
957 i = ONENAND_CURRENT_BUFFERRAM(this);
958 if (valid)
959 this->bufferram[i].blockpage = blockpage;
960 else
961 this->bufferram[i].blockpage = -1;
962}
963
964/**
965 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
966 * @mtd: MTD data structure
967 * @addr: start address to invalidate
968 * @len: length to invalidate
969 *
970 * Invalidate BufferRAM information
971 */
972static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr,
973 unsigned int len)
974{
975 struct onenand_chip *this = mtd->priv;
976 int i;
977 loff_t end_addr = addr + len;
978
979 /* Invalidate BufferRAM */
980 for (i = 0; i < MAX_BUFFERRAM; i++) {
981 loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift;
982 if (buf_addr >= addr && buf_addr < end_addr)
983 this->bufferram[i].blockpage = -1;
984 }
985}
986
987/**
988 * onenand_get_device - [GENERIC] Get chip for selected access
989 * @mtd: MTD device structure
990 * @new_state: the state which is requested
991 *
992 * Get the device and lock it for exclusive access
993 */
994static int onenand_get_device(struct mtd_info *mtd, int new_state)
995{
996 struct onenand_chip *this = mtd->priv;
997 DECLARE_WAITQUEUE(wait, current);
998
999 /*
1000 * Grab the lock and see if the device is available
1001 */
1002 while (1) {
1003 spin_lock(lock: &this->chip_lock);
1004 if (this->state == FL_READY) {
1005 this->state = new_state;
1006 spin_unlock(lock: &this->chip_lock);
1007 if (new_state != FL_PM_SUSPENDED && this->enable)
1008 this->enable(mtd);
1009 break;
1010 }
1011 if (new_state == FL_PM_SUSPENDED) {
1012 spin_unlock(lock: &this->chip_lock);
1013 return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
1014 }
1015 set_current_state(TASK_UNINTERRUPTIBLE);
1016 add_wait_queue(wq_head: &this->wq, wq_entry: &wait);
1017 spin_unlock(lock: &this->chip_lock);
1018 schedule();
1019 remove_wait_queue(wq_head: &this->wq, wq_entry: &wait);
1020 }
1021
1022 return 0;
1023}
1024
1025/**
1026 * onenand_release_device - [GENERIC] release chip
1027 * @mtd: MTD device structure
1028 *
1029 * Deselect, release chip lock and wake up anyone waiting on the device
1030 */
1031static void onenand_release_device(struct mtd_info *mtd)
1032{
1033 struct onenand_chip *this = mtd->priv;
1034
1035 if (this->state != FL_PM_SUSPENDED && this->disable)
1036 this->disable(mtd);
1037 /* Release the chip */
1038 spin_lock(lock: &this->chip_lock);
1039 this->state = FL_READY;
1040 wake_up(&this->wq);
1041 spin_unlock(lock: &this->chip_lock);
1042}
1043
1044/**
1045 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1046 * @mtd: MTD device structure
1047 * @buf: destination address
1048 * @column: oob offset to read from
1049 * @thislen: oob length to read
1050 */
1051static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
1052 int thislen)
1053{
1054 struct onenand_chip *this = mtd->priv;
1055
1056 this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0,
1057 mtd->oobsize);
1058 return mtd_ooblayout_get_databytes(mtd, databuf: buf, oobbuf: this->oob_buf,
1059 start: column, nbytes: thislen);
1060}
1061
1062/**
1063 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1064 * @mtd: MTD device structure
1065 * @addr: address to recover
1066 * @status: return value from onenand_wait / onenand_bbt_wait
1067 *
1068 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1069 * lower page address and MSB page has higher page address in paired pages.
1070 * If power off occurs during MSB page program, the paired LSB page data can
1071 * become corrupt. LSB page recovery read is a way to read LSB page though page
1072 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1073 * read after power up, issue LSB page recovery read.
1074 */
1075static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status)
1076{
1077 struct onenand_chip *this = mtd->priv;
1078 int i;
1079
1080 /* Recovery is only for Flex-OneNAND */
1081 if (!FLEXONENAND(this))
1082 return status;
1083
1084 /* check if we failed due to uncorrectable error */
1085 if (!mtd_is_eccerr(err: status) && status != ONENAND_BBT_READ_ECC_ERROR)
1086 return status;
1087
1088 /* check if address lies in MLC region */
1089 i = flexonenand_region(mtd, addr);
1090 if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift))
1091 return status;
1092
1093 /* We are attempting to reread, so decrement stats.failed
1094 * which was incremented by onenand_wait due to read failure
1095 */
1096 printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n",
1097 __func__);
1098 mtd->ecc_stats.failed--;
1099
1100 /* Issue the LSB page recovery command */
1101 this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize);
1102 return this->wait(mtd, FL_READING);
1103}
1104
1105/**
1106 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1107 * @mtd: MTD device structure
1108 * @from: offset to read from
1109 * @ops: oob operation description structure
1110 *
1111 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1112 * So, read-while-load is not present.
1113 */
1114static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1115 struct mtd_oob_ops *ops)
1116{
1117 struct onenand_chip *this = mtd->priv;
1118 struct mtd_ecc_stats stats;
1119 size_t len = ops->len;
1120 size_t ooblen = ops->ooblen;
1121 u_char *buf = ops->datbuf;
1122 u_char *oobbuf = ops->oobbuf;
1123 int read = 0, column, thislen;
1124 int oobread = 0, oobcolumn, thisooblen, oobsize;
1125 int ret = 0;
1126 int writesize = this->writesize;
1127
1128 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1129 (int)len);
1130
1131 oobsize = mtd_oobavail(mtd, ops);
1132 oobcolumn = from & (mtd->oobsize - 1);
1133
1134 /* Do not allow reads past end of device */
1135 if (from + len > mtd->size) {
1136 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1137 __func__);
1138 ops->retlen = 0;
1139 ops->oobretlen = 0;
1140 return -EINVAL;
1141 }
1142
1143 stats = mtd->ecc_stats;
1144
1145 while (read < len) {
1146 cond_resched();
1147
1148 thislen = min_t(int, writesize, len - read);
1149
1150 column = from & (writesize - 1);
1151 if (column + thislen > writesize)
1152 thislen = writesize - column;
1153
1154 if (!onenand_check_bufferram(mtd, addr: from)) {
1155 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1156
1157 ret = this->wait(mtd, FL_READING);
1158 if (unlikely(ret))
1159 ret = onenand_recover_lsb(mtd, addr: from, status: ret);
1160 onenand_update_bufferram(mtd, addr: from, valid: !ret);
1161 if (mtd_is_eccerr(err: ret))
1162 ret = 0;
1163 if (ret)
1164 break;
1165 }
1166
1167 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1168 if (oobbuf) {
1169 thisooblen = oobsize - oobcolumn;
1170 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1171
1172 if (ops->mode == MTD_OPS_AUTO_OOB)
1173 onenand_transfer_auto_oob(mtd, buf: oobbuf, column: oobcolumn, thislen: thisooblen);
1174 else
1175 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1176 oobread += thisooblen;
1177 oobbuf += thisooblen;
1178 oobcolumn = 0;
1179 }
1180
1181 read += thislen;
1182 if (read == len)
1183 break;
1184
1185 from += thislen;
1186 buf += thislen;
1187 }
1188
1189 /*
1190 * Return success, if no ECC failures, else -EBADMSG
1191 * fs driver will take care of that, because
1192 * retlen == desired len and result == -EBADMSG
1193 */
1194 ops->retlen = read;
1195 ops->oobretlen = oobread;
1196
1197 if (ret)
1198 return ret;
1199
1200 if (mtd->ecc_stats.failed - stats.failed)
1201 return -EBADMSG;
1202
1203 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1204 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1205}
1206
1207/**
1208 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1209 * @mtd: MTD device structure
1210 * @from: offset to read from
1211 * @ops: oob operation description structure
1212 *
1213 * OneNAND read main and/or out-of-band data
1214 */
1215static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from,
1216 struct mtd_oob_ops *ops)
1217{
1218 struct onenand_chip *this = mtd->priv;
1219 struct mtd_ecc_stats stats;
1220 size_t len = ops->len;
1221 size_t ooblen = ops->ooblen;
1222 u_char *buf = ops->datbuf;
1223 u_char *oobbuf = ops->oobbuf;
1224 int read = 0, column, thislen;
1225 int oobread = 0, oobcolumn, thisooblen, oobsize;
1226 int ret = 0, boundary = 0;
1227 int writesize = this->writesize;
1228
1229 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1230 (int)len);
1231
1232 oobsize = mtd_oobavail(mtd, ops);
1233 oobcolumn = from & (mtd->oobsize - 1);
1234
1235 /* Do not allow reads past end of device */
1236 if ((from + len) > mtd->size) {
1237 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1238 __func__);
1239 ops->retlen = 0;
1240 ops->oobretlen = 0;
1241 return -EINVAL;
1242 }
1243
1244 stats = mtd->ecc_stats;
1245
1246 /* Read-while-load method */
1247
1248 /* Do first load to bufferRAM */
1249 if (read < len) {
1250 if (!onenand_check_bufferram(mtd, addr: from)) {
1251 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1252 ret = this->wait(mtd, FL_READING);
1253 onenand_update_bufferram(mtd, addr: from, valid: !ret);
1254 if (mtd_is_eccerr(err: ret))
1255 ret = 0;
1256 }
1257 }
1258
1259 thislen = min_t(int, writesize, len - read);
1260 column = from & (writesize - 1);
1261 if (column + thislen > writesize)
1262 thislen = writesize - column;
1263
1264 while (!ret) {
1265 /* If there is more to load then start next load */
1266 from += thislen;
1267 if (read + thislen < len) {
1268 this->command(mtd, ONENAND_CMD_READ, from, writesize);
1269 /*
1270 * Chip boundary handling in DDP
1271 * Now we issued chip 1 read and pointed chip 1
1272 * bufferram so we have to point chip 0 bufferram.
1273 */
1274 if (ONENAND_IS_DDP(this) &&
1275 unlikely(from == (this->chipsize >> 1))) {
1276 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
1277 boundary = 1;
1278 } else
1279 boundary = 0;
1280 ONENAND_SET_PREV_BUFFERRAM(this);
1281 }
1282 /* While load is going, read from last bufferRAM */
1283 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
1284
1285 /* Read oob area if needed */
1286 if (oobbuf) {
1287 thisooblen = oobsize - oobcolumn;
1288 thisooblen = min_t(int, thisooblen, ooblen - oobread);
1289
1290 if (ops->mode == MTD_OPS_AUTO_OOB)
1291 onenand_transfer_auto_oob(mtd, buf: oobbuf, column: oobcolumn, thislen: thisooblen);
1292 else
1293 this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen);
1294 oobread += thisooblen;
1295 oobbuf += thisooblen;
1296 oobcolumn = 0;
1297 }
1298
1299 /* See if we are done */
1300 read += thislen;
1301 if (read == len)
1302 break;
1303 /* Set up for next read from bufferRAM */
1304 if (unlikely(boundary))
1305 this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
1306 ONENAND_SET_NEXT_BUFFERRAM(this);
1307 buf += thislen;
1308 thislen = min_t(int, writesize, len - read);
1309 column = 0;
1310 cond_resched();
1311 /* Now wait for load */
1312 ret = this->wait(mtd, FL_READING);
1313 onenand_update_bufferram(mtd, addr: from, valid: !ret);
1314 if (mtd_is_eccerr(err: ret))
1315 ret = 0;
1316 }
1317
1318 /*
1319 * Return success, if no ECC failures, else -EBADMSG
1320 * fs driver will take care of that, because
1321 * retlen == desired len and result == -EBADMSG
1322 */
1323 ops->retlen = read;
1324 ops->oobretlen = oobread;
1325
1326 if (ret)
1327 return ret;
1328
1329 if (mtd->ecc_stats.failed - stats.failed)
1330 return -EBADMSG;
1331
1332 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1333 return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0;
1334}
1335
1336/**
1337 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1338 * @mtd: MTD device structure
1339 * @from: offset to read from
1340 * @ops: oob operation description structure
1341 *
1342 * OneNAND read out-of-band data from the spare area
1343 */
1344static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from,
1345 struct mtd_oob_ops *ops)
1346{
1347 struct onenand_chip *this = mtd->priv;
1348 struct mtd_ecc_stats stats;
1349 int read = 0, thislen, column, oobsize;
1350 size_t len = ops->ooblen;
1351 unsigned int mode = ops->mode;
1352 u_char *buf = ops->oobbuf;
1353 int ret = 0, readcmd;
1354
1355 from += ops->ooboffs;
1356
1357 pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from,
1358 (int)len);
1359
1360 /* Initialize return length value */
1361 ops->oobretlen = 0;
1362
1363 if (mode == MTD_OPS_AUTO_OOB)
1364 oobsize = mtd->oobavail;
1365 else
1366 oobsize = mtd->oobsize;
1367
1368 column = from & (mtd->oobsize - 1);
1369
1370 if (unlikely(column >= oobsize)) {
1371 printk(KERN_ERR "%s: Attempted to start read outside oob\n",
1372 __func__);
1373 return -EINVAL;
1374 }
1375
1376 stats = mtd->ecc_stats;
1377
1378 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1379
1380 while (read < len) {
1381 cond_resched();
1382
1383 thislen = oobsize - column;
1384 thislen = min_t(int, thislen, len);
1385
1386 this->command(mtd, readcmd, from, mtd->oobsize);
1387
1388 onenand_update_bufferram(mtd, addr: from, valid: 0);
1389
1390 ret = this->wait(mtd, FL_READING);
1391 if (unlikely(ret))
1392 ret = onenand_recover_lsb(mtd, addr: from, status: ret);
1393
1394 if (ret && !mtd_is_eccerr(err: ret)) {
1395 printk(KERN_ERR "%s: read failed = 0x%x\n",
1396 __func__, ret);
1397 break;
1398 }
1399
1400 if (mode == MTD_OPS_AUTO_OOB)
1401 onenand_transfer_auto_oob(mtd, buf, column, thislen);
1402 else
1403 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1404
1405 read += thislen;
1406
1407 if (read == len)
1408 break;
1409
1410 buf += thislen;
1411
1412 /* Read more? */
1413 if (read < len) {
1414 /* Page size */
1415 from += mtd->writesize;
1416 column = 0;
1417 }
1418 }
1419
1420 ops->oobretlen = read;
1421
1422 if (ret)
1423 return ret;
1424
1425 if (mtd->ecc_stats.failed - stats.failed)
1426 return -EBADMSG;
1427
1428 return 0;
1429}
1430
1431/**
1432 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1433 * @mtd: MTD device structure
1434 * @from: offset to read from
1435 * @ops: oob operation description structure
1436 *
1437 * Read main and/or out-of-band
1438 */
1439static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
1440 struct mtd_oob_ops *ops)
1441{
1442 struct onenand_chip *this = mtd->priv;
1443 struct mtd_ecc_stats old_stats;
1444 int ret;
1445
1446 switch (ops->mode) {
1447 case MTD_OPS_PLACE_OOB:
1448 case MTD_OPS_AUTO_OOB:
1449 break;
1450 case MTD_OPS_RAW:
1451 /* Not implemented yet */
1452 default:
1453 return -EINVAL;
1454 }
1455
1456 onenand_get_device(mtd, new_state: FL_READING);
1457
1458 old_stats = mtd->ecc_stats;
1459
1460 if (ops->datbuf)
1461 ret = ONENAND_IS_4KB_PAGE(this) ?
1462 onenand_mlc_read_ops_nolock(mtd, from, ops) :
1463 onenand_read_ops_nolock(mtd, from, ops);
1464 else
1465 ret = onenand_read_oob_nolock(mtd, from, ops);
1466
1467 if (ops->stats) {
1468 ops->stats->uncorrectable_errors +=
1469 mtd->ecc_stats.failed - old_stats.failed;
1470 ops->stats->corrected_bitflips +=
1471 mtd->ecc_stats.corrected - old_stats.corrected;
1472 }
1473
1474 onenand_release_device(mtd);
1475
1476 return ret;
1477}
1478
1479/**
1480 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1481 * @mtd: MTD device structure
1482 * @state: state to select the max. timeout value
1483 *
1484 * Wait for command done.
1485 */
1486static int onenand_bbt_wait(struct mtd_info *mtd, int state)
1487{
1488 struct onenand_chip *this = mtd->priv;
1489 unsigned long timeout;
1490 unsigned int interrupt, ctrl, ecc, addr1, addr8;
1491
1492 /* The 20 msec is enough */
1493 timeout = jiffies + msecs_to_jiffies(m: 20);
1494 while (time_before(jiffies, timeout)) {
1495 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1496 if (interrupt & ONENAND_INT_MASTER)
1497 break;
1498 }
1499 /* To get correct interrupt status in timeout case */
1500 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1501 ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
1502 addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1);
1503 addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8);
1504
1505 if (interrupt & ONENAND_INT_READ) {
1506 ecc = onenand_read_ecc(this);
1507 if (ecc & ONENAND_ECC_2BIT_ALL) {
1508 printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x "
1509 "intr 0x%04x addr1 %#x addr8 %#x\n",
1510 __func__, ecc, ctrl, interrupt, addr1, addr8);
1511 return ONENAND_BBT_READ_ECC_ERROR;
1512 }
1513 } else {
1514 printk(KERN_ERR "%s: read timeout! ctrl 0x%04x "
1515 "intr 0x%04x addr1 %#x addr8 %#x\n",
1516 __func__, ctrl, interrupt, addr1, addr8);
1517 return ONENAND_BBT_READ_FATAL_ERROR;
1518 }
1519
1520 /* Initial bad block case: 0x2400 or 0x0400 */
1521 if (ctrl & ONENAND_CTRL_ERROR) {
1522 printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1523 "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8);
1524 return ONENAND_BBT_READ_ERROR;
1525 }
1526
1527 return 0;
1528}
1529
1530/**
1531 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1532 * @mtd: MTD device structure
1533 * @from: offset to read from
1534 * @ops: oob operation description structure
1535 *
1536 * OneNAND read out-of-band data from the spare area for bbt scan
1537 */
1538int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from,
1539 struct mtd_oob_ops *ops)
1540{
1541 struct onenand_chip *this = mtd->priv;
1542 int read = 0, thislen, column;
1543 int ret = 0, readcmd;
1544 size_t len = ops->ooblen;
1545 u_char *buf = ops->oobbuf;
1546
1547 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from,
1548 len);
1549
1550 /* Initialize return value */
1551 ops->oobretlen = 0;
1552
1553 /* Do not allow reads past end of device */
1554 if (unlikely((from + len) > mtd->size)) {
1555 printk(KERN_ERR "%s: Attempt read beyond end of device\n",
1556 __func__);
1557 return ONENAND_BBT_READ_FATAL_ERROR;
1558 }
1559
1560 /* Grab the lock and see if the device is available */
1561 onenand_get_device(mtd, new_state: FL_READING);
1562
1563 column = from & (mtd->oobsize - 1);
1564
1565 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1566
1567 while (read < len) {
1568 cond_resched();
1569
1570 thislen = mtd->oobsize - column;
1571 thislen = min_t(int, thislen, len);
1572
1573 this->command(mtd, readcmd, from, mtd->oobsize);
1574
1575 onenand_update_bufferram(mtd, addr: from, valid: 0);
1576
1577 ret = this->bbt_wait(mtd, FL_READING);
1578 if (unlikely(ret))
1579 ret = onenand_recover_lsb(mtd, addr: from, status: ret);
1580
1581 if (ret)
1582 break;
1583
1584 this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
1585 read += thislen;
1586 if (read == len)
1587 break;
1588
1589 buf += thislen;
1590
1591 /* Read more? */
1592 if (read < len) {
1593 /* Update Page size */
1594 from += this->writesize;
1595 column = 0;
1596 }
1597 }
1598
1599 /* Deselect and wake up anyone waiting on the device */
1600 onenand_release_device(mtd);
1601
1602 ops->oobretlen = read;
1603 return ret;
1604}
1605
1606#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1607/**
1608 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1609 * @mtd: MTD device structure
1610 * @buf: the databuffer to verify
1611 * @to: offset to read from
1612 */
1613static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
1614{
1615 struct onenand_chip *this = mtd->priv;
1616 u_char *oob_buf = this->oob_buf;
1617 int status, i, readcmd;
1618
1619 readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB;
1620
1621 this->command(mtd, readcmd, to, mtd->oobsize);
1622 onenand_update_bufferram(mtd, addr: to, valid: 0);
1623 status = this->wait(mtd, FL_READING);
1624 if (status)
1625 return status;
1626
1627 this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
1628 for (i = 0; i < mtd->oobsize; i++)
1629 if (buf[i] != 0xFF && buf[i] != oob_buf[i])
1630 return -EBADMSG;
1631
1632 return 0;
1633}
1634
1635/**
1636 * onenand_verify - [GENERIC] verify the chip contents after a write
1637 * @mtd: MTD device structure
1638 * @buf: the databuffer to verify
1639 * @addr: offset to read from
1640 * @len: number of bytes to read and compare
1641 */
1642static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
1643{
1644 struct onenand_chip *this = mtd->priv;
1645 int ret = 0;
1646 int thislen, column;
1647
1648 column = addr & (this->writesize - 1);
1649
1650 while (len != 0) {
1651 thislen = min_t(int, this->writesize - column, len);
1652
1653 this->command(mtd, ONENAND_CMD_READ, addr, this->writesize);
1654
1655 onenand_update_bufferram(mtd, addr, valid: 0);
1656
1657 ret = this->wait(mtd, FL_READING);
1658 if (ret)
1659 return ret;
1660
1661 onenand_update_bufferram(mtd, addr, valid: 1);
1662
1663 this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize);
1664
1665 if (memcmp(p: buf, q: this->verify_buf + column, size: thislen))
1666 return -EBADMSG;
1667
1668 len -= thislen;
1669 buf += thislen;
1670 addr += thislen;
1671 column = 0;
1672 }
1673
1674 return 0;
1675}
1676#else
1677#define onenand_verify(...) (0)
1678#define onenand_verify_oob(...) (0)
1679#endif
1680
1681#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1682
1683static void onenand_panic_wait(struct mtd_info *mtd)
1684{
1685 struct onenand_chip *this = mtd->priv;
1686 unsigned int interrupt;
1687 int i;
1688
1689 for (i = 0; i < 2000; i++) {
1690 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
1691 if (interrupt & ONENAND_INT_MASTER)
1692 break;
1693 udelay(10);
1694 }
1695}
1696
1697/**
1698 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1699 * @mtd: MTD device structure
1700 * @to: offset to write to
1701 * @len: number of bytes to write
1702 * @retlen: pointer to variable to store the number of written bytes
1703 * @buf: the data to write
1704 *
1705 * Write with ECC
1706 */
1707static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
1708 size_t *retlen, const u_char *buf)
1709{
1710 struct onenand_chip *this = mtd->priv;
1711 int column, subpage;
1712 int written = 0;
1713
1714 if (this->state == FL_PM_SUSPENDED)
1715 return -EBUSY;
1716
1717 /* Wait for any existing operation to clear */
1718 onenand_panic_wait(mtd);
1719
1720 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1721 (int)len);
1722
1723 /* Reject writes, which are not page aligned */
1724 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1725 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1726 __func__);
1727 return -EINVAL;
1728 }
1729
1730 column = to & (mtd->writesize - 1);
1731
1732 /* Loop until all data write */
1733 while (written < len) {
1734 int thislen = min_t(int, mtd->writesize - column, len - written);
1735 u_char *wbuf = (u_char *) buf;
1736
1737 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1738
1739 /* Partial page write */
1740 subpage = thislen < mtd->writesize;
1741 if (subpage) {
1742 memset(this->page_buf, 0xff, mtd->writesize);
1743 memcpy(this->page_buf + column, buf, thislen);
1744 wbuf = this->page_buf;
1745 }
1746
1747 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1748 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1749
1750 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1751
1752 onenand_panic_wait(mtd);
1753
1754 /* In partial page write we don't update bufferram */
1755 onenand_update_bufferram(mtd, addr: to, valid: !subpage);
1756 if (ONENAND_IS_2PLANE(this)) {
1757 ONENAND_SET_BUFFERRAM1(this);
1758 onenand_update_bufferram(mtd, addr: to + this->writesize, valid: !subpage);
1759 }
1760
1761 written += thislen;
1762
1763 if (written == len)
1764 break;
1765
1766 column = 0;
1767 to += thislen;
1768 buf += thislen;
1769 }
1770
1771 *retlen = written;
1772 return 0;
1773}
1774
1775/**
1776 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1777 * @mtd: MTD device structure
1778 * @oob_buf: oob buffer
1779 * @buf: source address
1780 * @column: oob offset to write to
1781 * @thislen: oob length to write
1782 */
1783static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1784 const u_char *buf, int column, int thislen)
1785{
1786 return mtd_ooblayout_set_databytes(mtd, databuf: buf, oobbuf: oob_buf, start: column, nbytes: thislen);
1787}
1788
1789/**
1790 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1791 * @mtd: MTD device structure
1792 * @to: offset to write to
1793 * @ops: oob operation description structure
1794 *
1795 * Write main and/or oob with ECC
1796 */
1797static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to,
1798 struct mtd_oob_ops *ops)
1799{
1800 struct onenand_chip *this = mtd->priv;
1801 int written = 0, column, thislen = 0, subpage = 0;
1802 int prev = 0, prevlen = 0, prev_subpage = 0, first = 1;
1803 int oobwritten = 0, oobcolumn, thisooblen, oobsize;
1804 size_t len = ops->len;
1805 size_t ooblen = ops->ooblen;
1806 const u_char *buf = ops->datbuf;
1807 const u_char *oob = ops->oobbuf;
1808 u_char *oobbuf;
1809 int ret = 0, cmd;
1810
1811 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1812 (int)len);
1813
1814 /* Initialize retlen, in case of early exit */
1815 ops->retlen = 0;
1816 ops->oobretlen = 0;
1817
1818 /* Reject writes, which are not page aligned */
1819 if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) {
1820 printk(KERN_ERR "%s: Attempt to write not page aligned data\n",
1821 __func__);
1822 return -EINVAL;
1823 }
1824
1825 /* Check zero length */
1826 if (!len)
1827 return 0;
1828 oobsize = mtd_oobavail(mtd, ops);
1829 oobcolumn = to & (mtd->oobsize - 1);
1830
1831 column = to & (mtd->writesize - 1);
1832
1833 /* Loop until all data write */
1834 while (1) {
1835 if (written < len) {
1836 u_char *wbuf = (u_char *) buf;
1837
1838 thislen = min_t(int, mtd->writesize - column, len - written);
1839 thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten);
1840
1841 cond_resched();
1842
1843 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen);
1844
1845 /* Partial page write */
1846 subpage = thislen < mtd->writesize;
1847 if (subpage) {
1848 memset(this->page_buf, 0xff, mtd->writesize);
1849 memcpy(this->page_buf + column, buf, thislen);
1850 wbuf = this->page_buf;
1851 }
1852
1853 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize);
1854
1855 if (oob) {
1856 oobbuf = this->oob_buf;
1857
1858 /* We send data to spare ram with oobsize
1859 * to prevent byte access */
1860 memset(oobbuf, 0xff, mtd->oobsize);
1861 if (ops->mode == MTD_OPS_AUTO_OOB)
1862 onenand_fill_auto_oob(mtd, oob_buf: oobbuf, buf: oob, column: oobcolumn, thislen: thisooblen);
1863 else
1864 memcpy(oobbuf + oobcolumn, oob, thisooblen);
1865
1866 oobwritten += thisooblen;
1867 oob += thisooblen;
1868 oobcolumn = 0;
1869 } else
1870 oobbuf = (u_char *) ffchars;
1871
1872 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
1873 } else
1874 ONENAND_SET_NEXT_BUFFERRAM(this);
1875
1876 /*
1877 * 2 PLANE, MLC, and Flex-OneNAND do not support
1878 * write-while-program feature.
1879 */
1880 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) {
1881 ONENAND_SET_PREV_BUFFERRAM(this);
1882
1883 ret = this->wait(mtd, FL_WRITING);
1884
1885 /* In partial page write we don't update bufferram */
1886 onenand_update_bufferram(mtd, addr: prev, valid: !ret && !prev_subpage);
1887 if (ret) {
1888 written -= prevlen;
1889 printk(KERN_ERR "%s: write failed %d\n",
1890 __func__, ret);
1891 break;
1892 }
1893
1894 if (written == len) {
1895 /* Only check verify write turn on */
1896 ret = onenand_verify(mtd, buf: buf - len, addr: to - len, len);
1897 if (ret)
1898 printk(KERN_ERR "%s: verify failed %d\n",
1899 __func__, ret);
1900 break;
1901 }
1902
1903 ONENAND_SET_NEXT_BUFFERRAM(this);
1904 }
1905
1906 this->ongoing = 0;
1907 cmd = ONENAND_CMD_PROG;
1908
1909 /* Exclude 1st OTP and OTP blocks for cache program feature */
1910 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1911 likely(onenand_block(this, to) != 0) &&
1912 ONENAND_IS_4KB_PAGE(this) &&
1913 ((written + thislen) < len)) {
1914 cmd = ONENAND_CMD_2X_CACHE_PROG;
1915 this->ongoing = 1;
1916 }
1917
1918 this->command(mtd, cmd, to, mtd->writesize);
1919
1920 /*
1921 * 2 PLANE, MLC, and Flex-OneNAND wait here
1922 */
1923 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1924 ret = this->wait(mtd, FL_WRITING);
1925
1926 /* In partial page write we don't update bufferram */
1927 onenand_update_bufferram(mtd, addr: to, valid: !ret && !subpage);
1928 if (ret) {
1929 printk(KERN_ERR "%s: write failed %d\n",
1930 __func__, ret);
1931 break;
1932 }
1933
1934 /* Only check verify write turn on */
1935 ret = onenand_verify(mtd, buf, addr: to, len: thislen);
1936 if (ret) {
1937 printk(KERN_ERR "%s: verify failed %d\n",
1938 __func__, ret);
1939 break;
1940 }
1941
1942 written += thislen;
1943
1944 if (written == len)
1945 break;
1946
1947 } else
1948 written += thislen;
1949
1950 column = 0;
1951 prev_subpage = subpage;
1952 prev = to;
1953 prevlen = thislen;
1954 to += thislen;
1955 buf += thislen;
1956 first = 0;
1957 }
1958
1959 /* In error case, clear all bufferrams */
1960 if (written != len)
1961 onenand_invalidate_bufferram(mtd, addr: 0, len: -1);
1962
1963 ops->retlen = written;
1964 ops->oobretlen = oobwritten;
1965
1966 return ret;
1967}
1968
1969
1970/**
1971 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
1972 * @mtd: MTD device structure
1973 * @to: offset to write to
1974 * @ops: oob operation description structure
1975 *
1976 * OneNAND write out-of-band
1977 */
1978static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to,
1979 struct mtd_oob_ops *ops)
1980{
1981 struct onenand_chip *this = mtd->priv;
1982 int column, ret = 0, oobsize;
1983 int written = 0, oobcmd;
1984 u_char *oobbuf;
1985 size_t len = ops->ooblen;
1986 const u_char *buf = ops->oobbuf;
1987 unsigned int mode = ops->mode;
1988
1989 to += ops->ooboffs;
1990
1991 pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to,
1992 (int)len);
1993
1994 /* Initialize retlen, in case of early exit */
1995 ops->oobretlen = 0;
1996
1997 if (mode == MTD_OPS_AUTO_OOB)
1998 oobsize = mtd->oobavail;
1999 else
2000 oobsize = mtd->oobsize;
2001
2002 column = to & (mtd->oobsize - 1);
2003
2004 if (unlikely(column >= oobsize)) {
2005 printk(KERN_ERR "%s: Attempted to start write outside oob\n",
2006 __func__);
2007 return -EINVAL;
2008 }
2009
2010 /* For compatibility with NAND: Do not allow write past end of page */
2011 if (unlikely(column + len > oobsize)) {
2012 printk(KERN_ERR "%s: Attempt to write past end of page\n",
2013 __func__);
2014 return -EINVAL;
2015 }
2016
2017 oobbuf = this->oob_buf;
2018
2019 oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB;
2020
2021 /* Loop until all data write */
2022 while (written < len) {
2023 int thislen = min_t(int, oobsize, len - written);
2024
2025 cond_resched();
2026
2027 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
2028
2029 /* We send data to spare ram with oobsize
2030 * to prevent byte access */
2031 memset(oobbuf, 0xff, mtd->oobsize);
2032 if (mode == MTD_OPS_AUTO_OOB)
2033 onenand_fill_auto_oob(mtd, oob_buf: oobbuf, buf, column, thislen);
2034 else
2035 memcpy(oobbuf + column, buf, thislen);
2036 this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize);
2037
2038 if (ONENAND_IS_4KB_PAGE(this)) {
2039 /* Set main area of DataRAM to 0xff*/
2040 memset(this->page_buf, 0xff, mtd->writesize);
2041 this->write_bufferram(mtd, ONENAND_DATARAM,
2042 this->page_buf, 0, mtd->writesize);
2043 }
2044
2045 this->command(mtd, oobcmd, to, mtd->oobsize);
2046
2047 onenand_update_bufferram(mtd, addr: to, valid: 0);
2048 if (ONENAND_IS_2PLANE(this)) {
2049 ONENAND_SET_BUFFERRAM1(this);
2050 onenand_update_bufferram(mtd, addr: to + this->writesize, valid: 0);
2051 }
2052
2053 ret = this->wait(mtd, FL_WRITING);
2054 if (ret) {
2055 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2056 break;
2057 }
2058
2059 ret = onenand_verify_oob(mtd, buf: oobbuf, to);
2060 if (ret) {
2061 printk(KERN_ERR "%s: verify failed %d\n",
2062 __func__, ret);
2063 break;
2064 }
2065
2066 written += thislen;
2067 if (written == len)
2068 break;
2069
2070 to += mtd->writesize;
2071 buf += thislen;
2072 column = 0;
2073 }
2074
2075 ops->oobretlen = written;
2076
2077 return ret;
2078}
2079
2080/**
2081 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2082 * @mtd: MTD device structure
2083 * @to: offset to write
2084 * @ops: oob operation description structure
2085 */
2086static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
2087 struct mtd_oob_ops *ops)
2088{
2089 int ret;
2090
2091 switch (ops->mode) {
2092 case MTD_OPS_PLACE_OOB:
2093 case MTD_OPS_AUTO_OOB:
2094 break;
2095 case MTD_OPS_RAW:
2096 /* Not implemented yet */
2097 default:
2098 return -EINVAL;
2099 }
2100
2101 onenand_get_device(mtd, new_state: FL_WRITING);
2102 if (ops->datbuf)
2103 ret = onenand_write_ops_nolock(mtd, to, ops);
2104 else
2105 ret = onenand_write_oob_nolock(mtd, to, ops);
2106 onenand_release_device(mtd);
2107
2108 return ret;
2109}
2110
2111/**
2112 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2113 * @mtd: MTD device structure
2114 * @ofs: offset from device start
2115 * @allowbbt: 1, if its allowed to access the bbt area
2116 *
2117 * Check, if the block is bad. Either by reading the bad block table or
2118 * calling of the scan function.
2119 */
2120static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt)
2121{
2122 struct onenand_chip *this = mtd->priv;
2123 struct bbm_info *bbm = this->bbm;
2124
2125 /* Return info from the table */
2126 return bbm->isbad_bbt(mtd, ofs, allowbbt);
2127}
2128
2129
2130static int onenand_multiblock_erase_verify(struct mtd_info *mtd,
2131 struct erase_info *instr)
2132{
2133 struct onenand_chip *this = mtd->priv;
2134 loff_t addr = instr->addr;
2135 int len = instr->len;
2136 unsigned int block_size = (1 << this->erase_shift);
2137 int ret = 0;
2138
2139 while (len) {
2140 this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size);
2141 ret = this->wait(mtd, FL_VERIFYING_ERASE);
2142 if (ret) {
2143 printk(KERN_ERR "%s: Failed verify, block %d\n",
2144 __func__, onenand_block(this, addr));
2145 instr->fail_addr = addr;
2146 return -1;
2147 }
2148 len -= block_size;
2149 addr += block_size;
2150 }
2151 return 0;
2152}
2153
2154/**
2155 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2156 * @mtd: MTD device structure
2157 * @instr: erase instruction
2158 * @block_size: block size
2159 *
2160 * Erase one or more blocks up to 64 block at a time
2161 */
2162static int onenand_multiblock_erase(struct mtd_info *mtd,
2163 struct erase_info *instr,
2164 unsigned int block_size)
2165{
2166 struct onenand_chip *this = mtd->priv;
2167 loff_t addr = instr->addr;
2168 int len = instr->len;
2169 int eb_count = 0;
2170 int ret = 0;
2171 int bdry_block = 0;
2172
2173 if (ONENAND_IS_DDP(this)) {
2174 loff_t bdry_addr = this->chipsize >> 1;
2175 if (addr < bdry_addr && (addr + len) > bdry_addr)
2176 bdry_block = bdry_addr >> this->erase_shift;
2177 }
2178
2179 /* Pre-check bbs */
2180 while (len) {
2181 /* Check if we have a bad block, we do not erase bad blocks */
2182 if (onenand_block_isbad_nolock(mtd, ofs: addr, allowbbt: 0)) {
2183 printk(KERN_WARNING "%s: attempt to erase a bad block "
2184 "at addr 0x%012llx\n",
2185 __func__, (unsigned long long) addr);
2186 return -EIO;
2187 }
2188 len -= block_size;
2189 addr += block_size;
2190 }
2191
2192 len = instr->len;
2193 addr = instr->addr;
2194
2195 /* loop over 64 eb batches */
2196 while (len) {
2197 struct erase_info verify_instr = *instr;
2198 int max_eb_count = MB_ERASE_MAX_BLK_COUNT;
2199
2200 verify_instr.addr = addr;
2201 verify_instr.len = 0;
2202
2203 /* do not cross chip boundary */
2204 if (bdry_block) {
2205 int this_block = (addr >> this->erase_shift);
2206
2207 if (this_block < bdry_block) {
2208 max_eb_count = min(max_eb_count,
2209 (bdry_block - this_block));
2210 }
2211 }
2212
2213 eb_count = 0;
2214
2215 while (len > block_size && eb_count < (max_eb_count - 1)) {
2216 this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE,
2217 addr, block_size);
2218 onenand_invalidate_bufferram(mtd, addr, len: block_size);
2219
2220 ret = this->wait(mtd, FL_PREPARING_ERASE);
2221 if (ret) {
2222 printk(KERN_ERR "%s: Failed multiblock erase, "
2223 "block %d\n", __func__,
2224 onenand_block(this, addr));
2225 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2226 return -EIO;
2227 }
2228
2229 len -= block_size;
2230 addr += block_size;
2231 eb_count++;
2232 }
2233
2234 /* last block of 64-eb series */
2235 cond_resched();
2236 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2237 onenand_invalidate_bufferram(mtd, addr, len: block_size);
2238
2239 ret = this->wait(mtd, FL_ERASING);
2240 /* Check if it is write protected */
2241 if (ret) {
2242 printk(KERN_ERR "%s: Failed erase, block %d\n",
2243 __func__, onenand_block(this, addr));
2244 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2245 return -EIO;
2246 }
2247
2248 len -= block_size;
2249 addr += block_size;
2250 eb_count++;
2251
2252 /* verify */
2253 verify_instr.len = eb_count * block_size;
2254 if (onenand_multiblock_erase_verify(mtd, instr: &verify_instr)) {
2255 instr->fail_addr = verify_instr.fail_addr;
2256 return -EIO;
2257 }
2258
2259 }
2260 return 0;
2261}
2262
2263
2264/**
2265 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2266 * @mtd: MTD device structure
2267 * @instr: erase instruction
2268 * @region: erase region
2269 * @block_size: erase block size
2270 *
2271 * Erase one or more blocks one block at a time
2272 */
2273static int onenand_block_by_block_erase(struct mtd_info *mtd,
2274 struct erase_info *instr,
2275 struct mtd_erase_region_info *region,
2276 unsigned int block_size)
2277{
2278 struct onenand_chip *this = mtd->priv;
2279 loff_t addr = instr->addr;
2280 int len = instr->len;
2281 loff_t region_end = 0;
2282 int ret = 0;
2283
2284 if (region) {
2285 /* region is set for Flex-OneNAND */
2286 region_end = region->offset + region->erasesize * region->numblocks;
2287 }
2288
2289 /* Loop through the blocks */
2290 while (len) {
2291 cond_resched();
2292
2293 /* Check if we have a bad block, we do not erase bad blocks */
2294 if (onenand_block_isbad_nolock(mtd, ofs: addr, allowbbt: 0)) {
2295 printk(KERN_WARNING "%s: attempt to erase a bad block "
2296 "at addr 0x%012llx\n",
2297 __func__, (unsigned long long) addr);
2298 return -EIO;
2299 }
2300
2301 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
2302
2303 onenand_invalidate_bufferram(mtd, addr, len: block_size);
2304
2305 ret = this->wait(mtd, FL_ERASING);
2306 /* Check, if it is write protected */
2307 if (ret) {
2308 printk(KERN_ERR "%s: Failed erase, block %d\n",
2309 __func__, onenand_block(this, addr));
2310 instr->fail_addr = addr;
2311 return -EIO;
2312 }
2313
2314 len -= block_size;
2315 addr += block_size;
2316
2317 if (region && addr == region_end) {
2318 if (!len)
2319 break;
2320 region++;
2321
2322 block_size = region->erasesize;
2323 region_end = region->offset + region->erasesize * region->numblocks;
2324
2325 if (len & (block_size - 1)) {
2326 /* FIXME: This should be handled at MTD partitioning level. */
2327 printk(KERN_ERR "%s: Unaligned address\n",
2328 __func__);
2329 return -EIO;
2330 }
2331 }
2332 }
2333 return 0;
2334}
2335
2336/**
2337 * onenand_erase - [MTD Interface] erase block(s)
2338 * @mtd: MTD device structure
2339 * @instr: erase instruction
2340 *
2341 * Erase one or more blocks
2342 */
2343static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
2344{
2345 struct onenand_chip *this = mtd->priv;
2346 unsigned int block_size;
2347 loff_t addr = instr->addr;
2348 loff_t len = instr->len;
2349 int ret = 0;
2350 struct mtd_erase_region_info *region = NULL;
2351 loff_t region_offset = 0;
2352
2353 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__,
2354 (unsigned long long)instr->addr,
2355 (unsigned long long)instr->len);
2356
2357 if (FLEXONENAND(this)) {
2358 /* Find the eraseregion of this address */
2359 int i = flexonenand_region(mtd, addr);
2360
2361 region = &mtd->eraseregions[i];
2362 block_size = region->erasesize;
2363
2364 /* Start address within region must align on block boundary.
2365 * Erase region's start offset is always block start address.
2366 */
2367 region_offset = region->offset;
2368 } else
2369 block_size = 1 << this->erase_shift;
2370
2371 /* Start address must align on block boundary */
2372 if (unlikely((addr - region_offset) & (block_size - 1))) {
2373 printk(KERN_ERR "%s: Unaligned address\n", __func__);
2374 return -EINVAL;
2375 }
2376
2377 /* Length must align on block boundary */
2378 if (unlikely(len & (block_size - 1))) {
2379 printk(KERN_ERR "%s: Length not block aligned\n", __func__);
2380 return -EINVAL;
2381 }
2382
2383 /* Grab the lock and see if the device is available */
2384 onenand_get_device(mtd, new_state: FL_ERASING);
2385
2386 if (ONENAND_IS_4KB_PAGE(this) || region ||
2387 instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) {
2388 /* region is set for Flex-OneNAND (no mb erase) */
2389 ret = onenand_block_by_block_erase(mtd, instr,
2390 region, block_size);
2391 } else {
2392 ret = onenand_multiblock_erase(mtd, instr, block_size);
2393 }
2394
2395 /* Deselect and wake up anyone waiting on the device */
2396 onenand_release_device(mtd);
2397
2398 return ret;
2399}
2400
2401/**
2402 * onenand_sync - [MTD Interface] sync
2403 * @mtd: MTD device structure
2404 *
2405 * Sync is actually a wait for chip ready function
2406 */
2407static void onenand_sync(struct mtd_info *mtd)
2408{
2409 pr_debug("%s: called\n", __func__);
2410
2411 /* Grab the lock and see if the device is available */
2412 onenand_get_device(mtd, new_state: FL_SYNCING);
2413
2414 /* Release it and go back */
2415 onenand_release_device(mtd);
2416}
2417
2418/**
2419 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2420 * @mtd: MTD device structure
2421 * @ofs: offset relative to mtd start
2422 *
2423 * Check whether the block is bad
2424 */
2425static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
2426{
2427 int ret;
2428
2429 onenand_get_device(mtd, new_state: FL_READING);
2430 ret = onenand_block_isbad_nolock(mtd, ofs, allowbbt: 0);
2431 onenand_release_device(mtd);
2432 return ret;
2433}
2434
2435/**
2436 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2437 * @mtd: MTD device structure
2438 * @ofs: offset from device start
2439 *
2440 * This is the default implementation, which can be overridden by
2441 * a hardware specific driver.
2442 */
2443static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
2444{
2445 struct onenand_chip *this = mtd->priv;
2446 struct bbm_info *bbm = this->bbm;
2447 u_char buf[2] = {0, 0};
2448 struct mtd_oob_ops ops = {
2449 .mode = MTD_OPS_PLACE_OOB,
2450 .ooblen = 2,
2451 .oobbuf = buf,
2452 .ooboffs = 0,
2453 };
2454 int block;
2455
2456 /* Get block number */
2457 block = onenand_block(this, addr: ofs);
2458 if (bbm->bbt)
2459 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
2460
2461 /* We write two bytes, so we don't have to mess with 16-bit access */
2462 ofs += mtd->oobsize + (this->badblockpos & ~0x01);
2463 /* FIXME : What to do when marking SLC block in partition
2464 * with MLC erasesize? For now, it is not advisable to
2465 * create partitions containing both SLC and MLC regions.
2466 */
2467 return onenand_write_oob_nolock(mtd, to: ofs, ops: &ops);
2468}
2469
2470/**
2471 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2472 * @mtd: MTD device structure
2473 * @ofs: offset relative to mtd start
2474 *
2475 * Mark the block as bad
2476 */
2477static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2478{
2479 struct onenand_chip *this = mtd->priv;
2480 int ret;
2481
2482 ret = onenand_block_isbad(mtd, ofs);
2483 if (ret) {
2484 /* If it was bad already, return success and do nothing */
2485 if (ret > 0)
2486 return 0;
2487 return ret;
2488 }
2489
2490 onenand_get_device(mtd, new_state: FL_WRITING);
2491 ret = this->block_markbad(mtd, ofs);
2492 onenand_release_device(mtd);
2493 return ret;
2494}
2495
2496/**
2497 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2498 * @mtd: MTD device structure
2499 * @ofs: offset relative to mtd start
2500 * @len: number of bytes to lock or unlock
2501 * @cmd: lock or unlock command
2502 *
2503 * Lock or unlock one or more blocks
2504 */
2505static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
2506{
2507 struct onenand_chip *this = mtd->priv;
2508 int start, end, block, value, status;
2509 int wp_status_mask;
2510
2511 start = onenand_block(this, addr: ofs);
2512 end = onenand_block(this, addr: ofs + len) - 1;
2513
2514 if (cmd == ONENAND_CMD_LOCK)
2515 wp_status_mask = ONENAND_WP_LS;
2516 else
2517 wp_status_mask = ONENAND_WP_US;
2518
2519 /* Continuous lock scheme */
2520 if (this->options & ONENAND_HAS_CONT_LOCK) {
2521 /* Set start block address */
2522 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2523 /* Set end block address */
2524 this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
2525 /* Write lock command */
2526 this->command(mtd, cmd, 0, 0);
2527
2528 /* There's no return value */
2529 this->wait(mtd, FL_LOCKING);
2530
2531 /* Sanity check */
2532 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2533 & ONENAND_CTRL_ONGO)
2534 continue;
2535
2536 /* Check lock status */
2537 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2538 if (!(status & wp_status_mask))
2539 printk(KERN_ERR "%s: wp status = 0x%x\n",
2540 __func__, status);
2541
2542 return 0;
2543 }
2544
2545 /* Block lock scheme */
2546 for (block = start; block < end + 1; block++) {
2547 /* Set block address */
2548 value = onenand_block_address(this, block);
2549 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2550 /* Select DataRAM for DDP */
2551 value = onenand_bufferram_address(this, block);
2552 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2553 /* Set start block address */
2554 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2555 /* Write lock command */
2556 this->command(mtd, cmd, 0, 0);
2557
2558 /* There's no return value */
2559 this->wait(mtd, FL_LOCKING);
2560
2561 /* Sanity check */
2562 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2563 & ONENAND_CTRL_ONGO)
2564 continue;
2565
2566 /* Check lock status */
2567 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2568 if (!(status & wp_status_mask))
2569 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2570 __func__, block, status);
2571 }
2572
2573 return 0;
2574}
2575
2576/**
2577 * onenand_lock - [MTD Interface] Lock block(s)
2578 * @mtd: MTD device structure
2579 * @ofs: offset relative to mtd start
2580 * @len: number of bytes to unlock
2581 *
2582 * Lock one or more blocks
2583 */
2584static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2585{
2586 int ret;
2587
2588 onenand_get_device(mtd, new_state: FL_LOCKING);
2589 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
2590 onenand_release_device(mtd);
2591 return ret;
2592}
2593
2594/**
2595 * onenand_unlock - [MTD Interface] Unlock block(s)
2596 * @mtd: MTD device structure
2597 * @ofs: offset relative to mtd start
2598 * @len: number of bytes to unlock
2599 *
2600 * Unlock one or more blocks
2601 */
2602static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2603{
2604 int ret;
2605
2606 onenand_get_device(mtd, new_state: FL_LOCKING);
2607 ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2608 onenand_release_device(mtd);
2609 return ret;
2610}
2611
2612/**
2613 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2614 * @this: onenand chip data structure
2615 *
2616 * Check lock status
2617 */
2618static int onenand_check_lock_status(struct onenand_chip *this)
2619{
2620 unsigned int value, block, status;
2621 unsigned int end;
2622
2623 end = this->chipsize >> this->erase_shift;
2624 for (block = 0; block < end; block++) {
2625 /* Set block address */
2626 value = onenand_block_address(this, block);
2627 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
2628 /* Select DataRAM for DDP */
2629 value = onenand_bufferram_address(this, block);
2630 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
2631 /* Set start block address */
2632 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2633
2634 /* Check lock status */
2635 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
2636 if (!(status & ONENAND_WP_US)) {
2637 printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n",
2638 __func__, block, status);
2639 return 0;
2640 }
2641 }
2642
2643 return 1;
2644}
2645
2646/**
2647 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2648 * @mtd: MTD device structure
2649 *
2650 * Unlock all blocks
2651 */
2652static void onenand_unlock_all(struct mtd_info *mtd)
2653{
2654 struct onenand_chip *this = mtd->priv;
2655 loff_t ofs = 0;
2656 loff_t len = mtd->size;
2657
2658 if (this->options & ONENAND_HAS_UNLOCK_ALL) {
2659 /* Set start block address */
2660 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
2661 /* Write unlock command */
2662 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
2663
2664 /* There's no return value */
2665 this->wait(mtd, FL_LOCKING);
2666
2667 /* Sanity check */
2668 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
2669 & ONENAND_CTRL_ONGO)
2670 continue;
2671
2672 /* Don't check lock status */
2673 if (this->options & ONENAND_SKIP_UNLOCK_CHECK)
2674 return;
2675
2676 /* Check lock status */
2677 if (onenand_check_lock_status(this))
2678 return;
2679
2680 /* Workaround for all block unlock in DDP */
2681 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2682 /* All blocks on another chip */
2683 ofs = this->chipsize >> 1;
2684 len = this->chipsize >> 1;
2685 }
2686 }
2687
2688 onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
2689}
2690
2691#ifdef CONFIG_MTD_ONENAND_OTP
2692
2693/**
2694 * onenand_otp_command - Send OTP specific command to OneNAND device
2695 * @mtd: MTD device structure
2696 * @cmd: the command to be sent
2697 * @addr: offset to read from or write to
2698 * @len: number of bytes to read or write
2699 */
2700static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr,
2701 size_t len)
2702{
2703 struct onenand_chip *this = mtd->priv;
2704 int value, block, page;
2705
2706 /* Address translation */
2707 switch (cmd) {
2708 case ONENAND_CMD_OTP_ACCESS:
2709 block = (int) (addr >> this->erase_shift);
2710 page = -1;
2711 break;
2712
2713 default:
2714 block = (int) (addr >> this->erase_shift);
2715 page = (int) (addr >> this->page_shift);
2716
2717 if (ONENAND_IS_2PLANE(this)) {
2718 /* Make the even block number */
2719 block &= ~1;
2720 /* Is it the odd plane? */
2721 if (addr & this->writesize)
2722 block++;
2723 page >>= 1;
2724 }
2725 page &= this->page_mask;
2726 break;
2727 }
2728
2729 if (block != -1) {
2730 /* Write 'DFS, FBA' of Flash */
2731 value = onenand_block_address(this, block);
2732 this->write_word(value, this->base +
2733 ONENAND_REG_START_ADDRESS1);
2734 }
2735
2736 if (page != -1) {
2737 /* Now we use page size operation */
2738 int sectors = 4, count = 4;
2739 int dataram;
2740
2741 switch (cmd) {
2742 default:
2743 if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG)
2744 cmd = ONENAND_CMD_2X_PROG;
2745 dataram = ONENAND_CURRENT_BUFFERRAM(this);
2746 break;
2747 }
2748
2749 /* Write 'FPA, FSA' of Flash */
2750 value = onenand_page_address(page, sector: sectors);
2751 this->write_word(value, this->base +
2752 ONENAND_REG_START_ADDRESS8);
2753
2754 /* Write 'BSA, BSC' of DataRAM */
2755 value = onenand_buffer_address(dataram1: dataram, sectors, count);
2756 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
2757 }
2758
2759 /* Interrupt clear */
2760 this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
2761
2762 /* Write command */
2763 this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
2764
2765 return 0;
2766}
2767
2768/**
2769 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2770 * @mtd: MTD device structure
2771 * @to: offset to write to
2772 * @ops: oob operation description structure
2773 *
2774 * OneNAND write out-of-band only for OTP
2775 */
2776static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to,
2777 struct mtd_oob_ops *ops)
2778{
2779 struct onenand_chip *this = mtd->priv;
2780 int column, ret = 0, oobsize;
2781 int written = 0;
2782 u_char *oobbuf;
2783 size_t len = ops->ooblen;
2784 const u_char *buf = ops->oobbuf;
2785 int block, value, status;
2786
2787 to += ops->ooboffs;
2788
2789 /* Initialize retlen, in case of early exit */
2790 ops->oobretlen = 0;
2791
2792 oobsize = mtd->oobsize;
2793
2794 column = to & (mtd->oobsize - 1);
2795
2796 oobbuf = this->oob_buf;
2797
2798 /* Loop until all data write */
2799 while (written < len) {
2800 int thislen = min_t(int, oobsize, len - written);
2801
2802 cond_resched();
2803
2804 block = (int) (to >> this->erase_shift);
2805 /*
2806 * Write 'DFS, FBA' of Flash
2807 * Add: F100h DQ=DFS, FBA
2808 */
2809
2810 value = onenand_block_address(this, block);
2811 this->write_word(value, this->base +
2812 ONENAND_REG_START_ADDRESS1);
2813
2814 /*
2815 * Select DataRAM for DDP
2816 * Add: F101h DQ=DBS
2817 */
2818
2819 value = onenand_bufferram_address(this, block);
2820 this->write_word(value, this->base +
2821 ONENAND_REG_START_ADDRESS2);
2822 ONENAND_SET_NEXT_BUFFERRAM(this);
2823
2824 /*
2825 * Enter OTP access mode
2826 */
2827 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2828 this->wait(mtd, FL_OTPING);
2829
2830 /* We send data to spare ram with oobsize
2831 * to prevent byte access */
2832 memcpy(oobbuf + column, buf, thislen);
2833
2834 /*
2835 * Write Data into DataRAM
2836 * Add: 8th Word
2837 * in sector0/spare/page0
2838 * DQ=XXFCh
2839 */
2840 this->write_bufferram(mtd, ONENAND_SPARERAM,
2841 oobbuf, 0, mtd->oobsize);
2842
2843 onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, addr: to, len: mtd->oobsize);
2844 onenand_update_bufferram(mtd, addr: to, valid: 0);
2845 if (ONENAND_IS_2PLANE(this)) {
2846 ONENAND_SET_BUFFERRAM1(this);
2847 onenand_update_bufferram(mtd, addr: to + this->writesize, valid: 0);
2848 }
2849
2850 ret = this->wait(mtd, FL_WRITING);
2851 if (ret) {
2852 printk(KERN_ERR "%s: write failed %d\n", __func__, ret);
2853 break;
2854 }
2855
2856 /* Exit OTP access mode */
2857 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2858 this->wait(mtd, FL_RESETTING);
2859
2860 status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
2861 status &= 0x60;
2862
2863 if (status == 0x60) {
2864 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2865 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2866 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2867 } else if (status == 0x20) {
2868 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2869 printk(KERN_DEBUG "1st Block\tLOCKED\n");
2870 printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n");
2871 } else if (status == 0x40) {
2872 printk(KERN_DEBUG "\nBLOCK\tSTATUS\n");
2873 printk(KERN_DEBUG "1st Block\tUN-LOCKED\n");
2874 printk(KERN_DEBUG "OTP Block\tLOCKED\n");
2875 } else {
2876 printk(KERN_DEBUG "Reboot to check\n");
2877 }
2878
2879 written += thislen;
2880 if (written == len)
2881 break;
2882
2883 to += mtd->writesize;
2884 buf += thislen;
2885 column = 0;
2886 }
2887
2888 ops->oobretlen = written;
2889
2890 return ret;
2891}
2892
2893/* Internal OTP operation */
2894typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
2895 size_t *retlen, u_char *buf);
2896
2897/**
2898 * do_otp_read - [DEFAULT] Read OTP block area
2899 * @mtd: MTD device structure
2900 * @from: The offset to read
2901 * @len: number of bytes to read
2902 * @retlen: pointer to variable to store the number of readbytes
2903 * @buf: the databuffer to put/get data
2904 *
2905 * Read OTP block area.
2906 */
2907static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
2908 size_t *retlen, u_char *buf)
2909{
2910 struct onenand_chip *this = mtd->priv;
2911 struct mtd_oob_ops ops = {
2912 .len = len,
2913 .ooblen = 0,
2914 .datbuf = buf,
2915 .oobbuf = NULL,
2916 };
2917 int ret;
2918
2919 /* Enter OTP access mode */
2920 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2921 this->wait(mtd, FL_OTPING);
2922
2923 ret = ONENAND_IS_4KB_PAGE(this) ?
2924 onenand_mlc_read_ops_nolock(mtd, from, ops: &ops) :
2925 onenand_read_ops_nolock(mtd, from, ops: &ops);
2926
2927 /* Exit OTP access mode */
2928 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2929 this->wait(mtd, FL_RESETTING);
2930
2931 return ret;
2932}
2933
2934/**
2935 * do_otp_write - [DEFAULT] Write OTP block area
2936 * @mtd: MTD device structure
2937 * @to: The offset to write
2938 * @len: number of bytes to write
2939 * @retlen: pointer to variable to store the number of write bytes
2940 * @buf: the databuffer to put/get data
2941 *
2942 * Write OTP block area.
2943 */
2944static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len,
2945 size_t *retlen, u_char *buf)
2946{
2947 struct onenand_chip *this = mtd->priv;
2948 unsigned char *pbuf = buf;
2949 int ret;
2950 struct mtd_oob_ops ops = { };
2951
2952 /* Force buffer page aligned */
2953 if (len < mtd->writesize) {
2954 memcpy(this->page_buf, buf, len);
2955 memset(this->page_buf + len, 0xff, mtd->writesize - len);
2956 pbuf = this->page_buf;
2957 len = mtd->writesize;
2958 }
2959
2960 /* Enter OTP access mode */
2961 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2962 this->wait(mtd, FL_OTPING);
2963
2964 ops.len = len;
2965 ops.ooblen = 0;
2966 ops.datbuf = pbuf;
2967 ops.oobbuf = NULL;
2968 ret = onenand_write_ops_nolock(mtd, to, ops: &ops);
2969 *retlen = ops.retlen;
2970
2971 /* Exit OTP access mode */
2972 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
2973 this->wait(mtd, FL_RESETTING);
2974
2975 return ret;
2976}
2977
2978/**
2979 * do_otp_lock - [DEFAULT] Lock OTP block area
2980 * @mtd: MTD device structure
2981 * @from: The offset to lock
2982 * @len: number of bytes to lock
2983 * @retlen: pointer to variable to store the number of lock bytes
2984 * @buf: the databuffer to put/get data
2985 *
2986 * Lock OTP block area.
2987 */
2988static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
2989 size_t *retlen, u_char *buf)
2990{
2991 struct onenand_chip *this = mtd->priv;
2992 struct mtd_oob_ops ops = { };
2993 int ret;
2994
2995 if (FLEXONENAND(this)) {
2996
2997 /* Enter OTP access mode */
2998 this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
2999 this->wait(mtd, FL_OTPING);
3000 /*
3001 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3002 * main area of page 49.
3003 */
3004 ops.len = mtd->writesize;
3005 ops.ooblen = 0;
3006 ops.datbuf = buf;
3007 ops.oobbuf = NULL;
3008 ret = onenand_write_ops_nolock(mtd, to: mtd->writesize * 49, ops: &ops);
3009 *retlen = ops.retlen;
3010
3011 /* Exit OTP access mode */
3012 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3013 this->wait(mtd, FL_RESETTING);
3014 } else {
3015 ops.mode = MTD_OPS_PLACE_OOB;
3016 ops.ooblen = len;
3017 ops.oobbuf = buf;
3018 ops.ooboffs = 0;
3019 ret = onenand_otp_write_oob_nolock(mtd, to: from, ops: &ops);
3020 *retlen = ops.oobretlen;
3021 }
3022
3023 return ret;
3024}
3025
3026/**
3027 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3028 * @mtd: MTD device structure
3029 * @from: The offset to read/write
3030 * @len: number of bytes to read/write
3031 * @retlen: pointer to variable to store the number of read bytes
3032 * @buf: the databuffer to put/get data
3033 * @action: do given action
3034 * @mode: specify user and factory
3035 *
3036 * Handle OTP operation.
3037 */
3038static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
3039 size_t *retlen, u_char *buf,
3040 otp_op_t action, int mode)
3041{
3042 struct onenand_chip *this = mtd->priv;
3043 int otp_pages;
3044 int density;
3045 int ret = 0;
3046
3047 *retlen = 0;
3048
3049 density = onenand_get_density(dev_id: this->device_id);
3050 if (density < ONENAND_DEVICE_DENSITY_512Mb)
3051 otp_pages = 20;
3052 else
3053 otp_pages = 50;
3054
3055 if (mode == MTD_OTP_FACTORY) {
3056 from += mtd->writesize * otp_pages;
3057 otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages;
3058 }
3059
3060 /* Check User/Factory boundary */
3061 if (mode == MTD_OTP_USER) {
3062 if (mtd->writesize * otp_pages < from + len)
3063 return 0;
3064 } else {
3065 if (mtd->writesize * otp_pages < len)
3066 return 0;
3067 }
3068
3069 onenand_get_device(mtd, new_state: FL_OTPING);
3070 while (len > 0 && otp_pages > 0) {
3071 if (!action) { /* OTP Info functions */
3072 struct otp_info *otpinfo;
3073
3074 len -= sizeof(struct otp_info);
3075 if (len <= 0) {
3076 ret = -ENOSPC;
3077 break;
3078 }
3079
3080 otpinfo = (struct otp_info *) buf;
3081 otpinfo->start = from;
3082 otpinfo->length = mtd->writesize;
3083 otpinfo->locked = 0;
3084
3085 from += mtd->writesize;
3086 buf += sizeof(struct otp_info);
3087 *retlen += sizeof(struct otp_info);
3088 } else {
3089 size_t tmp_retlen;
3090
3091 ret = action(mtd, from, len, &tmp_retlen, buf);
3092 if (ret)
3093 break;
3094
3095 buf += tmp_retlen;
3096 len -= tmp_retlen;
3097 *retlen += tmp_retlen;
3098
3099 }
3100 otp_pages--;
3101 }
3102 onenand_release_device(mtd);
3103
3104 return ret;
3105}
3106
3107/**
3108 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3109 * @mtd: MTD device structure
3110 * @len: number of bytes to read
3111 * @retlen: pointer to variable to store the number of read bytes
3112 * @buf: the databuffer to put/get data
3113 *
3114 * Read factory OTP info.
3115 */
3116static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len,
3117 size_t *retlen, struct otp_info *buf)
3118{
3119 return onenand_otp_walk(mtd, from: 0, len, retlen, buf: (u_char *) buf, NULL,
3120 MTD_OTP_FACTORY);
3121}
3122
3123/**
3124 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3125 * @mtd: MTD device structure
3126 * @from: The offset to read
3127 * @len: number of bytes to read
3128 * @retlen: pointer to variable to store the number of read bytes
3129 * @buf: the databuffer to put/get data
3130 *
3131 * Read factory OTP area.
3132 */
3133static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
3134 size_t len, size_t *retlen, u_char *buf)
3135{
3136 return onenand_otp_walk(mtd, from, len, retlen, buf, action: do_otp_read, MTD_OTP_FACTORY);
3137}
3138
3139/**
3140 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3141 * @mtd: MTD device structure
3142 * @retlen: pointer to variable to store the number of read bytes
3143 * @len: number of bytes to read
3144 * @buf: the databuffer to put/get data
3145 *
3146 * Read user OTP info.
3147 */
3148static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len,
3149 size_t *retlen, struct otp_info *buf)
3150{
3151 return onenand_otp_walk(mtd, from: 0, len, retlen, buf: (u_char *) buf, NULL,
3152 MTD_OTP_USER);
3153}
3154
3155/**
3156 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3157 * @mtd: MTD device structure
3158 * @from: The offset to read
3159 * @len: number of bytes to read
3160 * @retlen: pointer to variable to store the number of read bytes
3161 * @buf: the databuffer to put/get data
3162 *
3163 * Read user OTP area.
3164 */
3165static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
3166 size_t len, size_t *retlen, u_char *buf)
3167{
3168 return onenand_otp_walk(mtd, from, len, retlen, buf, action: do_otp_read, MTD_OTP_USER);
3169}
3170
3171/**
3172 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3173 * @mtd: MTD device structure
3174 * @from: The offset to write
3175 * @len: number of bytes to write
3176 * @retlen: pointer to variable to store the number of write bytes
3177 * @buf: the databuffer to put/get data
3178 *
3179 * Write user OTP area.
3180 */
3181static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
3182 size_t len, size_t *retlen, const u_char *buf)
3183{
3184 return onenand_otp_walk(mtd, from, len, retlen, buf: (u_char *)buf,
3185 action: do_otp_write, MTD_OTP_USER);
3186}
3187
3188/**
3189 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3190 * @mtd: MTD device structure
3191 * @from: The offset to lock
3192 * @len: number of bytes to unlock
3193 *
3194 * Write lock mark on spare area in page 0 in OTP block
3195 */
3196static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
3197 size_t len)
3198{
3199 struct onenand_chip *this = mtd->priv;
3200 u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf;
3201 size_t retlen;
3202 int ret;
3203 unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET;
3204
3205 memset(buf, 0xff, FLEXONENAND(this) ? this->writesize
3206 : mtd->oobsize);
3207 /*
3208 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3209 * We write 16 bytes spare area instead of 2 bytes.
3210 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3211 * main area of page 49.
3212 */
3213
3214 from = 0;
3215 len = FLEXONENAND(this) ? mtd->writesize : 16;
3216
3217 /*
3218 * Note: OTP lock operation
3219 * OTP block : 0xXXFC XX 1111 1100
3220 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3221 * Both : 0xXXF0 (If chip support) XX 1111 0000
3222 */
3223 if (FLEXONENAND(this))
3224 otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET;
3225
3226 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3227 if (otp == 1)
3228 buf[otp_lock_offset] = 0xFC;
3229 else if (otp == 2)
3230 buf[otp_lock_offset] = 0xF3;
3231 else if (otp == 3)
3232 buf[otp_lock_offset] = 0xF0;
3233 else if (otp != 0)
3234 printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n");
3235
3236 ret = onenand_otp_walk(mtd, from, len, retlen: &retlen, buf, action: do_otp_lock, MTD_OTP_USER);
3237
3238 return ret ? : retlen;
3239}
3240
3241#endif /* CONFIG_MTD_ONENAND_OTP */
3242
3243/**
3244 * onenand_check_features - Check and set OneNAND features
3245 * @mtd: MTD data structure
3246 *
3247 * Check and set OneNAND features
3248 * - lock scheme
3249 * - two plane
3250 */
3251static void onenand_check_features(struct mtd_info *mtd)
3252{
3253 struct onenand_chip *this = mtd->priv;
3254 unsigned int density, process, numbufs;
3255
3256 /* Lock scheme depends on density and process */
3257 density = onenand_get_density(dev_id: this->device_id);
3258 process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
3259 numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8;
3260
3261 /* Lock scheme */
3262 switch (density) {
3263 case ONENAND_DEVICE_DENSITY_8Gb:
3264 this->options |= ONENAND_HAS_NOP_1;
3265 fallthrough;
3266 case ONENAND_DEVICE_DENSITY_4Gb:
3267 if (ONENAND_IS_DDP(this))
3268 this->options |= ONENAND_HAS_2PLANE;
3269 else if (numbufs == 1) {
3270 this->options |= ONENAND_HAS_4KB_PAGE;
3271 this->options |= ONENAND_HAS_CACHE_PROGRAM;
3272 /*
3273 * There are two different 4KiB pagesize chips
3274 * and no way to detect it by H/W config values.
3275 *
3276 * To detect the correct NOP for each chips,
3277 * It should check the version ID as workaround.
3278 *
3279 * Now it has as following
3280 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3281 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3282 */
3283 if ((this->version_id & 0xf) == 0xe)
3284 this->options |= ONENAND_HAS_NOP_1;
3285 }
3286 this->options |= ONENAND_HAS_UNLOCK_ALL;
3287 break;
3288
3289 case ONENAND_DEVICE_DENSITY_2Gb:
3290 /* 2Gb DDP does not have 2 plane */
3291 if (!ONENAND_IS_DDP(this))
3292 this->options |= ONENAND_HAS_2PLANE;
3293 this->options |= ONENAND_HAS_UNLOCK_ALL;
3294 break;
3295
3296 case ONENAND_DEVICE_DENSITY_1Gb:
3297 /* A-Die has all block unlock */
3298 if (process)
3299 this->options |= ONENAND_HAS_UNLOCK_ALL;
3300 break;
3301
3302 default:
3303 /* Some OneNAND has continuous lock scheme */
3304 if (!process)
3305 this->options |= ONENAND_HAS_CONT_LOCK;
3306 break;
3307 }
3308
3309 /* The MLC has 4KiB pagesize. */
3310 if (ONENAND_IS_MLC(this))
3311 this->options |= ONENAND_HAS_4KB_PAGE;
3312
3313 if (ONENAND_IS_4KB_PAGE(this))
3314 this->options &= ~ONENAND_HAS_2PLANE;
3315
3316 if (FLEXONENAND(this)) {
3317 this->options &= ~ONENAND_HAS_CONT_LOCK;
3318 this->options |= ONENAND_HAS_UNLOCK_ALL;
3319 }
3320
3321 if (this->options & ONENAND_HAS_CONT_LOCK)
3322 printk(KERN_DEBUG "Lock scheme is Continuous Lock\n");
3323 if (this->options & ONENAND_HAS_UNLOCK_ALL)
3324 printk(KERN_DEBUG "Chip support all block unlock\n");
3325 if (this->options & ONENAND_HAS_2PLANE)
3326 printk(KERN_DEBUG "Chip has 2 plane\n");
3327 if (this->options & ONENAND_HAS_4KB_PAGE)
3328 printk(KERN_DEBUG "Chip has 4KiB pagesize\n");
3329 if (this->options & ONENAND_HAS_CACHE_PROGRAM)
3330 printk(KERN_DEBUG "Chip has cache program feature\n");
3331}
3332
3333/**
3334 * onenand_print_device_info - Print device & version ID
3335 * @device: device ID
3336 * @version: version ID
3337 *
3338 * Print device & version ID
3339 */
3340static void onenand_print_device_info(int device, int version)
3341{
3342 int vcc, demuxed, ddp, density, flexonenand;
3343
3344 vcc = device & ONENAND_DEVICE_VCC_MASK;
3345 demuxed = device & ONENAND_DEVICE_IS_DEMUX;
3346 ddp = device & ONENAND_DEVICE_IS_DDP;
3347 density = onenand_get_density(dev_id: device);
3348 flexonenand = device & DEVICE_IS_FLEXONENAND;
3349 printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3350 demuxed ? "" : "Muxed ",
3351 flexonenand ? "Flex-" : "",
3352 ddp ? "(DDP)" : "",
3353 (16 << density),
3354 vcc ? "2.65/3.3" : "1.8",
3355 device);
3356 printk(KERN_INFO "OneNAND version = 0x%04x\n", version);
3357}
3358
3359static const struct onenand_manufacturers onenand_manuf_ids[] = {
3360 {ONENAND_MFR_SAMSUNG, "Samsung"},
3361 {ONENAND_MFR_NUMONYX, "Numonyx"},
3362};
3363
3364/**
3365 * onenand_check_maf - Check manufacturer ID
3366 * @manuf: manufacturer ID
3367 *
3368 * Check manufacturer ID
3369 */
3370static int onenand_check_maf(int manuf)
3371{
3372 int size = ARRAY_SIZE(onenand_manuf_ids);
3373 char *name;
3374 int i;
3375
3376 for (i = 0; i < size; i++)
3377 if (manuf == onenand_manuf_ids[i].id)
3378 break;
3379
3380 if (i < size)
3381 name = onenand_manuf_ids[i].name;
3382 else
3383 name = "Unknown";
3384
3385 printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
3386
3387 return (i == size);
3388}
3389
3390/**
3391 * flexonenand_get_boundary - Reads the SLC boundary
3392 * @mtd: MTD data structure
3393 */
3394static int flexonenand_get_boundary(struct mtd_info *mtd)
3395{
3396 struct onenand_chip *this = mtd->priv;
3397 unsigned die, bdry;
3398 int syscfg, locked;
3399
3400 /* Disable ECC */
3401 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3402 this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1);
3403
3404 for (die = 0; die < this->dies; die++) {
3405 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3406 this->wait(mtd, FL_SYNCING);
3407
3408 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3409 this->wait(mtd, FL_READING);
3410
3411 bdry = this->read_word(this->base + ONENAND_DATARAM);
3412 if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3)
3413 locked = 0;
3414 else
3415 locked = 1;
3416 this->boundary[die] = bdry & FLEXONENAND_PI_MASK;
3417
3418 this->command(mtd, ONENAND_CMD_RESET, 0, 0);
3419 this->wait(mtd, FL_RESETTING);
3420
3421 printk(KERN_INFO "Die %d boundary: %d%s\n", die,
3422 this->boundary[die], locked ? "(Locked)" : "(Unlocked)");
3423 }
3424
3425 /* Enable ECC */
3426 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3427 return 0;
3428}
3429
3430/**
3431 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3432 * boundary[], diesize[], mtd->size, mtd->erasesize
3433 * @mtd: - MTD device structure
3434 */
3435static void flexonenand_get_size(struct mtd_info *mtd)
3436{
3437 struct onenand_chip *this = mtd->priv;
3438 int die, i, eraseshift, density;
3439 int blksperdie, maxbdry;
3440 loff_t ofs;
3441
3442 density = onenand_get_density(dev_id: this->device_id);
3443 blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift);
3444 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3445 maxbdry = blksperdie - 1;
3446 eraseshift = this->erase_shift - 1;
3447
3448 mtd->numeraseregions = this->dies << 1;
3449
3450 /* This fills up the device boundary */
3451 flexonenand_get_boundary(mtd);
3452 die = ofs = 0;
3453 i = -1;
3454 for (; die < this->dies; die++) {
3455 if (!die || this->boundary[die-1] != maxbdry) {
3456 i++;
3457 mtd->eraseregions[i].offset = ofs;
3458 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3459 mtd->eraseregions[i].numblocks =
3460 this->boundary[die] + 1;
3461 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3462 eraseshift++;
3463 } else {
3464 mtd->numeraseregions -= 1;
3465 mtd->eraseregions[i].numblocks +=
3466 this->boundary[die] + 1;
3467 ofs += (this->boundary[die] + 1) << (eraseshift - 1);
3468 }
3469 if (this->boundary[die] != maxbdry) {
3470 i++;
3471 mtd->eraseregions[i].offset = ofs;
3472 mtd->eraseregions[i].erasesize = 1 << eraseshift;
3473 mtd->eraseregions[i].numblocks = maxbdry ^
3474 this->boundary[die];
3475 ofs += mtd->eraseregions[i].numblocks << eraseshift;
3476 eraseshift--;
3477 } else
3478 mtd->numeraseregions -= 1;
3479 }
3480
3481 /* Expose MLC erase size except when all blocks are SLC */
3482 mtd->erasesize = 1 << this->erase_shift;
3483 if (mtd->numeraseregions == 1)
3484 mtd->erasesize >>= 1;
3485
3486 printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions);
3487 for (i = 0; i < mtd->numeraseregions; i++)
3488 printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x,"
3489 " numblocks: %04u]\n",
3490 (unsigned int) mtd->eraseregions[i].offset,
3491 mtd->eraseregions[i].erasesize,
3492 mtd->eraseregions[i].numblocks);
3493
3494 for (die = 0, mtd->size = 0; die < this->dies; die++) {
3495 this->diesize[die] = (loff_t)blksperdie << this->erase_shift;
3496 this->diesize[die] -= (loff_t)(this->boundary[die] + 1)
3497 << (this->erase_shift - 1);
3498 mtd->size += this->diesize[die];
3499 }
3500}
3501
3502/**
3503 * flexonenand_check_blocks_erased - Check if blocks are erased
3504 * @mtd: mtd info structure
3505 * @start: first erase block to check
3506 * @end: last erase block to check
3507 *
3508 * Converting an unerased block from MLC to SLC
3509 * causes byte values to change. Since both data and its ECC
3510 * have changed, reads on the block give uncorrectable error.
3511 * This might lead to the block being detected as bad.
3512 *
3513 * Avoid this by ensuring that the block to be converted is
3514 * erased.
3515 */
3516static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end)
3517{
3518 struct onenand_chip *this = mtd->priv;
3519 int i, ret;
3520 int block;
3521 struct mtd_oob_ops ops = {
3522 .mode = MTD_OPS_PLACE_OOB,
3523 .ooboffs = 0,
3524 .ooblen = mtd->oobsize,
3525 .datbuf = NULL,
3526 .oobbuf = this->oob_buf,
3527 };
3528 loff_t addr;
3529
3530 printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end);
3531
3532 for (block = start; block <= end; block++) {
3533 addr = flexonenand_addr(this, block);
3534 if (onenand_block_isbad_nolock(mtd, ofs: addr, allowbbt: 0))
3535 continue;
3536
3537 /*
3538 * Since main area write results in ECC write to spare,
3539 * it is sufficient to check only ECC bytes for change.
3540 */
3541 ret = onenand_read_oob_nolock(mtd, from: addr, ops: &ops);
3542 if (ret)
3543 return ret;
3544
3545 for (i = 0; i < mtd->oobsize; i++)
3546 if (this->oob_buf[i] != 0xff)
3547 break;
3548
3549 if (i != mtd->oobsize) {
3550 printk(KERN_WARNING "%s: Block %d not erased.\n",
3551 __func__, block);
3552 return 1;
3553 }
3554 }
3555
3556 return 0;
3557}
3558
3559/*
3560 * flexonenand_set_boundary - Writes the SLC boundary
3561 */
3562static int flexonenand_set_boundary(struct mtd_info *mtd, int die,
3563 int boundary, int lock)
3564{
3565 struct onenand_chip *this = mtd->priv;
3566 int ret, density, blksperdie, old, new, thisboundary;
3567 loff_t addr;
3568
3569 /* Change only once for SDP Flex-OneNAND */
3570 if (die && (!ONENAND_IS_DDP(this)))
3571 return 0;
3572
3573 /* boundary value of -1 indicates no required change */
3574 if (boundary < 0 || boundary == this->boundary[die])
3575 return 0;
3576
3577 density = onenand_get_density(dev_id: this->device_id);
3578 blksperdie = ((16 << density) << 20) >> this->erase_shift;
3579 blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0;
3580
3581 if (boundary >= blksperdie) {
3582 printk(KERN_ERR "%s: Invalid boundary value. "
3583 "Boundary not changed.\n", __func__);
3584 return -EINVAL;
3585 }
3586
3587 /* Check if converting blocks are erased */
3588 old = this->boundary[die] + (die * this->density_mask);
3589 new = boundary + (die * this->density_mask);
3590 ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new));
3591 if (ret) {
3592 printk(KERN_ERR "%s: Please erase blocks "
3593 "before boundary change\n", __func__);
3594 return ret;
3595 }
3596
3597 this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0);
3598 this->wait(mtd, FL_SYNCING);
3599
3600 /* Check is boundary is locked */
3601 this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0);
3602 this->wait(mtd, FL_READING);
3603
3604 thisboundary = this->read_word(this->base + ONENAND_DATARAM);
3605 if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) {
3606 printk(KERN_ERR "%s: boundary locked\n", __func__);
3607 ret = 1;
3608 goto out;
3609 }
3610
3611 printk(KERN_INFO "Changing die %d boundary: %d%s\n",
3612 die, boundary, lock ? "(Locked)" : "(Unlocked)");
3613
3614 addr = die ? this->diesize[0] : 0;
3615
3616 boundary &= FLEXONENAND_PI_MASK;
3617 boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT);
3618
3619 this->command(mtd, ONENAND_CMD_ERASE, addr, 0);
3620 ret = this->wait(mtd, FL_ERASING);
3621 if (ret) {
3622 printk(KERN_ERR "%s: Failed PI erase for Die %d\n",
3623 __func__, die);
3624 goto out;
3625 }
3626
3627 this->write_word(boundary, this->base + ONENAND_DATARAM);
3628 this->command(mtd, ONENAND_CMD_PROG, addr, 0);
3629 ret = this->wait(mtd, FL_WRITING);
3630 if (ret) {
3631 printk(KERN_ERR "%s: Failed PI write for Die %d\n",
3632 __func__, die);
3633 goto out;
3634 }
3635
3636 this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0);
3637 ret = this->wait(mtd, FL_WRITING);
3638out:
3639 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND);
3640 this->wait(mtd, FL_RESETTING);
3641 if (!ret)
3642 /* Recalculate device size on boundary change*/
3643 flexonenand_get_size(mtd);
3644
3645 return ret;
3646}
3647
3648/**
3649 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3650 * @mtd: MTD device structure
3651 *
3652 * OneNAND detection method:
3653 * Compare the values from command with ones from register
3654 */
3655static int onenand_chip_probe(struct mtd_info *mtd)
3656{
3657 struct onenand_chip *this = mtd->priv;
3658 int bram_maf_id, bram_dev_id, maf_id, dev_id;
3659 int syscfg;
3660
3661 /* Save system configuration 1 */
3662 syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
3663 /* Clear Sync. Burst Read mode to read BootRAM */
3664 this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1);
3665
3666 /* Send the command for reading device ID from BootRAM */
3667 this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
3668
3669 /* Read manufacturer and device IDs from BootRAM */
3670 bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
3671 bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
3672
3673 /* Reset OneNAND to read default register values */
3674 this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
3675 /* Wait reset */
3676 this->wait(mtd, FL_RESETTING);
3677
3678 /* Restore system configuration 1 */
3679 this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
3680
3681 /* Check manufacturer ID */
3682 if (onenand_check_maf(manuf: bram_maf_id))
3683 return -ENXIO;
3684
3685 /* Read manufacturer and device IDs from Register */
3686 maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
3687 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3688
3689 /* Check OneNAND device */
3690 if (maf_id != bram_maf_id || dev_id != bram_dev_id)
3691 return -ENXIO;
3692
3693 return 0;
3694}
3695
3696/**
3697 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3698 * @mtd: MTD device structure
3699 */
3700static int onenand_probe(struct mtd_info *mtd)
3701{
3702 struct onenand_chip *this = mtd->priv;
3703 int dev_id, ver_id;
3704 int density;
3705 int ret;
3706
3707 ret = this->chip_probe(mtd);
3708 if (ret)
3709 return ret;
3710
3711 /* Device and version IDs from Register */
3712 dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
3713 ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
3714 this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY);
3715
3716 /* Flash device information */
3717 onenand_print_device_info(device: dev_id, version: ver_id);
3718 this->device_id = dev_id;
3719 this->version_id = ver_id;
3720
3721 /* Check OneNAND features */
3722 onenand_check_features(mtd);
3723
3724 density = onenand_get_density(dev_id);
3725 if (FLEXONENAND(this)) {
3726 this->dies = ONENAND_IS_DDP(this) ? 2 : 1;
3727 /* Maximum possible erase regions */
3728 mtd->numeraseregions = this->dies << 1;
3729 mtd->eraseregions =
3730 kcalloc(n: this->dies << 1,
3731 size: sizeof(struct mtd_erase_region_info),
3732 GFP_KERNEL);
3733 if (!mtd->eraseregions)
3734 return -ENOMEM;
3735 }
3736
3737 /*
3738 * For Flex-OneNAND, chipsize represents maximum possible device size.
3739 * mtd->size represents the actual device size.
3740 */
3741 this->chipsize = (16 << density) << 20;
3742
3743 /* OneNAND page size & block size */
3744 /* The data buffer size is equal to page size */
3745 mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
3746 /* We use the full BufferRAM */
3747 if (ONENAND_IS_4KB_PAGE(this))
3748 mtd->writesize <<= 1;
3749
3750 mtd->oobsize = mtd->writesize >> 5;
3751 /* Pages per a block are always 64 in OneNAND */
3752 mtd->erasesize = mtd->writesize << 6;
3753 /*
3754 * Flex-OneNAND SLC area has 64 pages per block.
3755 * Flex-OneNAND MLC area has 128 pages per block.
3756 * Expose MLC erase size to find erase_shift and page_mask.
3757 */
3758 if (FLEXONENAND(this))
3759 mtd->erasesize <<= 1;
3760
3761 this->erase_shift = ffs(mtd->erasesize) - 1;
3762 this->page_shift = ffs(mtd->writesize) - 1;
3763 this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
3764 /* Set density mask. it is used for DDP */
3765 if (ONENAND_IS_DDP(this))
3766 this->density_mask = this->chipsize >> (this->erase_shift + 1);
3767 /* It's real page size */
3768 this->writesize = mtd->writesize;
3769
3770 /* REVISIT: Multichip handling */
3771
3772 if (FLEXONENAND(this))
3773 flexonenand_get_size(mtd);
3774 else
3775 mtd->size = this->chipsize;
3776
3777 /*
3778 * We emulate the 4KiB page and 256KiB erase block size
3779 * But oobsize is still 64 bytes.
3780 * It is only valid if you turn on 2X program support,
3781 * Otherwise it will be ignored by compiler.
3782 */
3783 if (ONENAND_IS_2PLANE(this)) {
3784 mtd->writesize <<= 1;
3785 mtd->erasesize <<= 1;
3786 }
3787
3788 return 0;
3789}
3790
3791/**
3792 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3793 * @mtd: MTD device structure
3794 */
3795static int onenand_suspend(struct mtd_info *mtd)
3796{
3797 return onenand_get_device(mtd, new_state: FL_PM_SUSPENDED);
3798}
3799
3800/**
3801 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3802 * @mtd: MTD device structure
3803 */
3804static void onenand_resume(struct mtd_info *mtd)
3805{
3806 struct onenand_chip *this = mtd->priv;
3807
3808 if (this->state == FL_PM_SUSPENDED)
3809 onenand_release_device(mtd);
3810 else
3811 printk(KERN_ERR "%s: resume() called for the chip which is not "
3812 "in suspended state\n", __func__);
3813}
3814
3815/**
3816 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3817 * @mtd: MTD device structure
3818 * @maxchips: Number of chips to scan for
3819 *
3820 * This fills out all the not initialized function pointers
3821 * with the defaults.
3822 * The flash ID is read and the mtd/chip structures are
3823 * filled with the appropriate values.
3824 */
3825int onenand_scan(struct mtd_info *mtd, int maxchips)
3826{
3827 int i, ret;
3828 struct onenand_chip *this = mtd->priv;
3829
3830 if (!this->read_word)
3831 this->read_word = onenand_readw;
3832 if (!this->write_word)
3833 this->write_word = onenand_writew;
3834
3835 if (!this->command)
3836 this->command = onenand_command;
3837 if (!this->wait)
3838 onenand_setup_wait(mtd);
3839 if (!this->bbt_wait)
3840 this->bbt_wait = onenand_bbt_wait;
3841 if (!this->unlock_all)
3842 this->unlock_all = onenand_unlock_all;
3843
3844 if (!this->chip_probe)
3845 this->chip_probe = onenand_chip_probe;
3846
3847 if (!this->read_bufferram)
3848 this->read_bufferram = onenand_read_bufferram;
3849 if (!this->write_bufferram)
3850 this->write_bufferram = onenand_write_bufferram;
3851
3852 if (!this->block_markbad)
3853 this->block_markbad = onenand_default_block_markbad;
3854 if (!this->scan_bbt)
3855 this->scan_bbt = onenand_default_bbt;
3856
3857 if (onenand_probe(mtd))
3858 return -ENXIO;
3859
3860 /* Set Sync. Burst Read after probing */
3861 if (this->mmcontrol) {
3862 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
3863 this->read_bufferram = onenand_sync_read_bufferram;
3864 }
3865
3866 /* Allocate buffers, if necessary */
3867 if (!this->page_buf) {
3868 this->page_buf = kzalloc(size: mtd->writesize, GFP_KERNEL);
3869 if (!this->page_buf)
3870 return -ENOMEM;
3871#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3872 this->verify_buf = kzalloc(size: mtd->writesize, GFP_KERNEL);
3873 if (!this->verify_buf) {
3874 kfree(objp: this->page_buf);
3875 return -ENOMEM;
3876 }
3877#endif
3878 this->options |= ONENAND_PAGEBUF_ALLOC;
3879 }
3880 if (!this->oob_buf) {
3881 this->oob_buf = kzalloc(size: mtd->oobsize, GFP_KERNEL);
3882 if (!this->oob_buf) {
3883 if (this->options & ONENAND_PAGEBUF_ALLOC) {
3884 this->options &= ~ONENAND_PAGEBUF_ALLOC;
3885#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3886 kfree(objp: this->verify_buf);
3887#endif
3888 kfree(objp: this->page_buf);
3889 }
3890 return -ENOMEM;
3891 }
3892 this->options |= ONENAND_OOBBUF_ALLOC;
3893 }
3894
3895 this->state = FL_READY;
3896 init_waitqueue_head(&this->wq);
3897 spin_lock_init(&this->chip_lock);
3898
3899 /*
3900 * Allow subpage writes up to oobsize.
3901 */
3902 switch (mtd->oobsize) {
3903 case 128:
3904 if (FLEXONENAND(this)) {
3905 mtd_set_ooblayout(mtd, ooblayout: &flexonenand_ooblayout_ops);
3906 mtd->subpage_sft = 0;
3907 } else {
3908 mtd_set_ooblayout(mtd, ooblayout: &onenand_oob_128_ooblayout_ops);
3909 mtd->subpage_sft = 2;
3910 }
3911 if (ONENAND_IS_NOP_1(this))
3912 mtd->subpage_sft = 0;
3913 break;
3914 case 64:
3915 mtd_set_ooblayout(mtd, ooblayout: &onenand_oob_32_64_ooblayout_ops);
3916 mtd->subpage_sft = 2;
3917 break;
3918
3919 case 32:
3920 mtd_set_ooblayout(mtd, ooblayout: &onenand_oob_32_64_ooblayout_ops);
3921 mtd->subpage_sft = 1;
3922 break;
3923
3924 default:
3925 printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n",
3926 __func__, mtd->oobsize);
3927 mtd->subpage_sft = 0;
3928 /* To prevent kernel oops */
3929 mtd_set_ooblayout(mtd, ooblayout: &onenand_oob_32_64_ooblayout_ops);
3930 break;
3931 }
3932
3933 this->subpagesize = mtd->writesize >> mtd->subpage_sft;
3934
3935 /*
3936 * The number of bytes available for a client to place data into
3937 * the out of band area
3938 */
3939 ret = mtd_ooblayout_count_freebytes(mtd);
3940 if (ret < 0)
3941 ret = 0;
3942
3943 mtd->oobavail = ret;
3944
3945 mtd->ecc_strength = 1;
3946
3947 /* Fill in remaining MTD driver data */
3948 mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH;
3949 mtd->flags = MTD_CAP_NANDFLASH;
3950 mtd->_erase = onenand_erase;
3951 mtd->_point = NULL;
3952 mtd->_unpoint = NULL;
3953 mtd->_read_oob = onenand_read_oob;
3954 mtd->_write_oob = onenand_write_oob;
3955 mtd->_panic_write = onenand_panic_write;
3956#ifdef CONFIG_MTD_ONENAND_OTP
3957 mtd->_get_fact_prot_info = onenand_get_fact_prot_info;
3958 mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg;
3959 mtd->_get_user_prot_info = onenand_get_user_prot_info;
3960 mtd->_read_user_prot_reg = onenand_read_user_prot_reg;
3961 mtd->_write_user_prot_reg = onenand_write_user_prot_reg;
3962 mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg;
3963#endif
3964 mtd->_sync = onenand_sync;
3965 mtd->_lock = onenand_lock;
3966 mtd->_unlock = onenand_unlock;
3967 mtd->_suspend = onenand_suspend;
3968 mtd->_resume = onenand_resume;
3969 mtd->_block_isbad = onenand_block_isbad;
3970 mtd->_block_markbad = onenand_block_markbad;
3971 mtd->owner = THIS_MODULE;
3972 mtd->writebufsize = mtd->writesize;
3973
3974 /* Unlock whole block */
3975 if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING))
3976 this->unlock_all(mtd);
3977
3978 /* Set the bad block marker position */
3979 this->badblockpos = ONENAND_BADBLOCK_POS;
3980
3981 ret = this->scan_bbt(mtd);
3982 if ((!FLEXONENAND(this)) || ret)
3983 return ret;
3984
3985 /* Change Flex-OneNAND boundaries if required */
3986 for (i = 0; i < MAX_DIES; i++)
3987 flexonenand_set_boundary(mtd, die: i, boundary: flex_bdry[2 * i],
3988 lock: flex_bdry[(2 * i) + 1]);
3989
3990 return 0;
3991}
3992
3993/**
3994 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
3995 * @mtd: MTD device structure
3996 */
3997void onenand_release(struct mtd_info *mtd)
3998{
3999 struct onenand_chip *this = mtd->priv;
4000
4001 /* Deregister partitions */
4002 mtd_device_unregister(master: mtd);
4003
4004 /* Free bad block table memory, if allocated */
4005 if (this->bbm) {
4006 struct bbm_info *bbm = this->bbm;
4007 kfree(objp: bbm->bbt);
4008 kfree(objp: this->bbm);
4009 }
4010 /* Buffers allocated by onenand_scan */
4011 if (this->options & ONENAND_PAGEBUF_ALLOC) {
4012 kfree(objp: this->page_buf);
4013#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4014 kfree(objp: this->verify_buf);
4015#endif
4016 }
4017 if (this->options & ONENAND_OOBBUF_ALLOC)
4018 kfree(objp: this->oob_buf);
4019 kfree(objp: mtd->eraseregions);
4020}
4021
4022EXPORT_SYMBOL_GPL(onenand_scan);
4023EXPORT_SYMBOL_GPL(onenand_release);
4024
4025MODULE_LICENSE("GPL");
4026MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4027MODULE_DESCRIPTION("Generic OneNAND flash driver code");
4028

source code of linux/drivers/mtd/nand/onenand/onenand_base.c