1// SPDX-License-Identifier: GPL-2.0-or-later
2/* ZD1211 USB-WLAN driver for Linux
3 *
4 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6 */
7
8/* This file implements all the hardware specific functions for the ZD1211
9 * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
10 * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
11 */
12
13#include <linux/kernel.h>
14#include <linux/errno.h>
15#include <linux/slab.h>
16
17#include "zd_def.h"
18#include "zd_chip.h"
19#include "zd_mac.h"
20#include "zd_rf.h"
21
22void zd_chip_init(struct zd_chip *chip,
23 struct ieee80211_hw *hw,
24 struct usb_interface *intf)
25{
26 memset(chip, 0, sizeof(*chip));
27 mutex_init(&chip->mutex);
28 zd_usb_init(usb: &chip->usb, hw, intf);
29 zd_rf_init(rf: &chip->rf);
30}
31
32void zd_chip_clear(struct zd_chip *chip)
33{
34 ZD_ASSERT(!mutex_is_locked(&chip->mutex));
35 zd_usb_clear(usb: &chip->usb);
36 zd_rf_clear(rf: &chip->rf);
37 mutex_destroy(lock: &chip->mutex);
38 ZD_MEMCLEAR(chip, sizeof(*chip));
39}
40
41static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
42{
43 u8 *addr = zd_mac_get_perm_addr(mac: zd_chip_to_mac(chip));
44 return scnprintf(buf: buffer, size, fmt: "%3phD", addr);
45}
46
47/* Prints an identifier line, which will support debugging. */
48static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
49{
50 int i = 0;
51
52 i = scnprintf(buf: buffer, size, fmt: "zd1211%s chip ",
53 zd_chip_is_zd1211b(chip) ? "b" : "");
54 i += zd_usb_scnprint_id(usb: &chip->usb, buffer: buffer+i, size: size-i);
55 i += scnprintf(buf: buffer+i, size: size-i, fmt: " ");
56 i += scnprint_mac_oui(chip, buffer: buffer+i, size: size-i);
57 i += scnprintf(buf: buffer+i, size: size-i, fmt: " ");
58 i += zd_rf_scnprint_id(rf: &chip->rf, buffer: buffer+i, size: size-i);
59 i += scnprintf(buf: buffer+i, size: size-i, fmt: " pa%1x %c%c%c%c%c", chip->pa_type,
60 chip->patch_cck_gain ? 'g' : '-',
61 chip->patch_cr157 ? '7' : '-',
62 chip->patch_6m_band_edge ? '6' : '-',
63 chip->new_phy_layout ? 'N' : '-',
64 chip->al2230s_bit ? 'S' : '-');
65 return i;
66}
67
68static void print_id(struct zd_chip *chip)
69{
70 char buffer[80];
71
72 scnprint_id(chip, buffer, size: sizeof(buffer));
73 buffer[sizeof(buffer)-1] = 0;
74 dev_info(zd_chip_dev(chip), "%s\n", buffer);
75}
76
77static zd_addr_t inc_addr(zd_addr_t addr)
78{
79 u16 a = (u16)addr;
80 /* Control registers use byte addressing, but everything else uses word
81 * addressing. */
82 if ((a & 0xf000) == CR_START)
83 a += 2;
84 else
85 a += 1;
86 return (zd_addr_t)a;
87}
88
89/* Read a variable number of 32-bit values. Parameter count is not allowed to
90 * exceed USB_MAX_IOREAD32_COUNT.
91 */
92int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
93 unsigned int count)
94{
95 int r;
96 int i;
97 zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
98 u16 v16[USB_MAX_IOREAD32_COUNT * 2];
99 unsigned int count16;
100
101 if (count > USB_MAX_IOREAD32_COUNT)
102 return -EINVAL;
103
104 /* Use stack for values and addresses. */
105 count16 = 2 * count;
106 BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
107 BUG_ON(count16 * sizeof(u16) > sizeof(v16));
108
109 for (i = 0; i < count; i++) {
110 int j = 2*i;
111 /* We read the high word always first. */
112 a16[j] = inc_addr(addr: addr[i]);
113 a16[j+1] = addr[i];
114 }
115
116 r = zd_ioread16v_locked(chip, values: v16, addresses: a16, count: count16);
117 if (r) {
118 dev_dbg_f(zd_chip_dev(chip),
119 "error: %s. Error number %d\n", __func__, r);
120 return r;
121 }
122
123 for (i = 0; i < count; i++) {
124 int j = 2*i;
125 values[i] = (v16[j] << 16) | v16[j+1];
126 }
127
128 return 0;
129}
130
131static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
132 const struct zd_ioreq32 *ioreqs,
133 unsigned int count)
134{
135 int i, j, r;
136 struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
137 unsigned int count16;
138
139 /* Use stack for values and addresses. */
140
141 ZD_ASSERT(mutex_is_locked(&chip->mutex));
142
143 if (count == 0)
144 return 0;
145 if (count > USB_MAX_IOWRITE32_COUNT)
146 return -EINVAL;
147
148 count16 = 2 * count;
149 BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
150
151 for (i = 0; i < count; i++) {
152 j = 2*i;
153 /* We write the high word always first. */
154 ioreqs16[j].value = ioreqs[i].value >> 16;
155 ioreqs16[j].addr = inc_addr(addr: ioreqs[i].addr);
156 ioreqs16[j+1].value = ioreqs[i].value;
157 ioreqs16[j+1].addr = ioreqs[i].addr;
158 }
159
160 r = zd_usb_iowrite16v_async(usb: &chip->usb, ioreqs: ioreqs16, count: count16);
161#ifdef DEBUG
162 if (r) {
163 dev_dbg_f(zd_chip_dev(chip),
164 "error %d in zd_usb_write16v\n", r);
165 }
166#endif /* DEBUG */
167 return r;
168}
169
170int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
171 unsigned int count)
172{
173 int r;
174
175 zd_usb_iowrite16v_async_start(usb: &chip->usb);
176 r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
177 if (r) {
178 zd_usb_iowrite16v_async_end(usb: &chip->usb, timeout: 0);
179 return r;
180 }
181 return zd_usb_iowrite16v_async_end(usb: &chip->usb, timeout: 50 /* ms */);
182}
183
184int zd_iowrite16a_locked(struct zd_chip *chip,
185 const struct zd_ioreq16 *ioreqs, unsigned int count)
186{
187 int r;
188 unsigned int i, j, t, max;
189
190 ZD_ASSERT(mutex_is_locked(&chip->mutex));
191 zd_usb_iowrite16v_async_start(usb: &chip->usb);
192
193 for (i = 0; i < count; i += j + t) {
194 t = 0;
195 max = count-i;
196 if (max > USB_MAX_IOWRITE16_COUNT)
197 max = USB_MAX_IOWRITE16_COUNT;
198 for (j = 0; j < max; j++) {
199 if (!ioreqs[i+j].addr) {
200 t = 1;
201 break;
202 }
203 }
204
205 r = zd_usb_iowrite16v_async(usb: &chip->usb, ioreqs: &ioreqs[i], count: j);
206 if (r) {
207 zd_usb_iowrite16v_async_end(usb: &chip->usb, timeout: 0);
208 dev_dbg_f(zd_chip_dev(chip),
209 "error zd_usb_iowrite16v. Error number %d\n",
210 r);
211 return r;
212 }
213 }
214
215 return zd_usb_iowrite16v_async_end(usb: &chip->usb, timeout: 50 /* ms */);
216}
217
218/* Writes a variable number of 32 bit registers. The functions will split
219 * that in several USB requests. A split can be forced by inserting an IO
220 * request with an zero address field.
221 */
222int zd_iowrite32a_locked(struct zd_chip *chip,
223 const struct zd_ioreq32 *ioreqs, unsigned int count)
224{
225 int r;
226 unsigned int i, j, t, max;
227
228 zd_usb_iowrite16v_async_start(usb: &chip->usb);
229
230 for (i = 0; i < count; i += j + t) {
231 t = 0;
232 max = count-i;
233 if (max > USB_MAX_IOWRITE32_COUNT)
234 max = USB_MAX_IOWRITE32_COUNT;
235 for (j = 0; j < max; j++) {
236 if (!ioreqs[i+j].addr) {
237 t = 1;
238 break;
239 }
240 }
241
242 r = _zd_iowrite32v_async_locked(chip, ioreqs: &ioreqs[i], count: j);
243 if (r) {
244 zd_usb_iowrite16v_async_end(usb: &chip->usb, timeout: 0);
245 dev_dbg_f(zd_chip_dev(chip),
246 "error _%s. Error number %d\n", __func__,
247 r);
248 return r;
249 }
250 }
251
252 return zd_usb_iowrite16v_async_end(usb: &chip->usb, timeout: 50 /* ms */);
253}
254
255int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
256{
257 int r;
258
259 mutex_lock(&chip->mutex);
260 r = zd_ioread16_locked(chip, value, addr);
261 mutex_unlock(lock: &chip->mutex);
262 return r;
263}
264
265int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
266{
267 int r;
268
269 mutex_lock(&chip->mutex);
270 r = zd_ioread32_locked(chip, value, addr);
271 mutex_unlock(lock: &chip->mutex);
272 return r;
273}
274
275int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
276{
277 int r;
278
279 mutex_lock(&chip->mutex);
280 r = zd_iowrite16_locked(chip, value, addr);
281 mutex_unlock(lock: &chip->mutex);
282 return r;
283}
284
285int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
286{
287 int r;
288
289 mutex_lock(&chip->mutex);
290 r = zd_iowrite32_locked(chip, value, addr);
291 mutex_unlock(lock: &chip->mutex);
292 return r;
293}
294
295int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
296 u32 *values, unsigned int count)
297{
298 int r;
299
300 mutex_lock(&chip->mutex);
301 r = zd_ioread32v_locked(chip, values, addr: addresses, count);
302 mutex_unlock(lock: &chip->mutex);
303 return r;
304}
305
306int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
307 unsigned int count)
308{
309 int r;
310
311 mutex_lock(&chip->mutex);
312 r = zd_iowrite32a_locked(chip, ioreqs, count);
313 mutex_unlock(lock: &chip->mutex);
314 return r;
315}
316
317static int read_pod(struct zd_chip *chip, u8 *rf_type)
318{
319 int r;
320 u32 value;
321
322 ZD_ASSERT(mutex_is_locked(&chip->mutex));
323 r = zd_ioread32_locked(chip, value: &value, E2P_POD);
324 if (r)
325 goto error;
326 dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
327
328 /* FIXME: AL2230 handling (Bit 7 in POD) */
329 *rf_type = value & 0x0f;
330 chip->pa_type = (value >> 16) & 0x0f;
331 chip->patch_cck_gain = (value >> 8) & 0x1;
332 chip->patch_cr157 = (value >> 13) & 0x1;
333 chip->patch_6m_band_edge = (value >> 21) & 0x1;
334 chip->new_phy_layout = (value >> 31) & 0x1;
335 chip->al2230s_bit = (value >> 7) & 0x1;
336 chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
337 chip->supports_tx_led = 1;
338 if (value & (1 << 24)) { /* LED scenario */
339 if (value & (1 << 29))
340 chip->supports_tx_led = 0;
341 }
342
343 dev_dbg_f(zd_chip_dev(chip),
344 "RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
345 "patch 6M %d new PHY %d link LED%d tx led %d\n",
346 zd_rf_name(*rf_type), *rf_type,
347 chip->pa_type, chip->patch_cck_gain,
348 chip->patch_cr157, chip->patch_6m_band_edge,
349 chip->new_phy_layout,
350 chip->link_led == LED1 ? 1 : 2,
351 chip->supports_tx_led);
352 return 0;
353error:
354 *rf_type = 0;
355 chip->pa_type = 0;
356 chip->patch_cck_gain = 0;
357 chip->patch_cr157 = 0;
358 chip->patch_6m_band_edge = 0;
359 chip->new_phy_layout = 0;
360 return r;
361}
362
363static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
364 const struct zd_ioreq32 *in_reqs,
365 const char *type)
366{
367 int r;
368 struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
369
370 if (mac_addr) {
371 reqs[0].value = (mac_addr[3] << 24)
372 | (mac_addr[2] << 16)
373 | (mac_addr[1] << 8)
374 | mac_addr[0];
375 reqs[1].value = (mac_addr[5] << 8)
376 | mac_addr[4];
377 dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
378 } else {
379 dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
380 }
381
382 mutex_lock(&chip->mutex);
383 r = zd_iowrite32a_locked(chip, ioreqs: reqs, ARRAY_SIZE(reqs));
384 mutex_unlock(lock: &chip->mutex);
385 return r;
386}
387
388/* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
389 * CR_MAC_ADDR_P2 must be overwritten
390 */
391int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
392{
393 static const struct zd_ioreq32 reqs[2] = {
394 [0] = { .addr = CR_MAC_ADDR_P1 },
395 [1] = { .addr = CR_MAC_ADDR_P2 },
396 };
397
398 return zd_write_mac_addr_common(chip, mac_addr, in_reqs: reqs, type: "mac");
399}
400
401int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
402{
403 static const struct zd_ioreq32 reqs[2] = {
404 [0] = { .addr = CR_BSSID_P1 },
405 [1] = { .addr = CR_BSSID_P2 },
406 };
407
408 return zd_write_mac_addr_common(chip, mac_addr: bssid, in_reqs: reqs, type: "bssid");
409}
410
411int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
412{
413 int r;
414 u32 value;
415
416 mutex_lock(&chip->mutex);
417 r = zd_ioread32_locked(chip, value: &value, E2P_SUBID);
418 mutex_unlock(lock: &chip->mutex);
419 if (r)
420 return r;
421
422 *regdomain = value >> 16;
423 dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
424
425 return 0;
426}
427
428static int read_values(struct zd_chip *chip, u8 *values, size_t count,
429 zd_addr_t e2p_addr, u32 guard)
430{
431 int r;
432 int i;
433 u32 v;
434
435 ZD_ASSERT(mutex_is_locked(&chip->mutex));
436 for (i = 0;;) {
437 r = zd_ioread32_locked(chip, value: &v,
438 addr: (zd_addr_t)((u16)e2p_addr+i/2));
439 if (r)
440 return r;
441 v -= guard;
442 if (i+4 < count) {
443 values[i++] = v;
444 values[i++] = v >> 8;
445 values[i++] = v >> 16;
446 values[i++] = v >> 24;
447 continue;
448 }
449 for (;i < count; i++)
450 values[i] = v >> (8*(i%3));
451 return 0;
452 }
453}
454
455static int read_pwr_cal_values(struct zd_chip *chip)
456{
457 return read_values(chip, values: chip->pwr_cal_values,
458 E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
459 guard: 0);
460}
461
462static int read_pwr_int_values(struct zd_chip *chip)
463{
464 return read_values(chip, values: chip->pwr_int_values,
465 E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
466 E2P_PWR_INT_GUARD);
467}
468
469static int read_ofdm_cal_values(struct zd_chip *chip)
470{
471 int r;
472 int i;
473 static const zd_addr_t addresses[] = {
474 E2P_36M_CAL_VALUE1,
475 E2P_48M_CAL_VALUE1,
476 E2P_54M_CAL_VALUE1,
477 };
478
479 for (i = 0; i < 3; i++) {
480 r = read_values(chip, values: chip->ofdm_cal_values[i],
481 E2P_CHANNEL_COUNT, e2p_addr: addresses[i], guard: 0);
482 if (r)
483 return r;
484 }
485 return 0;
486}
487
488static int read_cal_int_tables(struct zd_chip *chip)
489{
490 int r;
491
492 r = read_pwr_cal_values(chip);
493 if (r)
494 return r;
495 r = read_pwr_int_values(chip);
496 if (r)
497 return r;
498 r = read_ofdm_cal_values(chip);
499 if (r)
500 return r;
501 return 0;
502}
503
504/* phy means physical registers */
505int zd_chip_lock_phy_regs(struct zd_chip *chip)
506{
507 int r;
508 u32 tmp;
509
510 ZD_ASSERT(mutex_is_locked(&chip->mutex));
511 r = zd_ioread32_locked(chip, value: &tmp, CR_REG1);
512 if (r) {
513 dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
514 return r;
515 }
516
517 tmp &= ~UNLOCK_PHY_REGS;
518
519 r = zd_iowrite32_locked(chip, value: tmp, CR_REG1);
520 if (r)
521 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
522 return r;
523}
524
525int zd_chip_unlock_phy_regs(struct zd_chip *chip)
526{
527 int r;
528 u32 tmp;
529
530 ZD_ASSERT(mutex_is_locked(&chip->mutex));
531 r = zd_ioread32_locked(chip, value: &tmp, CR_REG1);
532 if (r) {
533 dev_err(zd_chip_dev(chip),
534 "error ioread32(CR_REG1): %d\n", r);
535 return r;
536 }
537
538 tmp |= UNLOCK_PHY_REGS;
539
540 r = zd_iowrite32_locked(chip, value: tmp, CR_REG1);
541 if (r)
542 dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
543 return r;
544}
545
546/* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
547static int patch_cr157(struct zd_chip *chip)
548{
549 int r;
550 u16 value;
551
552 if (!chip->patch_cr157)
553 return 0;
554
555 r = zd_ioread16_locked(chip, value: &value, E2P_PHY_REG);
556 if (r)
557 return r;
558
559 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
560 return zd_iowrite32_locked(chip, value: value >> 8, ZD_CR157);
561}
562
563/*
564 * 6M band edge can be optionally overwritten for certain RF's
565 * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
566 * bit (for AL2230, AL2230S)
567 */
568static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
569{
570 ZD_ASSERT(mutex_is_locked(&chip->mutex));
571 if (!chip->patch_6m_band_edge)
572 return 0;
573
574 return zd_rf_patch_6m_band_edge(rf: &chip->rf, channel);
575}
576
577/* Generic implementation of 6M band edge patching, used by most RFs via
578 * zd_rf_generic_patch_6m() */
579int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
580{
581 struct zd_ioreq16 ioreqs[] = {
582 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
583 { ZD_CR47, 0x1e },
584 };
585
586 /* FIXME: Channel 11 is not the edge for all regulatory domains. */
587 if (channel == 1 || channel == 11)
588 ioreqs[0].value = 0x12;
589
590 dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
591 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
592}
593
594static int zd1211_hw_reset_phy(struct zd_chip *chip)
595{
596 static const struct zd_ioreq16 ioreqs[] = {
597 { ZD_CR0, 0x0a }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
598 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xa0 },
599 { ZD_CR10, 0x81 }, { ZD_CR11, 0x00 }, { ZD_CR12, 0x7f },
600 { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 }, { ZD_CR15, 0x3d },
601 { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e }, { ZD_CR18, 0x0a },
602 { ZD_CR19, 0x48 }, { ZD_CR20, 0x0c }, { ZD_CR21, 0x0c },
603 { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 }, { ZD_CR24, 0x14 },
604 { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 }, { ZD_CR27, 0x19 },
605 { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 }, { ZD_CR30, 0x4b },
606 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
607 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
608 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
609 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
610 { ZD_CR43, 0x10 }, { ZD_CR44, 0x12 }, { ZD_CR46, 0xff },
611 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
612 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
613 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
614 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
615 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
616 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
617 { ZD_CR79, 0x68 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
618 { ZD_CR82, 0x00 }, { ZD_CR83, 0x00 }, { ZD_CR84, 0x00 },
619 { ZD_CR85, 0x02 }, { ZD_CR86, 0x00 }, { ZD_CR87, 0x00 },
620 { ZD_CR88, 0xff }, { ZD_CR89, 0xfc }, { ZD_CR90, 0x00 },
621 { ZD_CR91, 0x00 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x08 },
622 { ZD_CR94, 0x00 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0xff },
623 { ZD_CR97, 0xe7 }, { ZD_CR98, 0x00 }, { ZD_CR99, 0x00 },
624 { ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
625 { ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
626 { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
627 { ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
628 { ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
629 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
630 { },
631 { ZD_CR5, 0x00 }, { ZD_CR6, 0x00 }, { ZD_CR7, 0x00 },
632 { ZD_CR8, 0x00 }, { ZD_CR9, 0x20 }, { ZD_CR12, 0xf0 },
633 { ZD_CR20, 0x0e }, { ZD_CR21, 0x0e }, { ZD_CR27, 0x10 },
634 { ZD_CR44, 0x33 }, { ZD_CR47, 0x1E }, { ZD_CR83, 0x24 },
635 { ZD_CR84, 0x04 }, { ZD_CR85, 0x00 }, { ZD_CR86, 0x0C },
636 { ZD_CR87, 0x12 }, { ZD_CR88, 0x0C }, { ZD_CR89, 0x00 },
637 { ZD_CR90, 0x10 }, { ZD_CR91, 0x08 }, { ZD_CR93, 0x00 },
638 { ZD_CR94, 0x01 }, { ZD_CR95, 0x00 }, { ZD_CR96, 0x50 },
639 { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 }, { ZD_CR101, 0x13 },
640 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
641 { ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
642 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
643 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
644 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
645 { ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
646 { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
647 { ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
648 { ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
649 { ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
650 { ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
651 { ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
652 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
653 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
654 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
655 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
656 /* Note: ZD_CR204 must lead the ZD_CR203 */
657 { ZD_CR204, 0x7d },
658 { },
659 { ZD_CR203, 0x30 },
660 };
661
662 int r, t;
663
664 dev_dbg_f(zd_chip_dev(chip), "\n");
665
666 r = zd_chip_lock_phy_regs(chip);
667 if (r)
668 goto out;
669
670 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
671 if (r)
672 goto unlock;
673
674 r = patch_cr157(chip);
675unlock:
676 t = zd_chip_unlock_phy_regs(chip);
677 if (t && !r)
678 r = t;
679out:
680 return r;
681}
682
683static int zd1211b_hw_reset_phy(struct zd_chip *chip)
684{
685 static const struct zd_ioreq16 ioreqs[] = {
686 { ZD_CR0, 0x14 }, { ZD_CR1, 0x06 }, { ZD_CR2, 0x26 },
687 { ZD_CR3, 0x38 }, { ZD_CR4, 0x80 }, { ZD_CR9, 0xe0 },
688 { ZD_CR10, 0x81 },
689 /* power control { { ZD_CR11, 1 << 6 }, */
690 { ZD_CR11, 0x00 },
691 { ZD_CR12, 0xf0 }, { ZD_CR13, 0x8c }, { ZD_CR14, 0x80 },
692 { ZD_CR15, 0x3d }, { ZD_CR16, 0x20 }, { ZD_CR17, 0x1e },
693 { ZD_CR18, 0x0a }, { ZD_CR19, 0x48 },
694 { ZD_CR20, 0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
695 { ZD_CR21, 0x0e }, { ZD_CR22, 0x23 }, { ZD_CR23, 0x90 },
696 { ZD_CR24, 0x14 }, { ZD_CR25, 0x40 }, { ZD_CR26, 0x10 },
697 { ZD_CR27, 0x10 }, { ZD_CR28, 0x7f }, { ZD_CR29, 0x80 },
698 { ZD_CR30, 0x4b }, /* ASIC/FWT, no jointly decoder */
699 { ZD_CR31, 0x60 }, { ZD_CR32, 0x43 }, { ZD_CR33, 0x08 },
700 { ZD_CR34, 0x06 }, { ZD_CR35, 0x0a }, { ZD_CR36, 0x00 },
701 { ZD_CR37, 0x00 }, { ZD_CR38, 0x38 }, { ZD_CR39, 0x0c },
702 { ZD_CR40, 0x84 }, { ZD_CR41, 0x2a }, { ZD_CR42, 0x80 },
703 { ZD_CR43, 0x10 }, { ZD_CR44, 0x33 }, { ZD_CR46, 0xff },
704 { ZD_CR47, 0x1E }, { ZD_CR48, 0x26 }, { ZD_CR49, 0x5b },
705 { ZD_CR64, 0xd0 }, { ZD_CR65, 0x04 }, { ZD_CR66, 0x58 },
706 { ZD_CR67, 0xc9 }, { ZD_CR68, 0x88 }, { ZD_CR69, 0x41 },
707 { ZD_CR70, 0x23 }, { ZD_CR71, 0x10 }, { ZD_CR72, 0xff },
708 { ZD_CR73, 0x32 }, { ZD_CR74, 0x30 }, { ZD_CR75, 0x65 },
709 { ZD_CR76, 0x41 }, { ZD_CR77, 0x1b }, { ZD_CR78, 0x30 },
710 { ZD_CR79, 0xf0 }, { ZD_CR80, 0x64 }, { ZD_CR81, 0x64 },
711 { ZD_CR82, 0x00 }, { ZD_CR83, 0x24 }, { ZD_CR84, 0x04 },
712 { ZD_CR85, 0x00 }, { ZD_CR86, 0x0c }, { ZD_CR87, 0x12 },
713 { ZD_CR88, 0x0c }, { ZD_CR89, 0x00 }, { ZD_CR90, 0x58 },
714 { ZD_CR91, 0x04 }, { ZD_CR92, 0x00 }, { ZD_CR93, 0x00 },
715 { ZD_CR94, 0x01 },
716 { ZD_CR95, 0x20 }, /* ZD1211B */
717 { ZD_CR96, 0x50 }, { ZD_CR97, 0x37 }, { ZD_CR98, 0x35 },
718 { ZD_CR99, 0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
719 { ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
720 { ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
721 { ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
722 { ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
723 { ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
724 { ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
725 { ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
726 { ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
727 { ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
728 { ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
729 { ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
730 { ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
731 { ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
732 { ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
733 { ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
734 { ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
735 { ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
736 { ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
737 { ZD_CR170, 0xba }, { ZD_CR171, 0xba },
738 /* Note: ZD_CR204 must lead the ZD_CR203 */
739 { ZD_CR204, 0x7d },
740 {},
741 { ZD_CR203, 0x30 },
742 };
743
744 int r, t;
745
746 dev_dbg_f(zd_chip_dev(chip), "\n");
747
748 r = zd_chip_lock_phy_regs(chip);
749 if (r)
750 goto out;
751
752 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
753 t = zd_chip_unlock_phy_regs(chip);
754 if (t && !r)
755 r = t;
756out:
757 return r;
758}
759
760static int hw_reset_phy(struct zd_chip *chip)
761{
762 return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
763 zd1211_hw_reset_phy(chip);
764}
765
766static int zd1211_hw_init_hmac(struct zd_chip *chip)
767{
768 static const struct zd_ioreq32 ioreqs[] = {
769 { CR_ZD1211_RETRY_MAX, ZD1211_RETRY_COUNT },
770 { CR_RX_THRESHOLD, 0x000c0640 },
771 };
772
773 dev_dbg_f(zd_chip_dev(chip), "\n");
774 ZD_ASSERT(mutex_is_locked(&chip->mutex));
775 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
776}
777
778static int zd1211b_hw_init_hmac(struct zd_chip *chip)
779{
780 static const struct zd_ioreq32 ioreqs[] = {
781 { CR_ZD1211B_RETRY_MAX, ZD1211B_RETRY_COUNT },
782 { CR_ZD1211B_CWIN_MAX_MIN_AC0, 0x007f003f },
783 { CR_ZD1211B_CWIN_MAX_MIN_AC1, 0x007f003f },
784 { CR_ZD1211B_CWIN_MAX_MIN_AC2, 0x003f001f },
785 { CR_ZD1211B_CWIN_MAX_MIN_AC3, 0x001f000f },
786 { CR_ZD1211B_AIFS_CTL1, 0x00280028 },
787 { CR_ZD1211B_AIFS_CTL2, 0x008C003C },
788 { CR_ZD1211B_TXOP, 0x01800824 },
789 { CR_RX_THRESHOLD, 0x000c0eff, },
790 };
791
792 dev_dbg_f(zd_chip_dev(chip), "\n");
793 ZD_ASSERT(mutex_is_locked(&chip->mutex));
794 return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
795}
796
797static int hw_init_hmac(struct zd_chip *chip)
798{
799 int r;
800 static const struct zd_ioreq32 ioreqs[] = {
801 { CR_ACK_TIMEOUT_EXT, 0x20 },
802 { CR_ADDA_MBIAS_WARMTIME, 0x30000808 },
803 { CR_SNIFFER_ON, 0 },
804 { CR_RX_FILTER, STA_RX_FILTER },
805 { CR_GROUP_HASH_P1, 0x00 },
806 { CR_GROUP_HASH_P2, 0x80000000 },
807 { CR_REG1, 0xa4 },
808 { CR_ADDA_PWR_DWN, 0x7f },
809 { CR_BCN_PLCP_CFG, 0x00f00401 },
810 { CR_PHY_DELAY, 0x00 },
811 { CR_ACK_TIMEOUT_EXT, 0x80 },
812 { CR_ADDA_PWR_DWN, 0x00 },
813 { CR_ACK_TIME_80211, 0x100 },
814 { CR_RX_PE_DELAY, 0x70 },
815 { CR_PS_CTRL, 0x10000000 },
816 { CR_RTS_CTS_RATE, 0x02030203 },
817 { CR_AFTER_PNP, 0x1 },
818 { CR_WEP_PROTECT, 0x114 },
819 { CR_IFS_VALUE, IFS_VALUE_DEFAULT },
820 { CR_CAM_MODE, MODE_AP_WDS},
821 };
822
823 ZD_ASSERT(mutex_is_locked(&chip->mutex));
824 r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
825 if (r)
826 return r;
827
828 return zd_chip_is_zd1211b(chip) ?
829 zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
830}
831
832struct aw_pt_bi {
833 u32 atim_wnd_period;
834 u32 pre_tbtt;
835 u32 beacon_interval;
836};
837
838static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
839{
840 int r;
841 static const zd_addr_t aw_pt_bi_addr[] =
842 { CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
843 u32 values[3];
844
845 r = zd_ioread32v_locked(chip, values, addr: (const zd_addr_t *)aw_pt_bi_addr,
846 ARRAY_SIZE(aw_pt_bi_addr));
847 if (r) {
848 memset(s, 0, sizeof(*s));
849 return r;
850 }
851
852 s->atim_wnd_period = values[0];
853 s->pre_tbtt = values[1];
854 s->beacon_interval = values[2];
855 return 0;
856}
857
858static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
859{
860 struct zd_ioreq32 reqs[3];
861 u16 b_interval = s->beacon_interval & 0xffff;
862
863 if (b_interval <= 5)
864 b_interval = 5;
865 if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
866 s->pre_tbtt = b_interval - 1;
867 if (s->atim_wnd_period >= s->pre_tbtt)
868 s->atim_wnd_period = s->pre_tbtt - 1;
869
870 reqs[0].addr = CR_ATIM_WND_PERIOD;
871 reqs[0].value = s->atim_wnd_period;
872 reqs[1].addr = CR_PRE_TBTT;
873 reqs[1].value = s->pre_tbtt;
874 reqs[2].addr = CR_BCN_INTERVAL;
875 reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
876
877 return zd_iowrite32a_locked(chip, ioreqs: reqs, ARRAY_SIZE(reqs));
878}
879
880
881static int set_beacon_interval(struct zd_chip *chip, u16 interval,
882 u8 dtim_period, int type)
883{
884 int r;
885 struct aw_pt_bi s;
886 u32 b_interval, mode_flag;
887
888 ZD_ASSERT(mutex_is_locked(&chip->mutex));
889
890 if (interval > 0) {
891 switch (type) {
892 case NL80211_IFTYPE_ADHOC:
893 case NL80211_IFTYPE_MESH_POINT:
894 mode_flag = BCN_MODE_IBSS;
895 break;
896 case NL80211_IFTYPE_AP:
897 mode_flag = BCN_MODE_AP;
898 break;
899 default:
900 mode_flag = 0;
901 break;
902 }
903 } else {
904 dtim_period = 0;
905 mode_flag = 0;
906 }
907
908 b_interval = mode_flag | (dtim_period << 16) | interval;
909
910 r = zd_iowrite32_locked(chip, value: b_interval, CR_BCN_INTERVAL);
911 if (r)
912 return r;
913 r = get_aw_pt_bi(chip, s: &s);
914 if (r)
915 return r;
916 return set_aw_pt_bi(chip, s: &s);
917}
918
919int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
920 int type)
921{
922 int r;
923
924 mutex_lock(&chip->mutex);
925 r = set_beacon_interval(chip, interval, dtim_period, type);
926 mutex_unlock(lock: &chip->mutex);
927 return r;
928}
929
930static int hw_init(struct zd_chip *chip)
931{
932 int r;
933
934 dev_dbg_f(zd_chip_dev(chip), "\n");
935 ZD_ASSERT(mutex_is_locked(&chip->mutex));
936 r = hw_reset_phy(chip);
937 if (r)
938 return r;
939
940 r = hw_init_hmac(chip);
941 if (r)
942 return r;
943
944 return set_beacon_interval(chip, interval: 100, dtim_period: 0, type: NL80211_IFTYPE_UNSPECIFIED);
945}
946
947static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
948{
949 return (zd_addr_t)((u16)chip->fw_regs_base + offset);
950}
951
952#ifdef DEBUG
953static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
954 const char *addr_string)
955{
956 int r;
957 u32 value;
958
959 r = zd_ioread32_locked(chip, value: &value, addr);
960 if (r) {
961 dev_dbg_f(zd_chip_dev(chip),
962 "error reading %s. Error number %d\n", addr_string, r);
963 return r;
964 }
965
966 dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
967 addr_string, (unsigned int)value);
968 return 0;
969}
970
971static int test_init(struct zd_chip *chip)
972{
973 int r;
974
975 r = dump_cr(chip, CR_AFTER_PNP, addr_string: "CR_AFTER_PNP");
976 if (r)
977 return r;
978 r = dump_cr(chip, CR_GPI_EN, addr_string: "CR_GPI_EN");
979 if (r)
980 return r;
981 return dump_cr(chip, CR_INTERRUPT, addr_string: "CR_INTERRUPT");
982}
983
984static void dump_fw_registers(struct zd_chip *chip)
985{
986 const zd_addr_t addr[4] = {
987 fw_reg_addr(chip, offset: FW_REG_FIRMWARE_VER),
988 fw_reg_addr(chip, offset: FW_REG_USB_SPEED),
989 fw_reg_addr(chip, offset: FW_REG_FIX_TX_RATE),
990 fw_reg_addr(chip, offset: FW_REG_LED_LINK_STATUS),
991 };
992
993 int r;
994 u16 values[4];
995
996 r = zd_ioread16v_locked(chip, values, addresses: (const zd_addr_t*)addr,
997 ARRAY_SIZE(addr));
998 if (r) {
999 dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1000 r);
1001 return;
1002 }
1003
1004 dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1005 dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1006 dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1007 dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1008}
1009#endif /* DEBUG */
1010
1011static int print_fw_version(struct zd_chip *chip)
1012{
1013 struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1014 int r;
1015 u16 version;
1016
1017 r = zd_ioread16_locked(chip, value: &version,
1018 addr: fw_reg_addr(chip, offset: FW_REG_FIRMWARE_VER));
1019 if (r)
1020 return r;
1021
1022 dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1023
1024 snprintf(buf: wiphy->fw_version, size: sizeof(wiphy->fw_version),
1025 fmt: "%04hx", version);
1026
1027 return 0;
1028}
1029
1030static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1031{
1032 u32 rates;
1033 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1034 /* This sets the mandatory rates, which only depend from the standard
1035 * that the device is supporting. Until further notice we should try
1036 * to support 802.11g also for full speed USB.
1037 */
1038 if (!gmode)
1039 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1040 else
1041 rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1042 CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1043
1044 return zd_iowrite32_locked(chip, value: rates, CR_MANDATORY_RATE_TBL);
1045}
1046
1047int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1048 int preamble)
1049{
1050 u32 value = 0;
1051
1052 dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1053 value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1054 value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1055
1056 /* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1057 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1058 value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1059 value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1060 value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1061
1062 return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1063}
1064
1065int zd_chip_enable_hwint(struct zd_chip *chip)
1066{
1067 int r;
1068
1069 mutex_lock(&chip->mutex);
1070 r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1071 mutex_unlock(lock: &chip->mutex);
1072 return r;
1073}
1074
1075static int disable_hwint(struct zd_chip *chip)
1076{
1077 return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1078}
1079
1080int zd_chip_disable_hwint(struct zd_chip *chip)
1081{
1082 int r;
1083
1084 mutex_lock(&chip->mutex);
1085 r = disable_hwint(chip);
1086 mutex_unlock(lock: &chip->mutex);
1087 return r;
1088}
1089
1090static int read_fw_regs_offset(struct zd_chip *chip)
1091{
1092 int r;
1093
1094 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1095 r = zd_ioread16_locked(chip, value: (u16*)&chip->fw_regs_base,
1096 FWRAW_REGS_ADDR);
1097 if (r)
1098 return r;
1099 dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1100 (u16)chip->fw_regs_base);
1101
1102 return 0;
1103}
1104
1105/* Read mac address using pre-firmware interface */
1106int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1107{
1108 dev_dbg_f(zd_chip_dev(chip), "\n");
1109 return zd_usb_read_fw(usb: &chip->usb, E2P_MAC_ADDR_P1, data: addr,
1110 ETH_ALEN);
1111}
1112
1113int zd_chip_init_hw(struct zd_chip *chip)
1114{
1115 int r;
1116 u8 rf_type;
1117
1118 dev_dbg_f(zd_chip_dev(chip), "\n");
1119
1120 mutex_lock(&chip->mutex);
1121
1122#ifdef DEBUG
1123 r = test_init(chip);
1124 if (r)
1125 goto out;
1126#endif
1127 r = zd_iowrite32_locked(chip, value: 1, CR_AFTER_PNP);
1128 if (r)
1129 goto out;
1130
1131 r = read_fw_regs_offset(chip);
1132 if (r)
1133 goto out;
1134
1135 /* GPI is always disabled, also in the other driver.
1136 */
1137 r = zd_iowrite32_locked(chip, value: 0, CR_GPI_EN);
1138 if (r)
1139 goto out;
1140 r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1141 if (r)
1142 goto out;
1143 /* Currently we support IEEE 802.11g for full and high speed USB.
1144 * It might be discussed, whether we should support pure b mode for
1145 * full speed USB.
1146 */
1147 r = set_mandatory_rates(chip, gmode: 1);
1148 if (r)
1149 goto out;
1150 /* Disabling interrupts is certainly a smart thing here.
1151 */
1152 r = disable_hwint(chip);
1153 if (r)
1154 goto out;
1155 r = read_pod(chip, rf_type: &rf_type);
1156 if (r)
1157 goto out;
1158 r = hw_init(chip);
1159 if (r)
1160 goto out;
1161 r = zd_rf_init_hw(rf: &chip->rf, type: rf_type);
1162 if (r)
1163 goto out;
1164
1165 r = print_fw_version(chip);
1166 if (r)
1167 goto out;
1168
1169#ifdef DEBUG
1170 dump_fw_registers(chip);
1171 r = test_init(chip);
1172 if (r)
1173 goto out;
1174#endif /* DEBUG */
1175
1176 r = read_cal_int_tables(chip);
1177 if (r)
1178 goto out;
1179
1180 print_id(chip);
1181out:
1182 mutex_unlock(lock: &chip->mutex);
1183 return r;
1184}
1185
1186static int update_pwr_int(struct zd_chip *chip, u8 channel)
1187{
1188 u8 value = chip->pwr_int_values[channel - 1];
1189 return zd_iowrite16_locked(chip, value, ZD_CR31);
1190}
1191
1192static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1193{
1194 u8 value = chip->pwr_cal_values[channel-1];
1195 return zd_iowrite16_locked(chip, value, ZD_CR68);
1196}
1197
1198static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1199{
1200 struct zd_ioreq16 ioreqs[3];
1201
1202 ioreqs[0].addr = ZD_CR67;
1203 ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1204 ioreqs[1].addr = ZD_CR66;
1205 ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1206 ioreqs[2].addr = ZD_CR65;
1207 ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1208
1209 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1210}
1211
1212static int update_channel_integration_and_calibration(struct zd_chip *chip,
1213 u8 channel)
1214{
1215 int r;
1216
1217 if (!zd_rf_should_update_pwr_int(rf: &chip->rf))
1218 return 0;
1219
1220 r = update_pwr_int(chip, channel);
1221 if (r)
1222 return r;
1223 if (zd_chip_is_zd1211b(chip)) {
1224 static const struct zd_ioreq16 ioreqs[] = {
1225 { ZD_CR69, 0x28 },
1226 {},
1227 { ZD_CR69, 0x2a },
1228 };
1229
1230 r = update_ofdm_cal(chip, channel);
1231 if (r)
1232 return r;
1233 r = update_pwr_cal(chip, channel);
1234 if (r)
1235 return r;
1236 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1237 if (r)
1238 return r;
1239 }
1240
1241 return 0;
1242}
1243
1244/* The CCK baseband gain can be optionally patched by the EEPROM */
1245static int patch_cck_gain(struct zd_chip *chip)
1246{
1247 int r;
1248 u32 value;
1249
1250 if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(rf: &chip->rf))
1251 return 0;
1252
1253 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1254 r = zd_ioread32_locked(chip, value: &value, E2P_PHY_REG);
1255 if (r)
1256 return r;
1257 dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1258 return zd_iowrite16_locked(chip, value: value & 0xff, ZD_CR47);
1259}
1260
1261int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1262{
1263 int r, t;
1264
1265 mutex_lock(&chip->mutex);
1266 r = zd_chip_lock_phy_regs(chip);
1267 if (r)
1268 goto out;
1269 r = zd_rf_set_channel(rf: &chip->rf, channel);
1270 if (r)
1271 goto unlock;
1272 r = update_channel_integration_and_calibration(chip, channel);
1273 if (r)
1274 goto unlock;
1275 r = patch_cck_gain(chip);
1276 if (r)
1277 goto unlock;
1278 r = patch_6m_band_edge(chip, channel);
1279 if (r)
1280 goto unlock;
1281 r = zd_iowrite32_locked(chip, value: 0, CR_CONFIG_PHILIPS);
1282unlock:
1283 t = zd_chip_unlock_phy_regs(chip);
1284 if (t && !r)
1285 r = t;
1286out:
1287 mutex_unlock(lock: &chip->mutex);
1288 return r;
1289}
1290
1291u8 zd_chip_get_channel(struct zd_chip *chip)
1292{
1293 u8 channel;
1294
1295 mutex_lock(&chip->mutex);
1296 channel = chip->rf.channel;
1297 mutex_unlock(lock: &chip->mutex);
1298 return channel;
1299}
1300
1301int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1302{
1303 const zd_addr_t a[] = {
1304 fw_reg_addr(chip, offset: FW_REG_LED_LINK_STATUS),
1305 CR_LED,
1306 };
1307
1308 int r;
1309 u16 v[ARRAY_SIZE(a)];
1310 struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1311 [0] = { fw_reg_addr(chip, offset: FW_REG_LED_LINK_STATUS) },
1312 [1] = { CR_LED },
1313 };
1314 u16 other_led;
1315
1316 mutex_lock(&chip->mutex);
1317 r = zd_ioread16v_locked(chip, values: v, addresses: (const zd_addr_t *)a, ARRAY_SIZE(a));
1318 if (r)
1319 goto out;
1320
1321 other_led = chip->link_led == LED1 ? LED2 : LED1;
1322
1323 switch (status) {
1324 case ZD_LED_OFF:
1325 ioreqs[0].value = FW_LINK_OFF;
1326 ioreqs[1].value = v[1] & ~(LED1|LED2);
1327 break;
1328 case ZD_LED_SCANNING:
1329 ioreqs[0].value = FW_LINK_OFF;
1330 ioreqs[1].value = v[1] & ~other_led;
1331 if ((u32)ktime_get_seconds() % 3 == 0) {
1332 ioreqs[1].value &= ~chip->link_led;
1333 } else {
1334 ioreqs[1].value |= chip->link_led;
1335 }
1336 break;
1337 case ZD_LED_ASSOCIATED:
1338 ioreqs[0].value = FW_LINK_TX;
1339 ioreqs[1].value = v[1] & ~other_led;
1340 ioreqs[1].value |= chip->link_led;
1341 break;
1342 default:
1343 r = -EINVAL;
1344 goto out;
1345 }
1346
1347 if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1348 r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1349 if (r)
1350 goto out;
1351 }
1352 r = 0;
1353out:
1354 mutex_unlock(lock: &chip->mutex);
1355 return r;
1356}
1357
1358int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1359{
1360 int r;
1361
1362 if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1363 return -EINVAL;
1364
1365 mutex_lock(&chip->mutex);
1366 r = zd_iowrite32_locked(chip, value: cr_rates, CR_BASIC_RATE_TBL);
1367 mutex_unlock(lock: &chip->mutex);
1368 return r;
1369}
1370
1371static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1372{
1373 return ZD_OFDM | zd_ofdm_plcp_header_rate(header: rx_frame);
1374}
1375
1376/**
1377 * zd_rx_rate - report zd-rate
1378 * @rx_frame: received frame
1379 * @status: rx_status as given by the device
1380 *
1381 * This function converts the rate as encoded in the received packet to the
1382 * zd-rate, we are using on other places in the driver.
1383 */
1384u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1385{
1386 u8 zd_rate;
1387 if (status->frame_status & ZD_RX_OFDM) {
1388 zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1389 } else {
1390 switch (zd_cck_plcp_header_signal(header: rx_frame)) {
1391 case ZD_CCK_PLCP_SIGNAL_1M:
1392 zd_rate = ZD_CCK_RATE_1M;
1393 break;
1394 case ZD_CCK_PLCP_SIGNAL_2M:
1395 zd_rate = ZD_CCK_RATE_2M;
1396 break;
1397 case ZD_CCK_PLCP_SIGNAL_5M5:
1398 zd_rate = ZD_CCK_RATE_5_5M;
1399 break;
1400 case ZD_CCK_PLCP_SIGNAL_11M:
1401 zd_rate = ZD_CCK_RATE_11M;
1402 break;
1403 default:
1404 zd_rate = 0;
1405 }
1406 }
1407
1408 return zd_rate;
1409}
1410
1411int zd_chip_switch_radio_on(struct zd_chip *chip)
1412{
1413 int r;
1414
1415 mutex_lock(&chip->mutex);
1416 r = zd_switch_radio_on(rf: &chip->rf);
1417 mutex_unlock(lock: &chip->mutex);
1418 return r;
1419}
1420
1421int zd_chip_switch_radio_off(struct zd_chip *chip)
1422{
1423 int r;
1424
1425 mutex_lock(&chip->mutex);
1426 r = zd_switch_radio_off(rf: &chip->rf);
1427 mutex_unlock(lock: &chip->mutex);
1428 return r;
1429}
1430
1431int zd_chip_enable_int(struct zd_chip *chip)
1432{
1433 int r;
1434
1435 mutex_lock(&chip->mutex);
1436 r = zd_usb_enable_int(usb: &chip->usb);
1437 mutex_unlock(lock: &chip->mutex);
1438 return r;
1439}
1440
1441void zd_chip_disable_int(struct zd_chip *chip)
1442{
1443 mutex_lock(&chip->mutex);
1444 zd_usb_disable_int(usb: &chip->usb);
1445 mutex_unlock(lock: &chip->mutex);
1446
1447 /* cancel pending interrupt work */
1448 cancel_work_sync(work: &zd_chip_to_mac(chip)->process_intr);
1449}
1450
1451int zd_chip_enable_rxtx(struct zd_chip *chip)
1452{
1453 int r;
1454
1455 mutex_lock(&chip->mutex);
1456 zd_usb_enable_tx(usb: &chip->usb);
1457 r = zd_usb_enable_rx(usb: &chip->usb);
1458 zd_tx_watchdog_enable(usb: &chip->usb);
1459 mutex_unlock(lock: &chip->mutex);
1460 return r;
1461}
1462
1463void zd_chip_disable_rxtx(struct zd_chip *chip)
1464{
1465 mutex_lock(&chip->mutex);
1466 zd_tx_watchdog_disable(usb: &chip->usb);
1467 zd_usb_disable_rx(usb: &chip->usb);
1468 zd_usb_disable_tx(usb: &chip->usb);
1469 mutex_unlock(lock: &chip->mutex);
1470}
1471
1472int zd_rfwritev_locked(struct zd_chip *chip,
1473 const u32* values, unsigned int count, u8 bits)
1474{
1475 int r;
1476 unsigned int i;
1477
1478 for (i = 0; i < count; i++) {
1479 r = zd_rfwrite_locked(chip, value: values[i], bits);
1480 if (r)
1481 return r;
1482 }
1483
1484 return 0;
1485}
1486
1487/*
1488 * We can optionally program the RF directly through CR regs, if supported by
1489 * the hardware. This is much faster than the older method.
1490 */
1491int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1492{
1493 const struct zd_ioreq16 ioreqs[] = {
1494 { ZD_CR244, (value >> 16) & 0xff },
1495 { ZD_CR243, (value >> 8) & 0xff },
1496 { ZD_CR242, value & 0xff },
1497 };
1498 ZD_ASSERT(mutex_is_locked(&chip->mutex));
1499 return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1500}
1501
1502int zd_rfwritev_cr_locked(struct zd_chip *chip,
1503 const u32 *values, unsigned int count)
1504{
1505 int r;
1506 unsigned int i;
1507
1508 for (i = 0; i < count; i++) {
1509 r = zd_rfwrite_cr_locked(chip, value: values[i]);
1510 if (r)
1511 return r;
1512 }
1513
1514 return 0;
1515}
1516
1517int zd_chip_set_multicast_hash(struct zd_chip *chip,
1518 struct zd_mc_hash *hash)
1519{
1520 const struct zd_ioreq32 ioreqs[] = {
1521 { CR_GROUP_HASH_P1, hash->low },
1522 { CR_GROUP_HASH_P2, hash->high },
1523 };
1524
1525 return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1526}
1527
1528u64 zd_chip_get_tsf(struct zd_chip *chip)
1529{
1530 int r;
1531 static const zd_addr_t aw_pt_bi_addr[] =
1532 { CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1533 u32 values[2];
1534 u64 tsf;
1535
1536 mutex_lock(&chip->mutex);
1537 r = zd_ioread32v_locked(chip, values, addr: (const zd_addr_t *)aw_pt_bi_addr,
1538 ARRAY_SIZE(aw_pt_bi_addr));
1539 mutex_unlock(lock: &chip->mutex);
1540 if (r)
1541 return 0;
1542
1543 tsf = values[1];
1544 tsf = (tsf << 32) | values[0];
1545
1546 return tsf;
1547}
1548

source code of linux/drivers/net/wireless/zydas/zd1211rw/zd_chip.c