1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2019 Macronix International Co., Ltd.
4 *
5 * Author:
6 * Mason Yang <masonccyang@mxic.com.tw>
7 */
8
9#include <linux/clk.h>
10#include <linux/io.h>
11#include <linux/iopoll.h>
12#include <linux/interrupt.h>
13#include <linux/module.h>
14#include <linux/mtd/mtd.h>
15#include <linux/mtd/nand-ecc-sw-hamming.h>
16#include <linux/mtd/rawnand.h>
17#include <linux/platform_device.h>
18
19#include "internals.h"
20
21#define HC_CFG 0x0
22#define HC_CFG_IF_CFG(x) ((x) << 27)
23#define HC_CFG_DUAL_SLAVE BIT(31)
24#define HC_CFG_INDIVIDUAL BIT(30)
25#define HC_CFG_NIO(x) (((x) / 4) << 27)
26#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
27#define HC_CFG_TYPE_SPI_NOR 0
28#define HC_CFG_TYPE_SPI_NAND 1
29#define HC_CFG_TYPE_SPI_RAM 2
30#define HC_CFG_TYPE_RAW_NAND 3
31#define HC_CFG_SLV_ACT(x) ((x) << 21)
32#define HC_CFG_CLK_PH_EN BIT(20)
33#define HC_CFG_CLK_POL_INV BIT(19)
34#define HC_CFG_BIG_ENDIAN BIT(18)
35#define HC_CFG_DATA_PASS BIT(17)
36#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
37#define HC_CFG_MAN_START_EN BIT(3)
38#define HC_CFG_MAN_START BIT(2)
39#define HC_CFG_MAN_CS_EN BIT(1)
40#define HC_CFG_MAN_CS_ASSERT BIT(0)
41
42#define INT_STS 0x4
43#define INT_STS_EN 0x8
44#define INT_SIG_EN 0xc
45#define INT_STS_ALL GENMASK(31, 0)
46#define INT_RDY_PIN BIT(26)
47#define INT_RDY_SR BIT(25)
48#define INT_LNR_SUSP BIT(24)
49#define INT_ECC_ERR BIT(17)
50#define INT_CRC_ERR BIT(16)
51#define INT_LWR_DIS BIT(12)
52#define INT_LRD_DIS BIT(11)
53#define INT_SDMA_INT BIT(10)
54#define INT_DMA_FINISH BIT(9)
55#define INT_RX_NOT_FULL BIT(3)
56#define INT_RX_NOT_EMPTY BIT(2)
57#define INT_TX_NOT_FULL BIT(1)
58#define INT_TX_EMPTY BIT(0)
59
60#define HC_EN 0x10
61#define HC_EN_BIT BIT(0)
62
63#define TXD(x) (0x14 + ((x) * 4))
64#define RXD 0x24
65
66#define SS_CTRL(s) (0x30 + ((s) * 4))
67#define LRD_CFG 0x44
68#define LWR_CFG 0x80
69#define RWW_CFG 0x70
70#define OP_READ BIT(23)
71#define OP_DUMMY_CYC(x) ((x) << 17)
72#define OP_ADDR_BYTES(x) ((x) << 14)
73#define OP_CMD_BYTES(x) (((x) - 1) << 13)
74#define OP_OCTA_CRC_EN BIT(12)
75#define OP_DQS_EN BIT(11)
76#define OP_ENHC_EN BIT(10)
77#define OP_PREAMBLE_EN BIT(9)
78#define OP_DATA_DDR BIT(8)
79#define OP_DATA_BUSW(x) ((x) << 6)
80#define OP_ADDR_DDR BIT(5)
81#define OP_ADDR_BUSW(x) ((x) << 3)
82#define OP_CMD_DDR BIT(2)
83#define OP_CMD_BUSW(x) (x)
84#define OP_BUSW_1 0
85#define OP_BUSW_2 1
86#define OP_BUSW_4 2
87#define OP_BUSW_8 3
88
89#define OCTA_CRC 0x38
90#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
91#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
92#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
93
94#define ONFI_DIN_CNT(s) (0x3c + (s))
95
96#define LRD_CTRL 0x48
97#define RWW_CTRL 0x74
98#define LWR_CTRL 0x84
99#define LMODE_EN BIT(31)
100#define LMODE_SLV_ACT(x) ((x) << 21)
101#define LMODE_CMD1(x) ((x) << 8)
102#define LMODE_CMD0(x) (x)
103
104#define LRD_ADDR 0x4c
105#define LWR_ADDR 0x88
106#define LRD_RANGE 0x50
107#define LWR_RANGE 0x8c
108
109#define AXI_SLV_ADDR 0x54
110
111#define DMAC_RD_CFG 0x58
112#define DMAC_WR_CFG 0x94
113#define DMAC_CFG_PERIPH_EN BIT(31)
114#define DMAC_CFG_ALLFLUSH_EN BIT(30)
115#define DMAC_CFG_LASTFLUSH_EN BIT(29)
116#define DMAC_CFG_QE(x) (((x) + 1) << 16)
117#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
118#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
119#define DMAC_CFG_DIR_READ BIT(1)
120#define DMAC_CFG_START BIT(0)
121
122#define DMAC_RD_CNT 0x5c
123#define DMAC_WR_CNT 0x98
124
125#define SDMA_ADDR 0x60
126
127#define DMAM_CFG 0x64
128#define DMAM_CFG_START BIT(31)
129#define DMAM_CFG_CONT BIT(30)
130#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
131#define DMAM_CFG_DIR_READ BIT(1)
132#define DMAM_CFG_EN BIT(0)
133
134#define DMAM_CNT 0x68
135
136#define LNR_TIMER_TH 0x6c
137
138#define RDM_CFG0 0x78
139#define RDM_CFG0_POLY(x) (x)
140
141#define RDM_CFG1 0x7c
142#define RDM_CFG1_RDM_EN BIT(31)
143#define RDM_CFG1_SEED(x) (x)
144
145#define LWR_SUSP_CTRL 0x90
146#define LWR_SUSP_CTRL_EN BIT(31)
147
148#define DMAS_CTRL 0x9c
149#define DMAS_CTRL_EN BIT(31)
150#define DMAS_CTRL_DIR_READ BIT(30)
151
152#define DATA_STROB 0xa0
153#define DATA_STROB_EDO_EN BIT(2)
154#define DATA_STROB_INV_POL BIT(1)
155#define DATA_STROB_DELAY_2CYC BIT(0)
156
157#define IDLY_CODE(x) (0xa4 + ((x) * 4))
158#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
159
160#define GPIO 0xc4
161#define GPIO_PT(x) BIT(3 + ((x) * 16))
162#define GPIO_RESET(x) BIT(2 + ((x) * 16))
163#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
164#define GPIO_WPB(x) BIT((x) * 16)
165
166#define HC_VER 0xd0
167
168#define HW_TEST(x) (0xe0 + ((x) * 4))
169
170#define MXIC_NFC_MAX_CLK_HZ 50000000
171#define IRQ_TIMEOUT 1000
172
173struct mxic_nand_ctlr {
174 struct clk *ps_clk;
175 struct clk *send_clk;
176 struct clk *send_dly_clk;
177 struct completion complete;
178 void __iomem *regs;
179 struct nand_controller controller;
180 struct device *dev;
181 struct nand_chip chip;
182};
183
184static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
185{
186 int ret;
187
188 ret = clk_prepare_enable(clk: nfc->ps_clk);
189 if (ret)
190 return ret;
191
192 ret = clk_prepare_enable(clk: nfc->send_clk);
193 if (ret)
194 goto err_ps_clk;
195
196 ret = clk_prepare_enable(clk: nfc->send_dly_clk);
197 if (ret)
198 goto err_send_dly_clk;
199
200 return ret;
201
202err_send_dly_clk:
203 clk_disable_unprepare(clk: nfc->send_clk);
204err_ps_clk:
205 clk_disable_unprepare(clk: nfc->ps_clk);
206
207 return ret;
208}
209
210static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
211{
212 clk_disable_unprepare(clk: nfc->send_clk);
213 clk_disable_unprepare(clk: nfc->send_dly_clk);
214 clk_disable_unprepare(clk: nfc->ps_clk);
215}
216
217static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
218{
219 writel(IDLY_CODE_VAL(0, idly_code) |
220 IDLY_CODE_VAL(1, idly_code) |
221 IDLY_CODE_VAL(2, idly_code) |
222 IDLY_CODE_VAL(3, idly_code),
223 addr: nfc->regs + IDLY_CODE(0));
224 writel(IDLY_CODE_VAL(4, idly_code) |
225 IDLY_CODE_VAL(5, idly_code) |
226 IDLY_CODE_VAL(6, idly_code) |
227 IDLY_CODE_VAL(7, idly_code),
228 addr: nfc->regs + IDLY_CODE(1));
229}
230
231static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
232{
233 int ret;
234
235 ret = clk_set_rate(clk: nfc->send_clk, rate: freq);
236 if (ret)
237 return ret;
238
239 ret = clk_set_rate(clk: nfc->send_dly_clk, rate: freq);
240 if (ret)
241 return ret;
242
243 /*
244 * A constant delay range from 0x0 ~ 0x1F for input delay,
245 * the unit is 78 ps, the max input delay is 2.418 ns.
246 */
247 mxic_nfc_set_input_delay(nfc, idly_code: 0xf);
248
249 /*
250 * Phase degree = 360 * freq * output-delay
251 * where output-delay is a constant value 1 ns in FPGA.
252 *
253 * Get Phase degree = 360 * freq * 1 ns
254 * = 360 * freq * 1 sec / 1000000000
255 * = 9 * freq / 25000000
256 */
257 ret = clk_set_phase(clk: nfc->send_dly_clk, degrees: 9 * freq / 25000000);
258 if (ret)
259 return ret;
260
261 return 0;
262}
263
264static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
265{
266 int ret;
267
268 if (freq > MXIC_NFC_MAX_CLK_HZ)
269 freq = MXIC_NFC_MAX_CLK_HZ;
270
271 mxic_nfc_clk_disable(nfc);
272 ret = mxic_nfc_clk_setup(nfc, freq);
273 if (ret)
274 return ret;
275
276 ret = mxic_nfc_clk_enable(nfc);
277 if (ret)
278 return ret;
279
280 return 0;
281}
282
283static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
284{
285 struct mxic_nand_ctlr *nfc = dev_id;
286 u32 sts;
287
288 sts = readl(addr: nfc->regs + INT_STS);
289 if (sts & INT_RDY_PIN)
290 complete(&nfc->complete);
291 else
292 return IRQ_NONE;
293
294 return IRQ_HANDLED;
295}
296
297static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
298{
299 writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
300 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
301 HC_CFG_IDLE_SIO_LVL(1), addr: nfc->regs + HC_CFG);
302 writel(INT_STS_ALL, addr: nfc->regs + INT_STS_EN);
303 writel(INT_RDY_PIN, addr: nfc->regs + INT_SIG_EN);
304 writel(val: 0x0, addr: nfc->regs + ONFI_DIN_CNT(0));
305 writel(val: 0, addr: nfc->regs + LRD_CFG);
306 writel(val: 0, addr: nfc->regs + LRD_CTRL);
307 writel(val: 0x0, addr: nfc->regs + HC_EN);
308}
309
310static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
311{
312 writel(readl(addr: nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
313 addr: nfc->regs + HC_CFG);
314 writel(HC_CFG_MAN_CS_ASSERT | readl(addr: nfc->regs + HC_CFG),
315 addr: nfc->regs + HC_CFG);
316}
317
318static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
319{
320 writel(val: ~HC_CFG_MAN_CS_ASSERT & readl(addr: nfc->regs + HC_CFG),
321 addr: nfc->regs + HC_CFG);
322}
323
324static int mxic_nfc_wait_ready(struct nand_chip *chip)
325{
326 struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
327 int ret;
328
329 ret = wait_for_completion_timeout(x: &nfc->complete,
330 timeout: msecs_to_jiffies(IRQ_TIMEOUT));
331 if (!ret) {
332 dev_err(nfc->dev, "nand device timeout\n");
333 return -ETIMEDOUT;
334 }
335
336 return 0;
337}
338
339static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
340 void *rxbuf, unsigned int len)
341{
342 unsigned int pos = 0;
343
344 while (pos < len) {
345 unsigned int nbytes = len - pos;
346 u32 data = 0xffffffff;
347 u32 sts;
348 int ret;
349
350 if (nbytes > 4)
351 nbytes = 4;
352
353 if (txbuf)
354 memcpy(&data, txbuf + pos, nbytes);
355
356 ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
357 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
358 if (ret)
359 return ret;
360
361 writel(val: data, addr: nfc->regs + TXD(nbytes % 4));
362
363 ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
364 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
365 if (ret)
366 return ret;
367
368 ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
369 sts & INT_RX_NOT_EMPTY, 0,
370 USEC_PER_SEC);
371 if (ret)
372 return ret;
373
374 data = readl(addr: nfc->regs + RXD);
375 if (rxbuf) {
376 data >>= (8 * (4 - nbytes));
377 memcpy(rxbuf + pos, &data, nbytes);
378 }
379 if (readl(addr: nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
380 dev_warn(nfc->dev, "RX FIFO not empty\n");
381
382 pos += nbytes;
383 }
384
385 return 0;
386}
387
388static int mxic_nfc_exec_op(struct nand_chip *chip,
389 const struct nand_operation *op, bool check_only)
390{
391 struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
392 const struct nand_op_instr *instr = NULL;
393 int ret = 0;
394 unsigned int op_id;
395
396 if (check_only)
397 return 0;
398
399 mxic_nfc_cs_enable(nfc);
400 init_completion(x: &nfc->complete);
401 for (op_id = 0; op_id < op->ninstrs; op_id++) {
402 instr = &op->instrs[op_id];
403
404 switch (instr->type) {
405 case NAND_OP_CMD_INSTR:
406 writel(val: 0, addr: nfc->regs + HC_EN);
407 writel(HC_EN_BIT, addr: nfc->regs + HC_EN);
408 writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
409 OP_CMD_BYTES(0), addr: nfc->regs + SS_CTRL(0));
410
411 ret = mxic_nfc_data_xfer(nfc,
412 txbuf: &instr->ctx.cmd.opcode,
413 NULL, len: 1);
414 break;
415
416 case NAND_OP_ADDR_INSTR:
417 writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
418 OP_ADDR_BYTES(instr->ctx.addr.naddrs),
419 addr: nfc->regs + SS_CTRL(0));
420 ret = mxic_nfc_data_xfer(nfc,
421 txbuf: instr->ctx.addr.addrs, NULL,
422 len: instr->ctx.addr.naddrs);
423 break;
424
425 case NAND_OP_DATA_IN_INSTR:
426 writel(val: 0x0, addr: nfc->regs + ONFI_DIN_CNT(0));
427 writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
428 OP_READ, addr: nfc->regs + SS_CTRL(0));
429 ret = mxic_nfc_data_xfer(nfc, NULL,
430 rxbuf: instr->ctx.data.buf.in,
431 len: instr->ctx.data.len);
432 break;
433
434 case NAND_OP_DATA_OUT_INSTR:
435 writel(val: instr->ctx.data.len,
436 addr: nfc->regs + ONFI_DIN_CNT(0));
437 writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
438 addr: nfc->regs + SS_CTRL(0));
439 ret = mxic_nfc_data_xfer(nfc,
440 txbuf: instr->ctx.data.buf.out, NULL,
441 len: instr->ctx.data.len);
442 break;
443
444 case NAND_OP_WAITRDY_INSTR:
445 ret = mxic_nfc_wait_ready(chip);
446 break;
447 }
448 }
449 mxic_nfc_cs_disable(nfc);
450
451 return ret;
452}
453
454static int mxic_nfc_setup_interface(struct nand_chip *chip, int chipnr,
455 const struct nand_interface_config *conf)
456{
457 struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
458 const struct nand_sdr_timings *sdr;
459 unsigned long freq;
460 int ret;
461
462 sdr = nand_get_sdr_timings(conf);
463 if (IS_ERR(ptr: sdr))
464 return PTR_ERR(ptr: sdr);
465
466 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
467 return 0;
468
469 freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
470
471 ret = mxic_nfc_set_freq(nfc, freq);
472 if (ret)
473 dev_err(nfc->dev, "set freq:%ld failed\n", freq);
474
475 if (sdr->tRC_min < 30000)
476 writel(DATA_STROB_EDO_EN, addr: nfc->regs + DATA_STROB);
477
478 return 0;
479}
480
481static const struct nand_controller_ops mxic_nand_controller_ops = {
482 .exec_op = mxic_nfc_exec_op,
483 .setup_interface = mxic_nfc_setup_interface,
484};
485
486static int mxic_nfc_probe(struct platform_device *pdev)
487{
488 struct device_node *nand_np, *np = pdev->dev.of_node;
489 struct mtd_info *mtd;
490 struct mxic_nand_ctlr *nfc;
491 struct nand_chip *nand_chip;
492 int err;
493 int irq;
494
495 nfc = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct mxic_nand_ctlr),
496 GFP_KERNEL);
497 if (!nfc)
498 return -ENOMEM;
499
500 nfc->ps_clk = devm_clk_get(dev: &pdev->dev, id: "ps");
501 if (IS_ERR(ptr: nfc->ps_clk))
502 return PTR_ERR(ptr: nfc->ps_clk);
503
504 nfc->send_clk = devm_clk_get(dev: &pdev->dev, id: "send");
505 if (IS_ERR(ptr: nfc->send_clk))
506 return PTR_ERR(ptr: nfc->send_clk);
507
508 nfc->send_dly_clk = devm_clk_get(dev: &pdev->dev, id: "send_dly");
509 if (IS_ERR(ptr: nfc->send_dly_clk))
510 return PTR_ERR(ptr: nfc->send_dly_clk);
511
512 nfc->regs = devm_platform_ioremap_resource(pdev, index: 0);
513 if (IS_ERR(ptr: nfc->regs))
514 return PTR_ERR(ptr: nfc->regs);
515
516 nand_chip = &nfc->chip;
517 mtd = nand_to_mtd(chip: nand_chip);
518 mtd->dev.parent = &pdev->dev;
519
520 for_each_child_of_node(np, nand_np)
521 nand_set_flash_node(chip: nand_chip, np: nand_np);
522
523 nand_chip->priv = nfc;
524 nfc->dev = &pdev->dev;
525 nfc->controller.ops = &mxic_nand_controller_ops;
526 nand_controller_init(nfc: &nfc->controller);
527 nand_chip->controller = &nfc->controller;
528
529 irq = platform_get_irq(pdev, 0);
530 if (irq < 0)
531 return irq;
532
533 mxic_nfc_hw_init(nfc);
534
535 err = devm_request_irq(dev: &pdev->dev, irq, handler: mxic_nfc_isr,
536 irqflags: 0, devname: "mxic-nfc", dev_id: nfc);
537 if (err)
538 goto fail;
539
540 err = nand_scan(chip: nand_chip, max_chips: 1);
541 if (err)
542 goto fail;
543
544 err = mtd_device_register(mtd, NULL, 0);
545 if (err)
546 goto fail;
547
548 platform_set_drvdata(pdev, data: nfc);
549 return 0;
550
551fail:
552 mxic_nfc_clk_disable(nfc);
553 return err;
554}
555
556static void mxic_nfc_remove(struct platform_device *pdev)
557{
558 struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
559 struct nand_chip *chip = &nfc->chip;
560 int ret;
561
562 ret = mtd_device_unregister(master: nand_to_mtd(chip));
563 WARN_ON(ret);
564 nand_cleanup(chip);
565
566 mxic_nfc_clk_disable(nfc);
567}
568
569static const struct of_device_id mxic_nfc_of_ids[] = {
570 { .compatible = "mxic,multi-itfc-v009-nand-controller", },
571 {},
572};
573MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
574
575static struct platform_driver mxic_nfc_driver = {
576 .probe = mxic_nfc_probe,
577 .remove_new = mxic_nfc_remove,
578 .driver = {
579 .name = "mxic-nfc",
580 .of_match_table = mxic_nfc_of_ids,
581 },
582};
583module_platform_driver(mxic_nfc_driver);
584
585MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
586MODULE_DESCRIPTION("Macronix raw NAND controller driver");
587MODULE_LICENSE("GPL v2");
588

source code of linux/drivers/mtd/nand/raw/mxic_nand.c