1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _BCACHEFS_FORMAT_H
3#define _BCACHEFS_FORMAT_H
4
5/*
6 * bcachefs on disk data structures
7 *
8 * OVERVIEW:
9 *
10 * There are three main types of on disk data structures in bcachefs (this is
11 * reduced from 5 in bcache)
12 *
13 * - superblock
14 * - journal
15 * - btree
16 *
17 * The btree is the primary structure; most metadata exists as keys in the
18 * various btrees. There are only a small number of btrees, they're not
19 * sharded - we have one btree for extents, another for inodes, et cetera.
20 *
21 * SUPERBLOCK:
22 *
23 * The superblock contains the location of the journal, the list of devices in
24 * the filesystem, and in general any metadata we need in order to decide
25 * whether we can start a filesystem or prior to reading the journal/btree
26 * roots.
27 *
28 * The superblock is extensible, and most of the contents of the superblock are
29 * in variable length, type tagged fields; see struct bch_sb_field.
30 *
31 * Backup superblocks do not reside in a fixed location; also, superblocks do
32 * not have a fixed size. To locate backup superblocks we have struct
33 * bch_sb_layout; we store a copy of this inside every superblock, and also
34 * before the first superblock.
35 *
36 * JOURNAL:
37 *
38 * The journal primarily records btree updates in the order they occurred;
39 * journal replay consists of just iterating over all the keys in the open
40 * journal entries and re-inserting them into the btrees.
41 *
42 * The journal also contains entry types for the btree roots, and blacklisted
43 * journal sequence numbers (see journal_seq_blacklist.c).
44 *
45 * BTREE:
46 *
47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically
48 * 128k-256k) and log structured. We use struct btree_node for writing the first
49 * entry in a given node (offset 0), and struct btree_node_entry for all
50 * subsequent writes.
51 *
52 * After the header, btree node entries contain a list of keys in sorted order.
53 * Values are stored inline with the keys; since values are variable length (and
54 * keys effectively are variable length too, due to packing) we can't do random
55 * access without building up additional in memory tables in the btree node read
56 * path.
57 *
58 * BTREE KEYS (struct bkey):
59 *
60 * The various btrees share a common format for the key - so as to avoid
61 * switching in fastpath lookup/comparison code - but define their own
62 * structures for the key values.
63 *
64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max
65 * size is just under 2k. The common part also contains a type tag for the
66 * value, and a format field indicating whether the key is packed or not (and
67 * also meant to allow adding new key fields in the future, if desired).
68 *
69 * bkeys, when stored within a btree node, may also be packed. In that case, the
70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can
71 * be generous with field sizes in the common part of the key format (64 bit
72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost.
73 */
74
75#include <asm/types.h>
76#include <asm/byteorder.h>
77#include <linux/kernel.h>
78#include <linux/uuid.h>
79#include "vstructs.h"
80
81#ifdef __KERNEL__
82typedef uuid_t __uuid_t;
83#endif
84
85#define BITMASK(name, type, field, offset, end) \
86static const __maybe_unused unsigned name##_OFFSET = offset; \
87static const __maybe_unused unsigned name##_BITS = (end - offset); \
88 \
89static inline __u64 name(const type *k) \
90{ \
91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \
92} \
93 \
94static inline void SET_##name(type *k, __u64 v) \
95{ \
96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \
97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \
98}
99
100#define LE_BITMASK(_bits, name, type, field, offset, end) \
101static const __maybe_unused unsigned name##_OFFSET = offset; \
102static const __maybe_unused unsigned name##_BITS = (end - offset); \
103static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\
104 \
105static inline __u64 name(const type *k) \
106{ \
107 return (__le##_bits##_to_cpu(k->field) >> offset) & \
108 ~(~0ULL << (end - offset)); \
109} \
110 \
111static inline void SET_##name(type *k, __u64 v) \
112{ \
113 __u##_bits new = __le##_bits##_to_cpu(k->field); \
114 \
115 new &= ~(~(~0ULL << (end - offset)) << offset); \
116 new |= (v & ~(~0ULL << (end - offset))) << offset; \
117 k->field = __cpu_to_le##_bits(new); \
118}
119
120#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e)
121#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e)
122#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e)
123
124struct bkey_format {
125 __u8 key_u64s;
126 __u8 nr_fields;
127 /* One unused slot for now: */
128 __u8 bits_per_field[6];
129 __le64 field_offset[6];
130};
131
132/* Btree keys - all units are in sectors */
133
134struct bpos {
135 /*
136 * Word order matches machine byte order - btree code treats a bpos as a
137 * single large integer, for search/comparison purposes
138 *
139 * Note that wherever a bpos is embedded in another on disk data
140 * structure, it has to be byte swabbed when reading in metadata that
141 * wasn't written in native endian order:
142 */
143#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
144 __u32 snapshot;
145 __u64 offset;
146 __u64 inode;
147#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
148 __u64 inode;
149 __u64 offset; /* Points to end of extent - sectors */
150 __u32 snapshot;
151#else
152#error edit for your odd byteorder.
153#endif
154} __packed
155#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
156__aligned(4)
157#endif
158;
159
160#define KEY_INODE_MAX ((__u64)~0ULL)
161#define KEY_OFFSET_MAX ((__u64)~0ULL)
162#define KEY_SNAPSHOT_MAX ((__u32)~0U)
163#define KEY_SIZE_MAX ((__u32)~0U)
164
165static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot)
166{
167 return (struct bpos) {
168 .inode = inode,
169 .offset = offset,
170 .snapshot = snapshot,
171 };
172}
173
174#define POS_MIN SPOS(0, 0, 0)
175#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0)
176#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX)
177#define POS(_inode, _offset) SPOS(_inode, _offset, 0)
178
179/* Empty placeholder struct, for container_of() */
180struct bch_val {
181 __u64 __nothing[0];
182};
183
184struct bversion {
185#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
186 __u64 lo;
187 __u32 hi;
188#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
189 __u32 hi;
190 __u64 lo;
191#endif
192} __packed
193#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
194__aligned(4)
195#endif
196;
197
198struct bkey {
199 /* Size of combined key and value, in u64s */
200 __u8 u64s;
201
202 /* Format of key (0 for format local to btree node) */
203#if defined(__LITTLE_ENDIAN_BITFIELD)
204 __u8 format:7,
205 needs_whiteout:1;
206#elif defined (__BIG_ENDIAN_BITFIELD)
207 __u8 needs_whiteout:1,
208 format:7;
209#else
210#error edit for your odd byteorder.
211#endif
212
213 /* Type of the value */
214 __u8 type;
215
216#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
217 __u8 pad[1];
218
219 struct bversion version;
220 __u32 size; /* extent size, in sectors */
221 struct bpos p;
222#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
223 struct bpos p;
224 __u32 size; /* extent size, in sectors */
225 struct bversion version;
226
227 __u8 pad[1];
228#endif
229} __packed
230#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
231/*
232 * The big-endian version of bkey can't be compiled by rustc with the "aligned"
233 * attr since it doesn't allow types to have both "packed" and "aligned" attrs.
234 * So for Rust compatibility, don't include this. It can be included in the LE
235 * version because the "packed" attr is redundant in that case.
236 *
237 * History: (quoting Kent)
238 *
239 * Specifically, when i was designing bkey, I wanted the header to be no
240 * bigger than necessary so that bkey_packed could use the rest. That means that
241 * decently offten extent keys will fit into only 8 bytes, instead of spilling over
242 * to 16.
243 *
244 * But packed_bkey treats the part after the header - the packed section -
245 * as a single multi word, variable length integer. And bkey, the unpacked
246 * version, is just a special case version of a bkey_packed; all the packed
247 * bkey code will work on keys in any packed format, the in-memory
248 * representation of an unpacked key also is just one type of packed key...
249 *
250 * So that constrains the key part of a bkig endian bkey to start right
251 * after the header.
252 *
253 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for
254 * some reason - that will clean up this wart.
255 */
256__aligned(8)
257#endif
258;
259
260struct bkey_packed {
261 __u64 _data[0];
262
263 /* Size of combined key and value, in u64s */
264 __u8 u64s;
265
266 /* Format of key (0 for format local to btree node) */
267
268 /*
269 * XXX: next incompat on disk format change, switch format and
270 * needs_whiteout - bkey_packed() will be cheaper if format is the high
271 * bits of the bitfield
272 */
273#if defined(__LITTLE_ENDIAN_BITFIELD)
274 __u8 format:7,
275 needs_whiteout:1;
276#elif defined (__BIG_ENDIAN_BITFIELD)
277 __u8 needs_whiteout:1,
278 format:7;
279#endif
280
281 /* Type of the value */
282 __u8 type;
283 __u8 key_start[0];
284
285 /*
286 * We copy bkeys with struct assignment in various places, and while
287 * that shouldn't be done with packed bkeys we can't disallow it in C,
288 * and it's legal to cast a bkey to a bkey_packed - so padding it out
289 * to the same size as struct bkey should hopefully be safest.
290 */
291 __u8 pad[sizeof(struct bkey) - 3];
292} __packed __aligned(8);
293
294typedef struct {
295 __le64 lo;
296 __le64 hi;
297} bch_le128;
298
299#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64))
300#define BKEY_U64s_MAX U8_MAX
301#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s)
302
303#define KEY_PACKED_BITS_START 24
304
305#define KEY_FORMAT_LOCAL_BTREE 0
306#define KEY_FORMAT_CURRENT 1
307
308enum bch_bkey_fields {
309 BKEY_FIELD_INODE,
310 BKEY_FIELD_OFFSET,
311 BKEY_FIELD_SNAPSHOT,
312 BKEY_FIELD_SIZE,
313 BKEY_FIELD_VERSION_HI,
314 BKEY_FIELD_VERSION_LO,
315 BKEY_NR_FIELDS,
316};
317
318#define bkey_format_field(name, field) \
319 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8)
320
321#define BKEY_FORMAT_CURRENT \
322((struct bkey_format) { \
323 .key_u64s = BKEY_U64s, \
324 .nr_fields = BKEY_NR_FIELDS, \
325 .bits_per_field = { \
326 bkey_format_field(INODE, p.inode), \
327 bkey_format_field(OFFSET, p.offset), \
328 bkey_format_field(SNAPSHOT, p.snapshot), \
329 bkey_format_field(SIZE, size), \
330 bkey_format_field(VERSION_HI, version.hi), \
331 bkey_format_field(VERSION_LO, version.lo), \
332 }, \
333})
334
335/* bkey with inline value */
336struct bkey_i {
337 __u64 _data[0];
338
339 struct bkey k;
340 struct bch_val v;
341};
342
343#define POS_KEY(_pos) \
344((struct bkey) { \
345 .u64s = BKEY_U64s, \
346 .format = KEY_FORMAT_CURRENT, \
347 .p = _pos, \
348})
349
350#define KEY(_inode, _offset, _size) \
351((struct bkey) { \
352 .u64s = BKEY_U64s, \
353 .format = KEY_FORMAT_CURRENT, \
354 .p = POS(_inode, _offset), \
355 .size = _size, \
356})
357
358static inline void bkey_init(struct bkey *k)
359{
360 *k = KEY(0, 0, 0);
361}
362
363#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64))
364
365#define __BKEY_PADDED(key, pad) \
366 struct bkey_i key; __u64 key ## _pad[pad]
367
368/*
369 * - DELETED keys are used internally to mark keys that should be ignored but
370 * override keys in composition order. Their version number is ignored.
371 *
372 * - DISCARDED keys indicate that the data is all 0s because it has been
373 * discarded. DISCARDs may have a version; if the version is nonzero the key
374 * will be persistent, otherwise the key will be dropped whenever the btree
375 * node is rewritten (like DELETED keys).
376 *
377 * - ERROR: any read of the data returns a read error, as the data was lost due
378 * to a failing device. Like DISCARDED keys, they can be removed (overridden)
379 * by new writes or cluster-wide GC. Node repair can also overwrite them with
380 * the same or a more recent version number, but not with an older version
381 * number.
382 *
383 * - WHITEOUT: for hash table btrees
384 */
385#define BCH_BKEY_TYPES() \
386 x(deleted, 0) \
387 x(whiteout, 1) \
388 x(error, 2) \
389 x(cookie, 3) \
390 x(hash_whiteout, 4) \
391 x(btree_ptr, 5) \
392 x(extent, 6) \
393 x(reservation, 7) \
394 x(inode, 8) \
395 x(inode_generation, 9) \
396 x(dirent, 10) \
397 x(xattr, 11) \
398 x(alloc, 12) \
399 x(quota, 13) \
400 x(stripe, 14) \
401 x(reflink_p, 15) \
402 x(reflink_v, 16) \
403 x(inline_data, 17) \
404 x(btree_ptr_v2, 18) \
405 x(indirect_inline_data, 19) \
406 x(alloc_v2, 20) \
407 x(subvolume, 21) \
408 x(snapshot, 22) \
409 x(inode_v2, 23) \
410 x(alloc_v3, 24) \
411 x(set, 25) \
412 x(lru, 26) \
413 x(alloc_v4, 27) \
414 x(backpointer, 28) \
415 x(inode_v3, 29) \
416 x(bucket_gens, 30) \
417 x(snapshot_tree, 31) \
418 x(logged_op_truncate, 32) \
419 x(logged_op_finsert, 33)
420
421enum bch_bkey_type {
422#define x(name, nr) KEY_TYPE_##name = nr,
423 BCH_BKEY_TYPES()
424#undef x
425 KEY_TYPE_MAX,
426};
427
428struct bch_deleted {
429 struct bch_val v;
430};
431
432struct bch_whiteout {
433 struct bch_val v;
434};
435
436struct bch_error {
437 struct bch_val v;
438};
439
440struct bch_cookie {
441 struct bch_val v;
442 __le64 cookie;
443};
444
445struct bch_hash_whiteout {
446 struct bch_val v;
447};
448
449struct bch_set {
450 struct bch_val v;
451};
452
453/* 128 bits, sufficient for cryptographic MACs: */
454struct bch_csum {
455 __le64 lo;
456 __le64 hi;
457} __packed __aligned(8);
458
459struct bch_backpointer {
460 struct bch_val v;
461 __u8 btree_id;
462 __u8 level;
463 __u8 data_type;
464 __u64 bucket_offset:40;
465 __u32 bucket_len;
466 struct bpos pos;
467} __packed __aligned(8);
468
469/* LRU btree: */
470
471struct bch_lru {
472 struct bch_val v;
473 __le64 idx;
474} __packed __aligned(8);
475
476#define LRU_ID_STRIPES (1U << 16)
477
478/* Optional/variable size superblock sections: */
479
480struct bch_sb_field {
481 __u64 _data[0];
482 __le32 u64s;
483 __le32 type;
484};
485
486#define BCH_SB_FIELDS() \
487 x(journal, 0) \
488 x(members_v1, 1) \
489 x(crypt, 2) \
490 x(replicas_v0, 3) \
491 x(quota, 4) \
492 x(disk_groups, 5) \
493 x(clean, 6) \
494 x(replicas, 7) \
495 x(journal_seq_blacklist, 8) \
496 x(journal_v2, 9) \
497 x(counters, 10) \
498 x(members_v2, 11) \
499 x(errors, 12) \
500 x(ext, 13) \
501 x(downgrade, 14)
502
503#include "alloc_background_format.h"
504#include "extents_format.h"
505#include "reflink_format.h"
506#include "ec_format.h"
507#include "inode_format.h"
508#include "dirent_format.h"
509#include "xattr_format.h"
510#include "quota_format.h"
511#include "logged_ops_format.h"
512#include "snapshot_format.h"
513#include "subvolume_format.h"
514#include "sb-counters_format.h"
515
516enum bch_sb_field_type {
517#define x(f, nr) BCH_SB_FIELD_##f = nr,
518 BCH_SB_FIELDS()
519#undef x
520 BCH_SB_FIELD_NR
521};
522
523/*
524 * Most superblock fields are replicated in all device's superblocks - a few are
525 * not:
526 */
527#define BCH_SINGLE_DEVICE_SB_FIELDS \
528 ((1U << BCH_SB_FIELD_journal)| \
529 (1U << BCH_SB_FIELD_journal_v2))
530
531/* BCH_SB_FIELD_journal: */
532
533struct bch_sb_field_journal {
534 struct bch_sb_field field;
535 __le64 buckets[];
536};
537
538struct bch_sb_field_journal_v2 {
539 struct bch_sb_field field;
540
541 struct bch_sb_field_journal_v2_entry {
542 __le64 start;
543 __le64 nr;
544 } d[];
545};
546
547/* BCH_SB_FIELD_members_v1: */
548
549#define BCH_MIN_NR_NBUCKETS (1 << 6)
550
551#define BCH_IOPS_MEASUREMENTS() \
552 x(seqread, 0) \
553 x(seqwrite, 1) \
554 x(randread, 2) \
555 x(randwrite, 3)
556
557enum bch_iops_measurement {
558#define x(t, n) BCH_IOPS_##t = n,
559 BCH_IOPS_MEASUREMENTS()
560#undef x
561 BCH_IOPS_NR
562};
563
564#define BCH_MEMBER_ERROR_TYPES() \
565 x(read, 0) \
566 x(write, 1) \
567 x(checksum, 2)
568
569enum bch_member_error_type {
570#define x(t, n) BCH_MEMBER_ERROR_##t = n,
571 BCH_MEMBER_ERROR_TYPES()
572#undef x
573 BCH_MEMBER_ERROR_NR
574};
575
576struct bch_member {
577 __uuid_t uuid;
578 __le64 nbuckets; /* device size */
579 __le16 first_bucket; /* index of first bucket used */
580 __le16 bucket_size; /* sectors */
581 __u8 btree_bitmap_shift;
582 __u8 pad[3];
583 __le64 last_mount; /* time_t */
584
585 __le64 flags;
586 __le32 iops[4];
587 __le64 errors[BCH_MEMBER_ERROR_NR];
588 __le64 errors_at_reset[BCH_MEMBER_ERROR_NR];
589 __le64 errors_reset_time;
590 __le64 seq;
591 __le64 btree_allocated_bitmap;
592};
593
594#define BCH_MEMBER_V1_BYTES 56
595
596LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4)
597/* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */
598LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15)
599LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20)
600LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28)
601LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30)
602LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED,
603 struct bch_member, flags, 30, 31)
604
605#if 0
606LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20);
607LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40);
608#endif
609
610#define BCH_MEMBER_STATES() \
611 x(rw, 0) \
612 x(ro, 1) \
613 x(failed, 2) \
614 x(spare, 3)
615
616enum bch_member_state {
617#define x(t, n) BCH_MEMBER_STATE_##t = n,
618 BCH_MEMBER_STATES()
619#undef x
620 BCH_MEMBER_STATE_NR
621};
622
623struct bch_sb_field_members_v1 {
624 struct bch_sb_field field;
625 struct bch_member _members[]; //Members are now variable size
626};
627
628struct bch_sb_field_members_v2 {
629 struct bch_sb_field field;
630 __le16 member_bytes; //size of single member entry
631 u8 pad[6];
632 struct bch_member _members[];
633};
634
635/* BCH_SB_FIELD_crypt: */
636
637struct nonce {
638 __le32 d[4];
639};
640
641struct bch_key {
642 __le64 key[4];
643};
644
645#define BCH_KEY_MAGIC \
646 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \
647 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \
648 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \
649 ((__u64) 'e' << 48)|((__u64) 'y' << 56))
650
651struct bch_encrypted_key {
652 __le64 magic;
653 struct bch_key key;
654};
655
656/*
657 * If this field is present in the superblock, it stores an encryption key which
658 * is used encrypt all other data/metadata. The key will normally be encrypted
659 * with the key userspace provides, but if encryption has been turned off we'll
660 * just store the master key unencrypted in the superblock so we can access the
661 * previously encrypted data.
662 */
663struct bch_sb_field_crypt {
664 struct bch_sb_field field;
665
666 __le64 flags;
667 __le64 kdf_flags;
668 struct bch_encrypted_key key;
669};
670
671LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4);
672
673enum bch_kdf_types {
674 BCH_KDF_SCRYPT = 0,
675 BCH_KDF_NR = 1,
676};
677
678/* stored as base 2 log of scrypt params: */
679LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16);
680LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32);
681LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48);
682
683/* BCH_SB_FIELD_replicas: */
684
685#define BCH_DATA_TYPES() \
686 x(free, 0) \
687 x(sb, 1) \
688 x(journal, 2) \
689 x(btree, 3) \
690 x(user, 4) \
691 x(cached, 5) \
692 x(parity, 6) \
693 x(stripe, 7) \
694 x(need_gc_gens, 8) \
695 x(need_discard, 9)
696
697enum bch_data_type {
698#define x(t, n) BCH_DATA_##t,
699 BCH_DATA_TYPES()
700#undef x
701 BCH_DATA_NR
702};
703
704static inline bool data_type_is_empty(enum bch_data_type type)
705{
706 switch (type) {
707 case BCH_DATA_free:
708 case BCH_DATA_need_gc_gens:
709 case BCH_DATA_need_discard:
710 return true;
711 default:
712 return false;
713 }
714}
715
716static inline bool data_type_is_hidden(enum bch_data_type type)
717{
718 switch (type) {
719 case BCH_DATA_sb:
720 case BCH_DATA_journal:
721 return true;
722 default:
723 return false;
724 }
725}
726
727struct bch_replicas_entry_v0 {
728 __u8 data_type;
729 __u8 nr_devs;
730 __u8 devs[];
731} __packed;
732
733struct bch_sb_field_replicas_v0 {
734 struct bch_sb_field field;
735 struct bch_replicas_entry_v0 entries[];
736} __packed __aligned(8);
737
738struct bch_replicas_entry_v1 {
739 __u8 data_type;
740 __u8 nr_devs;
741 __u8 nr_required;
742 __u8 devs[];
743} __packed;
744
745#define replicas_entry_bytes(_i) \
746 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs)
747
748struct bch_sb_field_replicas {
749 struct bch_sb_field field;
750 struct bch_replicas_entry_v1 entries[];
751} __packed __aligned(8);
752
753/* BCH_SB_FIELD_disk_groups: */
754
755#define BCH_SB_LABEL_SIZE 32
756
757struct bch_disk_group {
758 __u8 label[BCH_SB_LABEL_SIZE];
759 __le64 flags[2];
760} __packed __aligned(8);
761
762LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1)
763LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6)
764LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24)
765
766struct bch_sb_field_disk_groups {
767 struct bch_sb_field field;
768 struct bch_disk_group entries[];
769} __packed __aligned(8);
770
771/*
772 * On clean shutdown, store btree roots and current journal sequence number in
773 * the superblock:
774 */
775struct jset_entry {
776 __le16 u64s;
777 __u8 btree_id;
778 __u8 level;
779 __u8 type; /* designates what this jset holds */
780 __u8 pad[3];
781
782 struct bkey_i start[0];
783 __u64 _data[];
784};
785
786struct bch_sb_field_clean {
787 struct bch_sb_field field;
788
789 __le32 flags;
790 __le16 _read_clock; /* no longer used */
791 __le16 _write_clock;
792 __le64 journal_seq;
793
794 struct jset_entry start[0];
795 __u64 _data[];
796};
797
798struct journal_seq_blacklist_entry {
799 __le64 start;
800 __le64 end;
801};
802
803struct bch_sb_field_journal_seq_blacklist {
804 struct bch_sb_field field;
805 struct journal_seq_blacklist_entry start[];
806};
807
808struct bch_sb_field_errors {
809 struct bch_sb_field field;
810 struct bch_sb_field_error_entry {
811 __le64 v;
812 __le64 last_error_time;
813 } entries[];
814};
815
816LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16);
817LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64);
818
819struct bch_sb_field_ext {
820 struct bch_sb_field field;
821 __le64 recovery_passes_required[2];
822 __le64 errors_silent[8];
823 __le64 btrees_lost_data;
824};
825
826struct bch_sb_field_downgrade_entry {
827 __le16 version;
828 __le64 recovery_passes[2];
829 __le16 nr_errors;
830 __le16 errors[] __counted_by(nr_errors);
831} __packed __aligned(2);
832
833struct bch_sb_field_downgrade {
834 struct bch_sb_field field;
835 struct bch_sb_field_downgrade_entry entries[];
836};
837
838/* Superblock: */
839
840/*
841 * New versioning scheme:
842 * One common version number for all on disk data structures - superblock, btree
843 * nodes, journal entries
844 */
845#define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10))
846#define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10)))
847#define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0)
848
849/*
850 * field 1: version name
851 * field 2: BCH_VERSION(major, minor)
852 * field 3: recovery passess required on upgrade
853 */
854#define BCH_METADATA_VERSIONS() \
855 x(bkey_renumber, BCH_VERSION(0, 10)) \
856 x(inode_btree_change, BCH_VERSION(0, 11)) \
857 x(snapshot, BCH_VERSION(0, 12)) \
858 x(inode_backpointers, BCH_VERSION(0, 13)) \
859 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \
860 x(snapshot_2, BCH_VERSION(0, 15)) \
861 x(reflink_p_fix, BCH_VERSION(0, 16)) \
862 x(subvol_dirent, BCH_VERSION(0, 17)) \
863 x(inode_v2, BCH_VERSION(0, 18)) \
864 x(freespace, BCH_VERSION(0, 19)) \
865 x(alloc_v4, BCH_VERSION(0, 20)) \
866 x(new_data_types, BCH_VERSION(0, 21)) \
867 x(backpointers, BCH_VERSION(0, 22)) \
868 x(inode_v3, BCH_VERSION(0, 23)) \
869 x(unwritten_extents, BCH_VERSION(0, 24)) \
870 x(bucket_gens, BCH_VERSION(0, 25)) \
871 x(lru_v2, BCH_VERSION(0, 26)) \
872 x(fragmentation_lru, BCH_VERSION(0, 27)) \
873 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \
874 x(snapshot_trees, BCH_VERSION(0, 29)) \
875 x(major_minor, BCH_VERSION(1, 0)) \
876 x(snapshot_skiplists, BCH_VERSION(1, 1)) \
877 x(deleted_inodes, BCH_VERSION(1, 2)) \
878 x(rebalance_work, BCH_VERSION(1, 3)) \
879 x(member_seq, BCH_VERSION(1, 4)) \
880 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \
881 x(btree_subvolume_children, BCH_VERSION(1, 6)) \
882 x(mi_btree_bitmap, BCH_VERSION(1, 7))
883
884enum bcachefs_metadata_version {
885 bcachefs_metadata_version_min = 9,
886#define x(t, n) bcachefs_metadata_version_##t = n,
887 BCH_METADATA_VERSIONS()
888#undef x
889 bcachefs_metadata_version_max
890};
891
892static const __maybe_unused
893unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work;
894
895#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1)
896
897#define BCH_SB_SECTOR 8
898#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */
899
900struct bch_sb_layout {
901 __uuid_t magic; /* bcachefs superblock UUID */
902 __u8 layout_type;
903 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */
904 __u8 nr_superblocks;
905 __u8 pad[5];
906 __le64 sb_offset[61];
907} __packed __aligned(8);
908
909#define BCH_SB_LAYOUT_SECTOR 7
910
911/*
912 * @offset - sector where this sb was written
913 * @version - on disk format version
914 * @version_min - Oldest metadata version this filesystem contains; so we can
915 * safely drop compatibility code and refuse to mount filesystems
916 * we'd need it for
917 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC)
918 * @seq - incremented each time superblock is written
919 * @uuid - used for generating various magic numbers and identifying
920 * member devices, never changes
921 * @user_uuid - user visible UUID, may be changed
922 * @label - filesystem label
923 * @seq - identifies most recent superblock, incremented each time
924 * superblock is written
925 * @features - enabled incompatible features
926 */
927struct bch_sb {
928 struct bch_csum csum;
929 __le16 version;
930 __le16 version_min;
931 __le16 pad[2];
932 __uuid_t magic;
933 __uuid_t uuid;
934 __uuid_t user_uuid;
935 __u8 label[BCH_SB_LABEL_SIZE];
936 __le64 offset;
937 __le64 seq;
938
939 __le16 block_size;
940 __u8 dev_idx;
941 __u8 nr_devices;
942 __le32 u64s;
943
944 __le64 time_base_lo;
945 __le32 time_base_hi;
946 __le32 time_precision;
947
948 __le64 flags[7];
949 __le64 write_time;
950 __le64 features[2];
951 __le64 compat[2];
952
953 struct bch_sb_layout layout;
954
955 struct bch_sb_field start[0];
956 __le64 _data[];
957} __packed __aligned(8);
958
959/*
960 * Flags:
961 * BCH_SB_INITALIZED - set on first mount
962 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect
963 * behaviour of mount/recovery path:
964 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits
965 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80
966 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides
967 * DATA/META_CSUM_TYPE. Also indicates encryption
968 * algorithm in use, if/when we get more than one
969 */
970
971LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16);
972
973LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1);
974LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2);
975LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8);
976LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12);
977
978LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28);
979
980LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33);
981LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40);
982
983LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44);
984LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48);
985
986LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52);
987LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56);
988
989LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57);
990LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58);
991LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59);
992LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60);
993
994LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61);
995LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62);
996
997LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63);
998
999LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4);
1000LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8);
1001LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9);
1002
1003LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10);
1004LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14);
1005
1006/*
1007 * Max size of an extent that may require bouncing to read or write
1008 * (checksummed, compressed): 64k
1009 */
1010LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS,
1011 struct bch_sb, flags[1], 14, 20);
1012
1013LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24);
1014LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28);
1015
1016LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40);
1017LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52);
1018LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64);
1019
1020LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO,
1021 struct bch_sb, flags[2], 0, 4);
1022LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64);
1023
1024LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16);
1025LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28);
1026LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29);
1027LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30);
1028LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62);
1029LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63);
1030LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32);
1031LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33);
1032LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34);
1033LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54);
1034LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56);
1035
1036LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60);
1037LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI,
1038 struct bch_sb, flags[4], 60, 64);
1039
1040LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE,
1041 struct bch_sb, flags[5], 0, 16);
1042
1043static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb)
1044{
1045 return BCH_SB_COMPRESSION_TYPE_LO(k: sb) | (BCH_SB_COMPRESSION_TYPE_HI(k: sb) << 4);
1046}
1047
1048static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1049{
1050 SET_BCH_SB_COMPRESSION_TYPE_LO(k: sb, v);
1051 SET_BCH_SB_COMPRESSION_TYPE_HI(k: sb, v: v >> 4);
1052}
1053
1054static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb)
1055{
1056 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(k: sb) |
1057 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(k: sb) << 4);
1058}
1059
1060static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v)
1061{
1062 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(k: sb, v);
1063 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(k: sb, v: v >> 4);
1064}
1065
1066/*
1067 * Features:
1068 *
1069 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist
1070 * reflink: gates KEY_TYPE_reflink
1071 * inline_data: gates KEY_TYPE_inline_data
1072 * new_siphash: gates BCH_STR_HASH_siphash
1073 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE
1074 */
1075#define BCH_SB_FEATURES() \
1076 x(lz4, 0) \
1077 x(gzip, 1) \
1078 x(zstd, 2) \
1079 x(atomic_nlink, 3) \
1080 x(ec, 4) \
1081 x(journal_seq_blacklist_v3, 5) \
1082 x(reflink, 6) \
1083 x(new_siphash, 7) \
1084 x(inline_data, 8) \
1085 x(new_extent_overwrite, 9) \
1086 x(incompressible, 10) \
1087 x(btree_ptr_v2, 11) \
1088 x(extents_above_btree_updates, 12) \
1089 x(btree_updates_journalled, 13) \
1090 x(reflink_inline_data, 14) \
1091 x(new_varint, 15) \
1092 x(journal_no_flush, 16) \
1093 x(alloc_v2, 17) \
1094 x(extents_across_btree_nodes, 18)
1095
1096#define BCH_SB_FEATURES_ALWAYS \
1097 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \
1098 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\
1099 (1ULL << BCH_FEATURE_btree_updates_journalled)|\
1100 (1ULL << BCH_FEATURE_alloc_v2)|\
1101 (1ULL << BCH_FEATURE_extents_across_btree_nodes))
1102
1103#define BCH_SB_FEATURES_ALL \
1104 (BCH_SB_FEATURES_ALWAYS| \
1105 (1ULL << BCH_FEATURE_new_siphash)| \
1106 (1ULL << BCH_FEATURE_btree_ptr_v2)| \
1107 (1ULL << BCH_FEATURE_new_varint)| \
1108 (1ULL << BCH_FEATURE_journal_no_flush))
1109
1110enum bch_sb_feature {
1111#define x(f, n) BCH_FEATURE_##f,
1112 BCH_SB_FEATURES()
1113#undef x
1114 BCH_FEATURE_NR,
1115};
1116
1117#define BCH_SB_COMPAT() \
1118 x(alloc_info, 0) \
1119 x(alloc_metadata, 1) \
1120 x(extents_above_btree_updates_done, 2) \
1121 x(bformat_overflow_done, 3)
1122
1123enum bch_sb_compat {
1124#define x(f, n) BCH_COMPAT_##f,
1125 BCH_SB_COMPAT()
1126#undef x
1127 BCH_COMPAT_NR,
1128};
1129
1130/* options: */
1131
1132#define BCH_VERSION_UPGRADE_OPTS() \
1133 x(compatible, 0) \
1134 x(incompatible, 1) \
1135 x(none, 2)
1136
1137enum bch_version_upgrade_opts {
1138#define x(t, n) BCH_VERSION_UPGRADE_##t = n,
1139 BCH_VERSION_UPGRADE_OPTS()
1140#undef x
1141};
1142
1143#define BCH_REPLICAS_MAX 4U
1144
1145#define BCH_BKEY_PTRS_MAX 16U
1146
1147#define BCH_ERROR_ACTIONS() \
1148 x(continue, 0) \
1149 x(ro, 1) \
1150 x(panic, 2)
1151
1152enum bch_error_actions {
1153#define x(t, n) BCH_ON_ERROR_##t = n,
1154 BCH_ERROR_ACTIONS()
1155#undef x
1156 BCH_ON_ERROR_NR
1157};
1158
1159#define BCH_STR_HASH_TYPES() \
1160 x(crc32c, 0) \
1161 x(crc64, 1) \
1162 x(siphash_old, 2) \
1163 x(siphash, 3)
1164
1165enum bch_str_hash_type {
1166#define x(t, n) BCH_STR_HASH_##t = n,
1167 BCH_STR_HASH_TYPES()
1168#undef x
1169 BCH_STR_HASH_NR
1170};
1171
1172#define BCH_STR_HASH_OPTS() \
1173 x(crc32c, 0) \
1174 x(crc64, 1) \
1175 x(siphash, 2)
1176
1177enum bch_str_hash_opts {
1178#define x(t, n) BCH_STR_HASH_OPT_##t = n,
1179 BCH_STR_HASH_OPTS()
1180#undef x
1181 BCH_STR_HASH_OPT_NR
1182};
1183
1184#define BCH_CSUM_TYPES() \
1185 x(none, 0) \
1186 x(crc32c_nonzero, 1) \
1187 x(crc64_nonzero, 2) \
1188 x(chacha20_poly1305_80, 3) \
1189 x(chacha20_poly1305_128, 4) \
1190 x(crc32c, 5) \
1191 x(crc64, 6) \
1192 x(xxhash, 7)
1193
1194enum bch_csum_type {
1195#define x(t, n) BCH_CSUM_##t = n,
1196 BCH_CSUM_TYPES()
1197#undef x
1198 BCH_CSUM_NR
1199};
1200
1201static const __maybe_unused unsigned bch_crc_bytes[] = {
1202 [BCH_CSUM_none] = 0,
1203 [BCH_CSUM_crc32c_nonzero] = 4,
1204 [BCH_CSUM_crc32c] = 4,
1205 [BCH_CSUM_crc64_nonzero] = 8,
1206 [BCH_CSUM_crc64] = 8,
1207 [BCH_CSUM_xxhash] = 8,
1208 [BCH_CSUM_chacha20_poly1305_80] = 10,
1209 [BCH_CSUM_chacha20_poly1305_128] = 16,
1210};
1211
1212static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type)
1213{
1214 switch (type) {
1215 case BCH_CSUM_chacha20_poly1305_80:
1216 case BCH_CSUM_chacha20_poly1305_128:
1217 return true;
1218 default:
1219 return false;
1220 }
1221}
1222
1223#define BCH_CSUM_OPTS() \
1224 x(none, 0) \
1225 x(crc32c, 1) \
1226 x(crc64, 2) \
1227 x(xxhash, 3)
1228
1229enum bch_csum_opts {
1230#define x(t, n) BCH_CSUM_OPT_##t = n,
1231 BCH_CSUM_OPTS()
1232#undef x
1233 BCH_CSUM_OPT_NR
1234};
1235
1236#define BCH_COMPRESSION_TYPES() \
1237 x(none, 0) \
1238 x(lz4_old, 1) \
1239 x(gzip, 2) \
1240 x(lz4, 3) \
1241 x(zstd, 4) \
1242 x(incompressible, 5)
1243
1244enum bch_compression_type {
1245#define x(t, n) BCH_COMPRESSION_TYPE_##t = n,
1246 BCH_COMPRESSION_TYPES()
1247#undef x
1248 BCH_COMPRESSION_TYPE_NR
1249};
1250
1251#define BCH_COMPRESSION_OPTS() \
1252 x(none, 0) \
1253 x(lz4, 1) \
1254 x(gzip, 2) \
1255 x(zstd, 3)
1256
1257enum bch_compression_opts {
1258#define x(t, n) BCH_COMPRESSION_OPT_##t = n,
1259 BCH_COMPRESSION_OPTS()
1260#undef x
1261 BCH_COMPRESSION_OPT_NR
1262};
1263
1264/*
1265 * Magic numbers
1266 *
1267 * The various other data structures have their own magic numbers, which are
1268 * xored with the first part of the cache set's UUID
1269 */
1270
1271#define BCACHE_MAGIC \
1272 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \
1273 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81)
1274#define BCHFS_MAGIC \
1275 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \
1276 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef)
1277
1278#define BCACHEFS_STATFS_MAGIC 0xca451a4e
1279
1280#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL)
1281#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL)
1282
1283static inline __le64 __bch2_sb_magic(struct bch_sb *sb)
1284{
1285 __le64 ret;
1286
1287 memcpy(&ret, &sb->uuid, sizeof(ret));
1288 return ret;
1289}
1290
1291static inline __u64 __jset_magic(struct bch_sb *sb)
1292{
1293 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC);
1294}
1295
1296static inline __u64 __bset_magic(struct bch_sb *sb)
1297{
1298 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC);
1299}
1300
1301/* Journal */
1302
1303#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64))
1304
1305#define BCH_JSET_ENTRY_TYPES() \
1306 x(btree_keys, 0) \
1307 x(btree_root, 1) \
1308 x(prio_ptrs, 2) \
1309 x(blacklist, 3) \
1310 x(blacklist_v2, 4) \
1311 x(usage, 5) \
1312 x(data_usage, 6) \
1313 x(clock, 7) \
1314 x(dev_usage, 8) \
1315 x(log, 9) \
1316 x(overwrite, 10) \
1317 x(write_buffer_keys, 11) \
1318 x(datetime, 12)
1319
1320enum bch_jset_entry_type {
1321#define x(f, nr) BCH_JSET_ENTRY_##f = nr,
1322 BCH_JSET_ENTRY_TYPES()
1323#undef x
1324 BCH_JSET_ENTRY_NR
1325};
1326
1327static inline bool jset_entry_is_key(struct jset_entry *e)
1328{
1329 switch (e->type) {
1330 case BCH_JSET_ENTRY_btree_keys:
1331 case BCH_JSET_ENTRY_btree_root:
1332 case BCH_JSET_ENTRY_overwrite:
1333 case BCH_JSET_ENTRY_write_buffer_keys:
1334 return true;
1335 }
1336
1337 return false;
1338}
1339
1340/*
1341 * Journal sequence numbers can be blacklisted: bsets record the max sequence
1342 * number of all the journal entries they contain updates for, so that on
1343 * recovery we can ignore those bsets that contain index updates newer that what
1344 * made it into the journal.
1345 *
1346 * This means that we can't reuse that journal_seq - we have to skip it, and
1347 * then record that we skipped it so that the next time we crash and recover we
1348 * don't think there was a missing journal entry.
1349 */
1350struct jset_entry_blacklist {
1351 struct jset_entry entry;
1352 __le64 seq;
1353};
1354
1355struct jset_entry_blacklist_v2 {
1356 struct jset_entry entry;
1357 __le64 start;
1358 __le64 end;
1359};
1360
1361#define BCH_FS_USAGE_TYPES() \
1362 x(reserved, 0) \
1363 x(inodes, 1) \
1364 x(key_version, 2)
1365
1366enum bch_fs_usage_type {
1367#define x(f, nr) BCH_FS_USAGE_##f = nr,
1368 BCH_FS_USAGE_TYPES()
1369#undef x
1370 BCH_FS_USAGE_NR
1371};
1372
1373struct jset_entry_usage {
1374 struct jset_entry entry;
1375 __le64 v;
1376} __packed;
1377
1378struct jset_entry_data_usage {
1379 struct jset_entry entry;
1380 __le64 v;
1381 struct bch_replicas_entry_v1 r;
1382} __packed;
1383
1384struct jset_entry_clock {
1385 struct jset_entry entry;
1386 __u8 rw;
1387 __u8 pad[7];
1388 __le64 time;
1389} __packed;
1390
1391struct jset_entry_dev_usage_type {
1392 __le64 buckets;
1393 __le64 sectors;
1394 __le64 fragmented;
1395} __packed;
1396
1397struct jset_entry_dev_usage {
1398 struct jset_entry entry;
1399 __le32 dev;
1400 __u32 pad;
1401
1402 __le64 _buckets_ec; /* No longer used */
1403 __le64 _buckets_unavailable; /* No longer used */
1404
1405 struct jset_entry_dev_usage_type d[];
1406};
1407
1408static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u)
1409{
1410 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) /
1411 sizeof(struct jset_entry_dev_usage_type);
1412}
1413
1414struct jset_entry_log {
1415 struct jset_entry entry;
1416 u8 d[];
1417} __packed __aligned(8);
1418
1419struct jset_entry_datetime {
1420 struct jset_entry entry;
1421 __le64 seconds;
1422} __packed __aligned(8);
1423
1424/*
1425 * On disk format for a journal entry:
1426 * seq is monotonically increasing; every journal entry has its own unique
1427 * sequence number.
1428 *
1429 * last_seq is the oldest journal entry that still has keys the btree hasn't
1430 * flushed to disk yet.
1431 *
1432 * version is for on disk format changes.
1433 */
1434struct jset {
1435 struct bch_csum csum;
1436
1437 __le64 magic;
1438 __le64 seq;
1439 __le32 version;
1440 __le32 flags;
1441
1442 __le32 u64s; /* size of d[] in u64s */
1443
1444 __u8 encrypted_start[0];
1445
1446 __le16 _read_clock; /* no longer used */
1447 __le16 _write_clock;
1448
1449 /* Sequence number of oldest dirty journal entry */
1450 __le64 last_seq;
1451
1452
1453 struct jset_entry start[0];
1454 __u64 _data[];
1455} __packed __aligned(8);
1456
1457LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4);
1458LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5);
1459LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6);
1460
1461#define BCH_JOURNAL_BUCKETS_MIN 8
1462
1463/* Btree: */
1464
1465enum btree_id_flags {
1466 BTREE_ID_EXTENTS = BIT(0),
1467 BTREE_ID_SNAPSHOTS = BIT(1),
1468 BTREE_ID_SNAPSHOT_FIELD = BIT(2),
1469 BTREE_ID_DATA = BIT(3),
1470};
1471
1472#define BCH_BTREE_IDS() \
1473 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\
1474 BIT_ULL(KEY_TYPE_whiteout)| \
1475 BIT_ULL(KEY_TYPE_error)| \
1476 BIT_ULL(KEY_TYPE_cookie)| \
1477 BIT_ULL(KEY_TYPE_extent)| \
1478 BIT_ULL(KEY_TYPE_reservation)| \
1479 BIT_ULL(KEY_TYPE_reflink_p)| \
1480 BIT_ULL(KEY_TYPE_inline_data)) \
1481 x(inodes, 1, BTREE_ID_SNAPSHOTS, \
1482 BIT_ULL(KEY_TYPE_whiteout)| \
1483 BIT_ULL(KEY_TYPE_inode)| \
1484 BIT_ULL(KEY_TYPE_inode_v2)| \
1485 BIT_ULL(KEY_TYPE_inode_v3)| \
1486 BIT_ULL(KEY_TYPE_inode_generation)) \
1487 x(dirents, 2, BTREE_ID_SNAPSHOTS, \
1488 BIT_ULL(KEY_TYPE_whiteout)| \
1489 BIT_ULL(KEY_TYPE_hash_whiteout)| \
1490 BIT_ULL(KEY_TYPE_dirent)) \
1491 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \
1492 BIT_ULL(KEY_TYPE_whiteout)| \
1493 BIT_ULL(KEY_TYPE_cookie)| \
1494 BIT_ULL(KEY_TYPE_hash_whiteout)| \
1495 BIT_ULL(KEY_TYPE_xattr)) \
1496 x(alloc, 4, 0, \
1497 BIT_ULL(KEY_TYPE_alloc)| \
1498 BIT_ULL(KEY_TYPE_alloc_v2)| \
1499 BIT_ULL(KEY_TYPE_alloc_v3)| \
1500 BIT_ULL(KEY_TYPE_alloc_v4)) \
1501 x(quotas, 5, 0, \
1502 BIT_ULL(KEY_TYPE_quota)) \
1503 x(stripes, 6, 0, \
1504 BIT_ULL(KEY_TYPE_stripe)) \
1505 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \
1506 BIT_ULL(KEY_TYPE_reflink_v)| \
1507 BIT_ULL(KEY_TYPE_indirect_inline_data)| \
1508 BIT_ULL(KEY_TYPE_error)) \
1509 x(subvolumes, 8, 0, \
1510 BIT_ULL(KEY_TYPE_subvolume)) \
1511 x(snapshots, 9, 0, \
1512 BIT_ULL(KEY_TYPE_snapshot)) \
1513 x(lru, 10, 0, \
1514 BIT_ULL(KEY_TYPE_set)) \
1515 x(freespace, 11, BTREE_ID_EXTENTS, \
1516 BIT_ULL(KEY_TYPE_set)) \
1517 x(need_discard, 12, 0, \
1518 BIT_ULL(KEY_TYPE_set)) \
1519 x(backpointers, 13, 0, \
1520 BIT_ULL(KEY_TYPE_backpointer)) \
1521 x(bucket_gens, 14, 0, \
1522 BIT_ULL(KEY_TYPE_bucket_gens)) \
1523 x(snapshot_trees, 15, 0, \
1524 BIT_ULL(KEY_TYPE_snapshot_tree)) \
1525 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \
1526 BIT_ULL(KEY_TYPE_set)) \
1527 x(logged_ops, 17, 0, \
1528 BIT_ULL(KEY_TYPE_logged_op_truncate)| \
1529 BIT_ULL(KEY_TYPE_logged_op_finsert)) \
1530 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \
1531 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \
1532 x(subvolume_children, 19, 0, \
1533 BIT_ULL(KEY_TYPE_set))
1534
1535enum btree_id {
1536#define x(name, nr, ...) BTREE_ID_##name = nr,
1537 BCH_BTREE_IDS()
1538#undef x
1539 BTREE_ID_NR
1540};
1541
1542static inline bool btree_id_is_alloc(enum btree_id id)
1543{
1544 switch (id) {
1545 case BTREE_ID_alloc:
1546 case BTREE_ID_backpointers:
1547 case BTREE_ID_need_discard:
1548 case BTREE_ID_freespace:
1549 case BTREE_ID_bucket_gens:
1550 return true;
1551 default:
1552 return false;
1553 }
1554}
1555
1556#define BTREE_MAX_DEPTH 4U
1557
1558/* Btree nodes */
1559
1560/*
1561 * Btree nodes
1562 *
1563 * On disk a btree node is a list/log of these; within each set the keys are
1564 * sorted
1565 */
1566struct bset {
1567 __le64 seq;
1568
1569 /*
1570 * Highest journal entry this bset contains keys for.
1571 * If on recovery we don't see that journal entry, this bset is ignored:
1572 * this allows us to preserve the order of all index updates after a
1573 * crash, since the journal records a total order of all index updates
1574 * and anything that didn't make it to the journal doesn't get used.
1575 */
1576 __le64 journal_seq;
1577
1578 __le32 flags;
1579 __le16 version;
1580 __le16 u64s; /* count of d[] in u64s */
1581
1582 struct bkey_packed start[0];
1583 __u64 _data[];
1584} __packed __aligned(8);
1585
1586LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4);
1587
1588LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5);
1589LE32_BITMASK(BSET_SEPARATE_WHITEOUTS,
1590 struct bset, flags, 5, 6);
1591
1592/* Sector offset within the btree node: */
1593LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32);
1594
1595struct btree_node {
1596 struct bch_csum csum;
1597 __le64 magic;
1598
1599 /* this flags field is encrypted, unlike bset->flags: */
1600 __le64 flags;
1601
1602 /* Closed interval: */
1603 struct bpos min_key;
1604 struct bpos max_key;
1605 struct bch_extent_ptr _ptr; /* not used anymore */
1606 struct bkey_format format;
1607
1608 union {
1609 struct bset keys;
1610 struct {
1611 __u8 pad[22];
1612 __le16 u64s;
1613 __u64 _data[0];
1614
1615 };
1616 };
1617} __packed __aligned(8);
1618
1619LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4);
1620LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8);
1621LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE,
1622 struct btree_node, flags, 8, 9);
1623LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25);
1624/* 25-32 unused */
1625LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64);
1626
1627static inline __u64 BTREE_NODE_ID(struct btree_node *n)
1628{
1629 return BTREE_NODE_ID_LO(k: n) | (BTREE_NODE_ID_HI(k: n) << 4);
1630}
1631
1632static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v)
1633{
1634 SET_BTREE_NODE_ID_LO(k: n, v);
1635 SET_BTREE_NODE_ID_HI(k: n, v: v >> 4);
1636}
1637
1638struct btree_node_entry {
1639 struct bch_csum csum;
1640
1641 union {
1642 struct bset keys;
1643 struct {
1644 __u8 pad[22];
1645 __le16 u64s;
1646 __u64 _data[0];
1647 };
1648 };
1649} __packed __aligned(8);
1650
1651#endif /* _BCACHEFS_FORMAT_H */
1652

source code of linux/fs/bcachefs/bcachefs_format.h