1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * AppliedMicro X-Gene Multi-purpose PHY driver
4 *
5 * Copyright (c) 2014, Applied Micro Circuits Corporation
6 * Author: Loc Ho <lho@apm.com>
7 * Tuan Phan <tphan@apm.com>
8 * Suman Tripathi <stripathi@apm.com>
9 *
10 * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11 * The first PLL clock macro is used for internal reference clock. The second
12 * PLL clock macro is used to generate the clock for the PHY. This driver
13 * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14 * operate according to the mode of operation. The first PLL CMU is only
15 * required if internal clock is enabled.
16 *
17 * Logical Layer Out Of HW module units:
18 *
19 * -----------------
20 * | Internal | |------|
21 * | Ref PLL CMU |----| | ------------- ---------
22 * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
23 * | | | | ---------
24 * External Clock ------| | -------------
25 * |------|
26 *
27 * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28 * indirectly from the SDS offset at 0x2000. It is only required for
29 * internal reference clock.
30 * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31 * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
32 *
33 * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34 * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35 * it is located outside the PHY IP. This is the case for the PHY located
36 * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37 * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
38 *
39 * Currently, this driver only supports Gen3 SATA mode with external clock.
40 */
41#include <linux/module.h>
42#include <linux/of.h>
43#include <linux/platform_device.h>
44#include <linux/io.h>
45#include <linux/delay.h>
46#include <linux/phy/phy.h>
47#include <linux/clk.h>
48
49/* Max 2 lanes per a PHY unit */
50#define MAX_LANE 2
51
52/* Register offset inside the PHY */
53#define SERDES_PLL_INDIRECT_OFFSET 0x0000
54#define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
55#define SERDES_INDIRECT_OFFSET 0x0400
56#define SERDES_LANE_STRIDE 0x0200
57
58/* Some default Serdes parameters */
59#define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
60#define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
61#define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
62#define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
63#define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
64#define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
65#define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
66#define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
67
68#define SATA_SPD_SEL_GEN3 0x7
69#define SATA_SPD_SEL_GEN2 0x3
70#define SATA_SPD_SEL_GEN1 0x1
71
72#define SSC_DISABLE 0
73#define SSC_ENABLE 1
74
75#define FBDIV_VAL_50M 0x77
76#define REFDIV_VAL_50M 0x1
77#define FBDIV_VAL_100M 0x3B
78#define REFDIV_VAL_100M 0x0
79
80/* SATA Clock/Reset CSR */
81#define SATACLKENREG 0x00000000
82#define SATA0_CORE_CLKEN 0x00000002
83#define SATA1_CORE_CLKEN 0x00000004
84#define SATASRESETREG 0x00000004
85#define SATA_MEM_RESET_MASK 0x00000020
86#define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
87#define SATA_SDS_RESET_MASK 0x00000004
88#define SATA_CSR_RESET_MASK 0x00000001
89#define SATA_CORE_RESET_MASK 0x00000002
90#define SATA_PMCLK_RESET_MASK 0x00000010
91#define SATA_PCLK_RESET_MASK 0x00000008
92
93/* SDS CSR used for PHY Indirect access */
94#define SATA_ENET_SDS_PCS_CTL0 0x00000000
95#define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
96 (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
97#define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
98 (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
99#define SATA_ENET_SDS_CTL0 0x0000000c
100#define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
101 (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
102#define SATA_ENET_SDS_CTL1 0x00000010
103#define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
104 (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
105#define SATA_ENET_SDS_RST_CTL 0x00000024
106#define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
107#define CFG_IND_WR_CMD_MASK 0x00000001
108#define CFG_IND_RD_CMD_MASK 0x00000002
109#define CFG_IND_CMD_DONE_MASK 0x00000004
110#define CFG_IND_ADDR_SET(dst, src) \
111 (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
112#define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
113#define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
114#define SATA_ENET_CLK_MACRO_REG 0x0000004c
115#define I_RESET_B_SET(dst, src) \
116 (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
117#define I_PLL_FBDIV_SET(dst, src) \
118 (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
119#define I_CUSTOMEROV_SET(dst, src) \
120 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
121#define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
122#define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
123
124/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
125#define CMU_REG0 0x00000
126#define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
127#define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
128 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
129#define CMU_REG0_PDOWN_MASK 0x00004000
130#define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
131 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
132#define CMU_REG1 0x00002
133#define CMU_REG1_PLL_CP_SET(dst, src) \
134 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
135#define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
136 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
137#define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
138 (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
139#define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
140#define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
141 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
142#define CMU_REG2 0x00004
143#define CMU_REG2_PLL_REFDIV_SET(dst, src) \
144 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
145#define CMU_REG2_PLL_LFRES_SET(dst, src) \
146 (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
147#define CMU_REG2_PLL_FBDIV_SET(dst, src) \
148 (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
149#define CMU_REG3 0x00006
150#define CMU_REG3_VCOVARSEL_SET(dst, src) \
151 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
152#define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
153 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
154#define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
155 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
156#define CMU_REG4 0x00008
157#define CMU_REG5 0x0000a
158#define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
159 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
160#define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
161 (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
162#define CMU_REG5_PLL_LFCAP_SET(dst, src) \
163 (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
164#define CMU_REG5_PLL_RESETB_MASK 0x00000001
165#define CMU_REG6 0x0000c
166#define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
167 (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
168#define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
169 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
170#define CMU_REG7 0x0000e
171#define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
172#define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
173#define CMU_REG8 0x00010
174#define CMU_REG9 0x00012
175#define CMU_REG9_WORD_LEN_8BIT 0x000
176#define CMU_REG9_WORD_LEN_10BIT 0x001
177#define CMU_REG9_WORD_LEN_16BIT 0x002
178#define CMU_REG9_WORD_LEN_20BIT 0x003
179#define CMU_REG9_WORD_LEN_32BIT 0x004
180#define CMU_REG9_WORD_LEN_40BIT 0x005
181#define CMU_REG9_WORD_LEN_64BIT 0x006
182#define CMU_REG9_WORD_LEN_66BIT 0x007
183#define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
184 (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
185#define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
186 (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
187#define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
188 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
189#define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
190 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
191#define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
192 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
193#define CMU_REG10 0x00014
194#define CMU_REG10_VREG_REFSEL_SET(dst, src) \
195 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
196#define CMU_REG11 0x00016
197#define CMU_REG12 0x00018
198#define CMU_REG12_STATE_DELAY9_SET(dst, src) \
199 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
200#define CMU_REG13 0x0001a
201#define CMU_REG14 0x0001c
202#define CMU_REG15 0x0001e
203#define CMU_REG16 0x00020
204#define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
205#define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
206#define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
207 (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
208#define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
209 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
210#define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
211 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
212#define CMU_REG17 0x00022
213#define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
214 (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
215#define CMU_REG17_RESERVED_7_SET(dst, src) \
216 (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
217#define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
218#define CMU_REG18 0x00024
219#define CMU_REG19 0x00026
220#define CMU_REG20 0x00028
221#define CMU_REG21 0x0002a
222#define CMU_REG22 0x0002c
223#define CMU_REG23 0x0002e
224#define CMU_REG24 0x00030
225#define CMU_REG25 0x00032
226#define CMU_REG26 0x00034
227#define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
228 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
229#define CMU_REG27 0x00036
230#define CMU_REG28 0x00038
231#define CMU_REG29 0x0003a
232#define CMU_REG30 0x0003c
233#define CMU_REG30_LOCK_COUNT_SET(dst, src) \
234 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
235#define CMU_REG30_PCIE_MODE_SET(dst, src) \
236 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
237#define CMU_REG31 0x0003e
238#define CMU_REG32 0x00040
239#define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
240#define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
241 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
242#define CMU_REG32_IREF_ADJ_SET(dst, src) \
243 (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
244#define CMU_REG33 0x00042
245#define CMU_REG34 0x00044
246#define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
247 (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
248#define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
249 (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
250#define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
251 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
252#define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
253 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
254#define CMU_REG35 0x00046
255#define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
256 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
257#define CMU_REG36 0x00048
258#define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
259 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
260#define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
261 (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
262#define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
263 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
264#define CMU_REG37 0x0004a
265#define CMU_REG38 0x0004c
266#define CMU_REG39 0x0004e
267
268/* PHY lane CSR accessing from SDS indirectly */
269#define RXTX_REG0 0x000
270#define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
271 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
272#define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
273 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
274#define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
275 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
276#define RXTX_REG1 0x002
277#define RXTX_REG1_RXACVCM_SET(dst, src) \
278 (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
279#define RXTX_REG1_CTLE_EQ_SET(dst, src) \
280 (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
281#define RXTX_REG1_RXVREG1_SET(dst, src) \
282 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
283#define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
284 (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
285#define RXTX_REG2 0x004
286#define RXTX_REG2_VTT_ENA_SET(dst, src) \
287 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
288#define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
289 (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
290#define RXTX_REG2_VTT_SEL_SET(dst, src) \
291 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
292#define RXTX_REG4 0x008
293#define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
294#define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
295 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
296#define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
297 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
298#define RXTX_REG5 0x00a
299#define RXTX_REG5_TX_CN1_SET(dst, src) \
300 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
301#define RXTX_REG5_TX_CP1_SET(dst, src) \
302 (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
303#define RXTX_REG5_TX_CN2_SET(dst, src) \
304 (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
305#define RXTX_REG6 0x00c
306#define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
307 (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
308#define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
309 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
310#define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
311 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
312#define RXTX_REG6_TX_IDLE_SET(dst, src) \
313 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
314#define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
315 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
316#define RXTX_REG7 0x00e
317#define RXTX_REG7_RESETB_RXD_MASK 0x00000100
318#define RXTX_REG7_RESETB_RXA_MASK 0x00000080
319#define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
320 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321#define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
322 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
323#define RXTX_REG8 0x010
324#define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
325 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
326#define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
327 (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
328#define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
329 (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
330#define RXTX_REG8_SD_VREF_SET(dst, src) \
331 (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
332#define RXTX_REG8_SD_DISABLE_SET(dst, src) \
333 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
334#define RXTX_REG7 0x00e
335#define RXTX_REG7_RESETB_RXD_SET(dst, src) \
336 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
337#define RXTX_REG7_RESETB_RXA_SET(dst, src) \
338 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
339#define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
340#define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
341 (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
342#define RXTX_REG11 0x016
343#define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
344 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
345#define RXTX_REG12 0x018
346#define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
347 (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
348#define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
349 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
350#define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
351#define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
352 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
353#define RXTX_REG13 0x01a
354#define RXTX_REG14 0x01c
355#define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
356 (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
357#define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
358 (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
359#define RXTX_REG26 0x034
360#define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
361 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
362#define RXTX_REG26_BLWC_ENA_SET(dst, src) \
363 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
364#define RXTX_REG21 0x02a
365#define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
366#define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
367#define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
368#define RXTX_REG22 0x02c
369#define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
370#define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
371#define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
372#define RXTX_REG23 0x02e
373#define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
374#define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
375#define RXTX_REG24 0x030
376#define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377#define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378#define RXTX_REG27 0x036
379#define RXTX_REG28 0x038
380#define RXTX_REG31 0x03e
381#define RXTX_REG38 0x04c
382#define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
383 (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
384#define RXTX_REG39 0x04e
385#define RXTX_REG40 0x050
386#define RXTX_REG41 0x052
387#define RXTX_REG42 0x054
388#define RXTX_REG43 0x056
389#define RXTX_REG44 0x058
390#define RXTX_REG45 0x05a
391#define RXTX_REG46 0x05c
392#define RXTX_REG47 0x05e
393#define RXTX_REG48 0x060
394#define RXTX_REG49 0x062
395#define RXTX_REG50 0x064
396#define RXTX_REG51 0x066
397#define RXTX_REG52 0x068
398#define RXTX_REG53 0x06a
399#define RXTX_REG54 0x06c
400#define RXTX_REG55 0x06e
401#define RXTX_REG61 0x07a
402#define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
403 (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
404#define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
405 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
406#define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
407 (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
408#define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
409 (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
410#define RXTX_REG62 0x07c
411#define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
412 (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
413#define RXTX_REG81 0x0a2
414#define RXTX_REG89_MU_TH7_SET(dst, src) \
415 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
416#define RXTX_REG89_MU_TH8_SET(dst, src) \
417 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
418#define RXTX_REG89_MU_TH9_SET(dst, src) \
419 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
420#define RXTX_REG96 0x0c0
421#define RXTX_REG96_MU_FREQ1_SET(dst, src) \
422 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
423#define RXTX_REG96_MU_FREQ2_SET(dst, src) \
424 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
425#define RXTX_REG96_MU_FREQ3_SET(dst, src) \
426 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
427#define RXTX_REG99 0x0c6
428#define RXTX_REG99_MU_PHASE1_SET(dst, src) \
429 (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
430#define RXTX_REG99_MU_PHASE2_SET(dst, src) \
431 (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
432#define RXTX_REG99_MU_PHASE3_SET(dst, src) \
433 (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
434#define RXTX_REG102 0x0cc
435#define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
436 (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
437#define RXTX_REG114 0x0e4
438#define RXTX_REG121 0x0f2
439#define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
440#define RXTX_REG125 0x0fa
441#define RXTX_REG125_PQ_REG_SET(dst, src) \
442 (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
443#define RXTX_REG125_SIGN_PQ_SET(dst, src) \
444 (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
445#define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
446 (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
447#define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
448 (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
449#define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
450 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
451#define RXTX_REG127 0x0fe
452#define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
453#define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
454#define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
455 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
456#define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
457 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
458#define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
459 (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
460#define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
461 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
462#define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
463 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
464#define RXTX_REG128 0x100
465#define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
466 (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
467#define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
468 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
469#define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
470 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
471#define RXTX_REG129 0x102
472#define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
473 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
474#define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
475 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
476#define RXTX_REG130 0x104
477#define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
478 (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
479#define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
480 (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
481#define RXTX_REG145 0x122
482#define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
483 (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
484#define RXTX_REG145_RXES_ENA_SET(dst, src) \
485 (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
486#define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
487 (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
488#define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
489 (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
490#define RXTX_REG147 0x126
491#define RXTX_REG148 0x128
492
493/* Clock macro type */
494enum cmu_type_t {
495 REF_CMU = 0, /* Clock macro is the internal reference clock */
496 PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
497};
498
499enum mux_type_t {
500 MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
501 MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
502};
503
504enum clk_type_t {
505 CLK_EXT_DIFF = 0, /* External differential */
506 CLK_INT_DIFF = 1, /* Internal differential */
507 CLK_INT_SING = 2, /* Internal single ended */
508};
509
510enum xgene_phy_mode {
511 MODE_SATA = 0, /* List them for simple reference */
512 MODE_SGMII = 1,
513 MODE_PCIE = 2,
514 MODE_USB = 3,
515 MODE_XFI = 4,
516 MODE_MAX
517};
518
519struct xgene_sata_override_param {
520 u32 speed[MAX_LANE]; /* Index for override parameter per lane */
521 u32 txspeed[3]; /* Tx speed */
522 u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
523 u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
524 u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
525 u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
526 u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
527 u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
528 u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
529};
530
531struct xgene_phy_ctx {
532 struct device *dev;
533 struct phy *phy;
534 enum xgene_phy_mode mode; /* Mode of operation */
535 enum clk_type_t clk_type; /* Input clock selection */
536 void __iomem *sds_base; /* PHY CSR base addr */
537 struct clk *clk; /* Optional clock */
538
539 /* Override Serdes parameters */
540 struct xgene_sata_override_param sata_param;
541};
542
543/*
544 * For chip earlier than A3 version, enable this flag.
545 * To enable, pass boot argument phy_xgene.preA3Chip=1
546 */
547static int preA3Chip;
548MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
549module_param_named(preA3Chip, preA3Chip, int, 0444);
550
551static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
552 u32 indirect_data_reg, u32 addr, u32 data)
553{
554 unsigned long deadline = jiffies + HZ;
555 u32 val;
556 u32 cmd;
557
558 cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
559 cmd = CFG_IND_ADDR_SET(cmd, addr);
560 writel(val: data, addr: csr_base + indirect_data_reg);
561 readl(addr: csr_base + indirect_data_reg); /* Force a barrier */
562 writel(val: cmd, addr: csr_base + indirect_cmd_reg);
563 readl(addr: csr_base + indirect_cmd_reg); /* Force a barrier */
564 do {
565 val = readl(addr: csr_base + indirect_cmd_reg);
566 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
567 time_before(jiffies, deadline));
568 if (!(val & CFG_IND_CMD_DONE_MASK))
569 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
570 csr_base + indirect_cmd_reg, addr, data);
571}
572
573static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
574 u32 indirect_data_reg, u32 addr, u32 *data)
575{
576 unsigned long deadline = jiffies + HZ;
577 u32 val;
578 u32 cmd;
579
580 cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
581 cmd = CFG_IND_ADDR_SET(cmd, addr);
582 writel(val: cmd, addr: csr_base + indirect_cmd_reg);
583 readl(addr: csr_base + indirect_cmd_reg); /* Force a barrier */
584 do {
585 val = readl(addr: csr_base + indirect_cmd_reg);
586 } while (!(val & CFG_IND_CMD_DONE_MASK) &&
587 time_before(jiffies, deadline));
588 *data = readl(addr: csr_base + indirect_data_reg);
589 if (!(val & CFG_IND_CMD_DONE_MASK))
590 pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
591 csr_base + indirect_cmd_reg, addr, *data);
592}
593
594static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
595 u32 reg, u32 data)
596{
597 void __iomem *sds_base = ctx->sds_base;
598 u32 val;
599
600 if (cmu_type == REF_CMU)
601 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
602 else
603 reg += SERDES_PLL_INDIRECT_OFFSET;
604 sds_wr(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG,
605 SATA_ENET_SDS_IND_WDATA_REG, addr: reg, data);
606 sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG,
607 SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data: &val);
608 pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
609}
610
611static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
612 u32 reg, u32 *data)
613{
614 void __iomem *sds_base = ctx->sds_base;
615
616 if (cmu_type == REF_CMU)
617 reg += SERDES_PLL_REF_INDIRECT_OFFSET;
618 else
619 reg += SERDES_PLL_INDIRECT_OFFSET;
620 sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG,
621 SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data);
622 pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
623}
624
625static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
626 u32 reg, u32 bits)
627{
628 u32 val;
629
630 cmu_rd(ctx, cmu_type, reg, data: &val);
631 val |= bits;
632 cmu_wr(ctx, cmu_type, reg, data: val);
633 cmu_rd(ctx, cmu_type, reg, data: &val);
634 val &= ~bits;
635 cmu_wr(ctx, cmu_type, reg, data: val);
636}
637
638static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
639 u32 reg, u32 bits)
640{
641 u32 val;
642
643 cmu_rd(ctx, cmu_type, reg, data: &val);
644 val &= ~bits;
645 cmu_wr(ctx, cmu_type, reg, data: val);
646}
647
648static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
649 u32 reg, u32 bits)
650{
651 u32 val;
652
653 cmu_rd(ctx, cmu_type, reg, data: &val);
654 val |= bits;
655 cmu_wr(ctx, cmu_type, reg, data: val);
656}
657
658static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
659{
660 void __iomem *sds_base = ctx->sds_base;
661 u32 val;
662
663 reg += SERDES_INDIRECT_OFFSET;
664 reg += lane * SERDES_LANE_STRIDE;
665 sds_wr(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG,
666 SATA_ENET_SDS_IND_WDATA_REG, addr: reg, data);
667 sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG,
668 SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data: &val);
669 pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
670 val);
671}
672
673static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
674{
675 void __iomem *sds_base = ctx->sds_base;
676
677 reg += SERDES_INDIRECT_OFFSET;
678 reg += lane * SERDES_LANE_STRIDE;
679 sds_rd(csr_base: sds_base, SATA_ENET_SDS_IND_CMD_REG,
680 SATA_ENET_SDS_IND_RDATA_REG, addr: reg, data);
681 pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
682}
683
684static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
685 u32 bits)
686{
687 u32 val;
688
689 serdes_rd(ctx, lane, reg, data: &val);
690 val &= ~bits;
691 serdes_wr(ctx, lane, reg, data: val);
692}
693
694static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
695 u32 bits)
696{
697 u32 val;
698
699 serdes_rd(ctx, lane, reg, data: &val);
700 val |= bits;
701 serdes_wr(ctx, lane, reg, data: val);
702}
703
704static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
705 enum cmu_type_t cmu_type,
706 enum clk_type_t clk_type)
707{
708 u32 val;
709
710 /* Set the reset sequence delay for TX ready assertion */
711 cmu_rd(ctx, cmu_type, CMU_REG12, data: &val);
712 val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
713 cmu_wr(ctx, cmu_type, CMU_REG12, data: val);
714 /* Set the programmable stage delays between various enable stages */
715 cmu_wr(ctx, cmu_type, CMU_REG13, data: 0x0222);
716 cmu_wr(ctx, cmu_type, CMU_REG14, data: 0x2225);
717
718 /* Configure clock type */
719 if (clk_type == CLK_EXT_DIFF) {
720 /* Select external clock mux */
721 cmu_rd(ctx, cmu_type, CMU_REG0, data: &val);
722 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
723 cmu_wr(ctx, cmu_type, CMU_REG0, data: val);
724 /* Select CMOS as reference clock */
725 cmu_rd(ctx, cmu_type, CMU_REG1, data: &val);
726 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
727 cmu_wr(ctx, cmu_type, CMU_REG1, data: val);
728 dev_dbg(ctx->dev, "Set external reference clock\n");
729 } else if (clk_type == CLK_INT_DIFF) {
730 /* Select internal clock mux */
731 cmu_rd(ctx, cmu_type, CMU_REG0, data: &val);
732 val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
733 cmu_wr(ctx, cmu_type, CMU_REG0, data: val);
734 /* Select CMOS as reference clock */
735 cmu_rd(ctx, cmu_type, CMU_REG1, data: &val);
736 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
737 cmu_wr(ctx, cmu_type, CMU_REG1, data: val);
738 dev_dbg(ctx->dev, "Set internal reference clock\n");
739 } else if (clk_type == CLK_INT_SING) {
740 /*
741 * NOTE: This clock type is NOT support for controller
742 * whose internal clock shared in the PCIe controller
743 *
744 * Select internal clock mux
745 */
746 cmu_rd(ctx, cmu_type, CMU_REG1, data: &val);
747 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
748 cmu_wr(ctx, cmu_type, CMU_REG1, data: val);
749 /* Select CML as reference clock */
750 cmu_rd(ctx, cmu_type, CMU_REG1, data: &val);
751 val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
752 cmu_wr(ctx, cmu_type, CMU_REG1, data: val);
753 dev_dbg(ctx->dev,
754 "Set internal single ended reference clock\n");
755 }
756}
757
758static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
759 enum cmu_type_t cmu_type,
760 enum clk_type_t clk_type)
761{
762 u32 val;
763 int ref_100MHz;
764
765 if (cmu_type == REF_CMU) {
766 /* Set VCO calibration voltage threshold */
767 cmu_rd(ctx, cmu_type, CMU_REG34, data: &val);
768 val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
769 val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
770 val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
771 val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
772 cmu_wr(ctx, cmu_type, CMU_REG34, data: val);
773 }
774
775 /* Set the VCO calibration counter */
776 cmu_rd(ctx, cmu_type, CMU_REG0, data: &val);
777 if (cmu_type == REF_CMU || preA3Chip)
778 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
779 else
780 val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
781 cmu_wr(ctx, cmu_type, CMU_REG0, data: val);
782
783 /* Configure PLL for calibration */
784 cmu_rd(ctx, cmu_type, CMU_REG1, data: &val);
785 val = CMU_REG1_PLL_CP_SET(val, 0x1);
786 if (cmu_type == REF_CMU || preA3Chip)
787 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
788 else
789 val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
790 if (cmu_type == REF_CMU)
791 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
792 else
793 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
794 cmu_wr(ctx, cmu_type, CMU_REG1, data: val);
795
796 if (cmu_type != REF_CMU)
797 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
798
799 /* Configure the PLL for either 100MHz or 50MHz */
800 cmu_rd(ctx, cmu_type, CMU_REG2, data: &val);
801 if (cmu_type == REF_CMU) {
802 val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
803 ref_100MHz = 1;
804 } else {
805 val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
806 if (clk_type == CLK_EXT_DIFF)
807 ref_100MHz = 0;
808 else
809 ref_100MHz = 1;
810 }
811 if (ref_100MHz) {
812 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
813 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
814 } else {
815 val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
816 val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
817 }
818 cmu_wr(ctx, cmu_type, CMU_REG2, data: val);
819
820 /* Configure the VCO */
821 cmu_rd(ctx, cmu_type, CMU_REG3, data: &val);
822 if (cmu_type == REF_CMU) {
823 val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
824 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
825 } else {
826 val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
827 if (preA3Chip)
828 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
829 else
830 val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
831 val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
832 }
833 cmu_wr(ctx, cmu_type, CMU_REG3, data: val);
834
835 /* Disable force PLL lock */
836 cmu_rd(ctx, cmu_type, CMU_REG26, data: &val);
837 val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
838 cmu_wr(ctx, cmu_type, CMU_REG26, data: val);
839
840 /* Setup PLL loop filter */
841 cmu_rd(ctx, cmu_type, CMU_REG5, data: &val);
842 val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
843 val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
844 if (cmu_type == REF_CMU || !preA3Chip)
845 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
846 else
847 val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
848 cmu_wr(ctx, cmu_type, CMU_REG5, data: val);
849
850 /* Enable or disable manual calibration */
851 cmu_rd(ctx, cmu_type, CMU_REG6, data: &val);
852 val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
853 val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
854 cmu_wr(ctx, cmu_type, CMU_REG6, data: val);
855
856 /* Configure lane for 20-bits */
857 if (cmu_type == PHY_CMU) {
858 cmu_rd(ctx, cmu_type, CMU_REG9, data: &val);
859 val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
860 CMU_REG9_WORD_LEN_20BIT);
861 val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
862 CMU_REG9_WORD_LEN_20BIT);
863 val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
864 if (!preA3Chip) {
865 val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
866 val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
867 }
868 cmu_wr(ctx, cmu_type, CMU_REG9, data: val);
869
870 if (!preA3Chip) {
871 cmu_rd(ctx, cmu_type, CMU_REG10, data: &val);
872 val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
873 cmu_wr(ctx, cmu_type, CMU_REG10, data: val);
874 }
875 }
876
877 cmu_rd(ctx, cmu_type, CMU_REG16, data: &val);
878 val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
879 val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
880 if (cmu_type == REF_CMU || preA3Chip)
881 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
882 else
883 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
884 cmu_wr(ctx, cmu_type, CMU_REG16, data: val);
885
886 /* Configure for SATA */
887 cmu_rd(ctx, cmu_type, CMU_REG30, data: &val);
888 val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
889 val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
890 cmu_wr(ctx, cmu_type, CMU_REG30, data: val);
891
892 /* Disable state machine bypass */
893 cmu_wr(ctx, cmu_type, CMU_REG31, data: 0xF);
894
895 cmu_rd(ctx, cmu_type, CMU_REG32, data: &val);
896 val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
897 if (cmu_type == REF_CMU || preA3Chip)
898 val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
899 else
900 val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
901 cmu_wr(ctx, cmu_type, CMU_REG32, data: val);
902
903 /* Set VCO calibration threshold */
904 if (cmu_type != REF_CMU && preA3Chip)
905 cmu_wr(ctx, cmu_type, CMU_REG34, data: 0x8d27);
906 else
907 cmu_wr(ctx, cmu_type, CMU_REG34, data: 0x873c);
908
909 /* Set CTLE Override and override waiting from state machine */
910 cmu_wr(ctx, cmu_type, CMU_REG37, data: 0xF00F);
911}
912
913static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
914 enum cmu_type_t cmu_type)
915{
916 u32 val;
917
918 /* Set SSC modulation value */
919 cmu_rd(ctx, cmu_type, CMU_REG35, data: &val);
920 val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
921 cmu_wr(ctx, cmu_type, CMU_REG35, data: val);
922
923 /* Enable SSC, set vertical step and DSM value */
924 cmu_rd(ctx, cmu_type, CMU_REG36, data: &val);
925 val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
926 val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
927 val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
928 cmu_wr(ctx, cmu_type, CMU_REG36, data: val);
929
930 /* Reset the PLL */
931 cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
932 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
933
934 /* Force VCO calibration to restart */
935 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
936 CMU_REG32_FORCE_VCOCAL_START_MASK);
937}
938
939static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
940{
941 u32 val;
942 u32 reg;
943 int i;
944 int lane;
945
946 for (lane = 0; lane < MAX_LANE; lane++) {
947 serdes_wr(ctx, lane, RXTX_REG147, data: 0x6);
948
949 /* Set boost control for quarter, half, and full rate */
950 serdes_rd(ctx, lane, RXTX_REG0, data: &val);
951 val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
952 val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
953 val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
954 serdes_wr(ctx, lane, RXTX_REG0, data: val);
955
956 /* Set boost control value */
957 serdes_rd(ctx, lane, RXTX_REG1, data: &val);
958 val = RXTX_REG1_RXACVCM_SET(val, 0x7);
959 val = RXTX_REG1_CTLE_EQ_SET(val,
960 ctx->sata_param.txboostgain[lane * 3 +
961 ctx->sata_param.speed[lane]]);
962 serdes_wr(ctx, lane, RXTX_REG1, data: val);
963
964 /* Latch VTT value based on the termination to ground and
965 * enable TX FIFO
966 */
967 serdes_rd(ctx, lane, RXTX_REG2, data: &val);
968 val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
969 val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
970 val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
971 serdes_wr(ctx, lane, RXTX_REG2, data: val);
972
973 /* Configure Tx for 20-bits */
974 serdes_rd(ctx, lane, RXTX_REG4, data: &val);
975 val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
976 serdes_wr(ctx, lane, RXTX_REG4, data: val);
977
978 if (!preA3Chip) {
979 serdes_rd(ctx, lane, RXTX_REG1, data: &val);
980 val = RXTX_REG1_RXVREG1_SET(val, 0x2);
981 val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
982 serdes_wr(ctx, lane, RXTX_REG1, data: val);
983 }
984
985 /* Set pre-emphasis first 1 and 2, and post-emphasis values */
986 serdes_rd(ctx, lane, RXTX_REG5, data: &val);
987 val = RXTX_REG5_TX_CN1_SET(val,
988 ctx->sata_param.txprecursor_cn1[lane * 3 +
989 ctx->sata_param.speed[lane]]);
990 val = RXTX_REG5_TX_CP1_SET(val,
991 ctx->sata_param.txpostcursor_cp1[lane * 3 +
992 ctx->sata_param.speed[lane]]);
993 val = RXTX_REG5_TX_CN2_SET(val,
994 ctx->sata_param.txprecursor_cn2[lane * 3 +
995 ctx->sata_param.speed[lane]]);
996 serdes_wr(ctx, lane, RXTX_REG5, data: val);
997
998 /* Set TX amplitude value */
999 serdes_rd(ctx, lane, RXTX_REG6, data: &val);
1000 val = RXTX_REG6_TXAMP_CNTL_SET(val,
1001 ctx->sata_param.txamplitude[lane * 3 +
1002 ctx->sata_param.speed[lane]]);
1003 val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1004 val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1005 val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1006 val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1007 serdes_wr(ctx, lane, RXTX_REG6, data: val);
1008
1009 /* Configure Rx for 20-bits */
1010 serdes_rd(ctx, lane, RXTX_REG7, data: &val);
1011 val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1012 val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1013 serdes_wr(ctx, lane, RXTX_REG7, data: val);
1014
1015 /* Set CDR and LOS values and enable Rx SSC */
1016 serdes_rd(ctx, lane, RXTX_REG8, data: &val);
1017 val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1018 val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1019 val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1020 val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1021 val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1022 serdes_wr(ctx, lane, RXTX_REG8, data: val);
1023
1024 /* Set phase adjust upper/lower limits */
1025 serdes_rd(ctx, lane, RXTX_REG11, data: &val);
1026 val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1027 serdes_wr(ctx, lane, RXTX_REG11, data: val);
1028
1029 /* Enable Latch Off; disable SUMOS and Tx termination */
1030 serdes_rd(ctx, lane, RXTX_REG12, data: &val);
1031 val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1032 val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1033 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1034 serdes_wr(ctx, lane, RXTX_REG12, data: val);
1035
1036 /* Set period error latch to 512T and enable BWL */
1037 serdes_rd(ctx, lane, RXTX_REG26, data: &val);
1038 val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1039 val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1040 serdes_wr(ctx, lane, RXTX_REG26, data: val);
1041
1042 serdes_wr(ctx, lane, RXTX_REG28, data: 0x0);
1043
1044 /* Set DFE loop preset value */
1045 serdes_wr(ctx, lane, RXTX_REG31, data: 0x0);
1046
1047 /* Set Eye Monitor counter width to 12-bit */
1048 serdes_rd(ctx, lane, RXTX_REG61, data: &val);
1049 val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1050 val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1051 val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1052 serdes_wr(ctx, lane, RXTX_REG61, data: val);
1053
1054 serdes_rd(ctx, lane, RXTX_REG62, data: &val);
1055 val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1056 serdes_wr(ctx, lane, RXTX_REG62, data: val);
1057
1058 /* Set BW select tap X for DFE loop */
1059 for (i = 0; i < 9; i++) {
1060 reg = RXTX_REG81 + i * 2;
1061 serdes_rd(ctx, lane, reg, data: &val);
1062 val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1063 val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1064 val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1065 serdes_wr(ctx, lane, reg, data: val);
1066 }
1067
1068 /* Set BW select tap X for frequency adjust loop */
1069 for (i = 0; i < 3; i++) {
1070 reg = RXTX_REG96 + i * 2;
1071 serdes_rd(ctx, lane, reg, data: &val);
1072 val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1073 val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1074 val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1075 serdes_wr(ctx, lane, reg, data: val);
1076 }
1077
1078 /* Set BW select tap X for phase adjust loop */
1079 for (i = 0; i < 3; i++) {
1080 reg = RXTX_REG99 + i * 2;
1081 serdes_rd(ctx, lane, reg, data: &val);
1082 val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1083 val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1084 val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1085 serdes_wr(ctx, lane, reg, data: val);
1086 }
1087
1088 serdes_rd(ctx, lane, RXTX_REG102, data: &val);
1089 val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1090 serdes_wr(ctx, lane, RXTX_REG102, data: val);
1091
1092 serdes_wr(ctx, lane, RXTX_REG114, data: 0xffe0);
1093
1094 serdes_rd(ctx, lane, RXTX_REG125, data: &val);
1095 val = RXTX_REG125_SIGN_PQ_SET(val,
1096 ctx->sata_param.txeyedirection[lane * 3 +
1097 ctx->sata_param.speed[lane]]);
1098 val = RXTX_REG125_PQ_REG_SET(val,
1099 ctx->sata_param.txeyetuning[lane * 3 +
1100 ctx->sata_param.speed[lane]]);
1101 val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1102 serdes_wr(ctx, lane, RXTX_REG125, data: val);
1103
1104 serdes_rd(ctx, lane, RXTX_REG127, data: &val);
1105 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1106 serdes_wr(ctx, lane, RXTX_REG127, data: val);
1107
1108 serdes_rd(ctx, lane, RXTX_REG128, data: &val);
1109 val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1110 serdes_wr(ctx, lane, RXTX_REG128, data: val);
1111
1112 serdes_rd(ctx, lane, RXTX_REG145, data: &val);
1113 val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1114 val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1115 if (preA3Chip) {
1116 val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1117 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1118 } else {
1119 val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1120 val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1121 }
1122 serdes_wr(ctx, lane, RXTX_REG145, data: val);
1123
1124 /*
1125 * Set Rx LOS filter clock rate, sample rate, and threshold
1126 * windows
1127 */
1128 for (i = 0; i < 4; i++) {
1129 reg = RXTX_REG148 + i * 2;
1130 serdes_wr(ctx, lane, reg, data: 0xFFFF);
1131 }
1132 }
1133}
1134
1135static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1136 enum cmu_type_t cmu_type,
1137 enum clk_type_t clk_type)
1138{
1139 void __iomem *csr_serdes = ctx->sds_base;
1140 int loop;
1141 u32 val;
1142
1143 /* Release PHY main reset */
1144 writel(val: 0xdf, addr: csr_serdes + SATA_ENET_SDS_RST_CTL);
1145 readl(addr: csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1146
1147 if (cmu_type != REF_CMU) {
1148 cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1149 /*
1150 * As per PHY design spec, the PLL reset requires a minimum
1151 * of 800us.
1152 */
1153 usleep_range(min: 800, max: 1000);
1154
1155 cmu_rd(ctx, cmu_type, CMU_REG1, data: &val);
1156 val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1157 cmu_wr(ctx, cmu_type, CMU_REG1, data: val);
1158 /*
1159 * As per PHY design spec, the PLL auto calibration requires
1160 * a minimum of 800us.
1161 */
1162 usleep_range(min: 800, max: 1000);
1163
1164 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1165 CMU_REG32_FORCE_VCOCAL_START_MASK);
1166 /*
1167 * As per PHY design spec, the PLL requires a minimum of
1168 * 800us to settle.
1169 */
1170 usleep_range(min: 800, max: 1000);
1171 }
1172
1173 if (!preA3Chip)
1174 goto skip_manual_cal;
1175
1176 /*
1177 * Configure the termination resister calibration
1178 * The serial receive pins, RXP/RXN, have TERMination resistor
1179 * that is required to be calibrated.
1180 */
1181 cmu_rd(ctx, cmu_type, CMU_REG17, data: &val);
1182 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1183 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1184 cmu_wr(ctx, cmu_type, CMU_REG17, data: val);
1185 cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1186 CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1187 /*
1188 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1189 * resistors that are required to the calibrated.
1190 * Configure the pull DOWN calibration
1191 */
1192 cmu_rd(ctx, cmu_type, CMU_REG17, data: &val);
1193 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1194 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1195 cmu_wr(ctx, cmu_type, CMU_REG17, data: val);
1196 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1197 CMU_REG16_PVT_DN_MAN_ENA_MASK);
1198 /* Configure the pull UP calibration */
1199 cmu_rd(ctx, cmu_type, CMU_REG17, data: &val);
1200 val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1201 val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1202 cmu_wr(ctx, cmu_type, CMU_REG17, data: val);
1203 cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1204 CMU_REG16_PVT_UP_MAN_ENA_MASK);
1205
1206skip_manual_cal:
1207 /* Poll the PLL calibration completion status for at least 1 ms */
1208 loop = 100;
1209 do {
1210 cmu_rd(ctx, cmu_type, CMU_REG7, data: &val);
1211 if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1212 break;
1213 /*
1214 * As per PHY design spec, PLL calibration status requires
1215 * a minimum of 10us to be updated.
1216 */
1217 usleep_range(min: 10, max: 100);
1218 } while (--loop > 0);
1219
1220 cmu_rd(ctx, cmu_type, CMU_REG7, data: &val);
1221 dev_dbg(ctx->dev, "PLL calibration %s\n",
1222 CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1223 if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1224 dev_err(ctx->dev,
1225 "PLL calibration failed due to VCO failure\n");
1226 return -1;
1227 }
1228 dev_dbg(ctx->dev, "PLL calibration successful\n");
1229
1230 cmu_rd(ctx, cmu_type, CMU_REG15, data: &val);
1231 dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1232 return 0;
1233}
1234
1235static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1236 enum cmu_type_t cmu_type,
1237 enum clk_type_t clk_type)
1238{
1239 u32 val;
1240
1241 dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1242 if (cmu_type == PHY_CMU) {
1243 cmu_rd(ctx, cmu_type, CMU_REG16, data: &val);
1244 val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1245 cmu_wr(ctx, cmu_type, CMU_REG16, data: val);
1246 }
1247
1248 cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1249 cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1250 CMU_REG32_FORCE_VCOCAL_START_MASK);
1251}
1252
1253static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1254 enum clk_type_t clk_type, int ssc_enable)
1255{
1256 void __iomem *sds_base = ctx->sds_base;
1257 u32 val;
1258 int i;
1259
1260 /* Configure the PHY for operation */
1261 dev_dbg(ctx->dev, "Reset PHY\n");
1262 /* Place PHY into reset */
1263 writel(val: 0x0, addr: sds_base + SATA_ENET_SDS_RST_CTL);
1264 val = readl(addr: sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1265 /* Release PHY lane from reset (active high) */
1266 writel(val: 0x20, addr: sds_base + SATA_ENET_SDS_RST_CTL);
1267 readl(addr: sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1268 /* Release all PHY module out of reset except PHY main reset */
1269 writel(val: 0xde, addr: sds_base + SATA_ENET_SDS_RST_CTL);
1270 readl(addr: sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1271
1272 /* Set the operation speed */
1273 val = readl(addr: sds_base + SATA_ENET_SDS_CTL1);
1274 val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1275 ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1276 writel(val, addr: sds_base + SATA_ENET_SDS_CTL1);
1277
1278 dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1279 val = readl(addr: sds_base + SATA_ENET_SDS_CTL0);
1280 val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1281 writel(val, addr: sds_base + SATA_ENET_SDS_CTL0);
1282
1283 /* Configure the clock macro unit (CMU) clock type */
1284 xgene_phy_cfg_cmu_clk_type(ctx, cmu_type: PHY_CMU, clk_type);
1285
1286 /* Configure the clock macro */
1287 xgene_phy_sata_cfg_cmu_core(ctx, cmu_type: PHY_CMU, clk_type);
1288
1289 /* Enable SSC if enabled */
1290 if (ssc_enable)
1291 xgene_phy_ssc_enable(ctx, cmu_type: PHY_CMU);
1292
1293 /* Configure PHY lanes */
1294 xgene_phy_sata_cfg_lanes(ctx);
1295
1296 /* Set Rx/Tx 20-bit */
1297 val = readl(addr: sds_base + SATA_ENET_SDS_PCS_CTL0);
1298 val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1299 val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1300 writel(val, addr: sds_base + SATA_ENET_SDS_PCS_CTL0);
1301
1302 /* Start PLL calibration and try for three times */
1303 i = 10;
1304 do {
1305 if (!xgene_phy_cal_rdy_chk(ctx, cmu_type: PHY_CMU, clk_type))
1306 break;
1307 /* If failed, toggle the VCO power signal and start again */
1308 xgene_phy_pdwn_force_vco(ctx, cmu_type: PHY_CMU, clk_type);
1309 } while (--i > 0);
1310 /* Even on failure, allow to continue any way */
1311 if (i <= 0)
1312 dev_err(ctx->dev, "PLL calibration failed\n");
1313
1314 return 0;
1315}
1316
1317static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1318 enum clk_type_t clk_type,
1319 int ssc_enable)
1320{
1321 int rc;
1322
1323 dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1324
1325 if (ctx->mode == MODE_SATA) {
1326 rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1327 if (rc)
1328 return rc;
1329 } else {
1330 dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1331 ctx->mode);
1332 return -ENODEV;
1333 }
1334
1335 return 0;
1336}
1337
1338/*
1339 * Receiver Offset Calibration:
1340 *
1341 * Calibrate the receiver signal path offset in two steps - summar and
1342 * latch calibrations
1343 */
1344static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1345{
1346 int i;
1347 static const struct {
1348 u32 reg;
1349 u32 val;
1350 } serdes_reg[] = {
1351 {RXTX_REG38, 0x0},
1352 {RXTX_REG39, 0xff00},
1353 {RXTX_REG40, 0xffff},
1354 {RXTX_REG41, 0xffff},
1355 {RXTX_REG42, 0xffff},
1356 {RXTX_REG43, 0xffff},
1357 {RXTX_REG44, 0xffff},
1358 {RXTX_REG45, 0xffff},
1359 {RXTX_REG46, 0xffff},
1360 {RXTX_REG47, 0xfffc},
1361 {RXTX_REG48, 0x0},
1362 {RXTX_REG49, 0x0},
1363 {RXTX_REG50, 0x0},
1364 {RXTX_REG51, 0x0},
1365 {RXTX_REG52, 0x0},
1366 {RXTX_REG53, 0x0},
1367 {RXTX_REG54, 0x0},
1368 {RXTX_REG55, 0x0},
1369 };
1370
1371 /* Start SUMMER calibration */
1372 serdes_setbits(ctx, lane, RXTX_REG127,
1373 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1374 /*
1375 * As per PHY design spec, the Summer calibration requires a minimum
1376 * of 100us to complete.
1377 */
1378 usleep_range(min: 100, max: 500);
1379 serdes_clrbits(ctx, lane, RXTX_REG127,
1380 RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1381 /*
1382 * As per PHY design spec, the auto calibration requires a minimum
1383 * of 100us to complete.
1384 */
1385 usleep_range(min: 100, max: 500);
1386
1387 /* Start latch calibration */
1388 serdes_setbits(ctx, lane, RXTX_REG127,
1389 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1390 /*
1391 * As per PHY design spec, the latch calibration requires a minimum
1392 * of 100us to complete.
1393 */
1394 usleep_range(min: 100, max: 500);
1395 serdes_clrbits(ctx, lane, RXTX_REG127,
1396 RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1397
1398 /* Configure the PHY lane for calibration */
1399 serdes_wr(ctx, lane, RXTX_REG28, data: 0x7);
1400 serdes_wr(ctx, lane, RXTX_REG31, data: 0x7e00);
1401 serdes_clrbits(ctx, lane, RXTX_REG4,
1402 RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1403 serdes_clrbits(ctx, lane, RXTX_REG7,
1404 RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1405 for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1406 serdes_wr(ctx, lane, reg: serdes_reg[i].reg,
1407 data: serdes_reg[i].val);
1408}
1409
1410static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1411{
1412 /* Reset digital Rx */
1413 serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1414 /* As per PHY design spec, the reset requires a minimum of 100us. */
1415 usleep_range(min: 100, max: 150);
1416 serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1417}
1418
1419static int xgene_phy_get_avg(int accum, int samples)
1420{
1421 return (accum + (samples / 2)) / samples;
1422}
1423
1424static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1425{
1426 int max_loop = 10;
1427 int avg_loop = 0;
1428 int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1429 int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1430 int sum_cal = 0;
1431 int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1432 int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1433 int sum_cal_itr;
1434 int fail_even;
1435 int fail_odd;
1436 u32 val;
1437
1438 dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1439 lane);
1440
1441 /* Enable RX Hi-Z termination */
1442 serdes_setbits(ctx, lane, RXTX_REG12,
1443 RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1444 /* Turn off DFE */
1445 serdes_wr(ctx, lane, RXTX_REG28, data: 0x0000);
1446 /* DFE Presets to zero */
1447 serdes_wr(ctx, lane, RXTX_REG31, data: 0x0000);
1448
1449 /*
1450 * Receiver Offset Calibration:
1451 * Calibrate the receiver signal path offset in two steps - summar
1452 * and latch calibration.
1453 * Runs the "Receiver Offset Calibration multiple times to determine
1454 * the average value to use.
1455 */
1456 while (avg_loop < max_loop) {
1457 /* Start the calibration */
1458 xgene_phy_force_lat_summer_cal(ctx, lane);
1459
1460 serdes_rd(ctx, lane, RXTX_REG21, data: &val);
1461 lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1462 lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1463 fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1464
1465 serdes_rd(ctx, lane, RXTX_REG22, data: &val);
1466 lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1467 lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1468 fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1469
1470 serdes_rd(ctx, lane, RXTX_REG23, data: &val);
1471 lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1472 lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1473
1474 serdes_rd(ctx, lane, RXTX_REG24, data: &val);
1475 lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1476 lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1477
1478 serdes_rd(ctx, lane, RXTX_REG121, data: &val);
1479 sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1480
1481 /* Check for failure. If passed, sum them for averaging */
1482 if ((fail_even == 0 || fail_even == 1) &&
1483 (fail_odd == 0 || fail_odd == 1)) {
1484 lat_do += lat_do_itr;
1485 lat_xo += lat_xo_itr;
1486 lat_eo += lat_eo_itr;
1487 lat_so += lat_so_itr;
1488 lat_de += lat_de_itr;
1489 lat_xe += lat_xe_itr;
1490 lat_ee += lat_ee_itr;
1491 lat_se += lat_se_itr;
1492 sum_cal += sum_cal_itr;
1493
1494 dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1495 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1496 lat_do_itr, lat_xo_itr, lat_eo_itr,
1497 lat_so_itr);
1498 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1499 lat_de_itr, lat_xe_itr, lat_ee_itr,
1500 lat_se_itr);
1501 dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1502 ++avg_loop;
1503 } else {
1504 dev_err(ctx->dev,
1505 "Receiver calibration failed at %d loop\n",
1506 avg_loop);
1507 }
1508 xgene_phy_reset_rxd(ctx, lane);
1509 }
1510
1511 /* Update latch manual calibration with average value */
1512 serdes_rd(ctx, lane, RXTX_REG127, data: &val);
1513 val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1514 xgene_phy_get_avg(lat_do, max_loop));
1515 val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1516 xgene_phy_get_avg(lat_xo, max_loop));
1517 serdes_wr(ctx, lane, RXTX_REG127, data: val);
1518
1519 serdes_rd(ctx, lane, RXTX_REG128, data: &val);
1520 val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1521 xgene_phy_get_avg(lat_eo, max_loop));
1522 val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1523 xgene_phy_get_avg(lat_so, max_loop));
1524 serdes_wr(ctx, lane, RXTX_REG128, data: val);
1525
1526 serdes_rd(ctx, lane, RXTX_REG129, data: &val);
1527 val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1528 xgene_phy_get_avg(lat_de, max_loop));
1529 val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1530 xgene_phy_get_avg(lat_xe, max_loop));
1531 serdes_wr(ctx, lane, RXTX_REG129, data: val);
1532
1533 serdes_rd(ctx, lane, RXTX_REG130, data: &val);
1534 val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1535 xgene_phy_get_avg(lat_ee, max_loop));
1536 val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1537 xgene_phy_get_avg(lat_se, max_loop));
1538 serdes_wr(ctx, lane, RXTX_REG130, data: val);
1539
1540 /* Update SUMMER calibration with average value */
1541 serdes_rd(ctx, lane, RXTX_REG14, data: &val);
1542 val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1543 xgene_phy_get_avg(sum_cal, max_loop));
1544 serdes_wr(ctx, lane, RXTX_REG14, data: val);
1545
1546 dev_dbg(ctx->dev, "Average Value:\n");
1547 dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1548 xgene_phy_get_avg(lat_do, max_loop),
1549 xgene_phy_get_avg(lat_xo, max_loop),
1550 xgene_phy_get_avg(lat_eo, max_loop),
1551 xgene_phy_get_avg(lat_so, max_loop));
1552 dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1553 xgene_phy_get_avg(lat_de, max_loop),
1554 xgene_phy_get_avg(lat_xe, max_loop),
1555 xgene_phy_get_avg(lat_ee, max_loop),
1556 xgene_phy_get_avg(lat_se, max_loop));
1557 dev_dbg(ctx->dev, "SUM 0x%x\n",
1558 xgene_phy_get_avg(sum_cal, max_loop));
1559
1560 serdes_rd(ctx, lane, RXTX_REG14, data: &val);
1561 val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1562 serdes_wr(ctx, lane, RXTX_REG14, data: val);
1563 dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1564
1565 serdes_rd(ctx, lane, RXTX_REG127, data: &val);
1566 val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1567 dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1568 serdes_wr(ctx, lane, RXTX_REG127, data: val);
1569
1570 /* Disable RX Hi-Z termination */
1571 serdes_rd(ctx, lane, RXTX_REG12, data: &val);
1572 val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1573 serdes_wr(ctx, lane, RXTX_REG12, data: val);
1574 /* Turn on DFE */
1575 serdes_wr(ctx, lane, RXTX_REG28, data: 0x0007);
1576 /* Set DFE preset */
1577 serdes_wr(ctx, lane, RXTX_REG31, data: 0x7e00);
1578}
1579
1580static int xgene_phy_hw_init(struct phy *phy)
1581{
1582 struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1583 int rc;
1584 int i;
1585
1586 rc = xgene_phy_hw_initialize(ctx, clk_type: CLK_EXT_DIFF, SSC_DISABLE);
1587 if (rc) {
1588 dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1589 return rc;
1590 }
1591
1592 /* Setup clock properly after PHY configuration */
1593 if (!IS_ERR(ptr: ctx->clk)) {
1594 /* HW requires an toggle of the clock */
1595 clk_prepare_enable(clk: ctx->clk);
1596 clk_disable_unprepare(clk: ctx->clk);
1597 clk_prepare_enable(clk: ctx->clk);
1598 }
1599
1600 /* Compute average value */
1601 for (i = 0; i < MAX_LANE; i++)
1602 xgene_phy_gen_avg_val(ctx, lane: i);
1603
1604 dev_dbg(ctx->dev, "PHY initialized\n");
1605 return 0;
1606}
1607
1608static const struct phy_ops xgene_phy_ops = {
1609 .init = xgene_phy_hw_init,
1610 .owner = THIS_MODULE,
1611};
1612
1613static struct phy *xgene_phy_xlate(struct device *dev,
1614 struct of_phandle_args *args)
1615{
1616 struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1617
1618 if (args->args_count <= 0)
1619 return ERR_PTR(error: -EINVAL);
1620 if (args->args[0] >= MODE_MAX)
1621 return ERR_PTR(error: -EINVAL);
1622
1623 ctx->mode = args->args[0];
1624 return ctx->phy;
1625}
1626
1627static void xgene_phy_get_param(struct platform_device *pdev,
1628 const char *name, u32 *buffer,
1629 int count, u32 *default_val,
1630 u32 conv_factor)
1631{
1632 int i;
1633
1634 if (!of_property_read_u32_array(np: pdev->dev.of_node, propname: name, out_values: buffer,
1635 sz: count)) {
1636 for (i = 0; i < count; i++)
1637 buffer[i] /= conv_factor;
1638 return;
1639 }
1640 /* Does not exist, load default */
1641 for (i = 0; i < count; i++)
1642 buffer[i] = default_val[i % 3];
1643}
1644
1645static int xgene_phy_probe(struct platform_device *pdev)
1646{
1647 struct phy_provider *phy_provider;
1648 struct xgene_phy_ctx *ctx;
1649 u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1650 u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1651 u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1652 u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1653 u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1654 u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1655 u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1656 u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1657 int i;
1658
1659 ctx = devm_kzalloc(dev: &pdev->dev, size: sizeof(*ctx), GFP_KERNEL);
1660 if (!ctx)
1661 return -ENOMEM;
1662
1663 ctx->dev = &pdev->dev;
1664
1665 ctx->sds_base = devm_platform_ioremap_resource(pdev, index: 0);
1666 if (IS_ERR(ptr: ctx->sds_base))
1667 return PTR_ERR(ptr: ctx->sds_base);
1668
1669 /* Retrieve optional clock */
1670 ctx->clk = clk_get(dev: &pdev->dev, NULL);
1671
1672 /* Load override paramaters */
1673 xgene_phy_get_param(pdev, name: "apm,tx-eye-tuning",
1674 buffer: ctx->sata_param.txeyetuning, count: 6, default_val: default_txeye_tuning, conv_factor: 1);
1675 xgene_phy_get_param(pdev, name: "apm,tx-eye-direction",
1676 buffer: ctx->sata_param.txeyedirection, count: 6, default_val: default_txeye_direction, conv_factor: 1);
1677 xgene_phy_get_param(pdev, name: "apm,tx-boost-gain",
1678 buffer: ctx->sata_param.txboostgain, count: 6, default_val: default_txboost_gain, conv_factor: 1);
1679 xgene_phy_get_param(pdev, name: "apm,tx-amplitude",
1680 buffer: ctx->sata_param.txamplitude, count: 6, default_val: default_txamp, conv_factor: 13300);
1681 xgene_phy_get_param(pdev, name: "apm,tx-pre-cursor1",
1682 buffer: ctx->sata_param.txprecursor_cn1, count: 6, default_val: default_txcn1, conv_factor: 18200);
1683 xgene_phy_get_param(pdev, name: "apm,tx-pre-cursor2",
1684 buffer: ctx->sata_param.txprecursor_cn2, count: 6, default_val: default_txcn2, conv_factor: 18200);
1685 xgene_phy_get_param(pdev, name: "apm,tx-post-cursor",
1686 buffer: ctx->sata_param.txpostcursor_cp1, count: 6, default_val: default_txcp1, conv_factor: 18200);
1687 xgene_phy_get_param(pdev, name: "apm,tx-speed",
1688 buffer: ctx->sata_param.txspeed, count: 3, default_val: default_spd, conv_factor: 1);
1689 for (i = 0; i < MAX_LANE; i++)
1690 ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1691
1692 platform_set_drvdata(pdev, data: ctx);
1693
1694 ctx->phy = devm_phy_create(dev: ctx->dev, NULL, ops: &xgene_phy_ops);
1695 if (IS_ERR(ptr: ctx->phy)) {
1696 dev_dbg(&pdev->dev, "Failed to create PHY\n");
1697 return PTR_ERR(ptr: ctx->phy);
1698 }
1699 phy_set_drvdata(phy: ctx->phy, data: ctx);
1700
1701 phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1702 return PTR_ERR_OR_ZERO(ptr: phy_provider);
1703}
1704
1705static const struct of_device_id xgene_phy_of_match[] = {
1706 {.compatible = "apm,xgene-phy",},
1707 {},
1708};
1709MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1710
1711static struct platform_driver xgene_phy_driver = {
1712 .probe = xgene_phy_probe,
1713 .driver = {
1714 .name = "xgene-phy",
1715 .of_match_table = xgene_phy_of_match,
1716 },
1717};
1718module_platform_driver(xgene_phy_driver);
1719
1720MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1721MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1722MODULE_LICENSE("GPL v2");
1723MODULE_VERSION("0.1");
1724

source code of linux/drivers/phy/phy-xgene.c