1// SPDX-License-Identifier: GPL-2.0
2// CAN bus driver for Bosch M_CAN controller
3// Copyright (C) 2014 Freescale Semiconductor, Inc.
4// Dong Aisheng <b29396@freescale.com>
5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7/* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11#include <linux/bitfield.h>
12#include <linux/can/dev.h>
13#include <linux/ethtool.h>
14#include <linux/hrtimer.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iopoll.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <linux/of.h>
22#include <linux/phy/phy.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26
27#include "m_can.h"
28
29/* registers definition */
30enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79};
80
81/* message ram configuration data length */
82#define MRAM_CFG_LEN 8
83
84/* Core Release Register (CREL) */
85#define CREL_REL_MASK GENMASK(31, 28)
86#define CREL_STEP_MASK GENMASK(27, 24)
87#define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89/* Data Bit Timing & Prescaler Register (DBTP) */
90#define DBTP_TDC BIT(23)
91#define DBTP_DBRP_MASK GENMASK(20, 16)
92#define DBTP_DTSEG1_MASK GENMASK(12, 8)
93#define DBTP_DTSEG2_MASK GENMASK(7, 4)
94#define DBTP_DSJW_MASK GENMASK(3, 0)
95
96/* Transmitter Delay Compensation Register (TDCR) */
97#define TDCR_TDCO_MASK GENMASK(14, 8)
98#define TDCR_TDCF_MASK GENMASK(6, 0)
99
100/* Test Register (TEST) */
101#define TEST_LBCK BIT(4)
102
103/* CC Control Register (CCCR) */
104#define CCCR_TXP BIT(14)
105#define CCCR_TEST BIT(7)
106#define CCCR_DAR BIT(6)
107#define CCCR_MON BIT(5)
108#define CCCR_CSR BIT(4)
109#define CCCR_CSA BIT(3)
110#define CCCR_ASM BIT(2)
111#define CCCR_CCE BIT(1)
112#define CCCR_INIT BIT(0)
113/* for version 3.0.x */
114#define CCCR_CMR_MASK GENMASK(11, 10)
115#define CCCR_CMR_CANFD 0x1
116#define CCCR_CMR_CANFD_BRS 0x2
117#define CCCR_CMR_CAN 0x3
118#define CCCR_CME_MASK GENMASK(9, 8)
119#define CCCR_CME_CAN 0
120#define CCCR_CME_CANFD 0x1
121#define CCCR_CME_CANFD_BRS 0x2
122/* for version >=3.1.x */
123#define CCCR_EFBI BIT(13)
124#define CCCR_PXHD BIT(12)
125#define CCCR_BRSE BIT(9)
126#define CCCR_FDOE BIT(8)
127/* for version >=3.2.x */
128#define CCCR_NISO BIT(15)
129/* for version >=3.3.x */
130#define CCCR_WMM BIT(11)
131#define CCCR_UTSU BIT(10)
132
133/* Nominal Bit Timing & Prescaler Register (NBTP) */
134#define NBTP_NSJW_MASK GENMASK(31, 25)
135#define NBTP_NBRP_MASK GENMASK(24, 16)
136#define NBTP_NTSEG1_MASK GENMASK(15, 8)
137#define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139/* Timestamp Counter Configuration Register (TSCC) */
140#define TSCC_TCP_MASK GENMASK(19, 16)
141#define TSCC_TSS_MASK GENMASK(1, 0)
142#define TSCC_TSS_DISABLE 0x0
143#define TSCC_TSS_INTERNAL 0x1
144#define TSCC_TSS_EXTERNAL 0x2
145
146/* Timestamp Counter Value Register (TSCV) */
147#define TSCV_TSC_MASK GENMASK(15, 0)
148
149/* Error Counter Register (ECR) */
150#define ECR_RP BIT(15)
151#define ECR_REC_MASK GENMASK(14, 8)
152#define ECR_TEC_MASK GENMASK(7, 0)
153
154/* Protocol Status Register (PSR) */
155#define PSR_BO BIT(7)
156#define PSR_EW BIT(6)
157#define PSR_EP BIT(5)
158#define PSR_LEC_MASK GENMASK(2, 0)
159#define PSR_DLEC_MASK GENMASK(10, 8)
160
161/* Interrupt Register (IR) */
162#define IR_ALL_INT 0xffffffff
163
164/* Renamed bits for versions > 3.1.x */
165#define IR_ARA BIT(29)
166#define IR_PED BIT(28)
167#define IR_PEA BIT(27)
168
169/* Bits for version 3.0.x */
170#define IR_STE BIT(31)
171#define IR_FOE BIT(30)
172#define IR_ACKE BIT(29)
173#define IR_BE BIT(28)
174#define IR_CRCE BIT(27)
175#define IR_WDI BIT(26)
176#define IR_BO BIT(25)
177#define IR_EW BIT(24)
178#define IR_EP BIT(23)
179#define IR_ELO BIT(22)
180#define IR_BEU BIT(21)
181#define IR_BEC BIT(20)
182#define IR_DRX BIT(19)
183#define IR_TOO BIT(18)
184#define IR_MRAF BIT(17)
185#define IR_TSW BIT(16)
186#define IR_TEFL BIT(15)
187#define IR_TEFF BIT(14)
188#define IR_TEFW BIT(13)
189#define IR_TEFN BIT(12)
190#define IR_TFE BIT(11)
191#define IR_TCF BIT(10)
192#define IR_TC BIT(9)
193#define IR_HPM BIT(8)
194#define IR_RF1L BIT(7)
195#define IR_RF1F BIT(6)
196#define IR_RF1W BIT(5)
197#define IR_RF1N BIT(4)
198#define IR_RF0L BIT(3)
199#define IR_RF0F BIT(2)
200#define IR_RF0W BIT(1)
201#define IR_RF0N BIT(0)
202#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
203
204/* Interrupts for version 3.0.x */
205#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 IR_RF0L)
209#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
210
211/* Interrupts for version >= 3.1.x */
212#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 IR_RF0L)
216#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
217
218/* Interrupt Line Select (ILS) */
219#define ILS_ALL_INT0 0x0
220#define ILS_ALL_INT1 0xFFFFFFFF
221
222/* Interrupt Line Enable (ILE) */
223#define ILE_EINT1 BIT(1)
224#define ILE_EINT0 BIT(0)
225
226/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227#define RXFC_FWM_MASK GENMASK(30, 24)
228#define RXFC_FS_MASK GENMASK(22, 16)
229
230/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231#define RXFS_RFL BIT(25)
232#define RXFS_FF BIT(24)
233#define RXFS_FPI_MASK GENMASK(21, 16)
234#define RXFS_FGI_MASK GENMASK(13, 8)
235#define RXFS_FFL_MASK GENMASK(6, 0)
236
237/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238#define RXESC_RBDS_MASK GENMASK(10, 8)
239#define RXESC_F1DS_MASK GENMASK(6, 4)
240#define RXESC_F0DS_MASK GENMASK(2, 0)
241#define RXESC_64B 0x7
242
243/* Tx Buffer Configuration (TXBC) */
244#define TXBC_TFQS_MASK GENMASK(29, 24)
245#define TXBC_NDTB_MASK GENMASK(21, 16)
246
247/* Tx FIFO/Queue Status (TXFQS) */
248#define TXFQS_TFQF BIT(21)
249#define TXFQS_TFQPI_MASK GENMASK(20, 16)
250#define TXFQS_TFGI_MASK GENMASK(12, 8)
251#define TXFQS_TFFL_MASK GENMASK(5, 0)
252
253/* Tx Buffer Element Size Configuration (TXESC) */
254#define TXESC_TBDS_MASK GENMASK(2, 0)
255#define TXESC_TBDS_64B 0x7
256
257/* Tx Event FIFO Configuration (TXEFC) */
258#define TXEFC_EFWM_MASK GENMASK(29, 24)
259#define TXEFC_EFS_MASK GENMASK(21, 16)
260
261/* Tx Event FIFO Status (TXEFS) */
262#define TXEFS_TEFL BIT(25)
263#define TXEFS_EFF BIT(24)
264#define TXEFS_EFGI_MASK GENMASK(12, 8)
265#define TXEFS_EFFL_MASK GENMASK(5, 0)
266
267/* Tx Event FIFO Acknowledge (TXEFA) */
268#define TXEFA_EFAI_MASK GENMASK(4, 0)
269
270/* Message RAM Configuration (in bytes) */
271#define SIDF_ELEMENT_SIZE 4
272#define XIDF_ELEMENT_SIZE 8
273#define RXF0_ELEMENT_SIZE 72
274#define RXF1_ELEMENT_SIZE 72
275#define RXB_ELEMENT_SIZE 72
276#define TXE_ELEMENT_SIZE 8
277#define TXB_ELEMENT_SIZE 72
278
279/* Message RAM Elements */
280#define M_CAN_FIFO_ID 0x0
281#define M_CAN_FIFO_DLC 0x4
282#define M_CAN_FIFO_DATA 0x8
283
284/* Rx Buffer Element */
285/* R0 */
286#define RX_BUF_ESI BIT(31)
287#define RX_BUF_XTD BIT(30)
288#define RX_BUF_RTR BIT(29)
289/* R1 */
290#define RX_BUF_ANMF BIT(31)
291#define RX_BUF_FDF BIT(21)
292#define RX_BUF_BRS BIT(20)
293#define RX_BUF_RXTS_MASK GENMASK(15, 0)
294
295/* Tx Buffer Element */
296/* T0 */
297#define TX_BUF_ESI BIT(31)
298#define TX_BUF_XTD BIT(30)
299#define TX_BUF_RTR BIT(29)
300/* T1 */
301#define TX_BUF_EFC BIT(23)
302#define TX_BUF_FDF BIT(21)
303#define TX_BUF_BRS BIT(20)
304#define TX_BUF_MM_MASK GENMASK(31, 24)
305#define TX_BUF_DLC_MASK GENMASK(19, 16)
306
307/* Tx event FIFO Element */
308/* E1 */
309#define TX_EVENT_MM_MASK GENMASK(31, 24)
310#define TX_EVENT_TXTS_MASK GENMASK(15, 0)
311
312/* Hrtimer polling interval */
313#define HRTIMER_POLL_INTERVAL_MS 1
314
315/* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316 * and we can save a (potentially slow) bus round trip by combining
317 * reads and writes to them.
318 */
319struct id_and_dlc {
320 u32 id;
321 u32 dlc;
322};
323
324struct m_can_fifo_element {
325 u32 id;
326 u32 dlc;
327 u8 data[CANFD_MAX_DLEN];
328};
329
330static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331{
332 return cdev->ops->read_reg(cdev, reg);
333}
334
335static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 u32 val)
337{
338 cdev->ops->write_reg(cdev, reg, val);
339}
340
341static int
342m_can_fifo_read(struct m_can_classdev *cdev,
343 u32 fgi, unsigned int offset, void *val, size_t val_count)
344{
345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 offset;
347
348 if (val_count == 0)
349 return 0;
350
351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352}
353
354static int
355m_can_fifo_write(struct m_can_classdev *cdev,
356 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357{
358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 offset;
360
361 if (val_count == 0)
362 return 0;
363
364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365}
366
367static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 u32 fpi, u32 val)
369{
370 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371}
372
373static int
374m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375{
376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 offset;
378
379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380}
381
382static void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
383{
384 u32 cccr = m_can_read(cdev, reg: M_CAN_CCCR);
385 u32 timeout = 10;
386 u32 val = 0;
387
388 /* Clear the Clock stop request if it was set */
389 if (cccr & CCCR_CSR)
390 cccr &= ~CCCR_CSR;
391
392 if (enable) {
393 /* enable m_can configuration */
394 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr | CCCR_INIT);
395 udelay(5);
396 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
397 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr | CCCR_INIT | CCCR_CCE);
398 } else {
399 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr & ~(CCCR_INIT | CCCR_CCE));
400 }
401
402 /* there's a delay for module initialization */
403 if (enable)
404 val = CCCR_INIT | CCCR_CCE;
405
406 while ((m_can_read(cdev, reg: M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
407 if (timeout == 0) {
408 netdev_warn(dev: cdev->net, format: "Failed to init module\n");
409 return;
410 }
411 timeout--;
412 udelay(1);
413 }
414}
415
416static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
417{
418 if (cdev->active_interrupts == interrupts)
419 return;
420 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
421 cdev->active_interrupts = interrupts;
422}
423
424static void m_can_coalescing_disable(struct m_can_classdev *cdev)
425{
426 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
427
428 if (!cdev->net->irq)
429 return;
430
431 hrtimer_cancel(timer: &cdev->hrtimer);
432 m_can_interrupt_enable(cdev, interrupts: new_interrupts);
433}
434
435static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
436{
437 if (!cdev->net->irq) {
438 dev_dbg(cdev->dev, "Start hrtimer\n");
439 hrtimer_start(timer: &cdev->hrtimer,
440 tim: ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
441 mode: HRTIMER_MODE_REL_PINNED);
442 }
443
444 /* Only interrupt line 0 is used in this driver */
445 m_can_write(cdev, reg: M_CAN_ILE, ILE_EINT0);
446}
447
448static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
449{
450 m_can_coalescing_disable(cdev);
451 m_can_write(cdev, reg: M_CAN_ILE, val: 0x0);
452 cdev->active_interrupts = 0x0;
453
454 if (!cdev->net->irq) {
455 dev_dbg(cdev->dev, "Stop hrtimer\n");
456 hrtimer_cancel(timer: &cdev->hrtimer);
457 }
458}
459
460/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
461 * width.
462 */
463static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
464{
465 u32 tscv;
466 u32 tsc;
467
468 tscv = m_can_read(cdev, reg: M_CAN_TSCV);
469 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
470
471 return (tsc << 16);
472}
473
474static void m_can_clean(struct net_device *net)
475{
476 struct m_can_classdev *cdev = netdev_priv(dev: net);
477 unsigned long irqflags;
478
479 if (cdev->tx_ops) {
480 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
481 if (!cdev->tx_ops[i].skb)
482 continue;
483
484 net->stats.tx_errors++;
485 cdev->tx_ops[i].skb = NULL;
486 }
487 }
488
489 for (int i = 0; i != cdev->can.echo_skb_max; ++i)
490 can_free_echo_skb(dev: cdev->net, idx: i, NULL);
491
492 netdev_reset_queue(dev_queue: cdev->net);
493
494 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
495 cdev->tx_fifo_in_flight = 0;
496 spin_unlock_irqrestore(lock: &cdev->tx_handling_spinlock, flags: irqflags);
497}
498
499/* For peripherals, pass skb to rx-offload, which will push skb from
500 * napi. For non-peripherals, RX is done in napi already, so push
501 * directly. timestamp is used to ensure good skb ordering in
502 * rx-offload and is ignored for non-peripherals.
503 */
504static void m_can_receive_skb(struct m_can_classdev *cdev,
505 struct sk_buff *skb,
506 u32 timestamp)
507{
508 if (cdev->is_peripheral) {
509 struct net_device_stats *stats = &cdev->net->stats;
510 int err;
511
512 err = can_rx_offload_queue_timestamp(offload: &cdev->offload, skb,
513 timestamp);
514 if (err)
515 stats->rx_fifo_errors++;
516 } else {
517 netif_receive_skb(skb);
518 }
519}
520
521static int m_can_read_fifo(struct net_device *dev, u32 fgi)
522{
523 struct net_device_stats *stats = &dev->stats;
524 struct m_can_classdev *cdev = netdev_priv(dev);
525 struct canfd_frame *cf;
526 struct sk_buff *skb;
527 struct id_and_dlc fifo_header;
528 u32 timestamp = 0;
529 int err;
530
531 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, val: &fifo_header, val_count: 2);
532 if (err)
533 goto out_fail;
534
535 if (fifo_header.dlc & RX_BUF_FDF)
536 skb = alloc_canfd_skb(dev, cfd: &cf);
537 else
538 skb = alloc_can_skb(dev, cf: (struct can_frame **)&cf);
539 if (!skb) {
540 stats->rx_dropped++;
541 return 0;
542 }
543
544 if (fifo_header.dlc & RX_BUF_FDF)
545 cf->len = can_fd_dlc2len(dlc: (fifo_header.dlc >> 16) & 0x0F);
546 else
547 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
548
549 if (fifo_header.id & RX_BUF_XTD)
550 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
551 else
552 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
553
554 if (fifo_header.id & RX_BUF_ESI) {
555 cf->flags |= CANFD_ESI;
556 netdev_dbg(dev, "ESI Error\n");
557 }
558
559 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
560 cf->can_id |= CAN_RTR_FLAG;
561 } else {
562 if (fifo_header.dlc & RX_BUF_BRS)
563 cf->flags |= CANFD_BRS;
564
565 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
566 val: cf->data, DIV_ROUND_UP(cf->len, 4));
567 if (err)
568 goto out_free_skb;
569
570 stats->rx_bytes += cf->len;
571 }
572 stats->rx_packets++;
573
574 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
575
576 m_can_receive_skb(cdev, skb, timestamp);
577
578 return 0;
579
580out_free_skb:
581 kfree_skb(skb);
582out_fail:
583 netdev_err(dev, format: "FIFO read returned %d\n", err);
584 return err;
585}
586
587static int m_can_do_rx_poll(struct net_device *dev, int quota)
588{
589 struct m_can_classdev *cdev = netdev_priv(dev);
590 u32 pkts = 0;
591 u32 rxfs;
592 u32 rx_count;
593 u32 fgi;
594 int ack_fgi = -1;
595 int i;
596 int err = 0;
597
598 rxfs = m_can_read(cdev, reg: M_CAN_RXF0S);
599 if (!(rxfs & RXFS_FFL_MASK)) {
600 netdev_dbg(dev, "no messages in fifo0\n");
601 return 0;
602 }
603
604 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
605 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
606
607 for (i = 0; i < rx_count && quota > 0; ++i) {
608 err = m_can_read_fifo(dev, fgi);
609 if (err)
610 break;
611
612 quota--;
613 pkts++;
614 ack_fgi = fgi;
615 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
616 }
617
618 if (ack_fgi != -1)
619 m_can_write(cdev, reg: M_CAN_RXF0A, val: ack_fgi);
620
621 if (err)
622 return err;
623
624 return pkts;
625}
626
627static int m_can_handle_lost_msg(struct net_device *dev)
628{
629 struct m_can_classdev *cdev = netdev_priv(dev);
630 struct net_device_stats *stats = &dev->stats;
631 struct sk_buff *skb;
632 struct can_frame *frame;
633 u32 timestamp = 0;
634
635 netdev_err(dev, format: "msg lost in rxf0\n");
636
637 stats->rx_errors++;
638 stats->rx_over_errors++;
639
640 skb = alloc_can_err_skb(dev, cf: &frame);
641 if (unlikely(!skb))
642 return 0;
643
644 frame->can_id |= CAN_ERR_CRTL;
645 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
646
647 if (cdev->is_peripheral)
648 timestamp = m_can_get_timestamp(cdev);
649
650 m_can_receive_skb(cdev, skb, timestamp);
651
652 return 1;
653}
654
655static int m_can_handle_lec_err(struct net_device *dev,
656 enum m_can_lec_type lec_type)
657{
658 struct m_can_classdev *cdev = netdev_priv(dev);
659 struct net_device_stats *stats = &dev->stats;
660 struct can_frame *cf;
661 struct sk_buff *skb;
662 u32 timestamp = 0;
663
664 cdev->can.can_stats.bus_error++;
665 stats->rx_errors++;
666
667 /* propagate the error condition to the CAN stack */
668 skb = alloc_can_err_skb(dev, cf: &cf);
669 if (unlikely(!skb))
670 return 0;
671
672 /* check for 'last error code' which tells us the
673 * type of the last error to occur on the CAN bus
674 */
675 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
676
677 switch (lec_type) {
678 case LEC_STUFF_ERROR:
679 netdev_dbg(dev, "stuff error\n");
680 cf->data[2] |= CAN_ERR_PROT_STUFF;
681 break;
682 case LEC_FORM_ERROR:
683 netdev_dbg(dev, "form error\n");
684 cf->data[2] |= CAN_ERR_PROT_FORM;
685 break;
686 case LEC_ACK_ERROR:
687 netdev_dbg(dev, "ack error\n");
688 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
689 break;
690 case LEC_BIT1_ERROR:
691 netdev_dbg(dev, "bit1 error\n");
692 cf->data[2] |= CAN_ERR_PROT_BIT1;
693 break;
694 case LEC_BIT0_ERROR:
695 netdev_dbg(dev, "bit0 error\n");
696 cf->data[2] |= CAN_ERR_PROT_BIT0;
697 break;
698 case LEC_CRC_ERROR:
699 netdev_dbg(dev, "CRC error\n");
700 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
701 break;
702 default:
703 break;
704 }
705
706 if (cdev->is_peripheral)
707 timestamp = m_can_get_timestamp(cdev);
708
709 m_can_receive_skb(cdev, skb, timestamp);
710
711 return 1;
712}
713
714static int __m_can_get_berr_counter(const struct net_device *dev,
715 struct can_berr_counter *bec)
716{
717 struct m_can_classdev *cdev = netdev_priv(dev);
718 unsigned int ecr;
719
720 ecr = m_can_read(cdev, reg: M_CAN_ECR);
721 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
722 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
723
724 return 0;
725}
726
727static int m_can_clk_start(struct m_can_classdev *cdev)
728{
729 if (cdev->pm_clock_support == 0)
730 return 0;
731
732 return pm_runtime_resume_and_get(dev: cdev->dev);
733}
734
735static void m_can_clk_stop(struct m_can_classdev *cdev)
736{
737 if (cdev->pm_clock_support)
738 pm_runtime_put_sync(dev: cdev->dev);
739}
740
741static int m_can_get_berr_counter(const struct net_device *dev,
742 struct can_berr_counter *bec)
743{
744 struct m_can_classdev *cdev = netdev_priv(dev);
745 int err;
746
747 err = m_can_clk_start(cdev);
748 if (err)
749 return err;
750
751 __m_can_get_berr_counter(dev, bec);
752
753 m_can_clk_stop(cdev);
754
755 return 0;
756}
757
758static int m_can_handle_state_change(struct net_device *dev,
759 enum can_state new_state)
760{
761 struct m_can_classdev *cdev = netdev_priv(dev);
762 struct can_frame *cf;
763 struct sk_buff *skb;
764 struct can_berr_counter bec;
765 unsigned int ecr;
766 u32 timestamp = 0;
767
768 switch (new_state) {
769 case CAN_STATE_ERROR_WARNING:
770 /* error warning state */
771 cdev->can.can_stats.error_warning++;
772 cdev->can.state = CAN_STATE_ERROR_WARNING;
773 break;
774 case CAN_STATE_ERROR_PASSIVE:
775 /* error passive state */
776 cdev->can.can_stats.error_passive++;
777 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
778 break;
779 case CAN_STATE_BUS_OFF:
780 /* bus-off state */
781 cdev->can.state = CAN_STATE_BUS_OFF;
782 m_can_disable_all_interrupts(cdev);
783 cdev->can.can_stats.bus_off++;
784 can_bus_off(dev);
785 break;
786 default:
787 break;
788 }
789
790 /* propagate the error condition to the CAN stack */
791 skb = alloc_can_err_skb(dev, cf: &cf);
792 if (unlikely(!skb))
793 return 0;
794
795 __m_can_get_berr_counter(dev, bec: &bec);
796
797 switch (new_state) {
798 case CAN_STATE_ERROR_WARNING:
799 /* error warning state */
800 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
801 cf->data[1] = (bec.txerr > bec.rxerr) ?
802 CAN_ERR_CRTL_TX_WARNING :
803 CAN_ERR_CRTL_RX_WARNING;
804 cf->data[6] = bec.txerr;
805 cf->data[7] = bec.rxerr;
806 break;
807 case CAN_STATE_ERROR_PASSIVE:
808 /* error passive state */
809 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
810 ecr = m_can_read(cdev, reg: M_CAN_ECR);
811 if (ecr & ECR_RP)
812 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
813 if (bec.txerr > 127)
814 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
815 cf->data[6] = bec.txerr;
816 cf->data[7] = bec.rxerr;
817 break;
818 case CAN_STATE_BUS_OFF:
819 /* bus-off state */
820 cf->can_id |= CAN_ERR_BUSOFF;
821 break;
822 default:
823 break;
824 }
825
826 if (cdev->is_peripheral)
827 timestamp = m_can_get_timestamp(cdev);
828
829 m_can_receive_skb(cdev, skb, timestamp);
830
831 return 1;
832}
833
834static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
835{
836 struct m_can_classdev *cdev = netdev_priv(dev);
837 int work_done = 0;
838
839 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
840 netdev_dbg(dev, "entered error warning state\n");
841 work_done += m_can_handle_state_change(dev,
842 new_state: CAN_STATE_ERROR_WARNING);
843 }
844
845 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
846 netdev_dbg(dev, "entered error passive state\n");
847 work_done += m_can_handle_state_change(dev,
848 new_state: CAN_STATE_ERROR_PASSIVE);
849 }
850
851 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
852 netdev_dbg(dev, "entered error bus off state\n");
853 work_done += m_can_handle_state_change(dev,
854 new_state: CAN_STATE_BUS_OFF);
855 }
856
857 return work_done;
858}
859
860static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
861{
862 if (irqstatus & IR_WDI)
863 netdev_err(dev, format: "Message RAM Watchdog event due to missing READY\n");
864 if (irqstatus & IR_BEU)
865 netdev_err(dev, format: "Bit Error Uncorrected\n");
866 if (irqstatus & IR_BEC)
867 netdev_err(dev, format: "Bit Error Corrected\n");
868 if (irqstatus & IR_TOO)
869 netdev_err(dev, format: "Timeout reached\n");
870 if (irqstatus & IR_MRAF)
871 netdev_err(dev, format: "Message RAM access failure occurred\n");
872}
873
874static inline bool is_lec_err(u8 lec)
875{
876 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
877}
878
879static inline bool m_can_is_protocol_err(u32 irqstatus)
880{
881 return irqstatus & IR_ERR_LEC_31X;
882}
883
884static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
885{
886 struct net_device_stats *stats = &dev->stats;
887 struct m_can_classdev *cdev = netdev_priv(dev);
888 struct can_frame *cf;
889 struct sk_buff *skb;
890 u32 timestamp = 0;
891
892 /* propagate the error condition to the CAN stack */
893 skb = alloc_can_err_skb(dev, cf: &cf);
894
895 /* update tx error stats since there is protocol error */
896 stats->tx_errors++;
897
898 /* update arbitration lost status */
899 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
900 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
901 cdev->can.can_stats.arbitration_lost++;
902 if (skb) {
903 cf->can_id |= CAN_ERR_LOSTARB;
904 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
905 }
906 }
907
908 if (unlikely(!skb)) {
909 netdev_dbg(dev, "allocation of skb failed\n");
910 return 0;
911 }
912
913 if (cdev->is_peripheral)
914 timestamp = m_can_get_timestamp(cdev);
915
916 m_can_receive_skb(cdev, skb, timestamp);
917
918 return 1;
919}
920
921static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
922 u32 psr)
923{
924 struct m_can_classdev *cdev = netdev_priv(dev);
925 int work_done = 0;
926
927 if (irqstatus & IR_RF0L)
928 work_done += m_can_handle_lost_msg(dev);
929
930 /* handle lec errors on the bus */
931 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
932 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
933 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
934
935 if (is_lec_err(lec)) {
936 netdev_dbg(dev, "Arbitration phase error detected\n");
937 work_done += m_can_handle_lec_err(dev, lec_type: lec);
938 }
939
940 if (is_lec_err(lec: dlec)) {
941 netdev_dbg(dev, "Data phase error detected\n");
942 work_done += m_can_handle_lec_err(dev, lec_type: dlec);
943 }
944 }
945
946 /* handle protocol errors in arbitration phase */
947 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
948 m_can_is_protocol_err(irqstatus))
949 work_done += m_can_handle_protocol_error(dev, irqstatus);
950
951 /* other unproccessed error interrupts */
952 m_can_handle_other_err(dev, irqstatus);
953
954 return work_done;
955}
956
957static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
958{
959 struct m_can_classdev *cdev = netdev_priv(dev);
960 int rx_work_or_err;
961 int work_done = 0;
962
963 if (!irqstatus)
964 goto end;
965
966 /* Errata workaround for issue "Needless activation of MRAF irq"
967 * During frame reception while the MCAN is in Error Passive state
968 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
969 * it may happen that MCAN_IR.MRAF is set although there was no
970 * Message RAM access failure.
971 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
972 * The Message RAM Access Failure interrupt routine needs to check
973 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
974 * In this case, reset MCAN_IR.MRAF. No further action is required.
975 */
976 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
977 m_can_read(cdev, reg: M_CAN_ECR) & ECR_RP) {
978 struct can_berr_counter bec;
979
980 __m_can_get_berr_counter(dev, bec: &bec);
981 if (bec.rxerr == 127) {
982 m_can_write(cdev, reg: M_CAN_IR, IR_MRAF);
983 irqstatus &= ~IR_MRAF;
984 }
985 }
986
987 if (irqstatus & IR_ERR_STATE)
988 work_done += m_can_handle_state_errors(dev,
989 psr: m_can_read(cdev, reg: M_CAN_PSR));
990
991 if (irqstatus & IR_ERR_BUS_30X)
992 work_done += m_can_handle_bus_errors(dev, irqstatus,
993 psr: m_can_read(cdev, reg: M_CAN_PSR));
994
995 if (irqstatus & IR_RF0N) {
996 rx_work_or_err = m_can_do_rx_poll(dev, quota: (quota - work_done));
997 if (rx_work_or_err < 0)
998 return rx_work_or_err;
999
1000 work_done += rx_work_or_err;
1001 }
1002end:
1003 return work_done;
1004}
1005
1006static int m_can_rx_peripheral(struct net_device *dev, u32 irqstatus)
1007{
1008 struct m_can_classdev *cdev = netdev_priv(dev);
1009 int work_done;
1010
1011 work_done = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, irqstatus);
1012
1013 /* Don't re-enable interrupts if the driver had a fatal error
1014 * (e.g., FIFO read failure).
1015 */
1016 if (work_done < 0)
1017 m_can_disable_all_interrupts(cdev);
1018
1019 return work_done;
1020}
1021
1022static int m_can_poll(struct napi_struct *napi, int quota)
1023{
1024 struct net_device *dev = napi->dev;
1025 struct m_can_classdev *cdev = netdev_priv(dev);
1026 int work_done;
1027 u32 irqstatus;
1028
1029 irqstatus = cdev->irqstatus | m_can_read(cdev, reg: M_CAN_IR);
1030
1031 work_done = m_can_rx_handler(dev, quota, irqstatus);
1032
1033 /* Don't re-enable interrupts if the driver had a fatal error
1034 * (e.g., FIFO read failure).
1035 */
1036 if (work_done >= 0 && work_done < quota) {
1037 napi_complete_done(n: napi, work_done);
1038 m_can_enable_all_interrupts(cdev);
1039 }
1040
1041 return work_done;
1042}
1043
1044/* Echo tx skb and update net stats. Peripherals use rx-offload for
1045 * echo. timestamp is used for peripherals to ensure correct ordering
1046 * by rx-offload, and is ignored for non-peripherals.
1047 */
1048static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1049 unsigned int msg_mark, u32 timestamp)
1050{
1051 struct net_device *dev = cdev->net;
1052 struct net_device_stats *stats = &dev->stats;
1053 unsigned int frame_len;
1054
1055 if (cdev->is_peripheral)
1056 stats->tx_bytes +=
1057 can_rx_offload_get_echo_skb_queue_timestamp(offload: &cdev->offload,
1058 idx: msg_mark,
1059 timestamp,
1060 frame_len_ptr: &frame_len);
1061 else
1062 stats->tx_bytes += can_get_echo_skb(dev, idx: msg_mark, frame_len_ptr: &frame_len);
1063
1064 stats->tx_packets++;
1065
1066 return frame_len;
1067}
1068
1069static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1070 unsigned int transmitted_frame_len)
1071{
1072 unsigned long irqflags;
1073
1074 netdev_completed_queue(dev: cdev->net, pkts: transmitted, bytes: transmitted_frame_len);
1075
1076 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1077 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1078 netif_wake_queue(dev: cdev->net);
1079 cdev->tx_fifo_in_flight -= transmitted;
1080 spin_unlock_irqrestore(lock: &cdev->tx_handling_spinlock, flags: irqflags);
1081}
1082
1083static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1084{
1085 unsigned long irqflags;
1086 int tx_fifo_in_flight;
1087
1088 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1089 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1090 if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1091 netif_stop_queue(dev: cdev->net);
1092 if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1093 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1094 spin_unlock_irqrestore(lock: &cdev->tx_handling_spinlock, flags: irqflags);
1095 return NETDEV_TX_BUSY;
1096 }
1097 }
1098 cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1099 spin_unlock_irqrestore(lock: &cdev->tx_handling_spinlock, flags: irqflags);
1100
1101 return NETDEV_TX_OK;
1102}
1103
1104static int m_can_echo_tx_event(struct net_device *dev)
1105{
1106 u32 txe_count = 0;
1107 u32 m_can_txefs;
1108 u32 fgi = 0;
1109 int ack_fgi = -1;
1110 int i = 0;
1111 int err = 0;
1112 unsigned int msg_mark;
1113 int processed = 0;
1114 unsigned int processed_frame_len = 0;
1115
1116 struct m_can_classdev *cdev = netdev_priv(dev);
1117
1118 /* read tx event fifo status */
1119 m_can_txefs = m_can_read(cdev, reg: M_CAN_TXEFS);
1120
1121 /* Get Tx Event fifo element count */
1122 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1123 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1124
1125 /* Get and process all sent elements */
1126 for (i = 0; i < txe_count; i++) {
1127 u32 txe, timestamp = 0;
1128
1129 /* get message marker, timestamp */
1130 err = m_can_txe_fifo_read(cdev, fgi, offset: 4, val: &txe);
1131 if (err) {
1132 netdev_err(dev, format: "TXE FIFO read returned %d\n", err);
1133 break;
1134 }
1135
1136 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1137 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1138
1139 ack_fgi = fgi;
1140 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1141
1142 /* update stats */
1143 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1144 timestamp);
1145
1146 ++processed;
1147 }
1148
1149 if (ack_fgi != -1)
1150 m_can_write(cdev, reg: M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1151 ack_fgi));
1152
1153 m_can_finish_tx(cdev, transmitted: processed, transmitted_frame_len: processed_frame_len);
1154
1155 return err;
1156}
1157
1158static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1159{
1160 u32 new_interrupts = cdev->active_interrupts;
1161 bool enable_rx_timer = false;
1162 bool enable_tx_timer = false;
1163
1164 if (!cdev->net->irq)
1165 return;
1166
1167 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1168 enable_rx_timer = true;
1169 new_interrupts &= ~IR_RF0N;
1170 }
1171 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1172 enable_tx_timer = true;
1173 new_interrupts &= ~IR_TEFN;
1174 }
1175 if (!enable_rx_timer && !hrtimer_active(timer: &cdev->hrtimer))
1176 new_interrupts |= IR_RF0N;
1177 if (!enable_tx_timer && !hrtimer_active(timer: &cdev->hrtimer))
1178 new_interrupts |= IR_TEFN;
1179
1180 m_can_interrupt_enable(cdev, interrupts: new_interrupts);
1181 if (enable_rx_timer | enable_tx_timer)
1182 hrtimer_start(timer: &cdev->hrtimer, tim: cdev->irq_timer_wait,
1183 mode: HRTIMER_MODE_REL);
1184}
1185
1186static irqreturn_t m_can_isr(int irq, void *dev_id)
1187{
1188 struct net_device *dev = (struct net_device *)dev_id;
1189 struct m_can_classdev *cdev = netdev_priv(dev);
1190 u32 ir;
1191
1192 if (pm_runtime_suspended(dev: cdev->dev)) {
1193 m_can_coalescing_disable(cdev);
1194 return IRQ_NONE;
1195 }
1196
1197 ir = m_can_read(cdev, reg: M_CAN_IR);
1198 m_can_coalescing_update(cdev, ir);
1199 if (!ir)
1200 return IRQ_NONE;
1201
1202 /* ACK all irqs */
1203 m_can_write(cdev, reg: M_CAN_IR, val: ir);
1204
1205 if (cdev->ops->clear_interrupts)
1206 cdev->ops->clear_interrupts(cdev);
1207
1208 /* schedule NAPI in case of
1209 * - rx IRQ
1210 * - state change IRQ
1211 * - bus error IRQ and bus error reporting
1212 */
1213 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1214 cdev->irqstatus = ir;
1215 if (!cdev->is_peripheral) {
1216 m_can_disable_all_interrupts(cdev);
1217 napi_schedule(n: &cdev->napi);
1218 } else {
1219 int pkts;
1220
1221 pkts = m_can_rx_peripheral(dev, irqstatus: ir);
1222 if (pkts < 0)
1223 goto out_fail;
1224 }
1225 }
1226
1227 if (cdev->version == 30) {
1228 if (ir & IR_TC) {
1229 /* Transmission Complete Interrupt*/
1230 u32 timestamp = 0;
1231 unsigned int frame_len;
1232
1233 if (cdev->is_peripheral)
1234 timestamp = m_can_get_timestamp(cdev);
1235 frame_len = m_can_tx_update_stats(cdev, msg_mark: 0, timestamp);
1236 m_can_finish_tx(cdev, transmitted: 1, transmitted_frame_len: frame_len);
1237 }
1238 } else {
1239 if (ir & (IR_TEFN | IR_TEFW)) {
1240 /* New TX FIFO Element arrived */
1241 if (m_can_echo_tx_event(dev) != 0)
1242 goto out_fail;
1243 }
1244 }
1245
1246 if (cdev->is_peripheral)
1247 can_rx_offload_threaded_irq_finish(offload: &cdev->offload);
1248
1249 return IRQ_HANDLED;
1250
1251out_fail:
1252 m_can_disable_all_interrupts(cdev);
1253 return IRQ_HANDLED;
1254}
1255
1256static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1257{
1258 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1259
1260 irq_wake_thread(irq: cdev->net->irq, dev_id: cdev->net);
1261
1262 return HRTIMER_NORESTART;
1263}
1264
1265static const struct can_bittiming_const m_can_bittiming_const_30X = {
1266 .name = KBUILD_MODNAME,
1267 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1268 .tseg1_max = 64,
1269 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1270 .tseg2_max = 16,
1271 .sjw_max = 16,
1272 .brp_min = 1,
1273 .brp_max = 1024,
1274 .brp_inc = 1,
1275};
1276
1277static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1278 .name = KBUILD_MODNAME,
1279 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1280 .tseg1_max = 16,
1281 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1282 .tseg2_max = 8,
1283 .sjw_max = 4,
1284 .brp_min = 1,
1285 .brp_max = 32,
1286 .brp_inc = 1,
1287};
1288
1289static const struct can_bittiming_const m_can_bittiming_const_31X = {
1290 .name = KBUILD_MODNAME,
1291 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1292 .tseg1_max = 256,
1293 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1294 .tseg2_max = 128,
1295 .sjw_max = 128,
1296 .brp_min = 1,
1297 .brp_max = 512,
1298 .brp_inc = 1,
1299};
1300
1301static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1302 .name = KBUILD_MODNAME,
1303 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1304 .tseg1_max = 32,
1305 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1306 .tseg2_max = 16,
1307 .sjw_max = 16,
1308 .brp_min = 1,
1309 .brp_max = 32,
1310 .brp_inc = 1,
1311};
1312
1313static int m_can_set_bittiming(struct net_device *dev)
1314{
1315 struct m_can_classdev *cdev = netdev_priv(dev);
1316 const struct can_bittiming *bt = &cdev->can.bittiming;
1317 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1318 u16 brp, sjw, tseg1, tseg2;
1319 u32 reg_btp;
1320
1321 brp = bt->brp - 1;
1322 sjw = bt->sjw - 1;
1323 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1324 tseg2 = bt->phase_seg2 - 1;
1325 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1326 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1327 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1328 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1329 m_can_write(cdev, reg: M_CAN_NBTP, val: reg_btp);
1330
1331 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1332 reg_btp = 0;
1333 brp = dbt->brp - 1;
1334 sjw = dbt->sjw - 1;
1335 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1336 tseg2 = dbt->phase_seg2 - 1;
1337
1338 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1339 * This is mentioned in the "Bit Time Requirements for CAN FD"
1340 * paper presented at the International CAN Conference 2013
1341 */
1342 if (dbt->bitrate > 2500000) {
1343 u32 tdco, ssp;
1344
1345 /* Use the same value of secondary sampling point
1346 * as the data sampling point
1347 */
1348 ssp = dbt->sample_point;
1349
1350 /* Equation based on Bosch's M_CAN User Manual's
1351 * Transmitter Delay Compensation Section
1352 */
1353 tdco = (cdev->can.clock.freq / 1000) *
1354 ssp / dbt->bitrate;
1355
1356 /* Max valid TDCO value is 127 */
1357 if (tdco > 127) {
1358 netdev_warn(dev, format: "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1359 tdco);
1360 tdco = 127;
1361 }
1362
1363 reg_btp |= DBTP_TDC;
1364 m_can_write(cdev, reg: M_CAN_TDCR,
1365 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1366 }
1367
1368 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1369 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1370 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1371 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1372
1373 m_can_write(cdev, reg: M_CAN_DBTP, val: reg_btp);
1374 }
1375
1376 return 0;
1377}
1378
1379/* Configure M_CAN chip:
1380 * - set rx buffer/fifo element size
1381 * - configure rx fifo
1382 * - accept non-matching frame into fifo 0
1383 * - configure tx buffer
1384 * - >= v3.1.x: TX FIFO is used
1385 * - configure mode
1386 * - setup bittiming
1387 * - configure timestamp generation
1388 */
1389static int m_can_chip_config(struct net_device *dev)
1390{
1391 struct m_can_classdev *cdev = netdev_priv(dev);
1392 u32 interrupts = IR_ALL_INT;
1393 u32 cccr, test;
1394 int err;
1395
1396 err = m_can_init_ram(priv: cdev);
1397 if (err) {
1398 dev_err(cdev->dev, "Message RAM configuration failed\n");
1399 return err;
1400 }
1401
1402 /* Disable unused interrupts */
1403 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1404 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F);
1405
1406 m_can_config_endisable(cdev, enable: true);
1407
1408 /* RX Buffer/FIFO Element Size 64 bytes data field */
1409 m_can_write(cdev, reg: M_CAN_RXESC,
1410 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1411 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1412 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1413
1414 /* Accept Non-matching Frames Into FIFO 0 */
1415 m_can_write(cdev, reg: M_CAN_GFC, val: 0x0);
1416
1417 if (cdev->version == 30) {
1418 /* only support one Tx Buffer currently */
1419 m_can_write(cdev, reg: M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1420 cdev->mcfg[MRAM_TXB].off);
1421 } else {
1422 /* TX FIFO is used for newer IP Core versions */
1423 m_can_write(cdev, reg: M_CAN_TXBC,
1424 FIELD_PREP(TXBC_TFQS_MASK,
1425 cdev->mcfg[MRAM_TXB].num) |
1426 cdev->mcfg[MRAM_TXB].off);
1427 }
1428
1429 /* support 64 bytes payload */
1430 m_can_write(cdev, reg: M_CAN_TXESC,
1431 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1432
1433 /* TX Event FIFO */
1434 if (cdev->version == 30) {
1435 m_can_write(cdev, reg: M_CAN_TXEFC,
1436 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1437 cdev->mcfg[MRAM_TXE].off);
1438 } else {
1439 /* Full TX Event FIFO is used */
1440 m_can_write(cdev, reg: M_CAN_TXEFC,
1441 FIELD_PREP(TXEFC_EFWM_MASK,
1442 cdev->tx_max_coalesced_frames_irq) |
1443 FIELD_PREP(TXEFC_EFS_MASK,
1444 cdev->mcfg[MRAM_TXE].num) |
1445 cdev->mcfg[MRAM_TXE].off);
1446 }
1447
1448 /* rx fifo configuration, blocking mode, fifo size 1 */
1449 m_can_write(cdev, reg: M_CAN_RXF0C,
1450 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1451 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1452 cdev->mcfg[MRAM_RXF0].off);
1453
1454 m_can_write(cdev, reg: M_CAN_RXF1C,
1455 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1456 cdev->mcfg[MRAM_RXF1].off);
1457
1458 cccr = m_can_read(cdev, reg: M_CAN_CCCR);
1459 test = m_can_read(cdev, reg: M_CAN_TEST);
1460 test &= ~TEST_LBCK;
1461 if (cdev->version == 30) {
1462 /* Version 3.0.x */
1463
1464 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1465 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1466 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1467
1468 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1469 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1470
1471 } else {
1472 /* Version 3.1.x or 3.2.x */
1473 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1474 CCCR_NISO | CCCR_DAR);
1475
1476 /* Only 3.2.x has NISO Bit implemented */
1477 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1478 cccr |= CCCR_NISO;
1479
1480 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1481 cccr |= (CCCR_BRSE | CCCR_FDOE);
1482 }
1483
1484 /* Loopback Mode */
1485 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1486 cccr |= CCCR_TEST | CCCR_MON;
1487 test |= TEST_LBCK;
1488 }
1489
1490 /* Enable Monitoring (all versions) */
1491 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1492 cccr |= CCCR_MON;
1493
1494 /* Disable Auto Retransmission (all versions) */
1495 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1496 cccr |= CCCR_DAR;
1497
1498 /* Write config */
1499 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr);
1500 m_can_write(cdev, reg: M_CAN_TEST, val: test);
1501
1502 /* Enable interrupts */
1503 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1504 if (cdev->version == 30)
1505 interrupts &= ~(IR_ERR_LEC_30X);
1506 else
1507 interrupts &= ~(IR_ERR_LEC_31X);
1508 }
1509 m_can_interrupt_enable(cdev, interrupts);
1510
1511 /* route all interrupts to INT0 */
1512 m_can_write(cdev, reg: M_CAN_ILS, ILS_ALL_INT0);
1513
1514 /* set bittiming params */
1515 m_can_set_bittiming(dev);
1516
1517 /* enable internal timestamp generation, with a prescaler of 16. The
1518 * prescaler is applied to the nominal bit timing
1519 */
1520 m_can_write(cdev, reg: M_CAN_TSCC,
1521 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1522 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1523
1524 m_can_config_endisable(cdev, enable: false);
1525
1526 if (cdev->ops->init)
1527 cdev->ops->init(cdev);
1528
1529 return 0;
1530}
1531
1532static int m_can_start(struct net_device *dev)
1533{
1534 struct m_can_classdev *cdev = netdev_priv(dev);
1535 int ret;
1536
1537 /* basic m_can configuration */
1538 ret = m_can_chip_config(dev);
1539 if (ret)
1540 return ret;
1541
1542 netdev_queue_set_dql_min_limit(dev_queue: netdev_get_tx_queue(dev: cdev->net, index: 0),
1543 min_limit: cdev->tx_max_coalesced_frames);
1544
1545 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1546
1547 m_can_enable_all_interrupts(cdev);
1548
1549 if (cdev->version > 30)
1550 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1551 m_can_read(cdev, M_CAN_TXFQS));
1552
1553 return 0;
1554}
1555
1556static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1557{
1558 switch (mode) {
1559 case CAN_MODE_START:
1560 m_can_clean(net: dev);
1561 m_can_start(dev);
1562 netif_wake_queue(dev);
1563 break;
1564 default:
1565 return -EOPNOTSUPP;
1566 }
1567
1568 return 0;
1569}
1570
1571/* Checks core release number of M_CAN
1572 * returns 0 if an unsupported device is detected
1573 * else it returns the release and step coded as:
1574 * return value = 10 * <release> + 1 * <step>
1575 */
1576static int m_can_check_core_release(struct m_can_classdev *cdev)
1577{
1578 u32 crel_reg;
1579 u8 rel;
1580 u8 step;
1581 int res;
1582
1583 /* Read Core Release Version and split into version number
1584 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1585 */
1586 crel_reg = m_can_read(cdev, reg: M_CAN_CREL);
1587 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1588 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1589
1590 if (rel == 3) {
1591 /* M_CAN v3.x.y: create return value */
1592 res = 30 + step;
1593 } else {
1594 /* Unsupported M_CAN version */
1595 res = 0;
1596 }
1597
1598 return res;
1599}
1600
1601/* Selectable Non ISO support only in version 3.2.x
1602 * This function checks if the bit is writable.
1603 */
1604static bool m_can_niso_supported(struct m_can_classdev *cdev)
1605{
1606 u32 cccr_reg, cccr_poll = 0;
1607 int niso_timeout = -ETIMEDOUT;
1608 int i;
1609
1610 m_can_config_endisable(cdev, enable: true);
1611 cccr_reg = m_can_read(cdev, reg: M_CAN_CCCR);
1612 cccr_reg |= CCCR_NISO;
1613 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr_reg);
1614
1615 for (i = 0; i <= 10; i++) {
1616 cccr_poll = m_can_read(cdev, reg: M_CAN_CCCR);
1617 if (cccr_poll == cccr_reg) {
1618 niso_timeout = 0;
1619 break;
1620 }
1621
1622 usleep_range(min: 1, max: 5);
1623 }
1624
1625 /* Clear NISO */
1626 cccr_reg &= ~(CCCR_NISO);
1627 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr_reg);
1628
1629 m_can_config_endisable(cdev, enable: false);
1630
1631 /* return false if time out (-ETIMEDOUT), else return true */
1632 return !niso_timeout;
1633}
1634
1635static int m_can_dev_setup(struct m_can_classdev *cdev)
1636{
1637 struct net_device *dev = cdev->net;
1638 int m_can_version, err;
1639
1640 m_can_version = m_can_check_core_release(cdev);
1641 /* return if unsupported version */
1642 if (!m_can_version) {
1643 dev_err(cdev->dev, "Unsupported version number: %2d",
1644 m_can_version);
1645 return -EINVAL;
1646 }
1647
1648 if (!cdev->is_peripheral)
1649 netif_napi_add(dev, napi: &cdev->napi, poll: m_can_poll);
1650
1651 /* Shared properties of all M_CAN versions */
1652 cdev->version = m_can_version;
1653 cdev->can.do_set_mode = m_can_set_mode;
1654 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1655
1656 /* Set M_CAN supported operations */
1657 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1658 CAN_CTRLMODE_LISTENONLY |
1659 CAN_CTRLMODE_BERR_REPORTING |
1660 CAN_CTRLMODE_FD |
1661 CAN_CTRLMODE_ONE_SHOT;
1662
1663 /* Set properties depending on M_CAN version */
1664 switch (cdev->version) {
1665 case 30:
1666 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1667 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1668 if (err)
1669 return err;
1670 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1671 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1672 break;
1673 case 31:
1674 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1675 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1676 if (err)
1677 return err;
1678 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1679 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1680 break;
1681 case 32:
1682 case 33:
1683 /* Support both MCAN version v3.2.x and v3.3.0 */
1684 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1685 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1686
1687 cdev->can.ctrlmode_supported |=
1688 (m_can_niso_supported(cdev) ?
1689 CAN_CTRLMODE_FD_NON_ISO : 0);
1690 break;
1691 default:
1692 dev_err(cdev->dev, "Unsupported version number: %2d",
1693 cdev->version);
1694 return -EINVAL;
1695 }
1696
1697 if (cdev->ops->init)
1698 cdev->ops->init(cdev);
1699
1700 return 0;
1701}
1702
1703static void m_can_stop(struct net_device *dev)
1704{
1705 struct m_can_classdev *cdev = netdev_priv(dev);
1706
1707 /* disable all interrupts */
1708 m_can_disable_all_interrupts(cdev);
1709
1710 /* Set init mode to disengage from the network */
1711 m_can_config_endisable(cdev, enable: true);
1712
1713 /* set the state as STOPPED */
1714 cdev->can.state = CAN_STATE_STOPPED;
1715}
1716
1717static int m_can_close(struct net_device *dev)
1718{
1719 struct m_can_classdev *cdev = netdev_priv(dev);
1720
1721 netif_stop_queue(dev);
1722
1723 if (!cdev->is_peripheral)
1724 napi_disable(n: &cdev->napi);
1725
1726 m_can_stop(dev);
1727 m_can_clk_stop(cdev);
1728 free_irq(dev->irq, dev);
1729
1730 m_can_clean(net: dev);
1731
1732 if (cdev->is_peripheral) {
1733 destroy_workqueue(wq: cdev->tx_wq);
1734 cdev->tx_wq = NULL;
1735 can_rx_offload_disable(offload: &cdev->offload);
1736 }
1737
1738 close_candev(dev);
1739
1740 phy_power_off(phy: cdev->transceiver);
1741
1742 return 0;
1743}
1744
1745static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1746 struct sk_buff *skb)
1747{
1748 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1749 u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1750 struct m_can_fifo_element fifo_element;
1751 struct net_device *dev = cdev->net;
1752 u32 cccr, fdflags;
1753 int err;
1754 u32 putidx;
1755 unsigned int frame_len = can_skb_get_frame_len(skb);
1756
1757 /* Generate ID field for TX buffer Element */
1758 /* Common to all supported M_CAN versions */
1759 if (cf->can_id & CAN_EFF_FLAG) {
1760 fifo_element.id = cf->can_id & CAN_EFF_MASK;
1761 fifo_element.id |= TX_BUF_XTD;
1762 } else {
1763 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1764 }
1765
1766 if (cf->can_id & CAN_RTR_FLAG)
1767 fifo_element.id |= TX_BUF_RTR;
1768
1769 if (cdev->version == 30) {
1770 netif_stop_queue(dev);
1771
1772 fifo_element.dlc = can_fd_len2dlc(len: cf->len) << 16;
1773
1774 /* Write the frame ID, DLC, and payload to the FIFO element. */
1775 err = m_can_fifo_write(cdev, fpi: 0, M_CAN_FIFO_ID, val: &fifo_element, val_count: 2);
1776 if (err)
1777 goto out_fail;
1778
1779 err = m_can_fifo_write(cdev, fpi: 0, M_CAN_FIFO_DATA,
1780 val: cf->data, val_count: len_padded);
1781 if (err)
1782 goto out_fail;
1783
1784 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1785 cccr = m_can_read(cdev, reg: M_CAN_CCCR);
1786 cccr &= ~CCCR_CMR_MASK;
1787 if (can_is_canfd_skb(skb)) {
1788 if (cf->flags & CANFD_BRS)
1789 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1790 CCCR_CMR_CANFD_BRS);
1791 else
1792 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1793 CCCR_CMR_CANFD);
1794 } else {
1795 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1796 }
1797 m_can_write(cdev, reg: M_CAN_CCCR, val: cccr);
1798 }
1799 m_can_write(cdev, reg: M_CAN_TXBTIE, val: 0x1);
1800
1801 can_put_echo_skb(skb, dev, idx: 0, frame_len);
1802
1803 m_can_write(cdev, reg: M_CAN_TXBAR, val: 0x1);
1804 /* End of xmit function for version 3.0.x */
1805 } else {
1806 /* Transmit routine for version >= v3.1.x */
1807
1808 /* get put index for frame */
1809 putidx = cdev->tx_fifo_putidx;
1810
1811 /* Construct DLC Field, with CAN-FD configuration.
1812 * Use the put index of the fifo as the message marker,
1813 * used in the TX interrupt for sending the correct echo frame.
1814 */
1815
1816 /* get CAN FD configuration of frame */
1817 fdflags = 0;
1818 if (can_is_canfd_skb(skb)) {
1819 fdflags |= TX_BUF_FDF;
1820 if (cf->flags & CANFD_BRS)
1821 fdflags |= TX_BUF_BRS;
1822 }
1823
1824 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1825 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1826 fdflags | TX_BUF_EFC;
1827
1828 memcpy_and_pad(dest: fifo_element.data, CANFD_MAX_DLEN, src: &cf->data,
1829 count: cf->len, pad: 0);
1830
1831 err = m_can_fifo_write(cdev, fpi: putidx, M_CAN_FIFO_ID,
1832 val: &fifo_element, val_count: 2 + len_padded);
1833 if (err)
1834 goto out_fail;
1835
1836 /* Push loopback echo.
1837 * Will be looped back on TX interrupt based on message marker
1838 */
1839 can_put_echo_skb(skb, dev, idx: putidx, frame_len);
1840
1841 if (cdev->is_peripheral) {
1842 /* Delay enabling TX FIFO element */
1843 cdev->tx_peripheral_submit |= BIT(putidx);
1844 } else {
1845 /* Enable TX FIFO element to start transfer */
1846 m_can_write(cdev, reg: M_CAN_TXBAR, BIT(putidx));
1847 }
1848 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1849 0 : cdev->tx_fifo_putidx);
1850 }
1851
1852 return NETDEV_TX_OK;
1853
1854out_fail:
1855 netdev_err(dev, format: "FIFO write returned %d\n", err);
1856 m_can_disable_all_interrupts(cdev);
1857 return NETDEV_TX_BUSY;
1858}
1859
1860static void m_can_tx_submit(struct m_can_classdev *cdev)
1861{
1862 if (cdev->version == 30)
1863 return;
1864 if (!cdev->is_peripheral)
1865 return;
1866
1867 m_can_write(cdev, reg: M_CAN_TXBAR, val: cdev->tx_peripheral_submit);
1868 cdev->tx_peripheral_submit = 0;
1869}
1870
1871static void m_can_tx_work_queue(struct work_struct *ws)
1872{
1873 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1874 struct m_can_classdev *cdev = op->cdev;
1875 struct sk_buff *skb = op->skb;
1876
1877 op->skb = NULL;
1878 m_can_tx_handler(cdev, skb);
1879 if (op->submit)
1880 m_can_tx_submit(cdev);
1881}
1882
1883static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1884 bool submit)
1885{
1886 cdev->tx_ops[cdev->next_tx_op].skb = skb;
1887 cdev->tx_ops[cdev->next_tx_op].submit = submit;
1888 queue_work(wq: cdev->tx_wq, work: &cdev->tx_ops[cdev->next_tx_op].work);
1889
1890 ++cdev->next_tx_op;
1891 if (cdev->next_tx_op >= cdev->tx_fifo_size)
1892 cdev->next_tx_op = 0;
1893}
1894
1895static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1896 struct sk_buff *skb)
1897{
1898 bool submit;
1899
1900 ++cdev->nr_txs_without_submit;
1901 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1902 !netdev_xmit_more()) {
1903 cdev->nr_txs_without_submit = 0;
1904 submit = true;
1905 } else {
1906 submit = false;
1907 }
1908 m_can_tx_queue_skb(cdev, skb, submit);
1909
1910 return NETDEV_TX_OK;
1911}
1912
1913static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1914 struct net_device *dev)
1915{
1916 struct m_can_classdev *cdev = netdev_priv(dev);
1917 unsigned int frame_len;
1918 netdev_tx_t ret;
1919
1920 if (can_dev_dropped_skb(dev, skb))
1921 return NETDEV_TX_OK;
1922
1923 frame_len = can_skb_get_frame_len(skb);
1924
1925 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1926 m_can_clean(net: cdev->net);
1927 return NETDEV_TX_OK;
1928 }
1929
1930 ret = m_can_start_tx(cdev);
1931 if (ret != NETDEV_TX_OK)
1932 return ret;
1933
1934 netdev_sent_queue(dev, bytes: frame_len);
1935
1936 if (cdev->is_peripheral)
1937 ret = m_can_start_peripheral_xmit(cdev, skb);
1938 else
1939 ret = m_can_tx_handler(cdev, skb);
1940
1941 if (ret != NETDEV_TX_OK)
1942 netdev_completed_queue(dev, pkts: 1, bytes: frame_len);
1943
1944 return ret;
1945}
1946
1947static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
1948{
1949 struct m_can_classdev *cdev = container_of(timer, struct
1950 m_can_classdev, hrtimer);
1951
1952 m_can_isr(irq: 0, dev_id: cdev->net);
1953
1954 hrtimer_forward_now(timer, interval: ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
1955
1956 return HRTIMER_RESTART;
1957}
1958
1959static int m_can_open(struct net_device *dev)
1960{
1961 struct m_can_classdev *cdev = netdev_priv(dev);
1962 int err;
1963
1964 err = phy_power_on(phy: cdev->transceiver);
1965 if (err)
1966 return err;
1967
1968 err = m_can_clk_start(cdev);
1969 if (err)
1970 goto out_phy_power_off;
1971
1972 /* open the can device */
1973 err = open_candev(dev);
1974 if (err) {
1975 netdev_err(dev, format: "failed to open can device\n");
1976 goto exit_disable_clks;
1977 }
1978
1979 if (cdev->is_peripheral)
1980 can_rx_offload_enable(offload: &cdev->offload);
1981
1982 /* register interrupt handler */
1983 if (cdev->is_peripheral) {
1984 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
1985 WQ_FREEZABLE | WQ_MEM_RECLAIM);
1986 if (!cdev->tx_wq) {
1987 err = -ENOMEM;
1988 goto out_wq_fail;
1989 }
1990
1991 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
1992 cdev->tx_ops[i].cdev = cdev;
1993 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
1994 }
1995
1996 err = request_threaded_irq(irq: dev->irq, NULL, thread_fn: m_can_isr,
1997 IRQF_ONESHOT,
1998 name: dev->name, dev);
1999 } else if (dev->irq) {
2000 err = request_irq(irq: dev->irq, handler: m_can_isr, IRQF_SHARED, name: dev->name,
2001 dev);
2002 }
2003
2004 if (err < 0) {
2005 netdev_err(dev, format: "failed to request interrupt\n");
2006 goto exit_irq_fail;
2007 }
2008
2009 /* start the m_can controller */
2010 err = m_can_start(dev);
2011 if (err)
2012 goto exit_irq_fail;
2013
2014 if (!cdev->is_peripheral)
2015 napi_enable(n: &cdev->napi);
2016
2017 netif_start_queue(dev);
2018
2019 return 0;
2020
2021exit_irq_fail:
2022 if (cdev->is_peripheral)
2023 destroy_workqueue(wq: cdev->tx_wq);
2024out_wq_fail:
2025 if (cdev->is_peripheral)
2026 can_rx_offload_disable(offload: &cdev->offload);
2027 close_candev(dev);
2028exit_disable_clks:
2029 m_can_clk_stop(cdev);
2030out_phy_power_off:
2031 phy_power_off(phy: cdev->transceiver);
2032 return err;
2033}
2034
2035static const struct net_device_ops m_can_netdev_ops = {
2036 .ndo_open = m_can_open,
2037 .ndo_stop = m_can_close,
2038 .ndo_start_xmit = m_can_start_xmit,
2039 .ndo_change_mtu = can_change_mtu,
2040};
2041
2042static int m_can_get_coalesce(struct net_device *dev,
2043 struct ethtool_coalesce *ec,
2044 struct kernel_ethtool_coalesce *kec,
2045 struct netlink_ext_ack *ext_ack)
2046{
2047 struct m_can_classdev *cdev = netdev_priv(dev);
2048
2049 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2050 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2051 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2052 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2053 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2054
2055 return 0;
2056}
2057
2058static int m_can_set_coalesce(struct net_device *dev,
2059 struct ethtool_coalesce *ec,
2060 struct kernel_ethtool_coalesce *kec,
2061 struct netlink_ext_ack *ext_ack)
2062{
2063 struct m_can_classdev *cdev = netdev_priv(dev);
2064
2065 if (cdev->can.state != CAN_STATE_STOPPED) {
2066 netdev_err(dev, format: "Device is in use, please shut it down first\n");
2067 return -EBUSY;
2068 }
2069
2070 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2071 netdev_err(dev, format: "rx-frames-irq %u greater than the RX FIFO %u\n",
2072 ec->rx_max_coalesced_frames_irq,
2073 cdev->mcfg[MRAM_RXF0].num);
2074 return -EINVAL;
2075 }
2076 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2077 netdev_err(dev, format: "rx-frames-irq and rx-usecs-irq can only be set together\n");
2078 return -EINVAL;
2079 }
2080 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2081 netdev_err(dev, format: "tx-frames-irq %u greater than the TX event FIFO %u\n",
2082 ec->tx_max_coalesced_frames_irq,
2083 cdev->mcfg[MRAM_TXE].num);
2084 return -EINVAL;
2085 }
2086 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2087 netdev_err(dev, format: "tx-frames-irq %u greater than the TX FIFO %u\n",
2088 ec->tx_max_coalesced_frames_irq,
2089 cdev->mcfg[MRAM_TXB].num);
2090 return -EINVAL;
2091 }
2092 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2093 netdev_err(dev, format: "tx-frames-irq and tx-usecs-irq can only be set together\n");
2094 return -EINVAL;
2095 }
2096 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2097 netdev_err(dev, format: "tx-frames %u greater than the TX event FIFO %u\n",
2098 ec->tx_max_coalesced_frames,
2099 cdev->mcfg[MRAM_TXE].num);
2100 return -EINVAL;
2101 }
2102 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2103 netdev_err(dev, format: "tx-frames %u greater than the TX FIFO %u\n",
2104 ec->tx_max_coalesced_frames,
2105 cdev->mcfg[MRAM_TXB].num);
2106 return -EINVAL;
2107 }
2108 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2109 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2110 netdev_err(dev, format: "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2111 ec->rx_coalesce_usecs_irq,
2112 ec->tx_coalesce_usecs_irq);
2113 return -EINVAL;
2114 }
2115
2116 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2117 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2118 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2119 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2120 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2121
2122 if (cdev->rx_coalesce_usecs_irq)
2123 cdev->irq_timer_wait =
2124 ns_to_ktime(ns: cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2125 else
2126 cdev->irq_timer_wait =
2127 ns_to_ktime(ns: cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2128
2129 return 0;
2130}
2131
2132static const struct ethtool_ops m_can_ethtool_ops = {
2133 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2134 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2135 ETHTOOL_COALESCE_TX_USECS_IRQ |
2136 ETHTOOL_COALESCE_TX_MAX_FRAMES |
2137 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2138 .get_ts_info = ethtool_op_get_ts_info,
2139 .get_coalesce = m_can_get_coalesce,
2140 .set_coalesce = m_can_set_coalesce,
2141};
2142
2143static const struct ethtool_ops m_can_ethtool_ops_polling = {
2144 .get_ts_info = ethtool_op_get_ts_info,
2145};
2146
2147static int register_m_can_dev(struct net_device *dev)
2148{
2149 dev->flags |= IFF_ECHO; /* we support local echo */
2150 dev->netdev_ops = &m_can_netdev_ops;
2151 if (dev->irq)
2152 dev->ethtool_ops = &m_can_ethtool_ops;
2153 else
2154 dev->ethtool_ops = &m_can_ethtool_ops_polling;
2155
2156 return register_candev(dev);
2157}
2158
2159int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2160{
2161 u32 total_size;
2162
2163 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2164 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2165 if (total_size > mram_max_size) {
2166 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2167 total_size, mram_max_size);
2168 return -EINVAL;
2169 }
2170
2171 return 0;
2172}
2173EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2174
2175static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2176 const u32 *mram_config_vals)
2177{
2178 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2179 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2180 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2181 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2182 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2183 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2184 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2185 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2186 FIELD_MAX(RXFC_FS_MASK);
2187 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2188 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2189 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2190 FIELD_MAX(RXFC_FS_MASK);
2191 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2192 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2193 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2194 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2195 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2196 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2197 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2198 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2199 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2200 FIELD_MAX(TXBC_NDTB_MASK);
2201
2202 dev_dbg(cdev->dev,
2203 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2204 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2205 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2206 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2207 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2208 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2209 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2210 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2211}
2212
2213int m_can_init_ram(struct m_can_classdev *cdev)
2214{
2215 int end, i, start;
2216 int err = 0;
2217
2218 /* initialize the entire Message RAM in use to avoid possible
2219 * ECC/parity checksum errors when reading an uninitialized buffer
2220 */
2221 start = cdev->mcfg[MRAM_SIDF].off;
2222 end = cdev->mcfg[MRAM_TXB].off +
2223 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2224
2225 for (i = start; i < end; i += 4) {
2226 err = m_can_fifo_write_no_off(cdev, fpi: i, val: 0x0);
2227 if (err)
2228 break;
2229 }
2230
2231 return err;
2232}
2233EXPORT_SYMBOL_GPL(m_can_init_ram);
2234
2235int m_can_class_get_clocks(struct m_can_classdev *cdev)
2236{
2237 int ret = 0;
2238
2239 cdev->hclk = devm_clk_get(dev: cdev->dev, id: "hclk");
2240 cdev->cclk = devm_clk_get(dev: cdev->dev, id: "cclk");
2241
2242 if (IS_ERR(ptr: cdev->hclk) || IS_ERR(ptr: cdev->cclk)) {
2243 dev_err(cdev->dev, "no clock found\n");
2244 ret = -ENODEV;
2245 }
2246
2247 return ret;
2248}
2249EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2250
2251struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2252 int sizeof_priv)
2253{
2254 struct m_can_classdev *class_dev = NULL;
2255 u32 mram_config_vals[MRAM_CFG_LEN];
2256 struct net_device *net_dev;
2257 u32 tx_fifo_size;
2258 int ret;
2259
2260 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2261 propname: "bosch,mram-cfg",
2262 val: mram_config_vals,
2263 nval: sizeof(mram_config_vals) / 4);
2264 if (ret) {
2265 dev_err(dev, "Could not get Message RAM configuration.");
2266 goto out;
2267 }
2268
2269 /* Get TX FIFO size
2270 * Defines the total amount of echo buffers for loopback
2271 */
2272 tx_fifo_size = mram_config_vals[7];
2273
2274 /* allocate the m_can device */
2275 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2276 if (!net_dev) {
2277 dev_err(dev, "Failed to allocate CAN device");
2278 goto out;
2279 }
2280
2281 class_dev = netdev_priv(dev: net_dev);
2282 class_dev->net = net_dev;
2283 class_dev->dev = dev;
2284 SET_NETDEV_DEV(net_dev, dev);
2285
2286 m_can_of_parse_mram(cdev: class_dev, mram_config_vals);
2287out:
2288 return class_dev;
2289}
2290EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2291
2292void m_can_class_free_dev(struct net_device *net)
2293{
2294 free_candev(dev: net);
2295}
2296EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2297
2298int m_can_class_register(struct m_can_classdev *cdev)
2299{
2300 int ret;
2301
2302 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2303 cdev->mcfg[MRAM_TXE].num));
2304 if (cdev->is_peripheral) {
2305 cdev->tx_ops =
2306 devm_kzalloc(dev: cdev->dev,
2307 size: cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2308 GFP_KERNEL);
2309 if (!cdev->tx_ops) {
2310 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2311 return -ENOMEM;
2312 }
2313 }
2314
2315 ret = m_can_clk_start(cdev);
2316 if (ret)
2317 return ret;
2318
2319 if (cdev->is_peripheral) {
2320 ret = can_rx_offload_add_manual(dev: cdev->net, offload: &cdev->offload,
2321 NAPI_POLL_WEIGHT);
2322 if (ret)
2323 goto clk_disable;
2324 }
2325
2326 if (!cdev->net->irq) {
2327 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2328 hrtimer_init(timer: &cdev->hrtimer, CLOCK_MONOTONIC,
2329 mode: HRTIMER_MODE_REL_PINNED);
2330 cdev->hrtimer.function = &hrtimer_callback;
2331 } else {
2332 hrtimer_init(timer: &cdev->hrtimer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
2333 cdev->hrtimer.function = m_can_coalescing_timer;
2334 }
2335
2336 ret = m_can_dev_setup(cdev);
2337 if (ret)
2338 goto rx_offload_del;
2339
2340 ret = register_m_can_dev(dev: cdev->net);
2341 if (ret) {
2342 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2343 cdev->net->name, ret);
2344 goto rx_offload_del;
2345 }
2346
2347 of_can_transceiver(dev: cdev->net);
2348
2349 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2350 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2351
2352 /* Probe finished
2353 * Stop clocks. They will be reactivated once the M_CAN device is opened
2354 */
2355 m_can_clk_stop(cdev);
2356
2357 return 0;
2358
2359rx_offload_del:
2360 if (cdev->is_peripheral)
2361 can_rx_offload_del(offload: &cdev->offload);
2362clk_disable:
2363 m_can_clk_stop(cdev);
2364
2365 return ret;
2366}
2367EXPORT_SYMBOL_GPL(m_can_class_register);
2368
2369void m_can_class_unregister(struct m_can_classdev *cdev)
2370{
2371 if (cdev->is_peripheral)
2372 can_rx_offload_del(offload: &cdev->offload);
2373 unregister_candev(dev: cdev->net);
2374}
2375EXPORT_SYMBOL_GPL(m_can_class_unregister);
2376
2377int m_can_class_suspend(struct device *dev)
2378{
2379 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2380 struct net_device *ndev = cdev->net;
2381
2382 if (netif_running(dev: ndev)) {
2383 netif_stop_queue(dev: ndev);
2384 netif_device_detach(dev: ndev);
2385
2386 /* leave the chip running with rx interrupt enabled if it is
2387 * used as a wake-up source.
2388 */
2389 if (cdev->pm_wake_source)
2390 m_can_write(cdev, reg: M_CAN_IE, IR_RF0N);
2391 else
2392 m_can_stop(dev: ndev);
2393
2394 m_can_clk_stop(cdev);
2395 }
2396
2397 pinctrl_pm_select_sleep_state(dev);
2398
2399 cdev->can.state = CAN_STATE_SLEEPING;
2400
2401 return 0;
2402}
2403EXPORT_SYMBOL_GPL(m_can_class_suspend);
2404
2405int m_can_class_resume(struct device *dev)
2406{
2407 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2408 struct net_device *ndev = cdev->net;
2409
2410 pinctrl_pm_select_default_state(dev);
2411
2412 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2413
2414 if (netif_running(dev: ndev)) {
2415 int ret;
2416
2417 ret = m_can_clk_start(cdev);
2418 if (ret)
2419 return ret;
2420
2421 if (cdev->pm_wake_source) {
2422 m_can_write(cdev, reg: M_CAN_IE, val: cdev->active_interrupts);
2423 } else {
2424 ret = m_can_start(dev: ndev);
2425 if (ret) {
2426 m_can_clk_stop(cdev);
2427 return ret;
2428 }
2429 }
2430
2431 netif_device_attach(dev: ndev);
2432 netif_start_queue(dev: ndev);
2433 }
2434
2435 return 0;
2436}
2437EXPORT_SYMBOL_GPL(m_can_class_resume);
2438
2439MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2440MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2441MODULE_LICENSE("GPL v2");
2442MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
2443

source code of linux/drivers/net/can/m_can/m_can.c