1// SPDX-License-Identifier: GPL-2.0+
2/* Renesas R-Car CAN device driver
3 *
4 * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
5 * Copyright (C) 2013 Renesas Solutions Corp.
6 */
7
8#include <linux/module.h>
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/interrupt.h>
12#include <linux/errno.h>
13#include <linux/ethtool.h>
14#include <linux/netdevice.h>
15#include <linux/platform_device.h>
16#include <linux/can/dev.h>
17#include <linux/clk.h>
18#include <linux/of.h>
19
20#define RCAR_CAN_DRV_NAME "rcar_can"
21
22/* Clock Select Register settings */
23enum CLKR {
24 CLKR_CLKP1 = 0, /* Peripheral clock (clkp1) */
25 CLKR_CLKP2 = 1, /* Peripheral clock (clkp2) */
26 CLKR_CLKEXT = 3, /* Externally input clock */
27};
28
29#define RCAR_SUPPORTED_CLOCKS (BIT(CLKR_CLKP1) | BIT(CLKR_CLKP2) | \
30 BIT(CLKR_CLKEXT))
31
32/* Mailbox configuration:
33 * mailbox 60 - 63 - Rx FIFO mailboxes
34 * mailbox 56 - 59 - Tx FIFO mailboxes
35 * non-FIFO mailboxes are not used
36 */
37#define RCAR_CAN_N_MBX 64 /* Number of mailboxes in non-FIFO mode */
38#define RCAR_CAN_RX_FIFO_MBX 60 /* Mailbox - window to Rx FIFO */
39#define RCAR_CAN_TX_FIFO_MBX 56 /* Mailbox - window to Tx FIFO */
40#define RCAR_CAN_FIFO_DEPTH 4
41
42/* Mailbox registers structure */
43struct rcar_can_mbox_regs {
44 u32 id; /* IDE and RTR bits, SID and EID */
45 u8 stub; /* Not used */
46 u8 dlc; /* Data Length Code - bits [0..3] */
47 u8 data[8]; /* Data Bytes */
48 u8 tsh; /* Time Stamp Higher Byte */
49 u8 tsl; /* Time Stamp Lower Byte */
50};
51
52struct rcar_can_regs {
53 struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
54 u32 mkr_2_9[8]; /* Mask Registers 2-9 */
55 u32 fidcr[2]; /* FIFO Received ID Compare Register */
56 u32 mkivlr1; /* Mask Invalid Register 1 */
57 u32 mier1; /* Mailbox Interrupt Enable Register 1 */
58 u32 mkr_0_1[2]; /* Mask Registers 0-1 */
59 u32 mkivlr0; /* Mask Invalid Register 0*/
60 u32 mier0; /* Mailbox Interrupt Enable Register 0 */
61 u8 pad_440[0x3c0];
62 u8 mctl[64]; /* Message Control Registers */
63 u16 ctlr; /* Control Register */
64 u16 str; /* Status register */
65 u8 bcr[3]; /* Bit Configuration Register */
66 u8 clkr; /* Clock Select Register */
67 u8 rfcr; /* Receive FIFO Control Register */
68 u8 rfpcr; /* Receive FIFO Pointer Control Register */
69 u8 tfcr; /* Transmit FIFO Control Register */
70 u8 tfpcr; /* Transmit FIFO Pointer Control Register */
71 u8 eier; /* Error Interrupt Enable Register */
72 u8 eifr; /* Error Interrupt Factor Judge Register */
73 u8 recr; /* Receive Error Count Register */
74 u8 tecr; /* Transmit Error Count Register */
75 u8 ecsr; /* Error Code Store Register */
76 u8 cssr; /* Channel Search Support Register */
77 u8 mssr; /* Mailbox Search Status Register */
78 u8 msmr; /* Mailbox Search Mode Register */
79 u16 tsr; /* Time Stamp Register */
80 u8 afsr; /* Acceptance Filter Support Register */
81 u8 pad_857;
82 u8 tcr; /* Test Control Register */
83 u8 pad_859[7];
84 u8 ier; /* Interrupt Enable Register */
85 u8 isr; /* Interrupt Status Register */
86 u8 pad_862;
87 u8 mbsmr; /* Mailbox Search Mask Register */
88};
89
90struct rcar_can_priv {
91 struct can_priv can; /* Must be the first member! */
92 struct net_device *ndev;
93 struct napi_struct napi;
94 struct rcar_can_regs __iomem *regs;
95 struct clk *clk;
96 struct clk *can_clk;
97 u32 tx_head;
98 u32 tx_tail;
99 u8 clock_select;
100 u8 ier;
101};
102
103static const struct can_bittiming_const rcar_can_bittiming_const = {
104 .name = RCAR_CAN_DRV_NAME,
105 .tseg1_min = 4,
106 .tseg1_max = 16,
107 .tseg2_min = 2,
108 .tseg2_max = 8,
109 .sjw_max = 4,
110 .brp_min = 1,
111 .brp_max = 1024,
112 .brp_inc = 1,
113};
114
115/* Control Register bits */
116#define RCAR_CAN_CTLR_BOM (3 << 11) /* Bus-Off Recovery Mode Bits */
117#define RCAR_CAN_CTLR_BOM_ENT (1 << 11) /* Entry to halt mode */
118 /* at bus-off entry */
119#define RCAR_CAN_CTLR_SLPM (1 << 10)
120#define RCAR_CAN_CTLR_CANM (3 << 8) /* Operating Mode Select Bit */
121#define RCAR_CAN_CTLR_CANM_HALT (1 << 9)
122#define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
123#define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
124#define RCAR_CAN_CTLR_MLM (1 << 3) /* Message Lost Mode Select */
125#define RCAR_CAN_CTLR_IDFM (3 << 1) /* ID Format Mode Select Bits */
126#define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
127#define RCAR_CAN_CTLR_MBM (1 << 0) /* Mailbox Mode select */
128
129/* Status Register bits */
130#define RCAR_CAN_STR_RSTST (1 << 8) /* Reset Status Bit */
131
132/* FIFO Received ID Compare Registers 0 and 1 bits */
133#define RCAR_CAN_FIDCR_IDE (1 << 31) /* ID Extension Bit */
134#define RCAR_CAN_FIDCR_RTR (1 << 30) /* Remote Transmission Request Bit */
135
136/* Receive FIFO Control Register bits */
137#define RCAR_CAN_RFCR_RFEST (1 << 7) /* Receive FIFO Empty Status Flag */
138#define RCAR_CAN_RFCR_RFE (1 << 0) /* Receive FIFO Enable */
139
140/* Transmit FIFO Control Register bits */
141#define RCAR_CAN_TFCR_TFUST (7 << 1) /* Transmit FIFO Unsent Message */
142 /* Number Status Bits */
143#define RCAR_CAN_TFCR_TFUST_SHIFT 1 /* Offset of Transmit FIFO Unsent */
144 /* Message Number Status Bits */
145#define RCAR_CAN_TFCR_TFE (1 << 0) /* Transmit FIFO Enable */
146
147#define RCAR_CAN_N_RX_MKREGS1 2 /* Number of mask registers */
148 /* for Rx mailboxes 0-31 */
149#define RCAR_CAN_N_RX_MKREGS2 8
150
151/* Bit Configuration Register settings */
152#define RCAR_CAN_BCR_TSEG1(x) (((x) & 0x0f) << 20)
153#define RCAR_CAN_BCR_BPR(x) (((x) & 0x3ff) << 8)
154#define RCAR_CAN_BCR_SJW(x) (((x) & 0x3) << 4)
155#define RCAR_CAN_BCR_TSEG2(x) ((x) & 0x07)
156
157/* Mailbox and Mask Registers bits */
158#define RCAR_CAN_IDE (1 << 31)
159#define RCAR_CAN_RTR (1 << 30)
160#define RCAR_CAN_SID_SHIFT 18
161
162/* Mailbox Interrupt Enable Register 1 bits */
163#define RCAR_CAN_MIER1_RXFIE (1 << 28) /* Receive FIFO Interrupt Enable */
164#define RCAR_CAN_MIER1_TXFIE (1 << 24) /* Transmit FIFO Interrupt Enable */
165
166/* Interrupt Enable Register bits */
167#define RCAR_CAN_IER_ERSIE (1 << 5) /* Error (ERS) Interrupt Enable Bit */
168#define RCAR_CAN_IER_RXFIE (1 << 4) /* Reception FIFO Interrupt */
169 /* Enable Bit */
170#define RCAR_CAN_IER_TXFIE (1 << 3) /* Transmission FIFO Interrupt */
171 /* Enable Bit */
172/* Interrupt Status Register bits */
173#define RCAR_CAN_ISR_ERSF (1 << 5) /* Error (ERS) Interrupt Status Bit */
174#define RCAR_CAN_ISR_RXFF (1 << 4) /* Reception FIFO Interrupt */
175 /* Status Bit */
176#define RCAR_CAN_ISR_TXFF (1 << 3) /* Transmission FIFO Interrupt */
177 /* Status Bit */
178
179/* Error Interrupt Enable Register bits */
180#define RCAR_CAN_EIER_BLIE (1 << 7) /* Bus Lock Interrupt Enable */
181#define RCAR_CAN_EIER_OLIE (1 << 6) /* Overload Frame Transmit */
182 /* Interrupt Enable */
183#define RCAR_CAN_EIER_ORIE (1 << 5) /* Receive Overrun Interrupt Enable */
184#define RCAR_CAN_EIER_BORIE (1 << 4) /* Bus-Off Recovery Interrupt Enable */
185#define RCAR_CAN_EIER_BOEIE (1 << 3) /* Bus-Off Entry Interrupt Enable */
186#define RCAR_CAN_EIER_EPIE (1 << 2) /* Error Passive Interrupt Enable */
187#define RCAR_CAN_EIER_EWIE (1 << 1) /* Error Warning Interrupt Enable */
188#define RCAR_CAN_EIER_BEIE (1 << 0) /* Bus Error Interrupt Enable */
189
190/* Error Interrupt Factor Judge Register bits */
191#define RCAR_CAN_EIFR_BLIF (1 << 7) /* Bus Lock Detect Flag */
192#define RCAR_CAN_EIFR_OLIF (1 << 6) /* Overload Frame Transmission */
193 /* Detect Flag */
194#define RCAR_CAN_EIFR_ORIF (1 << 5) /* Receive Overrun Detect Flag */
195#define RCAR_CAN_EIFR_BORIF (1 << 4) /* Bus-Off Recovery Detect Flag */
196#define RCAR_CAN_EIFR_BOEIF (1 << 3) /* Bus-Off Entry Detect Flag */
197#define RCAR_CAN_EIFR_EPIF (1 << 2) /* Error Passive Detect Flag */
198#define RCAR_CAN_EIFR_EWIF (1 << 1) /* Error Warning Detect Flag */
199#define RCAR_CAN_EIFR_BEIF (1 << 0) /* Bus Error Detect Flag */
200
201/* Error Code Store Register bits */
202#define RCAR_CAN_ECSR_EDPM (1 << 7) /* Error Display Mode Select Bit */
203#define RCAR_CAN_ECSR_ADEF (1 << 6) /* ACK Delimiter Error Flag */
204#define RCAR_CAN_ECSR_BE0F (1 << 5) /* Bit Error (dominant) Flag */
205#define RCAR_CAN_ECSR_BE1F (1 << 4) /* Bit Error (recessive) Flag */
206#define RCAR_CAN_ECSR_CEF (1 << 3) /* CRC Error Flag */
207#define RCAR_CAN_ECSR_AEF (1 << 2) /* ACK Error Flag */
208#define RCAR_CAN_ECSR_FEF (1 << 1) /* Form Error Flag */
209#define RCAR_CAN_ECSR_SEF (1 << 0) /* Stuff Error Flag */
210
211#define RCAR_CAN_NAPI_WEIGHT 4
212#define MAX_STR_READS 0x100
213
214static void tx_failure_cleanup(struct net_device *ndev)
215{
216 int i;
217
218 for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
219 can_free_echo_skb(dev: ndev, idx: i, NULL);
220}
221
222static void rcar_can_error(struct net_device *ndev)
223{
224 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
225 struct can_frame *cf;
226 struct sk_buff *skb;
227 u8 eifr, txerr = 0, rxerr = 0;
228
229 /* Propagate the error condition to the CAN stack */
230 skb = alloc_can_err_skb(dev: ndev, cf: &cf);
231
232 eifr = readb(addr: &priv->regs->eifr);
233 if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
234 txerr = readb(addr: &priv->regs->tecr);
235 rxerr = readb(addr: &priv->regs->recr);
236 if (skb)
237 cf->can_id |= CAN_ERR_CRTL;
238 }
239 if (eifr & RCAR_CAN_EIFR_BEIF) {
240 int rx_errors = 0, tx_errors = 0;
241 u8 ecsr;
242
243 netdev_dbg(priv->ndev, "Bus error interrupt:\n");
244 if (skb)
245 cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
246
247 ecsr = readb(addr: &priv->regs->ecsr);
248 if (ecsr & RCAR_CAN_ECSR_ADEF) {
249 netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
250 tx_errors++;
251 writeb(val: ~RCAR_CAN_ECSR_ADEF, addr: &priv->regs->ecsr);
252 if (skb)
253 cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
254 }
255 if (ecsr & RCAR_CAN_ECSR_BE0F) {
256 netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
257 tx_errors++;
258 writeb(val: ~RCAR_CAN_ECSR_BE0F, addr: &priv->regs->ecsr);
259 if (skb)
260 cf->data[2] |= CAN_ERR_PROT_BIT0;
261 }
262 if (ecsr & RCAR_CAN_ECSR_BE1F) {
263 netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
264 tx_errors++;
265 writeb(val: ~RCAR_CAN_ECSR_BE1F, addr: &priv->regs->ecsr);
266 if (skb)
267 cf->data[2] |= CAN_ERR_PROT_BIT1;
268 }
269 if (ecsr & RCAR_CAN_ECSR_CEF) {
270 netdev_dbg(priv->ndev, "CRC Error\n");
271 rx_errors++;
272 writeb(val: ~RCAR_CAN_ECSR_CEF, addr: &priv->regs->ecsr);
273 if (skb)
274 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
275 }
276 if (ecsr & RCAR_CAN_ECSR_AEF) {
277 netdev_dbg(priv->ndev, "ACK Error\n");
278 tx_errors++;
279 writeb(val: ~RCAR_CAN_ECSR_AEF, addr: &priv->regs->ecsr);
280 if (skb) {
281 cf->can_id |= CAN_ERR_ACK;
282 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
283 }
284 }
285 if (ecsr & RCAR_CAN_ECSR_FEF) {
286 netdev_dbg(priv->ndev, "Form Error\n");
287 rx_errors++;
288 writeb(val: ~RCAR_CAN_ECSR_FEF, addr: &priv->regs->ecsr);
289 if (skb)
290 cf->data[2] |= CAN_ERR_PROT_FORM;
291 }
292 if (ecsr & RCAR_CAN_ECSR_SEF) {
293 netdev_dbg(priv->ndev, "Stuff Error\n");
294 rx_errors++;
295 writeb(val: ~RCAR_CAN_ECSR_SEF, addr: &priv->regs->ecsr);
296 if (skb)
297 cf->data[2] |= CAN_ERR_PROT_STUFF;
298 }
299
300 priv->can.can_stats.bus_error++;
301 ndev->stats.rx_errors += rx_errors;
302 ndev->stats.tx_errors += tx_errors;
303 writeb(val: ~RCAR_CAN_EIFR_BEIF, addr: &priv->regs->eifr);
304 }
305 if (eifr & RCAR_CAN_EIFR_EWIF) {
306 netdev_dbg(priv->ndev, "Error warning interrupt\n");
307 priv->can.state = CAN_STATE_ERROR_WARNING;
308 priv->can.can_stats.error_warning++;
309 /* Clear interrupt condition */
310 writeb(val: ~RCAR_CAN_EIFR_EWIF, addr: &priv->regs->eifr);
311 if (skb)
312 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
313 CAN_ERR_CRTL_RX_WARNING;
314 }
315 if (eifr & RCAR_CAN_EIFR_EPIF) {
316 netdev_dbg(priv->ndev, "Error passive interrupt\n");
317 priv->can.state = CAN_STATE_ERROR_PASSIVE;
318 priv->can.can_stats.error_passive++;
319 /* Clear interrupt condition */
320 writeb(val: ~RCAR_CAN_EIFR_EPIF, addr: &priv->regs->eifr);
321 if (skb)
322 cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
323 CAN_ERR_CRTL_RX_PASSIVE;
324 }
325 if (eifr & RCAR_CAN_EIFR_BOEIF) {
326 netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
327 tx_failure_cleanup(ndev);
328 priv->ier = RCAR_CAN_IER_ERSIE;
329 writeb(val: priv->ier, addr: &priv->regs->ier);
330 priv->can.state = CAN_STATE_BUS_OFF;
331 /* Clear interrupt condition */
332 writeb(val: ~RCAR_CAN_EIFR_BOEIF, addr: &priv->regs->eifr);
333 priv->can.can_stats.bus_off++;
334 can_bus_off(dev: ndev);
335 if (skb)
336 cf->can_id |= CAN_ERR_BUSOFF;
337 } else if (skb) {
338 cf->can_id |= CAN_ERR_CNT;
339 cf->data[6] = txerr;
340 cf->data[7] = rxerr;
341 }
342 if (eifr & RCAR_CAN_EIFR_ORIF) {
343 netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
344 ndev->stats.rx_over_errors++;
345 ndev->stats.rx_errors++;
346 writeb(val: ~RCAR_CAN_EIFR_ORIF, addr: &priv->regs->eifr);
347 if (skb) {
348 cf->can_id |= CAN_ERR_CRTL;
349 cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
350 }
351 }
352 if (eifr & RCAR_CAN_EIFR_OLIF) {
353 netdev_dbg(priv->ndev,
354 "Overload Frame Transmission error interrupt\n");
355 ndev->stats.rx_over_errors++;
356 ndev->stats.rx_errors++;
357 writeb(val: ~RCAR_CAN_EIFR_OLIF, addr: &priv->regs->eifr);
358 if (skb) {
359 cf->can_id |= CAN_ERR_PROT;
360 cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
361 }
362 }
363
364 if (skb)
365 netif_rx(skb);
366}
367
368static void rcar_can_tx_done(struct net_device *ndev)
369{
370 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
371 struct net_device_stats *stats = &ndev->stats;
372 u8 isr;
373
374 while (1) {
375 u8 unsent = readb(addr: &priv->regs->tfcr);
376
377 unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
378 RCAR_CAN_TFCR_TFUST_SHIFT;
379 if (priv->tx_head - priv->tx_tail <= unsent)
380 break;
381 stats->tx_packets++;
382 stats->tx_bytes +=
383 can_get_echo_skb(dev: ndev,
384 idx: priv->tx_tail % RCAR_CAN_FIFO_DEPTH,
385 NULL);
386
387 priv->tx_tail++;
388 netif_wake_queue(dev: ndev);
389 }
390 /* Clear interrupt */
391 isr = readb(addr: &priv->regs->isr);
392 writeb(val: isr & ~RCAR_CAN_ISR_TXFF, addr: &priv->regs->isr);
393}
394
395static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
396{
397 struct net_device *ndev = dev_id;
398 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
399 u8 isr;
400
401 isr = readb(addr: &priv->regs->isr);
402 if (!(isr & priv->ier))
403 return IRQ_NONE;
404
405 if (isr & RCAR_CAN_ISR_ERSF)
406 rcar_can_error(ndev);
407
408 if (isr & RCAR_CAN_ISR_TXFF)
409 rcar_can_tx_done(ndev);
410
411 if (isr & RCAR_CAN_ISR_RXFF) {
412 if (napi_schedule_prep(n: &priv->napi)) {
413 /* Disable Rx FIFO interrupts */
414 priv->ier &= ~RCAR_CAN_IER_RXFIE;
415 writeb(val: priv->ier, addr: &priv->regs->ier);
416 __napi_schedule(n: &priv->napi);
417 }
418 }
419
420 return IRQ_HANDLED;
421}
422
423static void rcar_can_set_bittiming(struct net_device *dev)
424{
425 struct rcar_can_priv *priv = netdev_priv(dev);
426 struct can_bittiming *bt = &priv->can.bittiming;
427 u32 bcr;
428
429 bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
430 RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
431 RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
432 /* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
433 * All the registers are big-endian but they get byte-swapped on 32-bit
434 * read/write (but not on 8-bit, contrary to the manuals)...
435 */
436 writel(val: (bcr << 8) | priv->clock_select, addr: &priv->regs->bcr);
437}
438
439static void rcar_can_start(struct net_device *ndev)
440{
441 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
442 u16 ctlr;
443 int i;
444
445 /* Set controller to known mode:
446 * - FIFO mailbox mode
447 * - accept all messages
448 * - overrun mode
449 * CAN is in sleep mode after MCU hardware or software reset.
450 */
451 ctlr = readw(addr: &priv->regs->ctlr);
452 ctlr &= ~RCAR_CAN_CTLR_SLPM;
453 writew(val: ctlr, addr: &priv->regs->ctlr);
454 /* Go to reset mode */
455 ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
456 writew(val: ctlr, addr: &priv->regs->ctlr);
457 for (i = 0; i < MAX_STR_READS; i++) {
458 if (readw(addr: &priv->regs->str) & RCAR_CAN_STR_RSTST)
459 break;
460 }
461 rcar_can_set_bittiming(dev: ndev);
462 ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
463 ctlr |= RCAR_CAN_CTLR_BOM_ENT; /* Entry to halt mode automatically */
464 /* at bus-off */
465 ctlr |= RCAR_CAN_CTLR_MBM; /* Select FIFO mailbox mode */
466 ctlr |= RCAR_CAN_CTLR_MLM; /* Overrun mode */
467 writew(val: ctlr, addr: &priv->regs->ctlr);
468
469 /* Accept all SID and EID */
470 writel(val: 0, addr: &priv->regs->mkr_2_9[6]);
471 writel(val: 0, addr: &priv->regs->mkr_2_9[7]);
472 /* In FIFO mailbox mode, write "0" to bits 24 to 31 */
473 writel(val: 0, addr: &priv->regs->mkivlr1);
474 /* Accept all frames */
475 writel(val: 0, addr: &priv->regs->fidcr[0]);
476 writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, addr: &priv->regs->fidcr[1]);
477 /* Enable and configure FIFO mailbox interrupts */
478 writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, addr: &priv->regs->mier1);
479
480 priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
481 RCAR_CAN_IER_TXFIE;
482 writeb(val: priv->ier, addr: &priv->regs->ier);
483
484 /* Accumulate error codes */
485 writeb(RCAR_CAN_ECSR_EDPM, addr: &priv->regs->ecsr);
486 /* Enable error interrupts */
487 writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
488 (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
489 RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
490 RCAR_CAN_EIER_OLIE, addr: &priv->regs->eier);
491 priv->can.state = CAN_STATE_ERROR_ACTIVE;
492
493 /* Go to operation mode */
494 writew(val: ctlr & ~RCAR_CAN_CTLR_CANM, addr: &priv->regs->ctlr);
495 for (i = 0; i < MAX_STR_READS; i++) {
496 if (!(readw(addr: &priv->regs->str) & RCAR_CAN_STR_RSTST))
497 break;
498 }
499 /* Enable Rx and Tx FIFO */
500 writeb(RCAR_CAN_RFCR_RFE, addr: &priv->regs->rfcr);
501 writeb(RCAR_CAN_TFCR_TFE, addr: &priv->regs->tfcr);
502}
503
504static int rcar_can_open(struct net_device *ndev)
505{
506 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
507 int err;
508
509 err = clk_prepare_enable(clk: priv->clk);
510 if (err) {
511 netdev_err(dev: ndev,
512 format: "failed to enable peripheral clock, error %d\n",
513 err);
514 goto out;
515 }
516 err = clk_prepare_enable(clk: priv->can_clk);
517 if (err) {
518 netdev_err(dev: ndev, format: "failed to enable CAN clock, error %d\n",
519 err);
520 goto out_clock;
521 }
522 err = open_candev(dev: ndev);
523 if (err) {
524 netdev_err(dev: ndev, format: "open_candev() failed, error %d\n", err);
525 goto out_can_clock;
526 }
527 napi_enable(n: &priv->napi);
528 err = request_irq(irq: ndev->irq, handler: rcar_can_interrupt, flags: 0, name: ndev->name, dev: ndev);
529 if (err) {
530 netdev_err(dev: ndev, format: "request_irq(%d) failed, error %d\n",
531 ndev->irq, err);
532 goto out_close;
533 }
534 rcar_can_start(ndev);
535 netif_start_queue(dev: ndev);
536 return 0;
537out_close:
538 napi_disable(n: &priv->napi);
539 close_candev(dev: ndev);
540out_can_clock:
541 clk_disable_unprepare(clk: priv->can_clk);
542out_clock:
543 clk_disable_unprepare(clk: priv->clk);
544out:
545 return err;
546}
547
548static void rcar_can_stop(struct net_device *ndev)
549{
550 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
551 u16 ctlr;
552 int i;
553
554 /* Go to (force) reset mode */
555 ctlr = readw(addr: &priv->regs->ctlr);
556 ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
557 writew(val: ctlr, addr: &priv->regs->ctlr);
558 for (i = 0; i < MAX_STR_READS; i++) {
559 if (readw(addr: &priv->regs->str) & RCAR_CAN_STR_RSTST)
560 break;
561 }
562 writel(val: 0, addr: &priv->regs->mier0);
563 writel(val: 0, addr: &priv->regs->mier1);
564 writeb(val: 0, addr: &priv->regs->ier);
565 writeb(val: 0, addr: &priv->regs->eier);
566 /* Go to sleep mode */
567 ctlr |= RCAR_CAN_CTLR_SLPM;
568 writew(val: ctlr, addr: &priv->regs->ctlr);
569 priv->can.state = CAN_STATE_STOPPED;
570}
571
572static int rcar_can_close(struct net_device *ndev)
573{
574 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
575
576 netif_stop_queue(dev: ndev);
577 rcar_can_stop(ndev);
578 free_irq(ndev->irq, ndev);
579 napi_disable(n: &priv->napi);
580 clk_disable_unprepare(clk: priv->can_clk);
581 clk_disable_unprepare(clk: priv->clk);
582 close_candev(dev: ndev);
583 return 0;
584}
585
586static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
587 struct net_device *ndev)
588{
589 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
590 struct can_frame *cf = (struct can_frame *)skb->data;
591 u32 data, i;
592
593 if (can_dev_dropped_skb(dev: ndev, skb))
594 return NETDEV_TX_OK;
595
596 if (cf->can_id & CAN_EFF_FLAG) /* Extended frame format */
597 data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
598 else /* Standard frame format */
599 data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
600
601 if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
602 data |= RCAR_CAN_RTR;
603 } else {
604 for (i = 0; i < cf->len; i++)
605 writeb(val: cf->data[i],
606 addr: &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
607 }
608
609 writel(val: data, addr: &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
610
611 writeb(val: cf->len, addr: &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
612
613 can_put_echo_skb(skb, dev: ndev, idx: priv->tx_head % RCAR_CAN_FIFO_DEPTH, frame_len: 0);
614 priv->tx_head++;
615 /* Start Tx: write 0xff to the TFPCR register to increment
616 * the CPU-side pointer for the transmit FIFO to the next
617 * mailbox location
618 */
619 writeb(val: 0xff, addr: &priv->regs->tfpcr);
620 /* Stop the queue if we've filled all FIFO entries */
621 if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
622 netif_stop_queue(dev: ndev);
623
624 return NETDEV_TX_OK;
625}
626
627static const struct net_device_ops rcar_can_netdev_ops = {
628 .ndo_open = rcar_can_open,
629 .ndo_stop = rcar_can_close,
630 .ndo_start_xmit = rcar_can_start_xmit,
631 .ndo_change_mtu = can_change_mtu,
632};
633
634static const struct ethtool_ops rcar_can_ethtool_ops = {
635 .get_ts_info = ethtool_op_get_ts_info,
636};
637
638static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
639{
640 struct net_device_stats *stats = &priv->ndev->stats;
641 struct can_frame *cf;
642 struct sk_buff *skb;
643 u32 data;
644 u8 dlc;
645
646 skb = alloc_can_skb(dev: priv->ndev, cf: &cf);
647 if (!skb) {
648 stats->rx_dropped++;
649 return;
650 }
651
652 data = readl(addr: &priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
653 if (data & RCAR_CAN_IDE)
654 cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
655 else
656 cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
657
658 dlc = readb(addr: &priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
659 cf->len = can_cc_dlc2len(dlc);
660 if (data & RCAR_CAN_RTR) {
661 cf->can_id |= CAN_RTR_FLAG;
662 } else {
663 for (dlc = 0; dlc < cf->len; dlc++)
664 cf->data[dlc] =
665 readb(addr: &priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
666
667 stats->rx_bytes += cf->len;
668 }
669 stats->rx_packets++;
670
671 netif_receive_skb(skb);
672}
673
674static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
675{
676 struct rcar_can_priv *priv = container_of(napi,
677 struct rcar_can_priv, napi);
678 int num_pkts;
679
680 for (num_pkts = 0; num_pkts < quota; num_pkts++) {
681 u8 rfcr, isr;
682
683 isr = readb(addr: &priv->regs->isr);
684 /* Clear interrupt bit */
685 if (isr & RCAR_CAN_ISR_RXFF)
686 writeb(val: isr & ~RCAR_CAN_ISR_RXFF, addr: &priv->regs->isr);
687 rfcr = readb(addr: &priv->regs->rfcr);
688 if (rfcr & RCAR_CAN_RFCR_RFEST)
689 break;
690 rcar_can_rx_pkt(priv);
691 /* Write 0xff to the RFPCR register to increment
692 * the CPU-side pointer for the receive FIFO
693 * to the next mailbox location
694 */
695 writeb(val: 0xff, addr: &priv->regs->rfpcr);
696 }
697 /* All packets processed */
698 if (num_pkts < quota) {
699 napi_complete_done(n: napi, work_done: num_pkts);
700 priv->ier |= RCAR_CAN_IER_RXFIE;
701 writeb(val: priv->ier, addr: &priv->regs->ier);
702 }
703 return num_pkts;
704}
705
706static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
707{
708 switch (mode) {
709 case CAN_MODE_START:
710 rcar_can_start(ndev);
711 netif_wake_queue(dev: ndev);
712 return 0;
713 default:
714 return -EOPNOTSUPP;
715 }
716}
717
718static int rcar_can_get_berr_counter(const struct net_device *dev,
719 struct can_berr_counter *bec)
720{
721 struct rcar_can_priv *priv = netdev_priv(dev);
722 int err;
723
724 err = clk_prepare_enable(clk: priv->clk);
725 if (err)
726 return err;
727 bec->txerr = readb(addr: &priv->regs->tecr);
728 bec->rxerr = readb(addr: &priv->regs->recr);
729 clk_disable_unprepare(clk: priv->clk);
730 return 0;
731}
732
733static const char * const clock_names[] = {
734 [CLKR_CLKP1] = "clkp1",
735 [CLKR_CLKP2] = "clkp2",
736 [CLKR_CLKEXT] = "can_clk",
737};
738
739static int rcar_can_probe(struct platform_device *pdev)
740{
741 struct rcar_can_priv *priv;
742 struct net_device *ndev;
743 void __iomem *addr;
744 u32 clock_select = CLKR_CLKP1;
745 int err = -ENODEV;
746 int irq;
747
748 of_property_read_u32(np: pdev->dev.of_node, propname: "renesas,can-clock-select",
749 out_value: &clock_select);
750
751 irq = platform_get_irq(pdev, 0);
752 if (irq < 0) {
753 err = irq;
754 goto fail;
755 }
756
757 addr = devm_platform_ioremap_resource(pdev, index: 0);
758 if (IS_ERR(ptr: addr)) {
759 err = PTR_ERR(ptr: addr);
760 goto fail;
761 }
762
763 ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
764 if (!ndev) {
765 dev_err(&pdev->dev, "alloc_candev() failed\n");
766 err = -ENOMEM;
767 goto fail;
768 }
769
770 priv = netdev_priv(dev: ndev);
771
772 priv->clk = devm_clk_get(dev: &pdev->dev, id: "clkp1");
773 if (IS_ERR(ptr: priv->clk)) {
774 err = PTR_ERR(ptr: priv->clk);
775 dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
776 err);
777 goto fail_clk;
778 }
779
780 if (!(BIT(clock_select) & RCAR_SUPPORTED_CLOCKS)) {
781 err = -EINVAL;
782 dev_err(&pdev->dev, "invalid CAN clock selected\n");
783 goto fail_clk;
784 }
785 priv->can_clk = devm_clk_get(dev: &pdev->dev, id: clock_names[clock_select]);
786 if (IS_ERR(ptr: priv->can_clk)) {
787 err = PTR_ERR(ptr: priv->can_clk);
788 dev_err(&pdev->dev, "cannot get CAN clock, error %d\n", err);
789 goto fail_clk;
790 }
791
792 ndev->netdev_ops = &rcar_can_netdev_ops;
793 ndev->ethtool_ops = &rcar_can_ethtool_ops;
794 ndev->irq = irq;
795 ndev->flags |= IFF_ECHO;
796 priv->ndev = ndev;
797 priv->regs = addr;
798 priv->clock_select = clock_select;
799 priv->can.clock.freq = clk_get_rate(clk: priv->can_clk);
800 priv->can.bittiming_const = &rcar_can_bittiming_const;
801 priv->can.do_set_mode = rcar_can_do_set_mode;
802 priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
803 priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
804 platform_set_drvdata(pdev, data: ndev);
805 SET_NETDEV_DEV(ndev, &pdev->dev);
806
807 netif_napi_add_weight(dev: ndev, napi: &priv->napi, poll: rcar_can_rx_poll,
808 RCAR_CAN_NAPI_WEIGHT);
809 err = register_candev(dev: ndev);
810 if (err) {
811 dev_err(&pdev->dev, "register_candev() failed, error %d\n",
812 err);
813 goto fail_candev;
814 }
815
816 dev_info(&pdev->dev, "device registered (IRQ%d)\n", ndev->irq);
817
818 return 0;
819fail_candev:
820 netif_napi_del(napi: &priv->napi);
821fail_clk:
822 free_candev(dev: ndev);
823fail:
824 return err;
825}
826
827static void rcar_can_remove(struct platform_device *pdev)
828{
829 struct net_device *ndev = platform_get_drvdata(pdev);
830 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
831
832 unregister_candev(dev: ndev);
833 netif_napi_del(napi: &priv->napi);
834 free_candev(dev: ndev);
835}
836
837static int __maybe_unused rcar_can_suspend(struct device *dev)
838{
839 struct net_device *ndev = dev_get_drvdata(dev);
840 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
841 u16 ctlr;
842
843 if (!netif_running(dev: ndev))
844 return 0;
845
846 netif_stop_queue(dev: ndev);
847 netif_device_detach(dev: ndev);
848
849 ctlr = readw(addr: &priv->regs->ctlr);
850 ctlr |= RCAR_CAN_CTLR_CANM_HALT;
851 writew(val: ctlr, addr: &priv->regs->ctlr);
852 ctlr |= RCAR_CAN_CTLR_SLPM;
853 writew(val: ctlr, addr: &priv->regs->ctlr);
854 priv->can.state = CAN_STATE_SLEEPING;
855
856 clk_disable(clk: priv->clk);
857 return 0;
858}
859
860static int __maybe_unused rcar_can_resume(struct device *dev)
861{
862 struct net_device *ndev = dev_get_drvdata(dev);
863 struct rcar_can_priv *priv = netdev_priv(dev: ndev);
864 u16 ctlr;
865 int err;
866
867 if (!netif_running(dev: ndev))
868 return 0;
869
870 err = clk_enable(clk: priv->clk);
871 if (err) {
872 netdev_err(dev: ndev, format: "clk_enable() failed, error %d\n", err);
873 return err;
874 }
875
876 ctlr = readw(addr: &priv->regs->ctlr);
877 ctlr &= ~RCAR_CAN_CTLR_SLPM;
878 writew(val: ctlr, addr: &priv->regs->ctlr);
879 ctlr &= ~RCAR_CAN_CTLR_CANM;
880 writew(val: ctlr, addr: &priv->regs->ctlr);
881 priv->can.state = CAN_STATE_ERROR_ACTIVE;
882
883 netif_device_attach(dev: ndev);
884 netif_start_queue(dev: ndev);
885
886 return 0;
887}
888
889static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
890
891static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
892 { .compatible = "renesas,can-r8a7778" },
893 { .compatible = "renesas,can-r8a7779" },
894 { .compatible = "renesas,can-r8a7790" },
895 { .compatible = "renesas,can-r8a7791" },
896 { .compatible = "renesas,rcar-gen1-can" },
897 { .compatible = "renesas,rcar-gen2-can" },
898 { .compatible = "renesas,rcar-gen3-can" },
899 { }
900};
901MODULE_DEVICE_TABLE(of, rcar_can_of_table);
902
903static struct platform_driver rcar_can_driver = {
904 .driver = {
905 .name = RCAR_CAN_DRV_NAME,
906 .of_match_table = of_match_ptr(rcar_can_of_table),
907 .pm = &rcar_can_pm_ops,
908 },
909 .probe = rcar_can_probe,
910 .remove_new = rcar_can_remove,
911};
912
913module_platform_driver(rcar_can_driver);
914
915MODULE_AUTHOR("Cogent Embedded, Inc.");
916MODULE_LICENSE("GPL");
917MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
918MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
919

source code of linux/drivers/net/can/rcar/rcar_can.c