1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* e1000_i210
5 * e1000_i211
6 */
7
8#include <linux/bitfield.h>
9#include <linux/if_ether.h>
10#include <linux/types.h>
11#include "e1000_hw.h"
12#include "e1000_i210.h"
13
14static s32 igb_update_flash_i210(struct e1000_hw *hw);
15
16/**
17 * igb_get_hw_semaphore_i210 - Acquire hardware semaphore
18 * @hw: pointer to the HW structure
19 *
20 * Acquire the HW semaphore to access the PHY or NVM
21 */
22static s32 igb_get_hw_semaphore_i210(struct e1000_hw *hw)
23{
24 u32 swsm;
25 s32 timeout = hw->nvm.word_size + 1;
26 s32 i = 0;
27
28 /* Get the SW semaphore */
29 while (i < timeout) {
30 swsm = rd32(E1000_SWSM);
31 if (!(swsm & E1000_SWSM_SMBI))
32 break;
33
34 udelay(50);
35 i++;
36 }
37
38 if (i == timeout) {
39 /* In rare circumstances, the SW semaphore may already be held
40 * unintentionally. Clear the semaphore once before giving up.
41 */
42 if (hw->dev_spec._82575.clear_semaphore_once) {
43 hw->dev_spec._82575.clear_semaphore_once = false;
44 igb_put_hw_semaphore(hw);
45 for (i = 0; i < timeout; i++) {
46 swsm = rd32(E1000_SWSM);
47 if (!(swsm & E1000_SWSM_SMBI))
48 break;
49
50 udelay(50);
51 }
52 }
53
54 /* If we do not have the semaphore here, we have to give up. */
55 if (i == timeout) {
56 hw_dbg("Driver can't access device - SMBI bit is set.\n");
57 return -E1000_ERR_NVM;
58 }
59 }
60
61 /* Get the FW semaphore. */
62 for (i = 0; i < timeout; i++) {
63 swsm = rd32(E1000_SWSM);
64 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
65
66 /* Semaphore acquired if bit latched */
67 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
68 break;
69
70 udelay(50);
71 }
72
73 if (i == timeout) {
74 /* Release semaphores */
75 igb_put_hw_semaphore(hw);
76 hw_dbg("Driver can't access the NVM\n");
77 return -E1000_ERR_NVM;
78 }
79
80 return 0;
81}
82
83/**
84 * igb_acquire_nvm_i210 - Request for access to EEPROM
85 * @hw: pointer to the HW structure
86 *
87 * Acquire the necessary semaphores for exclusive access to the EEPROM.
88 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
89 * Return successful if access grant bit set, else clear the request for
90 * EEPROM access and return -E1000_ERR_NVM (-1).
91 **/
92static s32 igb_acquire_nvm_i210(struct e1000_hw *hw)
93{
94 return igb_acquire_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
95}
96
97/**
98 * igb_release_nvm_i210 - Release exclusive access to EEPROM
99 * @hw: pointer to the HW structure
100 *
101 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
102 * then release the semaphores acquired.
103 **/
104static void igb_release_nvm_i210(struct e1000_hw *hw)
105{
106 igb_release_swfw_sync_i210(hw, E1000_SWFW_EEP_SM);
107}
108
109/**
110 * igb_acquire_swfw_sync_i210 - Acquire SW/FW semaphore
111 * @hw: pointer to the HW structure
112 * @mask: specifies which semaphore to acquire
113 *
114 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
115 * will also specify which port we're acquiring the lock for.
116 **/
117s32 igb_acquire_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
118{
119 u32 swfw_sync;
120 u32 swmask = mask;
121 u32 fwmask = mask << 16;
122 s32 ret_val = 0;
123 s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
124
125 while (i < timeout) {
126 if (igb_get_hw_semaphore_i210(hw)) {
127 ret_val = -E1000_ERR_SWFW_SYNC;
128 goto out;
129 }
130
131 swfw_sync = rd32(E1000_SW_FW_SYNC);
132 if (!(swfw_sync & (fwmask | swmask)))
133 break;
134
135 /* Firmware currently using resource (fwmask) */
136 igb_put_hw_semaphore(hw);
137 mdelay(5);
138 i++;
139 }
140
141 if (i == timeout) {
142 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
143 ret_val = -E1000_ERR_SWFW_SYNC;
144 goto out;
145 }
146
147 swfw_sync |= swmask;
148 wr32(E1000_SW_FW_SYNC, swfw_sync);
149
150 igb_put_hw_semaphore(hw);
151out:
152 return ret_val;
153}
154
155/**
156 * igb_release_swfw_sync_i210 - Release SW/FW semaphore
157 * @hw: pointer to the HW structure
158 * @mask: specifies which semaphore to acquire
159 *
160 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
161 * will also specify which port we're releasing the lock for.
162 **/
163void igb_release_swfw_sync_i210(struct e1000_hw *hw, u16 mask)
164{
165 u32 swfw_sync;
166
167 while (igb_get_hw_semaphore_i210(hw))
168 ; /* Empty */
169
170 swfw_sync = rd32(E1000_SW_FW_SYNC);
171 swfw_sync &= ~mask;
172 wr32(E1000_SW_FW_SYNC, swfw_sync);
173
174 igb_put_hw_semaphore(hw);
175}
176
177/**
178 * igb_read_nvm_srrd_i210 - Reads Shadow Ram using EERD register
179 * @hw: pointer to the HW structure
180 * @offset: offset of word in the Shadow Ram to read
181 * @words: number of words to read
182 * @data: word read from the Shadow Ram
183 *
184 * Reads a 16 bit word from the Shadow Ram using the EERD register.
185 * Uses necessary synchronization semaphores.
186 **/
187static s32 igb_read_nvm_srrd_i210(struct e1000_hw *hw, u16 offset, u16 words,
188 u16 *data)
189{
190 s32 status = 0;
191 u16 i, count;
192
193 /* We cannot hold synchronization semaphores for too long,
194 * because of forceful takeover procedure. However it is more efficient
195 * to read in bursts than synchronizing access for each word.
196 */
197 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
198 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
199 E1000_EERD_EEWR_MAX_COUNT : (words - i);
200 if (!(hw->nvm.ops.acquire(hw))) {
201 status = igb_read_nvm_eerd(hw, offset, words: count,
202 data: data + i);
203 hw->nvm.ops.release(hw);
204 } else {
205 status = E1000_ERR_SWFW_SYNC;
206 }
207
208 if (status)
209 break;
210 }
211
212 return status;
213}
214
215/**
216 * igb_write_nvm_srwr - Write to Shadow Ram using EEWR
217 * @hw: pointer to the HW structure
218 * @offset: offset within the Shadow Ram to be written to
219 * @words: number of words to write
220 * @data: 16 bit word(s) to be written to the Shadow Ram
221 *
222 * Writes data to Shadow Ram at offset using EEWR register.
223 *
224 * If igb_update_nvm_checksum is not called after this function , the
225 * Shadow Ram will most likely contain an invalid checksum.
226 **/
227static s32 igb_write_nvm_srwr(struct e1000_hw *hw, u16 offset, u16 words,
228 u16 *data)
229{
230 struct e1000_nvm_info *nvm = &hw->nvm;
231 u32 i, k, eewr = 0;
232 u32 attempts = 100000;
233 s32 ret_val = 0;
234
235 /* A check for invalid values: offset too large, too many words,
236 * too many words for the offset, and not enough words.
237 */
238 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
239 (words == 0)) {
240 hw_dbg("nvm parameter(s) out of bounds\n");
241 ret_val = -E1000_ERR_NVM;
242 goto out;
243 }
244
245 for (i = 0; i < words; i++) {
246 eewr = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
247 (data[i] << E1000_NVM_RW_REG_DATA) |
248 E1000_NVM_RW_REG_START;
249
250 wr32(E1000_SRWR, eewr);
251
252 for (k = 0; k < attempts; k++) {
253 if (E1000_NVM_RW_REG_DONE &
254 rd32(E1000_SRWR)) {
255 ret_val = 0;
256 break;
257 }
258 udelay(5);
259 }
260
261 if (ret_val) {
262 hw_dbg("Shadow RAM write EEWR timed out\n");
263 break;
264 }
265 }
266
267out:
268 return ret_val;
269}
270
271/**
272 * igb_write_nvm_srwr_i210 - Write to Shadow RAM using EEWR
273 * @hw: pointer to the HW structure
274 * @offset: offset within the Shadow RAM to be written to
275 * @words: number of words to write
276 * @data: 16 bit word(s) to be written to the Shadow RAM
277 *
278 * Writes data to Shadow RAM at offset using EEWR register.
279 *
280 * If e1000_update_nvm_checksum is not called after this function , the
281 * data will not be committed to FLASH and also Shadow RAM will most likely
282 * contain an invalid checksum.
283 *
284 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
285 * partially written.
286 **/
287static s32 igb_write_nvm_srwr_i210(struct e1000_hw *hw, u16 offset, u16 words,
288 u16 *data)
289{
290 s32 status = 0;
291 u16 i, count;
292
293 /* We cannot hold synchronization semaphores for too long,
294 * because of forceful takeover procedure. However it is more efficient
295 * to write in bursts than synchronizing access for each word.
296 */
297 for (i = 0; i < words; i += E1000_EERD_EEWR_MAX_COUNT) {
298 count = (words - i) / E1000_EERD_EEWR_MAX_COUNT > 0 ?
299 E1000_EERD_EEWR_MAX_COUNT : (words - i);
300 if (!(hw->nvm.ops.acquire(hw))) {
301 status = igb_write_nvm_srwr(hw, offset, words: count,
302 data: data + i);
303 hw->nvm.ops.release(hw);
304 } else {
305 status = E1000_ERR_SWFW_SYNC;
306 }
307
308 if (status)
309 break;
310 }
311
312 return status;
313}
314
315/**
316 * igb_read_invm_word_i210 - Reads OTP
317 * @hw: pointer to the HW structure
318 * @address: the word address (aka eeprom offset) to read
319 * @data: pointer to the data read
320 *
321 * Reads 16-bit words from the OTP. Return error when the word is not
322 * stored in OTP.
323 **/
324static s32 igb_read_invm_word_i210(struct e1000_hw *hw, u8 address, u16 *data)
325{
326 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
327 u32 invm_dword;
328 u16 i;
329 u8 record_type, word_address;
330
331 for (i = 0; i < E1000_INVM_SIZE; i++) {
332 invm_dword = rd32(E1000_INVM_DATA_REG(i));
333 /* Get record type */
334 record_type = INVM_DWORD_TO_RECORD_TYPE(invm_dword);
335 if (record_type == E1000_INVM_UNINITIALIZED_STRUCTURE)
336 break;
337 if (record_type == E1000_INVM_CSR_AUTOLOAD_STRUCTURE)
338 i += E1000_INVM_CSR_AUTOLOAD_DATA_SIZE_IN_DWORDS;
339 if (record_type == E1000_INVM_RSA_KEY_SHA256_STRUCTURE)
340 i += E1000_INVM_RSA_KEY_SHA256_DATA_SIZE_IN_DWORDS;
341 if (record_type == E1000_INVM_WORD_AUTOLOAD_STRUCTURE) {
342 word_address = INVM_DWORD_TO_WORD_ADDRESS(invm_dword);
343 if (word_address == address) {
344 *data = INVM_DWORD_TO_WORD_DATA(invm_dword);
345 hw_dbg("Read INVM Word 0x%02x = %x\n",
346 address, *data);
347 status = 0;
348 break;
349 }
350 }
351 }
352 if (status)
353 hw_dbg("Requested word 0x%02x not found in OTP\n", address);
354 return status;
355}
356
357/**
358 * igb_read_invm_i210 - Read invm wrapper function for I210/I211
359 * @hw: pointer to the HW structure
360 * @offset: offset to read from
361 * @words: number of words to read (unused)
362 * @data: pointer to the data read
363 *
364 * Wrapper function to return data formerly found in the NVM.
365 **/
366static s32 igb_read_invm_i210(struct e1000_hw *hw, u16 offset,
367 u16 __always_unused words, u16 *data)
368{
369 s32 ret_val = 0;
370
371 /* Only the MAC addr is required to be present in the iNVM */
372 switch (offset) {
373 case NVM_MAC_ADDR:
374 ret_val = igb_read_invm_word_i210(hw, address: (u8)offset, data: &data[0]);
375 ret_val |= igb_read_invm_word_i210(hw, address: (u8)offset+1,
376 data: &data[1]);
377 ret_val |= igb_read_invm_word_i210(hw, address: (u8)offset+2,
378 data: &data[2]);
379 if (ret_val)
380 hw_dbg("MAC Addr not found in iNVM\n");
381 break;
382 case NVM_INIT_CTRL_2:
383 ret_val = igb_read_invm_word_i210(hw, address: (u8)offset, data);
384 if (ret_val) {
385 *data = NVM_INIT_CTRL_2_DEFAULT_I211;
386 ret_val = 0;
387 }
388 break;
389 case NVM_INIT_CTRL_4:
390 ret_val = igb_read_invm_word_i210(hw, address: (u8)offset, data);
391 if (ret_val) {
392 *data = NVM_INIT_CTRL_4_DEFAULT_I211;
393 ret_val = 0;
394 }
395 break;
396 case NVM_LED_1_CFG:
397 ret_val = igb_read_invm_word_i210(hw, address: (u8)offset, data);
398 if (ret_val) {
399 *data = NVM_LED_1_CFG_DEFAULT_I211;
400 ret_val = 0;
401 }
402 break;
403 case NVM_LED_0_2_CFG:
404 ret_val = igb_read_invm_word_i210(hw, address: (u8)offset, data);
405 if (ret_val) {
406 *data = NVM_LED_0_2_CFG_DEFAULT_I211;
407 ret_val = 0;
408 }
409 break;
410 case NVM_ID_LED_SETTINGS:
411 ret_val = igb_read_invm_word_i210(hw, address: (u8)offset, data);
412 if (ret_val) {
413 *data = ID_LED_RESERVED_FFFF;
414 ret_val = 0;
415 }
416 break;
417 case NVM_SUB_DEV_ID:
418 *data = hw->subsystem_device_id;
419 break;
420 case NVM_SUB_VEN_ID:
421 *data = hw->subsystem_vendor_id;
422 break;
423 case NVM_DEV_ID:
424 *data = hw->device_id;
425 break;
426 case NVM_VEN_ID:
427 *data = hw->vendor_id;
428 break;
429 default:
430 hw_dbg("NVM word 0x%02x is not mapped.\n", offset);
431 *data = NVM_RESERVED_WORD;
432 break;
433 }
434 return ret_val;
435}
436
437/**
438 * igb_read_invm_version - Reads iNVM version and image type
439 * @hw: pointer to the HW structure
440 * @invm_ver: version structure for the version read
441 *
442 * Reads iNVM version and image type.
443 **/
444s32 igb_read_invm_version(struct e1000_hw *hw,
445 struct e1000_fw_version *invm_ver) {
446 u32 *record = NULL;
447 u32 *next_record = NULL;
448 u32 i = 0;
449 u32 invm_dword = 0;
450 u32 invm_blocks = E1000_INVM_SIZE - (E1000_INVM_ULT_BYTES_SIZE /
451 E1000_INVM_RECORD_SIZE_IN_BYTES);
452 u32 buffer[E1000_INVM_SIZE];
453 s32 status = -E1000_ERR_INVM_VALUE_NOT_FOUND;
454 u16 version = 0;
455
456 /* Read iNVM memory */
457 for (i = 0; i < E1000_INVM_SIZE; i++) {
458 invm_dword = rd32(E1000_INVM_DATA_REG(i));
459 buffer[i] = invm_dword;
460 }
461
462 /* Read version number */
463 for (i = 1; i < invm_blocks; i++) {
464 record = &buffer[invm_blocks - i];
465 next_record = &buffer[invm_blocks - i + 1];
466
467 /* Check if we have first version location used */
468 if ((i == 1) && ((*record & E1000_INVM_VER_FIELD_ONE) == 0)) {
469 version = 0;
470 status = 0;
471 break;
472 }
473 /* Check if we have second version location used */
474 else if ((i == 1) &&
475 ((*record & E1000_INVM_VER_FIELD_TWO) == 0)) {
476 version = FIELD_GET(E1000_INVM_VER_FIELD_ONE, *record);
477 status = 0;
478 break;
479 }
480 /* Check if we have odd version location
481 * used and it is the last one used
482 */
483 else if ((((*record & E1000_INVM_VER_FIELD_ONE) == 0) &&
484 ((*record & 0x3) == 0)) || (((*record & 0x3) != 0) &&
485 (i != 1))) {
486 version = FIELD_GET(E1000_INVM_VER_FIELD_TWO,
487 *next_record);
488 status = 0;
489 break;
490 }
491 /* Check if we have even version location
492 * used and it is the last one used
493 */
494 else if (((*record & E1000_INVM_VER_FIELD_TWO) == 0) &&
495 ((*record & 0x3) == 0)) {
496 version = FIELD_GET(E1000_INVM_VER_FIELD_ONE, *record);
497 status = 0;
498 break;
499 }
500 }
501
502 if (!status) {
503 invm_ver->invm_major = FIELD_GET(E1000_INVM_MAJOR_MASK,
504 version);
505 invm_ver->invm_minor = version & E1000_INVM_MINOR_MASK;
506 }
507 /* Read Image Type */
508 for (i = 1; i < invm_blocks; i++) {
509 record = &buffer[invm_blocks - i];
510 next_record = &buffer[invm_blocks - i + 1];
511
512 /* Check if we have image type in first location used */
513 if ((i == 1) && ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) {
514 invm_ver->invm_img_type = 0;
515 status = 0;
516 break;
517 }
518 /* Check if we have image type in first location used */
519 else if ((((*record & 0x3) == 0) &&
520 ((*record & E1000_INVM_IMGTYPE_FIELD) == 0)) ||
521 ((((*record & 0x3) != 0) && (i != 1)))) {
522 invm_ver->invm_img_type =
523 FIELD_GET(E1000_INVM_IMGTYPE_FIELD,
524 *next_record);
525 status = 0;
526 break;
527 }
528 }
529 return status;
530}
531
532/**
533 * igb_validate_nvm_checksum_i210 - Validate EEPROM checksum
534 * @hw: pointer to the HW structure
535 *
536 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
537 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
538 **/
539static s32 igb_validate_nvm_checksum_i210(struct e1000_hw *hw)
540{
541 s32 status = 0;
542 s32 (*read_op_ptr)(struct e1000_hw *, u16, u16, u16 *);
543
544 if (!(hw->nvm.ops.acquire(hw))) {
545
546 /* Replace the read function with semaphore grabbing with
547 * the one that skips this for a while.
548 * We have semaphore taken already here.
549 */
550 read_op_ptr = hw->nvm.ops.read;
551 hw->nvm.ops.read = igb_read_nvm_eerd;
552
553 status = igb_validate_nvm_checksum(hw);
554
555 /* Revert original read operation. */
556 hw->nvm.ops.read = read_op_ptr;
557
558 hw->nvm.ops.release(hw);
559 } else {
560 status = E1000_ERR_SWFW_SYNC;
561 }
562
563 return status;
564}
565
566/**
567 * igb_update_nvm_checksum_i210 - Update EEPROM checksum
568 * @hw: pointer to the HW structure
569 *
570 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
571 * up to the checksum. Then calculates the EEPROM checksum and writes the
572 * value to the EEPROM. Next commit EEPROM data onto the Flash.
573 **/
574static s32 igb_update_nvm_checksum_i210(struct e1000_hw *hw)
575{
576 s32 ret_val = 0;
577 u16 checksum = 0;
578 u16 i, nvm_data;
579
580 /* Read the first word from the EEPROM. If this times out or fails, do
581 * not continue or we could be in for a very long wait while every
582 * EEPROM read fails
583 */
584 ret_val = igb_read_nvm_eerd(hw, offset: 0, words: 1, data: &nvm_data);
585 if (ret_val) {
586 hw_dbg("EEPROM read failed\n");
587 goto out;
588 }
589
590 if (!(hw->nvm.ops.acquire(hw))) {
591 /* Do not use hw->nvm.ops.write, hw->nvm.ops.read
592 * because we do not want to take the synchronization
593 * semaphores twice here.
594 */
595
596 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
597 ret_val = igb_read_nvm_eerd(hw, offset: i, words: 1, data: &nvm_data);
598 if (ret_val) {
599 hw->nvm.ops.release(hw);
600 hw_dbg("NVM Read Error while updating checksum.\n");
601 goto out;
602 }
603 checksum += nvm_data;
604 }
605 checksum = (u16) NVM_SUM - checksum;
606 ret_val = igb_write_nvm_srwr(hw, NVM_CHECKSUM_REG, words: 1,
607 data: &checksum);
608 if (ret_val) {
609 hw->nvm.ops.release(hw);
610 hw_dbg("NVM Write Error while updating checksum.\n");
611 goto out;
612 }
613
614 hw->nvm.ops.release(hw);
615
616 ret_val = igb_update_flash_i210(hw);
617 } else {
618 ret_val = -E1000_ERR_SWFW_SYNC;
619 }
620out:
621 return ret_val;
622}
623
624/**
625 * igb_pool_flash_update_done_i210 - Pool FLUDONE status.
626 * @hw: pointer to the HW structure
627 *
628 **/
629static s32 igb_pool_flash_update_done_i210(struct e1000_hw *hw)
630{
631 s32 ret_val = -E1000_ERR_NVM;
632 u32 i, reg;
633
634 for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
635 reg = rd32(E1000_EECD);
636 if (reg & E1000_EECD_FLUDONE_I210) {
637 ret_val = 0;
638 break;
639 }
640 udelay(5);
641 }
642
643 return ret_val;
644}
645
646/**
647 * igb_get_flash_presence_i210 - Check if flash device is detected.
648 * @hw: pointer to the HW structure
649 *
650 **/
651bool igb_get_flash_presence_i210(struct e1000_hw *hw)
652{
653 u32 eec = 0;
654 bool ret_val = false;
655
656 eec = rd32(E1000_EECD);
657 if (eec & E1000_EECD_FLASH_DETECTED_I210)
658 ret_val = true;
659
660 return ret_val;
661}
662
663/**
664 * igb_update_flash_i210 - Commit EEPROM to the flash
665 * @hw: pointer to the HW structure
666 *
667 **/
668static s32 igb_update_flash_i210(struct e1000_hw *hw)
669{
670 s32 ret_val = 0;
671 u32 flup;
672
673 ret_val = igb_pool_flash_update_done_i210(hw);
674 if (ret_val == -E1000_ERR_NVM) {
675 hw_dbg("Flash update time out\n");
676 goto out;
677 }
678
679 flup = rd32(E1000_EECD) | E1000_EECD_FLUPD_I210;
680 wr32(E1000_EECD, flup);
681
682 ret_val = igb_pool_flash_update_done_i210(hw);
683 if (ret_val)
684 hw_dbg("Flash update time out\n");
685 else
686 hw_dbg("Flash update complete\n");
687
688out:
689 return ret_val;
690}
691
692/**
693 * igb_valid_led_default_i210 - Verify a valid default LED config
694 * @hw: pointer to the HW structure
695 * @data: pointer to the NVM (EEPROM)
696 *
697 * Read the EEPROM for the current default LED configuration. If the
698 * LED configuration is not valid, set to a valid LED configuration.
699 **/
700s32 igb_valid_led_default_i210(struct e1000_hw *hw, u16 *data)
701{
702 s32 ret_val;
703
704 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
705 if (ret_val) {
706 hw_dbg("NVM Read Error\n");
707 goto out;
708 }
709
710 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
711 switch (hw->phy.media_type) {
712 case e1000_media_type_internal_serdes:
713 *data = ID_LED_DEFAULT_I210_SERDES;
714 break;
715 case e1000_media_type_copper:
716 default:
717 *data = ID_LED_DEFAULT_I210;
718 break;
719 }
720 }
721out:
722 return ret_val;
723}
724
725/**
726 * __igb_access_xmdio_reg - Read/write XMDIO register
727 * @hw: pointer to the HW structure
728 * @address: XMDIO address to program
729 * @dev_addr: device address to program
730 * @data: pointer to value to read/write from/to the XMDIO address
731 * @read: boolean flag to indicate read or write
732 **/
733static s32 __igb_access_xmdio_reg(struct e1000_hw *hw, u16 address,
734 u8 dev_addr, u16 *data, bool read)
735{
736 s32 ret_val = 0;
737
738 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, dev_addr);
739 if (ret_val)
740 return ret_val;
741
742 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, address);
743 if (ret_val)
744 return ret_val;
745
746 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, E1000_MMDAC_FUNC_DATA |
747 dev_addr);
748 if (ret_val)
749 return ret_val;
750
751 if (read)
752 ret_val = hw->phy.ops.read_reg(hw, E1000_MMDAAD, data);
753 else
754 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAAD, *data);
755 if (ret_val)
756 return ret_val;
757
758 /* Recalibrate the device back to 0 */
759 ret_val = hw->phy.ops.write_reg(hw, E1000_MMDAC, 0);
760 if (ret_val)
761 return ret_val;
762
763 return ret_val;
764}
765
766/**
767 * igb_read_xmdio_reg - Read XMDIO register
768 * @hw: pointer to the HW structure
769 * @addr: XMDIO address to program
770 * @dev_addr: device address to program
771 * @data: value to be read from the EMI address
772 **/
773s32 igb_read_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 *data)
774{
775 return __igb_access_xmdio_reg(hw, address: addr, dev_addr, data, read: true);
776}
777
778/**
779 * igb_write_xmdio_reg - Write XMDIO register
780 * @hw: pointer to the HW structure
781 * @addr: XMDIO address to program
782 * @dev_addr: device address to program
783 * @data: value to be written to the XMDIO address
784 **/
785s32 igb_write_xmdio_reg(struct e1000_hw *hw, u16 addr, u8 dev_addr, u16 data)
786{
787 return __igb_access_xmdio_reg(hw, address: addr, dev_addr, data: &data, read: false);
788}
789
790/**
791 * igb_init_nvm_params_i210 - Init NVM func ptrs.
792 * @hw: pointer to the HW structure
793 **/
794s32 igb_init_nvm_params_i210(struct e1000_hw *hw)
795{
796 struct e1000_nvm_info *nvm = &hw->nvm;
797
798 nvm->ops.acquire = igb_acquire_nvm_i210;
799 nvm->ops.release = igb_release_nvm_i210;
800 nvm->ops.valid_led_default = igb_valid_led_default_i210;
801
802 /* NVM Function Pointers */
803 if (igb_get_flash_presence_i210(hw)) {
804 hw->nvm.type = e1000_nvm_flash_hw;
805 nvm->ops.read = igb_read_nvm_srrd_i210;
806 nvm->ops.write = igb_write_nvm_srwr_i210;
807 nvm->ops.validate = igb_validate_nvm_checksum_i210;
808 nvm->ops.update = igb_update_nvm_checksum_i210;
809 } else {
810 hw->nvm.type = e1000_nvm_invm;
811 nvm->ops.read = igb_read_invm_i210;
812 nvm->ops.write = NULL;
813 nvm->ops.validate = NULL;
814 nvm->ops.update = NULL;
815 }
816 return 0;
817}
818
819/**
820 * igb_pll_workaround_i210
821 * @hw: pointer to the HW structure
822 *
823 * Works around an errata in the PLL circuit where it occasionally
824 * provides the wrong clock frequency after power up.
825 **/
826s32 igb_pll_workaround_i210(struct e1000_hw *hw)
827{
828 s32 ret_val;
829 u32 wuc, mdicnfg, ctrl, ctrl_ext, reg_val;
830 u16 nvm_word, phy_word, pci_word, tmp_nvm;
831 int i;
832
833 /* Get and set needed register values */
834 wuc = rd32(E1000_WUC);
835 mdicnfg = rd32(E1000_MDICNFG);
836 reg_val = mdicnfg & ~E1000_MDICNFG_EXT_MDIO;
837 wr32(E1000_MDICNFG, reg_val);
838
839 /* Get data from NVM, or set default */
840 ret_val = igb_read_invm_word_i210(hw, E1000_INVM_AUTOLOAD,
841 data: &nvm_word);
842 if (ret_val)
843 nvm_word = E1000_INVM_DEFAULT_AL;
844 tmp_nvm = nvm_word | E1000_INVM_PLL_WO_VAL;
845 igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, E1000_PHY_PLL_FREQ_PAGE);
846 phy_word = E1000_PHY_PLL_UNCONF;
847 for (i = 0; i < E1000_MAX_PLL_TRIES; i++) {
848 /* check current state directly from internal PHY */
849 igb_read_phy_reg_82580(hw, E1000_PHY_PLL_FREQ_REG, data: &phy_word);
850 if ((phy_word & E1000_PHY_PLL_UNCONF)
851 != E1000_PHY_PLL_UNCONF) {
852 ret_val = 0;
853 break;
854 } else {
855 ret_val = -E1000_ERR_PHY;
856 }
857 /* directly reset the internal PHY */
858 ctrl = rd32(E1000_CTRL);
859 wr32(E1000_CTRL, ctrl|E1000_CTRL_PHY_RST);
860
861 ctrl_ext = rd32(E1000_CTRL_EXT);
862 ctrl_ext |= (E1000_CTRL_EXT_PHYPDEN | E1000_CTRL_EXT_SDLPE);
863 wr32(E1000_CTRL_EXT, ctrl_ext);
864
865 wr32(E1000_WUC, 0);
866 reg_val = (E1000_INVM_AUTOLOAD << 4) | (tmp_nvm << 16);
867 wr32(E1000_EEARBC_I210, reg_val);
868
869 igb_read_pci_cfg(hw, E1000_PCI_PMCSR, value: &pci_word);
870 pci_word |= E1000_PCI_PMCSR_D3;
871 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, value: &pci_word);
872 usleep_range(min: 1000, max: 2000);
873 pci_word &= ~E1000_PCI_PMCSR_D3;
874 igb_write_pci_cfg(hw, E1000_PCI_PMCSR, value: &pci_word);
875 reg_val = (E1000_INVM_AUTOLOAD << 4) | (nvm_word << 16);
876 wr32(E1000_EEARBC_I210, reg_val);
877
878 /* restore WUC register */
879 wr32(E1000_WUC, wuc);
880 }
881 igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, data: 0);
882 /* restore MDICNFG setting */
883 wr32(E1000_MDICNFG, mdicnfg);
884 return ret_val;
885}
886
887/**
888 * igb_get_cfg_done_i210 - Read config done bit
889 * @hw: pointer to the HW structure
890 *
891 * Read the management control register for the config done bit for
892 * completion status. NOTE: silicon which is EEPROM-less will fail trying
893 * to read the config done bit, so an error is *ONLY* logged and returns
894 * 0. If we were to return with error, EEPROM-less silicon
895 * would not be able to be reset or change link.
896 **/
897s32 igb_get_cfg_done_i210(struct e1000_hw *hw)
898{
899 s32 timeout = PHY_CFG_TIMEOUT;
900 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
901
902 while (timeout) {
903 if (rd32(E1000_EEMNGCTL_I210) & mask)
904 break;
905 usleep_range(min: 1000, max: 2000);
906 timeout--;
907 }
908 if (!timeout)
909 hw_dbg("MNG configuration cycle has not completed.\n");
910
911 return 0;
912}
913

source code of linux/drivers/net/ethernet/intel/igb/e1000_i210.c