1 | /* |
2 | * PPP async serial channel driver for Linux. |
3 | * |
4 | * Copyright 1999 Paul Mackerras. |
5 | * |
6 | * This program is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU General Public License |
8 | * as published by the Free Software Foundation; either version |
9 | * 2 of the License, or (at your option) any later version. |
10 | * |
11 | * This driver provides the encapsulation and framing for sending |
12 | * and receiving PPP frames over async serial lines. It relies on |
13 | * the generic PPP layer to give it frames to send and to process |
14 | * received frames. It implements the PPP line discipline. |
15 | * |
16 | * Part of the code in this driver was inspired by the old async-only |
17 | * PPP driver, written by Michael Callahan and Al Longyear, and |
18 | * subsequently hacked by Paul Mackerras. |
19 | */ |
20 | |
21 | #include <linux/module.h> |
22 | #include <linux/kernel.h> |
23 | #include <linux/skbuff.h> |
24 | #include <linux/tty.h> |
25 | #include <linux/netdevice.h> |
26 | #include <linux/poll.h> |
27 | #include <linux/crc-ccitt.h> |
28 | #include <linux/ppp_defs.h> |
29 | #include <linux/ppp-ioctl.h> |
30 | #include <linux/ppp_channel.h> |
31 | #include <linux/spinlock.h> |
32 | #include <linux/init.h> |
33 | #include <linux/interrupt.h> |
34 | #include <linux/jiffies.h> |
35 | #include <linux/slab.h> |
36 | #include <asm/unaligned.h> |
37 | #include <linux/uaccess.h> |
38 | #include <asm/string.h> |
39 | |
40 | #define PPP_VERSION "2.4.2" |
41 | |
42 | #define OBUFSIZE 4096 |
43 | |
44 | /* Structure for storing local state. */ |
45 | struct asyncppp { |
46 | struct tty_struct *tty; |
47 | unsigned int flags; |
48 | unsigned int state; |
49 | unsigned int rbits; |
50 | int mru; |
51 | spinlock_t xmit_lock; |
52 | spinlock_t recv_lock; |
53 | unsigned long xmit_flags; |
54 | u32 xaccm[8]; |
55 | u32 raccm; |
56 | unsigned int bytes_sent; |
57 | unsigned int bytes_rcvd; |
58 | |
59 | struct sk_buff *tpkt; |
60 | int tpkt_pos; |
61 | u16 tfcs; |
62 | unsigned char *optr; |
63 | unsigned char *olim; |
64 | unsigned long last_xmit; |
65 | |
66 | struct sk_buff *rpkt; |
67 | int lcp_fcs; |
68 | struct sk_buff_head rqueue; |
69 | |
70 | struct tasklet_struct tsk; |
71 | |
72 | refcount_t refcnt; |
73 | struct completion dead; |
74 | struct ppp_channel chan; /* interface to generic ppp layer */ |
75 | unsigned char obuf[OBUFSIZE]; |
76 | }; |
77 | |
78 | /* Bit numbers in xmit_flags */ |
79 | #define XMIT_WAKEUP 0 |
80 | #define XMIT_FULL 1 |
81 | #define XMIT_BUSY 2 |
82 | |
83 | /* State bits */ |
84 | #define SC_TOSS 1 |
85 | #define SC_ESCAPE 2 |
86 | #define SC_PREV_ERROR 4 |
87 | |
88 | /* Bits in rbits */ |
89 | #define SC_RCV_BITS (SC_RCV_B7_1|SC_RCV_B7_0|SC_RCV_ODDP|SC_RCV_EVNP) |
90 | |
91 | static int flag_time = HZ; |
92 | module_param(flag_time, int, 0); |
93 | MODULE_PARM_DESC(flag_time, "ppp_async: interval between flagged packets (in clock ticks)" ); |
94 | MODULE_LICENSE("GPL" ); |
95 | MODULE_ALIAS_LDISC(N_PPP); |
96 | |
97 | /* |
98 | * Prototypes. |
99 | */ |
100 | static int ppp_async_encode(struct asyncppp *ap); |
101 | static int ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb); |
102 | static int ppp_async_push(struct asyncppp *ap); |
103 | static void ppp_async_flush_output(struct asyncppp *ap); |
104 | static void ppp_async_input(struct asyncppp *ap, const unsigned char *buf, |
105 | char *flags, int count); |
106 | static int ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, |
107 | unsigned long arg); |
108 | static void ppp_async_process(unsigned long arg); |
109 | |
110 | static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, |
111 | int len, int inbound); |
112 | |
113 | static const struct ppp_channel_ops async_ops = { |
114 | .start_xmit = ppp_async_send, |
115 | .ioctl = ppp_async_ioctl, |
116 | }; |
117 | |
118 | /* |
119 | * Routines implementing the PPP line discipline. |
120 | */ |
121 | |
122 | /* |
123 | * We have a potential race on dereferencing tty->disc_data, |
124 | * because the tty layer provides no locking at all - thus one |
125 | * cpu could be running ppp_asynctty_receive while another |
126 | * calls ppp_asynctty_close, which zeroes tty->disc_data and |
127 | * frees the memory that ppp_asynctty_receive is using. The best |
128 | * way to fix this is to use a rwlock in the tty struct, but for now |
129 | * we use a single global rwlock for all ttys in ppp line discipline. |
130 | * |
131 | * FIXME: this is no longer true. The _close path for the ldisc is |
132 | * now guaranteed to be sane. |
133 | */ |
134 | static DEFINE_RWLOCK(disc_data_lock); |
135 | |
136 | static struct asyncppp *ap_get(struct tty_struct *tty) |
137 | { |
138 | struct asyncppp *ap; |
139 | |
140 | read_lock(&disc_data_lock); |
141 | ap = tty->disc_data; |
142 | if (ap != NULL) |
143 | refcount_inc(&ap->refcnt); |
144 | read_unlock(&disc_data_lock); |
145 | return ap; |
146 | } |
147 | |
148 | static void ap_put(struct asyncppp *ap) |
149 | { |
150 | if (refcount_dec_and_test(&ap->refcnt)) |
151 | complete(&ap->dead); |
152 | } |
153 | |
154 | /* |
155 | * Called when a tty is put into PPP line discipline. Called in process |
156 | * context. |
157 | */ |
158 | static int |
159 | ppp_asynctty_open(struct tty_struct *tty) |
160 | { |
161 | struct asyncppp *ap; |
162 | int err; |
163 | int speed; |
164 | |
165 | if (tty->ops->write == NULL) |
166 | return -EOPNOTSUPP; |
167 | |
168 | err = -ENOMEM; |
169 | ap = kzalloc(sizeof(*ap), GFP_KERNEL); |
170 | if (!ap) |
171 | goto out; |
172 | |
173 | /* initialize the asyncppp structure */ |
174 | ap->tty = tty; |
175 | ap->mru = PPP_MRU; |
176 | spin_lock_init(&ap->xmit_lock); |
177 | spin_lock_init(&ap->recv_lock); |
178 | ap->xaccm[0] = ~0U; |
179 | ap->xaccm[3] = 0x60000000U; |
180 | ap->raccm = ~0U; |
181 | ap->optr = ap->obuf; |
182 | ap->olim = ap->obuf; |
183 | ap->lcp_fcs = -1; |
184 | |
185 | skb_queue_head_init(&ap->rqueue); |
186 | tasklet_init(&ap->tsk, ppp_async_process, (unsigned long) ap); |
187 | |
188 | refcount_set(&ap->refcnt, 1); |
189 | init_completion(&ap->dead); |
190 | |
191 | ap->chan.private = ap; |
192 | ap->chan.ops = &async_ops; |
193 | ap->chan.mtu = PPP_MRU; |
194 | speed = tty_get_baud_rate(tty); |
195 | ap->chan.speed = speed; |
196 | err = ppp_register_channel(&ap->chan); |
197 | if (err) |
198 | goto out_free; |
199 | |
200 | tty->disc_data = ap; |
201 | tty->receive_room = 65536; |
202 | return 0; |
203 | |
204 | out_free: |
205 | kfree(ap); |
206 | out: |
207 | return err; |
208 | } |
209 | |
210 | /* |
211 | * Called when the tty is put into another line discipline |
212 | * or it hangs up. We have to wait for any cpu currently |
213 | * executing in any of the other ppp_asynctty_* routines to |
214 | * finish before we can call ppp_unregister_channel and free |
215 | * the asyncppp struct. This routine must be called from |
216 | * process context, not interrupt or softirq context. |
217 | */ |
218 | static void |
219 | ppp_asynctty_close(struct tty_struct *tty) |
220 | { |
221 | struct asyncppp *ap; |
222 | |
223 | write_lock_irq(&disc_data_lock); |
224 | ap = tty->disc_data; |
225 | tty->disc_data = NULL; |
226 | write_unlock_irq(&disc_data_lock); |
227 | if (!ap) |
228 | return; |
229 | |
230 | /* |
231 | * We have now ensured that nobody can start using ap from now |
232 | * on, but we have to wait for all existing users to finish. |
233 | * Note that ppp_unregister_channel ensures that no calls to |
234 | * our channel ops (i.e. ppp_async_send/ioctl) are in progress |
235 | * by the time it returns. |
236 | */ |
237 | if (!refcount_dec_and_test(&ap->refcnt)) |
238 | wait_for_completion(&ap->dead); |
239 | tasklet_kill(&ap->tsk); |
240 | |
241 | ppp_unregister_channel(&ap->chan); |
242 | kfree_skb(ap->rpkt); |
243 | skb_queue_purge(&ap->rqueue); |
244 | kfree_skb(ap->tpkt); |
245 | kfree(ap); |
246 | } |
247 | |
248 | /* |
249 | * Called on tty hangup in process context. |
250 | * |
251 | * Wait for I/O to driver to complete and unregister PPP channel. |
252 | * This is already done by the close routine, so just call that. |
253 | */ |
254 | static int ppp_asynctty_hangup(struct tty_struct *tty) |
255 | { |
256 | ppp_asynctty_close(tty); |
257 | return 0; |
258 | } |
259 | |
260 | /* |
261 | * Read does nothing - no data is ever available this way. |
262 | * Pppd reads and writes packets via /dev/ppp instead. |
263 | */ |
264 | static ssize_t |
265 | ppp_asynctty_read(struct tty_struct *tty, struct file *file, |
266 | unsigned char __user *buf, size_t count) |
267 | { |
268 | return -EAGAIN; |
269 | } |
270 | |
271 | /* |
272 | * Write on the tty does nothing, the packets all come in |
273 | * from the ppp generic stuff. |
274 | */ |
275 | static ssize_t |
276 | ppp_asynctty_write(struct tty_struct *tty, struct file *file, |
277 | const unsigned char *buf, size_t count) |
278 | { |
279 | return -EAGAIN; |
280 | } |
281 | |
282 | /* |
283 | * Called in process context only. May be re-entered by multiple |
284 | * ioctl calling threads. |
285 | */ |
286 | |
287 | static int |
288 | ppp_asynctty_ioctl(struct tty_struct *tty, struct file *file, |
289 | unsigned int cmd, unsigned long arg) |
290 | { |
291 | struct asyncppp *ap = ap_get(tty); |
292 | int err, val; |
293 | int __user *p = (int __user *)arg; |
294 | |
295 | if (!ap) |
296 | return -ENXIO; |
297 | err = -EFAULT; |
298 | switch (cmd) { |
299 | case PPPIOCGCHAN: |
300 | err = -EFAULT; |
301 | if (put_user(ppp_channel_index(&ap->chan), p)) |
302 | break; |
303 | err = 0; |
304 | break; |
305 | |
306 | case PPPIOCGUNIT: |
307 | err = -EFAULT; |
308 | if (put_user(ppp_unit_number(&ap->chan), p)) |
309 | break; |
310 | err = 0; |
311 | break; |
312 | |
313 | case TCFLSH: |
314 | /* flush our buffers and the serial port's buffer */ |
315 | if (arg == TCIOFLUSH || arg == TCOFLUSH) |
316 | ppp_async_flush_output(ap); |
317 | err = n_tty_ioctl_helper(tty, file, cmd, arg); |
318 | break; |
319 | |
320 | case FIONREAD: |
321 | val = 0; |
322 | if (put_user(val, p)) |
323 | break; |
324 | err = 0; |
325 | break; |
326 | |
327 | default: |
328 | /* Try the various mode ioctls */ |
329 | err = tty_mode_ioctl(tty, file, cmd, arg); |
330 | } |
331 | |
332 | ap_put(ap); |
333 | return err; |
334 | } |
335 | |
336 | /* No kernel lock - fine */ |
337 | static __poll_t |
338 | ppp_asynctty_poll(struct tty_struct *tty, struct file *file, poll_table *wait) |
339 | { |
340 | return 0; |
341 | } |
342 | |
343 | /* May sleep, don't call from interrupt level or with interrupts disabled */ |
344 | static void |
345 | ppp_asynctty_receive(struct tty_struct *tty, const unsigned char *buf, |
346 | char *cflags, int count) |
347 | { |
348 | struct asyncppp *ap = ap_get(tty); |
349 | unsigned long flags; |
350 | |
351 | if (!ap) |
352 | return; |
353 | spin_lock_irqsave(&ap->recv_lock, flags); |
354 | ppp_async_input(ap, buf, cflags, count); |
355 | spin_unlock_irqrestore(&ap->recv_lock, flags); |
356 | if (!skb_queue_empty(&ap->rqueue)) |
357 | tasklet_schedule(&ap->tsk); |
358 | ap_put(ap); |
359 | tty_unthrottle(tty); |
360 | } |
361 | |
362 | static void |
363 | ppp_asynctty_wakeup(struct tty_struct *tty) |
364 | { |
365 | struct asyncppp *ap = ap_get(tty); |
366 | |
367 | clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); |
368 | if (!ap) |
369 | return; |
370 | set_bit(XMIT_WAKEUP, &ap->xmit_flags); |
371 | tasklet_schedule(&ap->tsk); |
372 | ap_put(ap); |
373 | } |
374 | |
375 | |
376 | static struct tty_ldisc_ops ppp_ldisc = { |
377 | .owner = THIS_MODULE, |
378 | .magic = TTY_LDISC_MAGIC, |
379 | .name = "ppp" , |
380 | .open = ppp_asynctty_open, |
381 | .close = ppp_asynctty_close, |
382 | .hangup = ppp_asynctty_hangup, |
383 | .read = ppp_asynctty_read, |
384 | .write = ppp_asynctty_write, |
385 | .ioctl = ppp_asynctty_ioctl, |
386 | .poll = ppp_asynctty_poll, |
387 | .receive_buf = ppp_asynctty_receive, |
388 | .write_wakeup = ppp_asynctty_wakeup, |
389 | }; |
390 | |
391 | static int __init |
392 | ppp_async_init(void) |
393 | { |
394 | int err; |
395 | |
396 | err = tty_register_ldisc(N_PPP, &ppp_ldisc); |
397 | if (err != 0) |
398 | printk(KERN_ERR "PPP_async: error %d registering line disc.\n" , |
399 | err); |
400 | return err; |
401 | } |
402 | |
403 | /* |
404 | * The following routines provide the PPP channel interface. |
405 | */ |
406 | static int |
407 | ppp_async_ioctl(struct ppp_channel *chan, unsigned int cmd, unsigned long arg) |
408 | { |
409 | struct asyncppp *ap = chan->private; |
410 | void __user *argp = (void __user *)arg; |
411 | int __user *p = argp; |
412 | int err, val; |
413 | u32 accm[8]; |
414 | |
415 | err = -EFAULT; |
416 | switch (cmd) { |
417 | case PPPIOCGFLAGS: |
418 | val = ap->flags | ap->rbits; |
419 | if (put_user(val, p)) |
420 | break; |
421 | err = 0; |
422 | break; |
423 | case PPPIOCSFLAGS: |
424 | if (get_user(val, p)) |
425 | break; |
426 | ap->flags = val & ~SC_RCV_BITS; |
427 | spin_lock_irq(&ap->recv_lock); |
428 | ap->rbits = val & SC_RCV_BITS; |
429 | spin_unlock_irq(&ap->recv_lock); |
430 | err = 0; |
431 | break; |
432 | |
433 | case PPPIOCGASYNCMAP: |
434 | if (put_user(ap->xaccm[0], (u32 __user *)argp)) |
435 | break; |
436 | err = 0; |
437 | break; |
438 | case PPPIOCSASYNCMAP: |
439 | if (get_user(ap->xaccm[0], (u32 __user *)argp)) |
440 | break; |
441 | err = 0; |
442 | break; |
443 | |
444 | case PPPIOCGRASYNCMAP: |
445 | if (put_user(ap->raccm, (u32 __user *)argp)) |
446 | break; |
447 | err = 0; |
448 | break; |
449 | case PPPIOCSRASYNCMAP: |
450 | if (get_user(ap->raccm, (u32 __user *)argp)) |
451 | break; |
452 | err = 0; |
453 | break; |
454 | |
455 | case PPPIOCGXASYNCMAP: |
456 | if (copy_to_user(argp, ap->xaccm, sizeof(ap->xaccm))) |
457 | break; |
458 | err = 0; |
459 | break; |
460 | case PPPIOCSXASYNCMAP: |
461 | if (copy_from_user(accm, argp, sizeof(accm))) |
462 | break; |
463 | accm[2] &= ~0x40000000U; /* can't escape 0x5e */ |
464 | accm[3] |= 0x60000000U; /* must escape 0x7d, 0x7e */ |
465 | memcpy(ap->xaccm, accm, sizeof(ap->xaccm)); |
466 | err = 0; |
467 | break; |
468 | |
469 | case PPPIOCGMRU: |
470 | if (put_user(ap->mru, p)) |
471 | break; |
472 | err = 0; |
473 | break; |
474 | case PPPIOCSMRU: |
475 | if (get_user(val, p)) |
476 | break; |
477 | if (val < PPP_MRU) |
478 | val = PPP_MRU; |
479 | ap->mru = val; |
480 | err = 0; |
481 | break; |
482 | |
483 | default: |
484 | err = -ENOTTY; |
485 | } |
486 | |
487 | return err; |
488 | } |
489 | |
490 | /* |
491 | * This is called at softirq level to deliver received packets |
492 | * to the ppp_generic code, and to tell the ppp_generic code |
493 | * if we can accept more output now. |
494 | */ |
495 | static void ppp_async_process(unsigned long arg) |
496 | { |
497 | struct asyncppp *ap = (struct asyncppp *) arg; |
498 | struct sk_buff *skb; |
499 | |
500 | /* process received packets */ |
501 | while ((skb = skb_dequeue(&ap->rqueue)) != NULL) { |
502 | if (skb->cb[0]) |
503 | ppp_input_error(&ap->chan, 0); |
504 | ppp_input(&ap->chan, skb); |
505 | } |
506 | |
507 | /* try to push more stuff out */ |
508 | if (test_bit(XMIT_WAKEUP, &ap->xmit_flags) && ppp_async_push(ap)) |
509 | ppp_output_wakeup(&ap->chan); |
510 | } |
511 | |
512 | /* |
513 | * Procedures for encapsulation and framing. |
514 | */ |
515 | |
516 | /* |
517 | * Procedure to encode the data for async serial transmission. |
518 | * Does octet stuffing (escaping), puts the address/control bytes |
519 | * on if A/C compression is disabled, and does protocol compression. |
520 | * Assumes ap->tpkt != 0 on entry. |
521 | * Returns 1 if we finished the current frame, 0 otherwise. |
522 | */ |
523 | |
524 | #define PUT_BYTE(ap, buf, c, islcp) do { \ |
525 | if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 << (c & 0x1f)))) {\ |
526 | *buf++ = PPP_ESCAPE; \ |
527 | *buf++ = c ^ PPP_TRANS; \ |
528 | } else \ |
529 | *buf++ = c; \ |
530 | } while (0) |
531 | |
532 | static int |
533 | ppp_async_encode(struct asyncppp *ap) |
534 | { |
535 | int fcs, i, count, c, proto; |
536 | unsigned char *buf, *buflim; |
537 | unsigned char *data; |
538 | int islcp; |
539 | |
540 | buf = ap->obuf; |
541 | ap->olim = buf; |
542 | ap->optr = buf; |
543 | i = ap->tpkt_pos; |
544 | data = ap->tpkt->data; |
545 | count = ap->tpkt->len; |
546 | fcs = ap->tfcs; |
547 | proto = get_unaligned_be16(data); |
548 | |
549 | /* |
550 | * LCP packets with code values between 1 (configure-reqest) |
551 | * and 7 (code-reject) must be sent as though no options |
552 | * had been negotiated. |
553 | */ |
554 | islcp = proto == PPP_LCP && 1 <= data[2] && data[2] <= 7; |
555 | |
556 | if (i == 0) { |
557 | if (islcp) |
558 | async_lcp_peek(ap, data, count, 0); |
559 | |
560 | /* |
561 | * Start of a new packet - insert the leading FLAG |
562 | * character if necessary. |
563 | */ |
564 | if (islcp || flag_time == 0 || |
565 | time_after_eq(jiffies, ap->last_xmit + flag_time)) |
566 | *buf++ = PPP_FLAG; |
567 | ap->last_xmit = jiffies; |
568 | fcs = PPP_INITFCS; |
569 | |
570 | /* |
571 | * Put in the address/control bytes if necessary |
572 | */ |
573 | if ((ap->flags & SC_COMP_AC) == 0 || islcp) { |
574 | PUT_BYTE(ap, buf, 0xff, islcp); |
575 | fcs = PPP_FCS(fcs, 0xff); |
576 | PUT_BYTE(ap, buf, 0x03, islcp); |
577 | fcs = PPP_FCS(fcs, 0x03); |
578 | } |
579 | } |
580 | |
581 | /* |
582 | * Once we put in the last byte, we need to put in the FCS |
583 | * and closing flag, so make sure there is at least 7 bytes |
584 | * of free space in the output buffer. |
585 | */ |
586 | buflim = ap->obuf + OBUFSIZE - 6; |
587 | while (i < count && buf < buflim) { |
588 | c = data[i++]; |
589 | if (i == 1 && c == 0 && (ap->flags & SC_COMP_PROT)) |
590 | continue; /* compress protocol field */ |
591 | fcs = PPP_FCS(fcs, c); |
592 | PUT_BYTE(ap, buf, c, islcp); |
593 | } |
594 | |
595 | if (i < count) { |
596 | /* |
597 | * Remember where we are up to in this packet. |
598 | */ |
599 | ap->olim = buf; |
600 | ap->tpkt_pos = i; |
601 | ap->tfcs = fcs; |
602 | return 0; |
603 | } |
604 | |
605 | /* |
606 | * We have finished the packet. Add the FCS and flag. |
607 | */ |
608 | fcs = ~fcs; |
609 | c = fcs & 0xff; |
610 | PUT_BYTE(ap, buf, c, islcp); |
611 | c = (fcs >> 8) & 0xff; |
612 | PUT_BYTE(ap, buf, c, islcp); |
613 | *buf++ = PPP_FLAG; |
614 | ap->olim = buf; |
615 | |
616 | consume_skb(ap->tpkt); |
617 | ap->tpkt = NULL; |
618 | return 1; |
619 | } |
620 | |
621 | /* |
622 | * Transmit-side routines. |
623 | */ |
624 | |
625 | /* |
626 | * Send a packet to the peer over an async tty line. |
627 | * Returns 1 iff the packet was accepted. |
628 | * If the packet was not accepted, we will call ppp_output_wakeup |
629 | * at some later time. |
630 | */ |
631 | static int |
632 | ppp_async_send(struct ppp_channel *chan, struct sk_buff *skb) |
633 | { |
634 | struct asyncppp *ap = chan->private; |
635 | |
636 | ppp_async_push(ap); |
637 | |
638 | if (test_and_set_bit(XMIT_FULL, &ap->xmit_flags)) |
639 | return 0; /* already full */ |
640 | ap->tpkt = skb; |
641 | ap->tpkt_pos = 0; |
642 | |
643 | ppp_async_push(ap); |
644 | return 1; |
645 | } |
646 | |
647 | /* |
648 | * Push as much data as possible out to the tty. |
649 | */ |
650 | static int |
651 | ppp_async_push(struct asyncppp *ap) |
652 | { |
653 | int avail, sent, done = 0; |
654 | struct tty_struct *tty = ap->tty; |
655 | int tty_stuffed = 0; |
656 | |
657 | /* |
658 | * We can get called recursively here if the tty write |
659 | * function calls our wakeup function. This can happen |
660 | * for example on a pty with both the master and slave |
661 | * set to PPP line discipline. |
662 | * We use the XMIT_BUSY bit to detect this and get out, |
663 | * leaving the XMIT_WAKEUP bit set to tell the other |
664 | * instance that it may now be able to write more now. |
665 | */ |
666 | if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) |
667 | return 0; |
668 | spin_lock_bh(&ap->xmit_lock); |
669 | for (;;) { |
670 | if (test_and_clear_bit(XMIT_WAKEUP, &ap->xmit_flags)) |
671 | tty_stuffed = 0; |
672 | if (!tty_stuffed && ap->optr < ap->olim) { |
673 | avail = ap->olim - ap->optr; |
674 | set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); |
675 | sent = tty->ops->write(tty, ap->optr, avail); |
676 | if (sent < 0) |
677 | goto flush; /* error, e.g. loss of CD */ |
678 | ap->optr += sent; |
679 | if (sent < avail) |
680 | tty_stuffed = 1; |
681 | continue; |
682 | } |
683 | if (ap->optr >= ap->olim && ap->tpkt) { |
684 | if (ppp_async_encode(ap)) { |
685 | /* finished processing ap->tpkt */ |
686 | clear_bit(XMIT_FULL, &ap->xmit_flags); |
687 | done = 1; |
688 | } |
689 | continue; |
690 | } |
691 | /* |
692 | * We haven't made any progress this time around. |
693 | * Clear XMIT_BUSY to let other callers in, but |
694 | * after doing so we have to check if anyone set |
695 | * XMIT_WAKEUP since we last checked it. If they |
696 | * did, we should try again to set XMIT_BUSY and go |
697 | * around again in case XMIT_BUSY was still set when |
698 | * the other caller tried. |
699 | */ |
700 | clear_bit(XMIT_BUSY, &ap->xmit_flags); |
701 | /* any more work to do? if not, exit the loop */ |
702 | if (!(test_bit(XMIT_WAKEUP, &ap->xmit_flags) || |
703 | (!tty_stuffed && ap->tpkt))) |
704 | break; |
705 | /* more work to do, see if we can do it now */ |
706 | if (test_and_set_bit(XMIT_BUSY, &ap->xmit_flags)) |
707 | break; |
708 | } |
709 | spin_unlock_bh(&ap->xmit_lock); |
710 | return done; |
711 | |
712 | flush: |
713 | clear_bit(XMIT_BUSY, &ap->xmit_flags); |
714 | if (ap->tpkt) { |
715 | kfree_skb(ap->tpkt); |
716 | ap->tpkt = NULL; |
717 | clear_bit(XMIT_FULL, &ap->xmit_flags); |
718 | done = 1; |
719 | } |
720 | ap->optr = ap->olim; |
721 | spin_unlock_bh(&ap->xmit_lock); |
722 | return done; |
723 | } |
724 | |
725 | /* |
726 | * Flush output from our internal buffers. |
727 | * Called for the TCFLSH ioctl. Can be entered in parallel |
728 | * but this is covered by the xmit_lock. |
729 | */ |
730 | static void |
731 | ppp_async_flush_output(struct asyncppp *ap) |
732 | { |
733 | int done = 0; |
734 | |
735 | spin_lock_bh(&ap->xmit_lock); |
736 | ap->optr = ap->olim; |
737 | if (ap->tpkt != NULL) { |
738 | kfree_skb(ap->tpkt); |
739 | ap->tpkt = NULL; |
740 | clear_bit(XMIT_FULL, &ap->xmit_flags); |
741 | done = 1; |
742 | } |
743 | spin_unlock_bh(&ap->xmit_lock); |
744 | if (done) |
745 | ppp_output_wakeup(&ap->chan); |
746 | } |
747 | |
748 | /* |
749 | * Receive-side routines. |
750 | */ |
751 | |
752 | /* see how many ordinary chars there are at the start of buf */ |
753 | static inline int |
754 | scan_ordinary(struct asyncppp *ap, const unsigned char *buf, int count) |
755 | { |
756 | int i, c; |
757 | |
758 | for (i = 0; i < count; ++i) { |
759 | c = buf[i]; |
760 | if (c == PPP_ESCAPE || c == PPP_FLAG || |
761 | (c < 0x20 && (ap->raccm & (1 << c)) != 0)) |
762 | break; |
763 | } |
764 | return i; |
765 | } |
766 | |
767 | /* called when a flag is seen - do end-of-packet processing */ |
768 | static void |
769 | process_input_packet(struct asyncppp *ap) |
770 | { |
771 | struct sk_buff *skb; |
772 | unsigned char *p; |
773 | unsigned int len, fcs; |
774 | |
775 | skb = ap->rpkt; |
776 | if (ap->state & (SC_TOSS | SC_ESCAPE)) |
777 | goto err; |
778 | |
779 | if (skb == NULL) |
780 | return; /* 0-length packet */ |
781 | |
782 | /* check the FCS */ |
783 | p = skb->data; |
784 | len = skb->len; |
785 | if (len < 3) |
786 | goto err; /* too short */ |
787 | fcs = PPP_INITFCS; |
788 | for (; len > 0; --len) |
789 | fcs = PPP_FCS(fcs, *p++); |
790 | if (fcs != PPP_GOODFCS) |
791 | goto err; /* bad FCS */ |
792 | skb_trim(skb, skb->len - 2); |
793 | |
794 | /* check for address/control and protocol compression */ |
795 | p = skb->data; |
796 | if (p[0] == PPP_ALLSTATIONS) { |
797 | /* chop off address/control */ |
798 | if (p[1] != PPP_UI || skb->len < 3) |
799 | goto err; |
800 | p = skb_pull(skb, 2); |
801 | } |
802 | |
803 | /* If protocol field is not compressed, it can be LCP packet */ |
804 | if (!(p[0] & 0x01)) { |
805 | unsigned int proto; |
806 | |
807 | if (skb->len < 2) |
808 | goto err; |
809 | proto = (p[0] << 8) + p[1]; |
810 | if (proto == PPP_LCP) |
811 | async_lcp_peek(ap, p, skb->len, 1); |
812 | } |
813 | |
814 | /* queue the frame to be processed */ |
815 | skb->cb[0] = ap->state; |
816 | skb_queue_tail(&ap->rqueue, skb); |
817 | ap->rpkt = NULL; |
818 | ap->state = 0; |
819 | return; |
820 | |
821 | err: |
822 | /* frame had an error, remember that, reset SC_TOSS & SC_ESCAPE */ |
823 | ap->state = SC_PREV_ERROR; |
824 | if (skb) { |
825 | /* make skb appear as freshly allocated */ |
826 | skb_trim(skb, 0); |
827 | skb_reserve(skb, - skb_headroom(skb)); |
828 | } |
829 | } |
830 | |
831 | /* Called when the tty driver has data for us. Runs parallel with the |
832 | other ldisc functions but will not be re-entered */ |
833 | |
834 | static void |
835 | ppp_async_input(struct asyncppp *ap, const unsigned char *buf, |
836 | char *flags, int count) |
837 | { |
838 | struct sk_buff *skb; |
839 | int c, i, j, n, s, f; |
840 | unsigned char *sp; |
841 | |
842 | /* update bits used for 8-bit cleanness detection */ |
843 | if (~ap->rbits & SC_RCV_BITS) { |
844 | s = 0; |
845 | for (i = 0; i < count; ++i) { |
846 | c = buf[i]; |
847 | if (flags && flags[i] != 0) |
848 | continue; |
849 | s |= (c & 0x80)? SC_RCV_B7_1: SC_RCV_B7_0; |
850 | c = ((c >> 4) ^ c) & 0xf; |
851 | s |= (0x6996 & (1 << c))? SC_RCV_ODDP: SC_RCV_EVNP; |
852 | } |
853 | ap->rbits |= s; |
854 | } |
855 | |
856 | while (count > 0) { |
857 | /* scan through and see how many chars we can do in bulk */ |
858 | if ((ap->state & SC_ESCAPE) && buf[0] == PPP_ESCAPE) |
859 | n = 1; |
860 | else |
861 | n = scan_ordinary(ap, buf, count); |
862 | |
863 | f = 0; |
864 | if (flags && (ap->state & SC_TOSS) == 0) { |
865 | /* check the flags to see if any char had an error */ |
866 | for (j = 0; j < n; ++j) |
867 | if ((f = flags[j]) != 0) |
868 | break; |
869 | } |
870 | if (f != 0) { |
871 | /* start tossing */ |
872 | ap->state |= SC_TOSS; |
873 | |
874 | } else if (n > 0 && (ap->state & SC_TOSS) == 0) { |
875 | /* stuff the chars in the skb */ |
876 | skb = ap->rpkt; |
877 | if (!skb) { |
878 | skb = dev_alloc_skb(ap->mru + PPP_HDRLEN + 2); |
879 | if (!skb) |
880 | goto nomem; |
881 | ap->rpkt = skb; |
882 | } |
883 | if (skb->len == 0) { |
884 | /* Try to get the payload 4-byte aligned. |
885 | * This should match the |
886 | * PPP_ALLSTATIONS/PPP_UI/compressed tests in |
887 | * process_input_packet, but we do not have |
888 | * enough chars here to test buf[1] and buf[2]. |
889 | */ |
890 | if (buf[0] != PPP_ALLSTATIONS) |
891 | skb_reserve(skb, 2 + (buf[0] & 1)); |
892 | } |
893 | if (n > skb_tailroom(skb)) { |
894 | /* packet overflowed MRU */ |
895 | ap->state |= SC_TOSS; |
896 | } else { |
897 | sp = skb_put_data(skb, buf, n); |
898 | if (ap->state & SC_ESCAPE) { |
899 | sp[0] ^= PPP_TRANS; |
900 | ap->state &= ~SC_ESCAPE; |
901 | } |
902 | } |
903 | } |
904 | |
905 | if (n >= count) |
906 | break; |
907 | |
908 | c = buf[n]; |
909 | if (flags != NULL && flags[n] != 0) { |
910 | ap->state |= SC_TOSS; |
911 | } else if (c == PPP_FLAG) { |
912 | process_input_packet(ap); |
913 | } else if (c == PPP_ESCAPE) { |
914 | ap->state |= SC_ESCAPE; |
915 | } else if (I_IXON(ap->tty)) { |
916 | if (c == START_CHAR(ap->tty)) |
917 | start_tty(ap->tty); |
918 | else if (c == STOP_CHAR(ap->tty)) |
919 | stop_tty(ap->tty); |
920 | } |
921 | /* otherwise it's a char in the recv ACCM */ |
922 | ++n; |
923 | |
924 | buf += n; |
925 | if (flags) |
926 | flags += n; |
927 | count -= n; |
928 | } |
929 | return; |
930 | |
931 | nomem: |
932 | printk(KERN_ERR "PPPasync: no memory (input pkt)\n" ); |
933 | ap->state |= SC_TOSS; |
934 | } |
935 | |
936 | /* |
937 | * We look at LCP frames going past so that we can notice |
938 | * and react to the LCP configure-ack from the peer. |
939 | * In the situation where the peer has been sent a configure-ack |
940 | * already, LCP is up once it has sent its configure-ack |
941 | * so the immediately following packet can be sent with the |
942 | * configured LCP options. This allows us to process the following |
943 | * packet correctly without pppd needing to respond quickly. |
944 | * |
945 | * We only respond to the received configure-ack if we have just |
946 | * sent a configure-request, and the configure-ack contains the |
947 | * same data (this is checked using a 16-bit crc of the data). |
948 | */ |
949 | #define CONFREQ 1 /* LCP code field values */ |
950 | #define CONFACK 2 |
951 | #define LCP_MRU 1 /* LCP option numbers */ |
952 | #define LCP_ASYNCMAP 2 |
953 | |
954 | static void async_lcp_peek(struct asyncppp *ap, unsigned char *data, |
955 | int len, int inbound) |
956 | { |
957 | int dlen, fcs, i, code; |
958 | u32 val; |
959 | |
960 | data += 2; /* skip protocol bytes */ |
961 | len -= 2; |
962 | if (len < 4) /* 4 = code, ID, length */ |
963 | return; |
964 | code = data[0]; |
965 | if (code != CONFACK && code != CONFREQ) |
966 | return; |
967 | dlen = get_unaligned_be16(data + 2); |
968 | if (len < dlen) |
969 | return; /* packet got truncated or length is bogus */ |
970 | |
971 | if (code == (inbound? CONFACK: CONFREQ)) { |
972 | /* |
973 | * sent confreq or received confack: |
974 | * calculate the crc of the data from the ID field on. |
975 | */ |
976 | fcs = PPP_INITFCS; |
977 | for (i = 1; i < dlen; ++i) |
978 | fcs = PPP_FCS(fcs, data[i]); |
979 | |
980 | if (!inbound) { |
981 | /* outbound confreq - remember the crc for later */ |
982 | ap->lcp_fcs = fcs; |
983 | return; |
984 | } |
985 | |
986 | /* received confack, check the crc */ |
987 | fcs ^= ap->lcp_fcs; |
988 | ap->lcp_fcs = -1; |
989 | if (fcs != 0) |
990 | return; |
991 | } else if (inbound) |
992 | return; /* not interested in received confreq */ |
993 | |
994 | /* process the options in the confack */ |
995 | data += 4; |
996 | dlen -= 4; |
997 | /* data[0] is code, data[1] is length */ |
998 | while (dlen >= 2 && dlen >= data[1] && data[1] >= 2) { |
999 | switch (data[0]) { |
1000 | case LCP_MRU: |
1001 | val = get_unaligned_be16(data + 2); |
1002 | if (inbound) |
1003 | ap->mru = val; |
1004 | else |
1005 | ap->chan.mtu = val; |
1006 | break; |
1007 | case LCP_ASYNCMAP: |
1008 | val = get_unaligned_be32(data + 2); |
1009 | if (inbound) |
1010 | ap->raccm = val; |
1011 | else |
1012 | ap->xaccm[0] = val; |
1013 | break; |
1014 | } |
1015 | dlen -= data[1]; |
1016 | data += data[1]; |
1017 | } |
1018 | } |
1019 | |
1020 | static void __exit ppp_async_cleanup(void) |
1021 | { |
1022 | if (tty_unregister_ldisc(N_PPP) != 0) |
1023 | printk(KERN_ERR "failed to unregister PPP line discipline\n" ); |
1024 | } |
1025 | |
1026 | module_init(ppp_async_init); |
1027 | module_exit(ppp_async_cleanup); |
1028 | |