1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/*************************************\
21* EEPROM access functions and helpers *
22\*************************************/
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/slab.h>
27
28#include "ath5k.h"
29#include "reg.h"
30#include "debug.h"
31
32
33/******************\
34* Helper functions *
35\******************/
36
37/*
38 * Translate binary channel representation in EEPROM to frequency
39 */
40static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
41 unsigned int mode)
42{
43 u16 val;
44
45 if (bin == AR5K_EEPROM_CHANNEL_DIS)
46 return bin;
47
48 if (mode == AR5K_EEPROM_MODE_11A) {
49 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
50 val = (5 * bin) + 4800;
51 else
52 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
53 (bin * 10) + 5100;
54 } else {
55 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
56 val = bin + 2300;
57 else
58 val = bin + 2400;
59 }
60
61 return val;
62}
63
64
65/*********\
66* Parsers *
67\*********/
68
69/*
70 * Initialize eeprom & capabilities structs
71 */
72static int
73ath5k_eeprom_init_header(struct ath5k_hw *ah)
74{
75 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
76 u16 val;
77 u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
78
79 /*
80 * Read values from EEPROM and store them in the capability structure
81 */
82 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87
88 /* Return if we have an old EEPROM */
89 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90 return 0;
91
92 /*
93 * Validate the checksum of the EEPROM date. There are some
94 * devices with invalid EEPROMs.
95 */
96 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97 if (val) {
98 eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99 AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100 AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101 eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
102
103 /*
104 * Fail safe check to prevent stupid loops due
105 * to busted EEPROMs. XXX: This value is likely too
106 * big still, waiting on a better value.
107 */
108 if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109 ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
110 "%d (0x%04x) max expected: %d (0x%04x)\n",
111 eep_max, eep_max,
112 3 * AR5K_EEPROM_INFO_MAX,
113 3 * AR5K_EEPROM_INFO_MAX);
114 return -EIO;
115 }
116 }
117
118 for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120 cksum ^= val;
121 }
122 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123 ATH5K_ERR(ah, "Invalid EEPROM "
124 "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125 cksum, eep_max,
126 eep_max == AR5K_EEPROM_INFO_MAX ?
127 "default size" : "custom size");
128 return -EIO;
129 }
130
131 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132 ee_ant_gain);
133
134 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137
138 /* XXX: Don't know which versions include these two */
139 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140
141 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143
144 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
148 }
149 }
150
151 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155
156 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
159 }
160
161 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162
163 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164 ee->ee_is_hb63 = true;
165 else
166 ee->ee_is_hb63 = false;
167
168 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171
172 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173 * and enable serdes programming if needed.
174 *
175 * XXX: Serdes values seem to be fixed so
176 * no need to read them here, we write them
177 * during ath5k_hw_init */
178 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180 true : false;
181
182 return 0;
183}
184
185
186/*
187 * Read antenna infos from eeprom
188 */
189static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190 unsigned int mode)
191{
192 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193 u32 o = *offset;
194 u16 val;
195 int i = 0;
196
197 AR5K_EEPROM_READ(o++, val);
198 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
199 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
200 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
201
202 AR5K_EEPROM_READ(o++, val);
203 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
204 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
205 ee->ee_ant_control[mode][i++] = val & 0x3f;
206
207 AR5K_EEPROM_READ(o++, val);
208 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
209 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
210 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
211
212 AR5K_EEPROM_READ(o++, val);
213 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
214 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
215 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
216 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
217
218 AR5K_EEPROM_READ(o++, val);
219 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
220 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
221 ee->ee_ant_control[mode][i++] = val & 0x3f;
222
223 /* Get antenna switch tables */
224 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225 (ee->ee_ant_control[mode][0] << 4);
226 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227 ee->ee_ant_control[mode][1] |
228 (ee->ee_ant_control[mode][2] << 6) |
229 (ee->ee_ant_control[mode][3] << 12) |
230 (ee->ee_ant_control[mode][4] << 18) |
231 (ee->ee_ant_control[mode][5] << 24);
232 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233 ee->ee_ant_control[mode][6] |
234 (ee->ee_ant_control[mode][7] << 6) |
235 (ee->ee_ant_control[mode][8] << 12) |
236 (ee->ee_ant_control[mode][9] << 18) |
237 (ee->ee_ant_control[mode][10] << 24);
238
239 /* return new offset */
240 *offset = o;
241
242 return 0;
243}
244
245/*
246 * Read supported modes and some mode-specific calibration data
247 * from eeprom
248 */
249static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250 unsigned int mode)
251{
252 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253 u32 o = *offset;
254 u16 val;
255
256 ee->ee_n_piers[mode] = 0;
257 AR5K_EEPROM_READ(o++, val);
258 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
259 switch (mode) {
260 case AR5K_EEPROM_MODE_11A:
261 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
262 ee->ee_db[mode][3] = (val >> 2) & 0x7;
263 ee->ee_ob[mode][2] = (val << 1) & 0x7;
264
265 AR5K_EEPROM_READ(o++, val);
266 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
267 ee->ee_db[mode][2] = (val >> 12) & 0x7;
268 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
269 ee->ee_db[mode][1] = (val >> 6) & 0x7;
270 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
271 ee->ee_db[mode][0] = val & 0x7;
272 break;
273 case AR5K_EEPROM_MODE_11G:
274 case AR5K_EEPROM_MODE_11B:
275 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
276 ee->ee_db[mode][1] = val & 0x7;
277 break;
278 }
279
280 AR5K_EEPROM_READ(o++, val);
281 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
282 ee->ee_thr_62[mode] = val & 0xff;
283
284 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
285 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
286
287 AR5K_EEPROM_READ(o++, val);
288 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
289 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
290
291 AR5K_EEPROM_READ(o++, val);
292 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
293
294 if ((val & 0xff) & 0x80)
295 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
296 else
297 ee->ee_noise_floor_thr[mode] = val & 0xff;
298
299 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
300 ee->ee_noise_floor_thr[mode] =
301 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
302
303 AR5K_EEPROM_READ(o++, val);
304 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
305 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
306 ee->ee_xpd[mode] = val & 0x1;
307
308 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
309 mode != AR5K_EEPROM_MODE_11B)
310 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
311
312 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
313 AR5K_EEPROM_READ(o++, val);
314 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
315
316 if (mode == AR5K_EEPROM_MODE_11A)
317 ee->ee_xr_power[mode] = val & 0x3f;
318 else {
319 /* b_DB_11[bg] and b_OB_11[bg] */
320 ee->ee_ob[mode][0] = val & 0x7;
321 ee->ee_db[mode][0] = (val >> 3) & 0x7;
322 }
323 }
324
325 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
326 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
327 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
328 } else {
329 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
330
331 AR5K_EEPROM_READ(o++, val);
332 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
333
334 if (mode == AR5K_EEPROM_MODE_11G) {
335 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
336 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
337 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
338 }
339 }
340
341 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
342 mode == AR5K_EEPROM_MODE_11A) {
343 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
344 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
345 }
346
347 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
348 goto done;
349
350 /* Note: >= v5 have bg freq piers on another location
351 * so these freq piers are ignored for >= v5 (should be 0xff
352 * anyway) */
353 switch (mode) {
354 case AR5K_EEPROM_MODE_11A:
355 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
356 break;
357
358 AR5K_EEPROM_READ(o++, val);
359 ee->ee_margin_tx_rx[mode] = val & 0x3f;
360 break;
361 case AR5K_EEPROM_MODE_11B:
362 AR5K_EEPROM_READ(o++, val);
363
364 ee->ee_pwr_cal_b[0].freq =
365 ath5k_eeprom_bin2freq(ee, bin: val & 0xff, mode);
366 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
367 ee->ee_n_piers[mode]++;
368
369 ee->ee_pwr_cal_b[1].freq =
370 ath5k_eeprom_bin2freq(ee, bin: (val >> 8) & 0xff, mode);
371 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
372 ee->ee_n_piers[mode]++;
373
374 AR5K_EEPROM_READ(o++, val);
375 ee->ee_pwr_cal_b[2].freq =
376 ath5k_eeprom_bin2freq(ee, bin: val & 0xff, mode);
377 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
378 ee->ee_n_piers[mode]++;
379
380 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
381 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
382 break;
383 case AR5K_EEPROM_MODE_11G:
384 AR5K_EEPROM_READ(o++, val);
385
386 ee->ee_pwr_cal_g[0].freq =
387 ath5k_eeprom_bin2freq(ee, bin: val & 0xff, mode);
388 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389 ee->ee_n_piers[mode]++;
390
391 ee->ee_pwr_cal_g[1].freq =
392 ath5k_eeprom_bin2freq(ee, bin: (val >> 8) & 0xff, mode);
393 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394 ee->ee_n_piers[mode]++;
395
396 AR5K_EEPROM_READ(o++, val);
397 ee->ee_turbo_max_power[mode] = val & 0x7f;
398 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
399
400 AR5K_EEPROM_READ(o++, val);
401 ee->ee_pwr_cal_g[2].freq =
402 ath5k_eeprom_bin2freq(ee, bin: val & 0xff, mode);
403 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404 ee->ee_n_piers[mode]++;
405
406 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408
409 AR5K_EEPROM_READ(o++, val);
410 ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
411 ee->ee_q_cal[mode] = val & 0x1f;
412
413 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
414 AR5K_EEPROM_READ(o++, val);
415 ee->ee_cck_ofdm_gain_delta = val & 0xff;
416 }
417 break;
418 }
419
420 /*
421 * Read turbo mode information on newer EEPROM versions
422 */
423 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
424 goto done;
425
426 switch (mode) {
427 case AR5K_EEPROM_MODE_11A:
428 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
429
430 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
431 AR5K_EEPROM_READ(o++, val);
432 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
433 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
434
435 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
436 AR5K_EEPROM_READ(o++, val);
437 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
438 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
439
440 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
441 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
442 break;
443 case AR5K_EEPROM_MODE_11G:
444 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
445
446 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
447 AR5K_EEPROM_READ(o++, val);
448 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
449 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
450
451 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
452 AR5K_EEPROM_READ(o++, val);
453 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
454 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
455 break;
456 }
457
458done:
459 /* return new offset */
460 *offset = o;
461
462 return 0;
463}
464
465/* Read mode-specific data (except power calibration data) */
466static int
467ath5k_eeprom_init_modes(struct ath5k_hw *ah)
468{
469 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
470 u32 mode_offset[3];
471 unsigned int mode;
472 u32 offset;
473 int ret;
474
475 /*
476 * Get values for all modes
477 */
478 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
479 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
480 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
481
482 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
483 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
484
485 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
486 offset = mode_offset[mode];
487
488 ret = ath5k_eeprom_read_ants(ah, offset: &offset, mode);
489 if (ret)
490 return ret;
491
492 ret = ath5k_eeprom_read_modes(ah, offset: &offset, mode);
493 if (ret)
494 return ret;
495 }
496
497 /* override for older eeprom versions for better performance */
498 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
502 }
503
504 return 0;
505}
506
507/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
508 * frequency mask) */
509static inline int
510ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
511 struct ath5k_chan_pcal_info *pc, unsigned int mode)
512{
513 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
514 int o = *offset;
515 int i = 0;
516 u8 freq1, freq2;
517 u16 val;
518
519 ee->ee_n_piers[mode] = 0;
520 while (i < max) {
521 AR5K_EEPROM_READ(o++, val);
522
523 freq1 = val & 0xff;
524 if (!freq1)
525 break;
526
527 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
528 bin: freq1, mode);
529 ee->ee_n_piers[mode]++;
530
531 freq2 = (val >> 8) & 0xff;
532 if (!freq2 || i >= max)
533 break;
534
535 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
536 bin: freq2, mode);
537 ee->ee_n_piers[mode]++;
538 }
539
540 /* return new offset */
541 *offset = o;
542
543 return 0;
544}
545
546/* Read frequency piers for 802.11a */
547static int
548ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
549{
550 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
551 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
552 int i;
553 u16 val;
554 u8 mask;
555
556 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
557 ath5k_eeprom_read_freq_list(ah, offset: &offset,
558 AR5K_EEPROM_N_5GHZ_CHAN, pc: pcal,
559 AR5K_EEPROM_MODE_11A);
560 } else {
561 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
562
563 AR5K_EEPROM_READ(offset++, val);
564 pcal[0].freq = (val >> 9) & mask;
565 pcal[1].freq = (val >> 2) & mask;
566 pcal[2].freq = (val << 5) & mask;
567
568 AR5K_EEPROM_READ(offset++, val);
569 pcal[2].freq |= (val >> 11) & 0x1f;
570 pcal[3].freq = (val >> 4) & mask;
571 pcal[4].freq = (val << 3) & mask;
572
573 AR5K_EEPROM_READ(offset++, val);
574 pcal[4].freq |= (val >> 13) & 0x7;
575 pcal[5].freq = (val >> 6) & mask;
576 pcal[6].freq = (val << 1) & mask;
577
578 AR5K_EEPROM_READ(offset++, val);
579 pcal[6].freq |= (val >> 15) & 0x1;
580 pcal[7].freq = (val >> 8) & mask;
581 pcal[8].freq = (val >> 1) & mask;
582 pcal[9].freq = (val << 6) & mask;
583
584 AR5K_EEPROM_READ(offset++, val);
585 pcal[9].freq |= (val >> 10) & 0x3f;
586
587 /* Fixed number of piers */
588 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
589
590 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
591 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
592 bin: pcal[i].freq, AR5K_EEPROM_MODE_11A);
593 }
594 }
595
596 return 0;
597}
598
599/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600static inline int
601ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
602{
603 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
604 struct ath5k_chan_pcal_info *pcal;
605
606 switch (mode) {
607 case AR5K_EEPROM_MODE_11B:
608 pcal = ee->ee_pwr_cal_b;
609 break;
610 case AR5K_EEPROM_MODE_11G:
611 pcal = ee->ee_pwr_cal_g;
612 break;
613 default:
614 return -EINVAL;
615 }
616
617 ath5k_eeprom_read_freq_list(ah, offset: &offset,
618 AR5K_EEPROM_N_2GHZ_CHAN_2413, pc: pcal,
619 mode);
620
621 return 0;
622}
623
624
625/*
626 * Read power calibration for RF5111 chips
627 *
628 * For RF5111 we have an XPD -eXternal Power Detector- curve
629 * for each calibrated channel. Each curve has 0,5dB Power steps
630 * on x axis and PCDAC steps (offsets) on y axis and looks like an
631 * exponential function. To recreate the curve we read 11 points
632 * here and interpolate later.
633 */
634
635/* Used to match PCDAC steps with power values on RF5111 chips
636 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
637 * steps that match with the power values we read from eeprom. On
638 * older eeprom versions (< 3.2) these steps are equally spaced at
639 * 10% of the pcdac curve -until the curve reaches its maximum-
640 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
641 * these 11 steps are spaced in a different way. This function returns
642 * the pcdac steps based on eeprom version and curve min/max so that we
643 * can have pcdac/pwr points.
644 */
645static inline void
646ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
647{
648 static const u16 intercepts3[] = {
649 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
650 };
651 static const u16 intercepts3_2[] = {
652 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
653 };
654 const u16 *ip;
655 int i;
656
657 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658 ip = intercepts3_2;
659 else
660 ip = intercepts3;
661
662 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
664}
665
666static int
667ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
668{
669 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670 struct ath5k_chan_pcal_info *chinfo;
671 u8 pier, pdg;
672
673 switch (mode) {
674 case AR5K_EEPROM_MODE_11A:
675 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
676 return 0;
677 chinfo = ee->ee_pwr_cal_a;
678 break;
679 case AR5K_EEPROM_MODE_11B:
680 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
681 return 0;
682 chinfo = ee->ee_pwr_cal_b;
683 break;
684 case AR5K_EEPROM_MODE_11G:
685 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
686 return 0;
687 chinfo = ee->ee_pwr_cal_g;
688 break;
689 default:
690 return -EINVAL;
691 }
692
693 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
694 if (!chinfo[pier].pd_curves)
695 continue;
696
697 for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
698 struct ath5k_pdgain_info *pd =
699 &chinfo[pier].pd_curves[pdg];
700
701 kfree(objp: pd->pd_step);
702 kfree(objp: pd->pd_pwr);
703 }
704
705 kfree(objp: chinfo[pier].pd_curves);
706 }
707
708 return 0;
709}
710
711/* Convert RF5111 specific data to generic raw data
712 * used by interpolation code */
713static int
714ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
715 struct ath5k_chan_pcal_info *chinfo)
716{
717 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
718 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
719 struct ath5k_pdgain_info *pd;
720 u8 pier, point, idx;
721 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
722
723 /* Fill raw data for each calibration pier */
724 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
725
726 pcinfo = &chinfo[pier].rf5111_info;
727
728 /* Allocate pd_curves for this cal pier */
729 chinfo[pier].pd_curves =
730 kcalloc(AR5K_EEPROM_N_PD_CURVES,
731 size: sizeof(struct ath5k_pdgain_info),
732 GFP_KERNEL);
733
734 if (!chinfo[pier].pd_curves)
735 goto err_out;
736
737 /* Only one curve for RF5111
738 * find out which one and place
739 * in pd_curves.
740 * Note: ee_x_gain is reversed here */
741 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
742
743 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
744 pdgain_idx[0] = idx;
745 break;
746 }
747 }
748
749 if (idx == AR5K_EEPROM_N_PD_CURVES)
750 goto err_out;
751
752 ee->ee_pd_gains[mode] = 1;
753
754 pd = &chinfo[pier].pd_curves[idx];
755
756 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
757
758 /* Allocate pd points for this curve */
759 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
760 size: sizeof(u8), GFP_KERNEL);
761 if (!pd->pd_step)
762 goto err_out;
763
764 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
765 size: sizeof(s16), GFP_KERNEL);
766 if (!pd->pd_pwr)
767 goto err_out;
768
769 /* Fill raw dataset
770 * (convert power to 0.25dB units
771 * for RF5112 compatibility) */
772 for (point = 0; point < pd->pd_points; point++) {
773
774 /* Absolute values */
775 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
776
777 /* Already sorted */
778 pd->pd_step[point] = pcinfo->pcdac[point];
779 }
780
781 /* Set min/max pwr */
782 chinfo[pier].min_pwr = pd->pd_pwr[0];
783 chinfo[pier].max_pwr = pd->pd_pwr[10];
784
785 }
786
787 return 0;
788
789err_out:
790 ath5k_eeprom_free_pcal_info(ah, mode);
791 return -ENOMEM;
792}
793
794/* Parse EEPROM data */
795static int
796ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
797{
798 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
799 struct ath5k_chan_pcal_info *pcal;
800 int offset, ret;
801 int i;
802 u16 val;
803
804 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
805 switch (mode) {
806 case AR5K_EEPROM_MODE_11A:
807 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
808 return 0;
809
810 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
811 offset: offset + AR5K_EEPROM_GROUP1_OFFSET);
812 if (ret < 0)
813 return ret;
814
815 offset += AR5K_EEPROM_GROUP2_OFFSET;
816 pcal = ee->ee_pwr_cal_a;
817 break;
818 case AR5K_EEPROM_MODE_11B:
819 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
820 !AR5K_EEPROM_HDR_11G(ee->ee_header))
821 return 0;
822
823 pcal = ee->ee_pwr_cal_b;
824 offset += AR5K_EEPROM_GROUP3_OFFSET;
825
826 /* fixed piers */
827 pcal[0].freq = 2412;
828 pcal[1].freq = 2447;
829 pcal[2].freq = 2484;
830 ee->ee_n_piers[mode] = 3;
831 break;
832 case AR5K_EEPROM_MODE_11G:
833 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
834 return 0;
835
836 pcal = ee->ee_pwr_cal_g;
837 offset += AR5K_EEPROM_GROUP4_OFFSET;
838
839 /* fixed piers */
840 pcal[0].freq = 2312;
841 pcal[1].freq = 2412;
842 pcal[2].freq = 2484;
843 ee->ee_n_piers[mode] = 3;
844 break;
845 default:
846 return -EINVAL;
847 }
848
849 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
850 struct ath5k_chan_pcal_info_rf5111 *cdata =
851 &pcal[i].rf5111_info;
852
853 AR5K_EEPROM_READ(offset++, val);
854 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
855 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
856 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
857
858 AR5K_EEPROM_READ(offset++, val);
859 cdata->pwr[0] |= ((val >> 14) & 0x3);
860 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
861 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
862 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
863
864 AR5K_EEPROM_READ(offset++, val);
865 cdata->pwr[3] |= ((val >> 12) & 0xf);
866 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
867 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
868
869 AR5K_EEPROM_READ(offset++, val);
870 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
871 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
872 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
873
874 AR5K_EEPROM_READ(offset++, val);
875 cdata->pwr[8] |= ((val >> 14) & 0x3);
876 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
877 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
878
879 ath5k_get_pcdac_intercepts(ah, min: cdata->pcdac_min,
880 max: cdata->pcdac_max, vp: cdata->pcdac);
881 }
882
883 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, chinfo: pcal);
884}
885
886
887/*
888 * Read power calibration for RF5112 chips
889 *
890 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
891 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
892 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
893 * power steps on x axis and PCDAC steps on y axis and looks like a
894 * linear function. To recreate the curve and pass the power values
895 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
896 * and 3 points for xpd 3 (higher gain -> lower power) here and
897 * interpolate later.
898 *
899 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
900 */
901
902/* Convert RF5112 specific data to generic raw data
903 * used by interpolation code */
904static int
905ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
906 struct ath5k_chan_pcal_info *chinfo)
907{
908 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
909 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
910 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
911 unsigned int pier, pdg, point;
912
913 /* Fill raw data for each calibration pier */
914 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
915
916 pcinfo = &chinfo[pier].rf5112_info;
917
918 /* Allocate pd_curves for this cal pier */
919 chinfo[pier].pd_curves =
920 kcalloc(AR5K_EEPROM_N_PD_CURVES,
921 size: sizeof(struct ath5k_pdgain_info),
922 GFP_KERNEL);
923
924 if (!chinfo[pier].pd_curves)
925 goto err_out;
926
927 /* Fill pd_curves */
928 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
929
930 u8 idx = pdgain_idx[pdg];
931 struct ath5k_pdgain_info *pd =
932 &chinfo[pier].pd_curves[idx];
933
934 /* Lowest gain curve (max power) */
935 if (pdg == 0) {
936 /* One more point for better accuracy */
937 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
938
939 /* Allocate pd points for this curve */
940 pd->pd_step = kcalloc(n: pd->pd_points,
941 size: sizeof(u8), GFP_KERNEL);
942
943 if (!pd->pd_step)
944 goto err_out;
945
946 pd->pd_pwr = kcalloc(n: pd->pd_points,
947 size: sizeof(s16), GFP_KERNEL);
948
949 if (!pd->pd_pwr)
950 goto err_out;
951
952 /* Fill raw dataset
953 * (all power levels are in 0.25dB units) */
954 pd->pd_step[0] = pcinfo->pcdac_x0[0];
955 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
956
957 for (point = 1; point < pd->pd_points;
958 point++) {
959 /* Absolute values */
960 pd->pd_pwr[point] =
961 pcinfo->pwr_x0[point];
962
963 /* Deltas */
964 pd->pd_step[point] =
965 pd->pd_step[point - 1] +
966 pcinfo->pcdac_x0[point];
967 }
968
969 /* Set min power for this frequency */
970 chinfo[pier].min_pwr = pd->pd_pwr[0];
971
972 /* Highest gain curve (min power) */
973 } else if (pdg == 1) {
974
975 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
976
977 /* Allocate pd points for this curve */
978 pd->pd_step = kcalloc(n: pd->pd_points,
979 size: sizeof(u8), GFP_KERNEL);
980
981 if (!pd->pd_step)
982 goto err_out;
983
984 pd->pd_pwr = kcalloc(n: pd->pd_points,
985 size: sizeof(s16), GFP_KERNEL);
986
987 if (!pd->pd_pwr)
988 goto err_out;
989
990 /* Fill raw dataset
991 * (all power levels are in 0.25dB units) */
992 for (point = 0; point < pd->pd_points;
993 point++) {
994 /* Absolute values */
995 pd->pd_pwr[point] =
996 pcinfo->pwr_x3[point];
997
998 /* Fixed points */
999 pd->pd_step[point] =
1000 pcinfo->pcdac_x3[point];
1001 }
1002
1003 /* Since we have a higher gain curve
1004 * override min power */
1005 chinfo[pier].min_pwr = pd->pd_pwr[0];
1006 }
1007 }
1008 }
1009
1010 return 0;
1011
1012err_out:
1013 ath5k_eeprom_free_pcal_info(ah, mode);
1014 return -ENOMEM;
1015}
1016
1017/* Parse EEPROM data */
1018static int
1019ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1020{
1021 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1022 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1023 struct ath5k_chan_pcal_info *gen_chan_info;
1024 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1025 u32 offset;
1026 u8 i, c;
1027 u16 val;
1028 u8 pd_gains = 0;
1029
1030 /* Count how many curves we have and
1031 * identify them (which one of the 4
1032 * available curves we have on each count).
1033 * Curves are stored from lower (x0) to
1034 * higher (x3) gain */
1035 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1036 /* ee_x_gain[mode] is x gain mask */
1037 if ((ee->ee_x_gain[mode] >> i) & 0x1)
1038 pdgain_idx[pd_gains++] = i;
1039 }
1040 ee->ee_pd_gains[mode] = pd_gains;
1041
1042 if (pd_gains == 0 || pd_gains > 2)
1043 return -EINVAL;
1044
1045 switch (mode) {
1046 case AR5K_EEPROM_MODE_11A:
1047 /*
1048 * Read 5GHz EEPROM channels
1049 */
1050 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1051 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1052
1053 offset += AR5K_EEPROM_GROUP2_OFFSET;
1054 gen_chan_info = ee->ee_pwr_cal_a;
1055 break;
1056 case AR5K_EEPROM_MODE_11B:
1057 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1058 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1059 offset += AR5K_EEPROM_GROUP3_OFFSET;
1060
1061 /* NB: frequency piers parsed during mode init */
1062 gen_chan_info = ee->ee_pwr_cal_b;
1063 break;
1064 case AR5K_EEPROM_MODE_11G:
1065 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1066 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1067 offset += AR5K_EEPROM_GROUP4_OFFSET;
1068 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1069 offset += AR5K_EEPROM_GROUP2_OFFSET;
1070
1071 /* NB: frequency piers parsed during mode init */
1072 gen_chan_info = ee->ee_pwr_cal_g;
1073 break;
1074 default:
1075 return -EINVAL;
1076 }
1077
1078 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1079 chan_pcal_info = &gen_chan_info[i].rf5112_info;
1080
1081 /* Power values in quarter dB
1082 * for the lower xpd gain curve
1083 * (0 dBm -> higher output power) */
1084 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1085 AR5K_EEPROM_READ(offset++, val);
1086 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1087 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1088 }
1089
1090 /* PCDAC steps
1091 * corresponding to the above power
1092 * measurements */
1093 AR5K_EEPROM_READ(offset++, val);
1094 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1095 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1096 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1097
1098 /* Power values in quarter dB
1099 * for the higher xpd gain curve
1100 * (18 dBm -> lower output power) */
1101 AR5K_EEPROM_READ(offset++, val);
1102 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1103 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1104
1105 AR5K_EEPROM_READ(offset++, val);
1106 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1107
1108 /* PCDAC steps
1109 * corresponding to the above power
1110 * measurements (fixed) */
1111 chan_pcal_info->pcdac_x3[0] = 20;
1112 chan_pcal_info->pcdac_x3[1] = 35;
1113 chan_pcal_info->pcdac_x3[2] = 63;
1114
1115 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1116 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1117
1118 /* Last xpd0 power level is also channel maximum */
1119 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1120 } else {
1121 chan_pcal_info->pcdac_x0[0] = 1;
1122 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1123 }
1124
1125 }
1126
1127 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, chinfo: gen_chan_info);
1128}
1129
1130
1131/*
1132 * Read power calibration for RF2413 chips
1133 *
1134 * For RF2413 we have a Power to PDDAC table (Power Detector)
1135 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1136 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1137 * axis and looks like an exponential function like the RF5111 curve.
1138 *
1139 * To recreate the curves we read here the points and interpolate
1140 * later. Note that in most cases only 2 (higher and lower) curves are
1141 * used (like RF5112) but vendors have the opportunity to include all
1142 * 4 curves on eeprom. The final curve (higher power) has an extra
1143 * point for better accuracy like RF5112.
1144 */
1145
1146/* For RF2413 power calibration data doesn't start on a fixed location and
1147 * if a mode is not supported, its section is missing -not zeroed-.
1148 * So we need to calculate the starting offset for each section by using
1149 * these two functions */
1150
1151/* Return the size of each section based on the mode and the number of pd
1152 * gains available (maximum 4). */
1153static inline unsigned int
1154ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1155{
1156 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1157 unsigned int sz;
1158
1159 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1160 sz *= ee->ee_n_piers[mode];
1161
1162 return sz;
1163}
1164
1165/* Return the starting offset for a section based on the modes supported
1166 * and each section's size. */
1167static unsigned int
1168ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1169{
1170 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1171
1172 switch (mode) {
1173 case AR5K_EEPROM_MODE_11G:
1174 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1175 offset += ath5k_pdgains_size_2413(ee,
1176 AR5K_EEPROM_MODE_11B) +
1177 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1178 fallthrough;
1179 case AR5K_EEPROM_MODE_11B:
1180 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1181 offset += ath5k_pdgains_size_2413(ee,
1182 AR5K_EEPROM_MODE_11A) +
1183 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1184 fallthrough;
1185 case AR5K_EEPROM_MODE_11A:
1186 break;
1187 default:
1188 break;
1189 }
1190
1191 return offset;
1192}
1193
1194/* Convert RF2413 specific data to generic raw data
1195 * used by interpolation code */
1196static int
1197ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1198 struct ath5k_chan_pcal_info *chinfo)
1199{
1200 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1201 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1202 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1203 unsigned int pier, pdg, point;
1204
1205 /* Fill raw data for each calibration pier */
1206 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1207
1208 pcinfo = &chinfo[pier].rf2413_info;
1209
1210 /* Allocate pd_curves for this cal pier */
1211 chinfo[pier].pd_curves =
1212 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1213 size: sizeof(struct ath5k_pdgain_info),
1214 GFP_KERNEL);
1215
1216 if (!chinfo[pier].pd_curves)
1217 goto err_out;
1218
1219 /* Fill pd_curves */
1220 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1221
1222 u8 idx = pdgain_idx[pdg];
1223 struct ath5k_pdgain_info *pd =
1224 &chinfo[pier].pd_curves[idx];
1225
1226 /* One more point for the highest power
1227 * curve (lowest gain) */
1228 if (pdg == ee->ee_pd_gains[mode] - 1)
1229 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1230 else
1231 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1232
1233 /* Allocate pd points for this curve */
1234 pd->pd_step = kcalloc(n: pd->pd_points,
1235 size: sizeof(u8), GFP_KERNEL);
1236
1237 if (!pd->pd_step)
1238 goto err_out;
1239
1240 pd->pd_pwr = kcalloc(n: pd->pd_points,
1241 size: sizeof(s16), GFP_KERNEL);
1242
1243 if (!pd->pd_pwr)
1244 goto err_out;
1245
1246 /* Fill raw dataset
1247 * convert all pwr levels to
1248 * quarter dB for RF5112 compatibility */
1249 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1250 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1251
1252 for (point = 1; point < pd->pd_points; point++) {
1253
1254 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1255 2 * pcinfo->pwr[pdg][point - 1];
1256
1257 pd->pd_step[point] = pd->pd_step[point - 1] +
1258 pcinfo->pddac[pdg][point - 1];
1259
1260 }
1261
1262 /* Highest gain curve -> min power */
1263 if (pdg == 0)
1264 chinfo[pier].min_pwr = pd->pd_pwr[0];
1265
1266 /* Lowest gain curve -> max power */
1267 if (pdg == ee->ee_pd_gains[mode] - 1)
1268 chinfo[pier].max_pwr =
1269 pd->pd_pwr[pd->pd_points - 1];
1270 }
1271 }
1272
1273 return 0;
1274
1275err_out:
1276 ath5k_eeprom_free_pcal_info(ah, mode);
1277 return -ENOMEM;
1278}
1279
1280/* Parse EEPROM data */
1281static int
1282ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1283{
1284 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1285 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1286 struct ath5k_chan_pcal_info *chinfo;
1287 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1288 u32 offset;
1289 int idx, i;
1290 u16 val;
1291 u8 pd_gains = 0;
1292
1293 /* Count how many curves we have and
1294 * identify them (which one of the 4
1295 * available curves we have on each count).
1296 * Curves are stored from higher to
1297 * lower gain so we go backwards */
1298 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1299 /* ee_x_gain[mode] is x gain mask */
1300 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1301 pdgain_idx[pd_gains++] = idx;
1302
1303 }
1304 ee->ee_pd_gains[mode] = pd_gains;
1305
1306 if (pd_gains == 0)
1307 return -EINVAL;
1308
1309 offset = ath5k_cal_data_offset_2413(ee, mode);
1310 switch (mode) {
1311 case AR5K_EEPROM_MODE_11A:
1312 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1313 return 0;
1314
1315 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1316 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1317 chinfo = ee->ee_pwr_cal_a;
1318 break;
1319 case AR5K_EEPROM_MODE_11B:
1320 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1321 return 0;
1322
1323 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1324 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1325 chinfo = ee->ee_pwr_cal_b;
1326 break;
1327 case AR5K_EEPROM_MODE_11G:
1328 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1329 return 0;
1330
1331 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1332 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1333 chinfo = ee->ee_pwr_cal_g;
1334 break;
1335 default:
1336 return -EINVAL;
1337 }
1338
1339 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1340 pcinfo = &chinfo[i].rf2413_info;
1341
1342 /*
1343 * Read pwr_i, pddac_i and the first
1344 * 2 pd points (pwr, pddac)
1345 */
1346 AR5K_EEPROM_READ(offset++, val);
1347 pcinfo->pwr_i[0] = val & 0x1f;
1348 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1349 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1350
1351 AR5K_EEPROM_READ(offset++, val);
1352 pcinfo->pddac[0][0] = val & 0x3f;
1353 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1354 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1355
1356 AR5K_EEPROM_READ(offset++, val);
1357 pcinfo->pwr[0][2] = val & 0xf;
1358 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1359
1360 pcinfo->pwr[0][3] = 0;
1361 pcinfo->pddac[0][3] = 0;
1362
1363 if (pd_gains > 1) {
1364 /*
1365 * Pd gain 0 is not the last pd gain
1366 * so it only has 2 pd points.
1367 * Continue with pd gain 1.
1368 */
1369 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1370
1371 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1372 AR5K_EEPROM_READ(offset++, val);
1373 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1374
1375 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1376 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1377
1378 AR5K_EEPROM_READ(offset++, val);
1379 pcinfo->pwr[1][1] = val & 0xf;
1380 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1381 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1382
1383 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1384 AR5K_EEPROM_READ(offset++, val);
1385 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1386
1387 pcinfo->pwr[1][3] = 0;
1388 pcinfo->pddac[1][3] = 0;
1389 } else if (pd_gains == 1) {
1390 /*
1391 * Pd gain 0 is the last one so
1392 * read the extra point.
1393 */
1394 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1395
1396 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1397 AR5K_EEPROM_READ(offset++, val);
1398 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1399 }
1400
1401 /*
1402 * Proceed with the other pd_gains
1403 * as above.
1404 */
1405 if (pd_gains > 2) {
1406 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1407 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1408
1409 AR5K_EEPROM_READ(offset++, val);
1410 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1411 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1412 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1413
1414 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1415 AR5K_EEPROM_READ(offset++, val);
1416 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1417
1418 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1419 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1420
1421 pcinfo->pwr[2][3] = 0;
1422 pcinfo->pddac[2][3] = 0;
1423 } else if (pd_gains == 2) {
1424 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1425 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1426 }
1427
1428 if (pd_gains > 3) {
1429 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1430 AR5K_EEPROM_READ(offset++, val);
1431 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1432
1433 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1434 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1435 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1436
1437 AR5K_EEPROM_READ(offset++, val);
1438 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1439 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1440 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1441
1442 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1443 AR5K_EEPROM_READ(offset++, val);
1444 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1445
1446 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1447 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1448
1449 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1450 AR5K_EEPROM_READ(offset++, val);
1451 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1452 } else if (pd_gains == 3) {
1453 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1454 AR5K_EEPROM_READ(offset++, val);
1455 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1456
1457 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1458 }
1459 }
1460
1461 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1462}
1463
1464
1465/*
1466 * Read per rate target power (this is the maximum tx power
1467 * supported by the card). This info is used when setting
1468 * tx power, no matter the channel.
1469 *
1470 * This also works for v5 EEPROMs.
1471 */
1472static int
1473ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1474{
1475 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1476 struct ath5k_rate_pcal_info *rate_pcal_info;
1477 u8 *rate_target_pwr_num;
1478 u32 offset;
1479 u16 val;
1480 int i;
1481
1482 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1483 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1484 switch (mode) {
1485 case AR5K_EEPROM_MODE_11A:
1486 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1487 rate_pcal_info = ee->ee_rate_tpwr_a;
1488 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1489 break;
1490 case AR5K_EEPROM_MODE_11B:
1491 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1492 rate_pcal_info = ee->ee_rate_tpwr_b;
1493 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1494 break;
1495 case AR5K_EEPROM_MODE_11G:
1496 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1497 rate_pcal_info = ee->ee_rate_tpwr_g;
1498 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503
1504 /* Different freq mask for older eeproms (<= v3.2) */
1505 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1506 for (i = 0; i < (*rate_target_pwr_num); i++) {
1507 AR5K_EEPROM_READ(offset++, val);
1508 rate_pcal_info[i].freq =
1509 ath5k_eeprom_bin2freq(ee, bin: (val >> 9) & 0x7f, mode);
1510
1511 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1512 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1513
1514 AR5K_EEPROM_READ(offset++, val);
1515
1516 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1517 val == 0) {
1518 (*rate_target_pwr_num) = i;
1519 break;
1520 }
1521
1522 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1523 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1524 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1525 }
1526 } else {
1527 for (i = 0; i < (*rate_target_pwr_num); i++) {
1528 AR5K_EEPROM_READ(offset++, val);
1529 rate_pcal_info[i].freq =
1530 ath5k_eeprom_bin2freq(ee, bin: (val >> 8) & 0xff, mode);
1531
1532 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1533 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1534
1535 AR5K_EEPROM_READ(offset++, val);
1536
1537 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1538 val == 0) {
1539 (*rate_target_pwr_num) = i;
1540 break;
1541 }
1542
1543 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1544 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1545 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1546 }
1547 }
1548
1549 return 0;
1550}
1551
1552
1553/*
1554 * Read per channel calibration info from EEPROM
1555 *
1556 * This info is used to calibrate the baseband power table. Imagine
1557 * that for each channel there is a power curve that's hw specific
1558 * (depends on amplifier etc) and we try to "correct" this curve using
1559 * offsets we pass on to phy chip (baseband -> before amplifier) so that
1560 * it can use accurate power values when setting tx power (takes amplifier's
1561 * performance on each channel into account).
1562 *
1563 * EEPROM provides us with the offsets for some pre-calibrated channels
1564 * and we have to interpolate to create the full table for these channels and
1565 * also the table for any channel.
1566 */
1567static int
1568ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1569{
1570 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1571 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1572 int mode;
1573 int err;
1574
1575 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1576 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1577 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1578 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1579 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1580 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1581 else
1582 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1583
1584
1585 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1586 mode++) {
1587 err = read_pcal(ah, mode);
1588 if (err)
1589 return err;
1590
1591 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1592 if (err < 0)
1593 return err;
1594 }
1595
1596 return 0;
1597}
1598
1599/* Read conformance test limits used for regulatory control */
1600static int
1601ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1602{
1603 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1604 struct ath5k_edge_power *rep;
1605 unsigned int fmask, pmask;
1606 unsigned int ctl_mode;
1607 int i, j;
1608 u32 offset;
1609 u16 val;
1610
1611 pmask = AR5K_EEPROM_POWER_M;
1612 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1613 offset = AR5K_EEPROM_CTL(ee->ee_version);
1614 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1615 for (i = 0; i < ee->ee_ctls; i += 2) {
1616 AR5K_EEPROM_READ(offset++, val);
1617 ee->ee_ctl[i] = (val >> 8) & 0xff;
1618 ee->ee_ctl[i + 1] = val & 0xff;
1619 }
1620
1621 offset = AR5K_EEPROM_GROUP8_OFFSET;
1622 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1623 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1624 AR5K_EEPROM_GROUP5_OFFSET;
1625 else
1626 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1627
1628 rep = ee->ee_ctl_pwr;
1629 for (i = 0; i < ee->ee_ctls; i++) {
1630 switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1631 case AR5K_CTL_11A:
1632 case AR5K_CTL_TURBO:
1633 ctl_mode = AR5K_EEPROM_MODE_11A;
1634 break;
1635 default:
1636 ctl_mode = AR5K_EEPROM_MODE_11G;
1637 break;
1638 }
1639 if (ee->ee_ctl[i] == 0) {
1640 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1641 offset += 8;
1642 else
1643 offset += 7;
1644 rep += AR5K_EEPROM_N_EDGES;
1645 continue;
1646 }
1647 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1648 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1649 AR5K_EEPROM_READ(offset++, val);
1650 rep[j].freq = (val >> 8) & fmask;
1651 rep[j + 1].freq = val & fmask;
1652 }
1653 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1654 AR5K_EEPROM_READ(offset++, val);
1655 rep[j].edge = (val >> 8) & pmask;
1656 rep[j].flag = (val >> 14) & 1;
1657 rep[j + 1].edge = val & pmask;
1658 rep[j + 1].flag = (val >> 6) & 1;
1659 }
1660 } else {
1661 AR5K_EEPROM_READ(offset++, val);
1662 rep[0].freq = (val >> 9) & fmask;
1663 rep[1].freq = (val >> 2) & fmask;
1664 rep[2].freq = (val << 5) & fmask;
1665
1666 AR5K_EEPROM_READ(offset++, val);
1667 rep[2].freq |= (val >> 11) & 0x1f;
1668 rep[3].freq = (val >> 4) & fmask;
1669 rep[4].freq = (val << 3) & fmask;
1670
1671 AR5K_EEPROM_READ(offset++, val);
1672 rep[4].freq |= (val >> 13) & 0x7;
1673 rep[5].freq = (val >> 6) & fmask;
1674 rep[6].freq = (val << 1) & fmask;
1675
1676 AR5K_EEPROM_READ(offset++, val);
1677 rep[6].freq |= (val >> 15) & 0x1;
1678 rep[7].freq = (val >> 8) & fmask;
1679
1680 rep[0].edge = (val >> 2) & pmask;
1681 rep[1].edge = (val << 4) & pmask;
1682
1683 AR5K_EEPROM_READ(offset++, val);
1684 rep[1].edge |= (val >> 12) & 0xf;
1685 rep[2].edge = (val >> 6) & pmask;
1686 rep[3].edge = val & pmask;
1687
1688 AR5K_EEPROM_READ(offset++, val);
1689 rep[4].edge = (val >> 10) & pmask;
1690 rep[5].edge = (val >> 4) & pmask;
1691 rep[6].edge = (val << 2) & pmask;
1692
1693 AR5K_EEPROM_READ(offset++, val);
1694 rep[6].edge |= (val >> 14) & 0x3;
1695 rep[7].edge = (val >> 8) & pmask;
1696 }
1697 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1698 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1699 bin: rep[j].freq, mode: ctl_mode);
1700 }
1701 rep += AR5K_EEPROM_N_EDGES;
1702 }
1703
1704 return 0;
1705}
1706
1707static int
1708ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1709{
1710 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1711 u32 offset;
1712 u16 val;
1713 int i;
1714
1715 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1716 AR5K_EEPROM_N_CTLS(ee->ee_version);
1717
1718 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1719 /* No spur info for 5GHz */
1720 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1721 /* 2 channels for 2GHz (2464/2420) */
1722 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1723 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1724 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1725 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1726 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1727 AR5K_EEPROM_READ(offset, val);
1728 ee->ee_spur_chans[i][0] = val;
1729 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1730 val);
1731 ee->ee_spur_chans[i][1] = val;
1732 offset++;
1733 }
1734 }
1735
1736 return 0;
1737}
1738
1739
1740/***********************\
1741* Init/Detach functions *
1742\***********************/
1743
1744/*
1745 * Initialize eeprom data structure
1746 */
1747int
1748ath5k_eeprom_init(struct ath5k_hw *ah)
1749{
1750 int err;
1751
1752 err = ath5k_eeprom_init_header(ah);
1753 if (err < 0)
1754 return err;
1755
1756 err = ath5k_eeprom_init_modes(ah);
1757 if (err < 0)
1758 return err;
1759
1760 err = ath5k_eeprom_read_pcal_info(ah);
1761 if (err < 0)
1762 return err;
1763
1764 err = ath5k_eeprom_read_ctl_info(ah);
1765 if (err < 0)
1766 return err;
1767
1768 err = ath5k_eeprom_read_spur_chans(ah);
1769 if (err < 0)
1770 return err;
1771
1772 return 0;
1773}
1774
1775void
1776ath5k_eeprom_detach(struct ath5k_hw *ah)
1777{
1778 u8 mode;
1779
1780 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1781 ath5k_eeprom_free_pcal_info(ah, mode);
1782}
1783
1784int
1785ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1786 struct ieee80211_channel *channel)
1787{
1788 switch (channel->hw_value) {
1789 case AR5K_MODE_11A:
1790 return AR5K_EEPROM_MODE_11A;
1791 case AR5K_MODE_11G:
1792 return AR5K_EEPROM_MODE_11G;
1793 case AR5K_MODE_11B:
1794 return AR5K_EEPROM_MODE_11B;
1795 default:
1796 ATH5K_WARN(ah, "channel is not A/B/G!");
1797 return AR5K_EEPROM_MODE_11A;
1798 }
1799}
1800

source code of linux/drivers/net/wireless/ath/ath5k/eeprom.c