1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) Qu Wenruo 2017. All rights reserved.
4 */
5
6/*
7 * The module is used to catch unexpected/corrupted tree block data.
8 * Such behavior can be caused either by a fuzzed image or bugs.
9 *
10 * The objective is to do leaf/node validation checks when tree block is read
11 * from disk, and check *every* possible member, so other code won't
12 * need to checking them again.
13 *
14 * Due to the potential and unwanted damage, every checker needs to be
15 * carefully reviewed otherwise so it does not prevent mount of valid images.
16 */
17
18#include <linux/types.h>
19#include <linux/stddef.h>
20#include <linux/error-injection.h>
21#include "messages.h"
22#include "ctree.h"
23#include "tree-checker.h"
24#include "disk-io.h"
25#include "compression.h"
26#include "volumes.h"
27#include "misc.h"
28#include "fs.h"
29#include "accessors.h"
30#include "file-item.h"
31#include "inode-item.h"
32#include "dir-item.h"
33#include "raid-stripe-tree.h"
34
35/*
36 * Error message should follow the following format:
37 * corrupt <type>: <identifier>, <reason>[, <bad_value>]
38 *
39 * @type: leaf or node
40 * @identifier: the necessary info to locate the leaf/node.
41 * It's recommended to decode key.objecitd/offset if it's
42 * meaningful.
43 * @reason: describe the error
44 * @bad_value: optional, it's recommended to output bad value and its
45 * expected value (range).
46 *
47 * Since comma is used to separate the components, only space is allowed
48 * inside each component.
49 */
50
51/*
52 * Append generic "corrupt leaf/node root=%llu block=%llu slot=%d: " to @fmt.
53 * Allows callers to customize the output.
54 */
55__printf(3, 4)
56__cold
57static void generic_err(const struct extent_buffer *eb, int slot,
58 const char *fmt, ...)
59{
60 const struct btrfs_fs_info *fs_info = eb->fs_info;
61 struct va_format vaf;
62 va_list args;
63
64 va_start(args, fmt);
65
66 vaf.fmt = fmt;
67 vaf.va = &args;
68
69 btrfs_crit(fs_info,
70 "corrupt %s: root=%llu block=%llu slot=%d, %pV",
71 btrfs_header_level(eb) == 0 ? "leaf" : "node",
72 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot, &vaf);
73 va_end(args);
74}
75
76/*
77 * Customized reporter for extent data item, since its key objectid and
78 * offset has its own meaning.
79 */
80__printf(3, 4)
81__cold
82static void file_extent_err(const struct extent_buffer *eb, int slot,
83 const char *fmt, ...)
84{
85 const struct btrfs_fs_info *fs_info = eb->fs_info;
86 struct btrfs_key key;
87 struct va_format vaf;
88 va_list args;
89
90 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 btrfs_crit(fs_info,
97 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu file_offset=%llu, %pV",
98 btrfs_header_level(eb) == 0 ? "leaf" : "node",
99 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
100 key.objectid, key.offset, &vaf);
101 va_end(args);
102}
103
104/*
105 * Return 0 if the btrfs_file_extent_##name is aligned to @alignment
106 * Else return 1
107 */
108#define CHECK_FE_ALIGNED(leaf, slot, fi, name, alignment) \
109({ \
110 if (unlikely(!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), \
111 (alignment)))) \
112 file_extent_err((leaf), (slot), \
113 "invalid %s for file extent, have %llu, should be aligned to %u", \
114 (#name), btrfs_file_extent_##name((leaf), (fi)), \
115 (alignment)); \
116 (!IS_ALIGNED(btrfs_file_extent_##name((leaf), (fi)), (alignment))); \
117})
118
119static u64 file_extent_end(struct extent_buffer *leaf,
120 struct btrfs_key *key,
121 struct btrfs_file_extent_item *extent)
122{
123 u64 end;
124 u64 len;
125
126 if (btrfs_file_extent_type(eb: leaf, s: extent) == BTRFS_FILE_EXTENT_INLINE) {
127 len = btrfs_file_extent_ram_bytes(eb: leaf, s: extent);
128 end = ALIGN(key->offset + len, leaf->fs_info->sectorsize);
129 } else {
130 len = btrfs_file_extent_num_bytes(eb: leaf, s: extent);
131 end = key->offset + len;
132 }
133 return end;
134}
135
136/*
137 * Customized report for dir_item, the only new important information is
138 * key->objectid, which represents inode number
139 */
140__printf(3, 4)
141__cold
142static void dir_item_err(const struct extent_buffer *eb, int slot,
143 const char *fmt, ...)
144{
145 const struct btrfs_fs_info *fs_info = eb->fs_info;
146 struct btrfs_key key;
147 struct va_format vaf;
148 va_list args;
149
150 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
151 va_start(args, fmt);
152
153 vaf.fmt = fmt;
154 vaf.va = &args;
155
156 btrfs_crit(fs_info,
157 "corrupt %s: root=%llu block=%llu slot=%d ino=%llu, %pV",
158 btrfs_header_level(eb) == 0 ? "leaf" : "node",
159 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
160 key.objectid, &vaf);
161 va_end(args);
162}
163
164/*
165 * This functions checks prev_key->objectid, to ensure current key and prev_key
166 * share the same objectid as inode number.
167 *
168 * This is to detect missing INODE_ITEM in subvolume trees.
169 *
170 * Return true if everything is OK or we don't need to check.
171 * Return false if anything is wrong.
172 */
173static bool check_prev_ino(struct extent_buffer *leaf,
174 struct btrfs_key *key, int slot,
175 struct btrfs_key *prev_key)
176{
177 /* No prev key, skip check */
178 if (slot == 0)
179 return true;
180
181 /* Only these key->types needs to be checked */
182 ASSERT(key->type == BTRFS_XATTR_ITEM_KEY ||
183 key->type == BTRFS_INODE_REF_KEY ||
184 key->type == BTRFS_DIR_INDEX_KEY ||
185 key->type == BTRFS_DIR_ITEM_KEY ||
186 key->type == BTRFS_EXTENT_DATA_KEY);
187
188 /*
189 * Only subvolume trees along with their reloc trees need this check.
190 * Things like log tree doesn't follow this ino requirement.
191 */
192 if (!is_fstree(rootid: btrfs_header_owner(eb: leaf)))
193 return true;
194
195 if (key->objectid == prev_key->objectid)
196 return true;
197
198 /* Error found */
199 dir_item_err(eb: leaf, slot,
200 fmt: "invalid previous key objectid, have %llu expect %llu",
201 prev_key->objectid, key->objectid);
202 return false;
203}
204static int check_extent_data_item(struct extent_buffer *leaf,
205 struct btrfs_key *key, int slot,
206 struct btrfs_key *prev_key)
207{
208 struct btrfs_fs_info *fs_info = leaf->fs_info;
209 struct btrfs_file_extent_item *fi;
210 u32 sectorsize = fs_info->sectorsize;
211 u32 item_size = btrfs_item_size(eb: leaf, slot);
212 u64 extent_end;
213
214 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
215 file_extent_err(eb: leaf, slot,
216fmt: "unaligned file_offset for file extent, have %llu should be aligned to %u",
217 key->offset, sectorsize);
218 return -EUCLEAN;
219 }
220
221 /*
222 * Previous key must have the same key->objectid (ino).
223 * It can be XATTR_ITEM, INODE_ITEM or just another EXTENT_DATA.
224 * But if objectids mismatch, it means we have a missing
225 * INODE_ITEM.
226 */
227 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
228 return -EUCLEAN;
229
230 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
231
232 /*
233 * Make sure the item contains at least inline header, so the file
234 * extent type is not some garbage.
235 */
236 if (unlikely(item_size < BTRFS_FILE_EXTENT_INLINE_DATA_START)) {
237 file_extent_err(eb: leaf, slot,
238 fmt: "invalid item size, have %u expect [%zu, %u)",
239 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START,
240 SZ_4K);
241 return -EUCLEAN;
242 }
243 if (unlikely(btrfs_file_extent_type(leaf, fi) >=
244 BTRFS_NR_FILE_EXTENT_TYPES)) {
245 file_extent_err(eb: leaf, slot,
246 fmt: "invalid type for file extent, have %u expect range [0, %u]",
247 btrfs_file_extent_type(eb: leaf, s: fi),
248 BTRFS_NR_FILE_EXTENT_TYPES - 1);
249 return -EUCLEAN;
250 }
251
252 /*
253 * Support for new compression/encryption must introduce incompat flag,
254 * and must be caught in open_ctree().
255 */
256 if (unlikely(btrfs_file_extent_compression(leaf, fi) >=
257 BTRFS_NR_COMPRESS_TYPES)) {
258 file_extent_err(eb: leaf, slot,
259 fmt: "invalid compression for file extent, have %u expect range [0, %u]",
260 btrfs_file_extent_compression(eb: leaf, s: fi),
261 BTRFS_NR_COMPRESS_TYPES - 1);
262 return -EUCLEAN;
263 }
264 if (unlikely(btrfs_file_extent_encryption(leaf, fi))) {
265 file_extent_err(eb: leaf, slot,
266 fmt: "invalid encryption for file extent, have %u expect 0",
267 btrfs_file_extent_encryption(eb: leaf, s: fi));
268 return -EUCLEAN;
269 }
270 if (btrfs_file_extent_type(eb: leaf, s: fi) == BTRFS_FILE_EXTENT_INLINE) {
271 /* Inline extent must have 0 as key offset */
272 if (unlikely(key->offset)) {
273 file_extent_err(eb: leaf, slot,
274 fmt: "invalid file_offset for inline file extent, have %llu expect 0",
275 key->offset);
276 return -EUCLEAN;
277 }
278
279 /* Compressed inline extent has no on-disk size, skip it */
280 if (btrfs_file_extent_compression(eb: leaf, s: fi) !=
281 BTRFS_COMPRESS_NONE)
282 return 0;
283
284 /* Uncompressed inline extent size must match item size */
285 if (unlikely(item_size != BTRFS_FILE_EXTENT_INLINE_DATA_START +
286 btrfs_file_extent_ram_bytes(leaf, fi))) {
287 file_extent_err(eb: leaf, slot,
288 fmt: "invalid ram_bytes for uncompressed inline extent, have %u expect %llu",
289 item_size, BTRFS_FILE_EXTENT_INLINE_DATA_START +
290 btrfs_file_extent_ram_bytes(eb: leaf, s: fi));
291 return -EUCLEAN;
292 }
293 return 0;
294 }
295
296 /* Regular or preallocated extent has fixed item size */
297 if (unlikely(item_size != sizeof(*fi))) {
298 file_extent_err(eb: leaf, slot,
299 fmt: "invalid item size for reg/prealloc file extent, have %u expect %zu",
300 item_size, sizeof(*fi));
301 return -EUCLEAN;
302 }
303 if (unlikely(CHECK_FE_ALIGNED(leaf, slot, fi, ram_bytes, sectorsize) ||
304 CHECK_FE_ALIGNED(leaf, slot, fi, disk_bytenr, sectorsize) ||
305 CHECK_FE_ALIGNED(leaf, slot, fi, disk_num_bytes, sectorsize) ||
306 CHECK_FE_ALIGNED(leaf, slot, fi, offset, sectorsize) ||
307 CHECK_FE_ALIGNED(leaf, slot, fi, num_bytes, sectorsize)))
308 return -EUCLEAN;
309
310 /* Catch extent end overflow */
311 if (unlikely(check_add_overflow(btrfs_file_extent_num_bytes(leaf, fi),
312 key->offset, &extent_end))) {
313 file_extent_err(eb: leaf, slot,
314 fmt: "extent end overflow, have file offset %llu extent num bytes %llu",
315 key->offset,
316 btrfs_file_extent_num_bytes(eb: leaf, s: fi));
317 return -EUCLEAN;
318 }
319
320 /*
321 * Check that no two consecutive file extent items, in the same leaf,
322 * present ranges that overlap each other.
323 */
324 if (slot > 0 &&
325 prev_key->objectid == key->objectid &&
326 prev_key->type == BTRFS_EXTENT_DATA_KEY) {
327 struct btrfs_file_extent_item *prev_fi;
328 u64 prev_end;
329
330 prev_fi = btrfs_item_ptr(leaf, slot - 1,
331 struct btrfs_file_extent_item);
332 prev_end = file_extent_end(leaf, key: prev_key, extent: prev_fi);
333 if (unlikely(prev_end > key->offset)) {
334 file_extent_err(eb: leaf, slot: slot - 1,
335fmt: "file extent end range (%llu) goes beyond start offset (%llu) of the next file extent",
336 prev_end, key->offset);
337 return -EUCLEAN;
338 }
339 }
340
341 return 0;
342}
343
344static int check_csum_item(struct extent_buffer *leaf, struct btrfs_key *key,
345 int slot, struct btrfs_key *prev_key)
346{
347 struct btrfs_fs_info *fs_info = leaf->fs_info;
348 u32 sectorsize = fs_info->sectorsize;
349 const u32 csumsize = fs_info->csum_size;
350
351 if (unlikely(key->objectid != BTRFS_EXTENT_CSUM_OBJECTID)) {
352 generic_err(eb: leaf, slot,
353 fmt: "invalid key objectid for csum item, have %llu expect %llu",
354 key->objectid, BTRFS_EXTENT_CSUM_OBJECTID);
355 return -EUCLEAN;
356 }
357 if (unlikely(!IS_ALIGNED(key->offset, sectorsize))) {
358 generic_err(eb: leaf, slot,
359 fmt: "unaligned key offset for csum item, have %llu should be aligned to %u",
360 key->offset, sectorsize);
361 return -EUCLEAN;
362 }
363 if (unlikely(!IS_ALIGNED(btrfs_item_size(leaf, slot), csumsize))) {
364 generic_err(eb: leaf, slot,
365 fmt: "unaligned item size for csum item, have %u should be aligned to %u",
366 btrfs_item_size(eb: leaf, slot), csumsize);
367 return -EUCLEAN;
368 }
369 if (slot > 0 && prev_key->type == BTRFS_EXTENT_CSUM_KEY) {
370 u64 prev_csum_end;
371 u32 prev_item_size;
372
373 prev_item_size = btrfs_item_size(eb: leaf, slot: slot - 1);
374 prev_csum_end = (prev_item_size / csumsize) * sectorsize;
375 prev_csum_end += prev_key->offset;
376 if (unlikely(prev_csum_end > key->offset)) {
377 generic_err(eb: leaf, slot: slot - 1,
378fmt: "csum end range (%llu) goes beyond the start range (%llu) of the next csum item",
379 prev_csum_end, key->offset);
380 return -EUCLEAN;
381 }
382 }
383 return 0;
384}
385
386/* Inode item error output has the same format as dir_item_err() */
387#define inode_item_err(eb, slot, fmt, ...) \
388 dir_item_err(eb, slot, fmt, __VA_ARGS__)
389
390static int check_inode_key(struct extent_buffer *leaf, struct btrfs_key *key,
391 int slot)
392{
393 struct btrfs_key item_key;
394 bool is_inode_item;
395
396 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &item_key, nr: slot);
397 is_inode_item = (item_key.type == BTRFS_INODE_ITEM_KEY);
398
399 /* For XATTR_ITEM, location key should be all 0 */
400 if (item_key.type == BTRFS_XATTR_ITEM_KEY) {
401 if (unlikely(key->objectid != 0 || key->type != 0 ||
402 key->offset != 0))
403 return -EUCLEAN;
404 return 0;
405 }
406
407 if (unlikely((key->objectid < BTRFS_FIRST_FREE_OBJECTID ||
408 key->objectid > BTRFS_LAST_FREE_OBJECTID) &&
409 key->objectid != BTRFS_ROOT_TREE_DIR_OBJECTID &&
410 key->objectid != BTRFS_FREE_INO_OBJECTID)) {
411 if (is_inode_item) {
412 generic_err(eb: leaf, slot,
413 fmt: "invalid key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
414 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
415 BTRFS_FIRST_FREE_OBJECTID,
416 BTRFS_LAST_FREE_OBJECTID,
417 BTRFS_FREE_INO_OBJECTID);
418 } else {
419 dir_item_err(eb: leaf, slot,
420fmt: "invalid location key objectid: has %llu expect %llu or [%llu, %llu] or %llu",
421 key->objectid, BTRFS_ROOT_TREE_DIR_OBJECTID,
422 BTRFS_FIRST_FREE_OBJECTID,
423 BTRFS_LAST_FREE_OBJECTID,
424 BTRFS_FREE_INO_OBJECTID);
425 }
426 return -EUCLEAN;
427 }
428 if (unlikely(key->offset != 0)) {
429 if (is_inode_item)
430 inode_item_err(leaf, slot,
431 "invalid key offset: has %llu expect 0",
432 key->offset);
433 else
434 dir_item_err(eb: leaf, slot,
435 fmt: "invalid location key offset:has %llu expect 0",
436 key->offset);
437 return -EUCLEAN;
438 }
439 return 0;
440}
441
442static int check_root_key(struct extent_buffer *leaf, struct btrfs_key *key,
443 int slot)
444{
445 struct btrfs_key item_key;
446 bool is_root_item;
447
448 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &item_key, nr: slot);
449 is_root_item = (item_key.type == BTRFS_ROOT_ITEM_KEY);
450
451 /*
452 * Bad rootid for reloc trees.
453 *
454 * Reloc trees are only for subvolume trees, other trees only need
455 * to be COWed to be relocated.
456 */
457 if (unlikely(is_root_item && key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
458 !is_fstree(key->offset))) {
459 generic_err(eb: leaf, slot,
460 fmt: "invalid reloc tree for root %lld, root id is not a subvolume tree",
461 key->offset);
462 return -EUCLEAN;
463 }
464
465 /* No such tree id */
466 if (unlikely(key->objectid == 0)) {
467 if (is_root_item)
468 generic_err(eb: leaf, slot, fmt: "invalid root id 0");
469 else
470 dir_item_err(eb: leaf, slot,
471 fmt: "invalid location key root id 0");
472 return -EUCLEAN;
473 }
474
475 /* DIR_ITEM/INDEX/INODE_REF is not allowed to point to non-fs trees */
476 if (unlikely(!is_fstree(key->objectid) && !is_root_item)) {
477 dir_item_err(eb: leaf, slot,
478 fmt: "invalid location key objectid, have %llu expect [%llu, %llu]",
479 key->objectid, BTRFS_FIRST_FREE_OBJECTID,
480 BTRFS_LAST_FREE_OBJECTID);
481 return -EUCLEAN;
482 }
483
484 /*
485 * ROOT_ITEM with non-zero offset means this is a snapshot, created at
486 * @offset transid.
487 * Furthermore, for location key in DIR_ITEM, its offset is always -1.
488 *
489 * So here we only check offset for reloc tree whose key->offset must
490 * be a valid tree.
491 */
492 if (unlikely(key->objectid == BTRFS_TREE_RELOC_OBJECTID &&
493 key->offset == 0)) {
494 generic_err(eb: leaf, slot, fmt: "invalid root id 0 for reloc tree");
495 return -EUCLEAN;
496 }
497 return 0;
498}
499
500static int check_dir_item(struct extent_buffer *leaf,
501 struct btrfs_key *key, struct btrfs_key *prev_key,
502 int slot)
503{
504 struct btrfs_fs_info *fs_info = leaf->fs_info;
505 struct btrfs_dir_item *di;
506 u32 item_size = btrfs_item_size(eb: leaf, slot);
507 u32 cur = 0;
508
509 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
510 return -EUCLEAN;
511
512 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
513 while (cur < item_size) {
514 struct btrfs_key location_key;
515 u32 name_len;
516 u32 data_len;
517 u32 max_name_len;
518 u32 total_size;
519 u32 name_hash;
520 u8 dir_type;
521 int ret;
522
523 /* header itself should not cross item boundary */
524 if (unlikely(cur + sizeof(*di) > item_size)) {
525 dir_item_err(eb: leaf, slot,
526 fmt: "dir item header crosses item boundary, have %zu boundary %u",
527 cur + sizeof(*di), item_size);
528 return -EUCLEAN;
529 }
530
531 /* Location key check */
532 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &location_key);
533 if (location_key.type == BTRFS_ROOT_ITEM_KEY) {
534 ret = check_root_key(leaf, key: &location_key, slot);
535 if (unlikely(ret < 0))
536 return ret;
537 } else if (location_key.type == BTRFS_INODE_ITEM_KEY ||
538 location_key.type == 0) {
539 ret = check_inode_key(leaf, key: &location_key, slot);
540 if (unlikely(ret < 0))
541 return ret;
542 } else {
543 dir_item_err(eb: leaf, slot,
544 fmt: "invalid location key type, have %u, expect %u or %u",
545 location_key.type, BTRFS_ROOT_ITEM_KEY,
546 BTRFS_INODE_ITEM_KEY);
547 return -EUCLEAN;
548 }
549
550 /* dir type check */
551 dir_type = btrfs_dir_ftype(eb: leaf, item: di);
552 if (unlikely(dir_type >= BTRFS_FT_MAX)) {
553 dir_item_err(eb: leaf, slot,
554 fmt: "invalid dir item type, have %u expect [0, %u)",
555 dir_type, BTRFS_FT_MAX);
556 return -EUCLEAN;
557 }
558
559 if (unlikely(key->type == BTRFS_XATTR_ITEM_KEY &&
560 dir_type != BTRFS_FT_XATTR)) {
561 dir_item_err(eb: leaf, slot,
562 fmt: "invalid dir item type for XATTR key, have %u expect %u",
563 dir_type, BTRFS_FT_XATTR);
564 return -EUCLEAN;
565 }
566 if (unlikely(dir_type == BTRFS_FT_XATTR &&
567 key->type != BTRFS_XATTR_ITEM_KEY)) {
568 dir_item_err(eb: leaf, slot,
569 fmt: "xattr dir type found for non-XATTR key");
570 return -EUCLEAN;
571 }
572 if (dir_type == BTRFS_FT_XATTR)
573 max_name_len = XATTR_NAME_MAX;
574 else
575 max_name_len = BTRFS_NAME_LEN;
576
577 /* Name/data length check */
578 name_len = btrfs_dir_name_len(eb: leaf, s: di);
579 data_len = btrfs_dir_data_len(eb: leaf, s: di);
580 if (unlikely(name_len > max_name_len)) {
581 dir_item_err(eb: leaf, slot,
582 fmt: "dir item name len too long, have %u max %u",
583 name_len, max_name_len);
584 return -EUCLEAN;
585 }
586 if (unlikely(name_len + data_len > BTRFS_MAX_XATTR_SIZE(fs_info))) {
587 dir_item_err(eb: leaf, slot,
588 fmt: "dir item name and data len too long, have %u max %u",
589 name_len + data_len,
590 BTRFS_MAX_XATTR_SIZE(info: fs_info));
591 return -EUCLEAN;
592 }
593
594 if (unlikely(data_len && dir_type != BTRFS_FT_XATTR)) {
595 dir_item_err(eb: leaf, slot,
596 fmt: "dir item with invalid data len, have %u expect 0",
597 data_len);
598 return -EUCLEAN;
599 }
600
601 total_size = sizeof(*di) + name_len + data_len;
602
603 /* header and name/data should not cross item boundary */
604 if (unlikely(cur + total_size > item_size)) {
605 dir_item_err(eb: leaf, slot,
606 fmt: "dir item data crosses item boundary, have %u boundary %u",
607 cur + total_size, item_size);
608 return -EUCLEAN;
609 }
610
611 /*
612 * Special check for XATTR/DIR_ITEM, as key->offset is name
613 * hash, should match its name
614 */
615 if (key->type == BTRFS_DIR_ITEM_KEY ||
616 key->type == BTRFS_XATTR_ITEM_KEY) {
617 char namebuf[max(BTRFS_NAME_LEN, XATTR_NAME_MAX)];
618
619 read_extent_buffer(eb: leaf, dst: namebuf,
620 start: (unsigned long)(di + 1), len: name_len);
621 name_hash = btrfs_name_hash(name: namebuf, len: name_len);
622 if (unlikely(key->offset != name_hash)) {
623 dir_item_err(eb: leaf, slot,
624 fmt: "name hash mismatch with key, have 0x%016x expect 0x%016llx",
625 name_hash, key->offset);
626 return -EUCLEAN;
627 }
628 }
629 cur += total_size;
630 di = (struct btrfs_dir_item *)((void *)di + total_size);
631 }
632 return 0;
633}
634
635__printf(3, 4)
636__cold
637static void block_group_err(const struct extent_buffer *eb, int slot,
638 const char *fmt, ...)
639{
640 const struct btrfs_fs_info *fs_info = eb->fs_info;
641 struct btrfs_key key;
642 struct va_format vaf;
643 va_list args;
644
645 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
646 va_start(args, fmt);
647
648 vaf.fmt = fmt;
649 vaf.va = &args;
650
651 btrfs_crit(fs_info,
652 "corrupt %s: root=%llu block=%llu slot=%d bg_start=%llu bg_len=%llu, %pV",
653 btrfs_header_level(eb) == 0 ? "leaf" : "node",
654 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
655 key.objectid, key.offset, &vaf);
656 va_end(args);
657}
658
659static int check_block_group_item(struct extent_buffer *leaf,
660 struct btrfs_key *key, int slot)
661{
662 struct btrfs_fs_info *fs_info = leaf->fs_info;
663 struct btrfs_block_group_item bgi;
664 u32 item_size = btrfs_item_size(eb: leaf, slot);
665 u64 chunk_objectid;
666 u64 flags;
667 u64 type;
668
669 /*
670 * Here we don't really care about alignment since extent allocator can
671 * handle it. We care more about the size.
672 */
673 if (unlikely(key->offset == 0)) {
674 block_group_err(eb: leaf, slot,
675 fmt: "invalid block group size 0");
676 return -EUCLEAN;
677 }
678
679 if (unlikely(item_size != sizeof(bgi))) {
680 block_group_err(eb: leaf, slot,
681 fmt: "invalid item size, have %u expect %zu",
682 item_size, sizeof(bgi));
683 return -EUCLEAN;
684 }
685
686 read_extent_buffer(eb: leaf, dst: &bgi, btrfs_item_ptr_offset(leaf, slot),
687 len: sizeof(bgi));
688 chunk_objectid = btrfs_stack_block_group_chunk_objectid(s: &bgi);
689 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
690 /*
691 * We don't init the nr_global_roots until we load the global
692 * roots, so this could be 0 at mount time. If it's 0 we'll
693 * just assume we're fine, and later we'll check against our
694 * actual value.
695 */
696 if (unlikely(fs_info->nr_global_roots &&
697 chunk_objectid >= fs_info->nr_global_roots)) {
698 block_group_err(eb: leaf, slot,
699 fmt: "invalid block group global root id, have %llu, needs to be <= %llu",
700 chunk_objectid,
701 fs_info->nr_global_roots);
702 return -EUCLEAN;
703 }
704 } else if (unlikely(chunk_objectid != BTRFS_FIRST_CHUNK_TREE_OBJECTID)) {
705 block_group_err(eb: leaf, slot,
706 fmt: "invalid block group chunk objectid, have %llu expect %llu",
707 btrfs_stack_block_group_chunk_objectid(s: &bgi),
708 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
709 return -EUCLEAN;
710 }
711
712 if (unlikely(btrfs_stack_block_group_used(&bgi) > key->offset)) {
713 block_group_err(eb: leaf, slot,
714 fmt: "invalid block group used, have %llu expect [0, %llu)",
715 btrfs_stack_block_group_used(s: &bgi), key->offset);
716 return -EUCLEAN;
717 }
718
719 flags = btrfs_stack_block_group_flags(s: &bgi);
720 if (unlikely(hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) > 1)) {
721 block_group_err(eb: leaf, slot,
722fmt: "invalid profile flags, have 0x%llx (%lu bits set) expect no more than 1 bit set",
723 flags & BTRFS_BLOCK_GROUP_PROFILE_MASK,
724 hweight64(flags & BTRFS_BLOCK_GROUP_PROFILE_MASK));
725 return -EUCLEAN;
726 }
727
728 type = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
729 if (unlikely(type != BTRFS_BLOCK_GROUP_DATA &&
730 type != BTRFS_BLOCK_GROUP_METADATA &&
731 type != BTRFS_BLOCK_GROUP_SYSTEM &&
732 type != (BTRFS_BLOCK_GROUP_METADATA |
733 BTRFS_BLOCK_GROUP_DATA))) {
734 block_group_err(eb: leaf, slot,
735fmt: "invalid type, have 0x%llx (%lu bits set) expect either 0x%llx, 0x%llx, 0x%llx or 0x%llx",
736 type, hweight64(type),
737 BTRFS_BLOCK_GROUP_DATA, BTRFS_BLOCK_GROUP_METADATA,
738 BTRFS_BLOCK_GROUP_SYSTEM,
739 BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA);
740 return -EUCLEAN;
741 }
742 return 0;
743}
744
745__printf(4, 5)
746__cold
747static void chunk_err(const struct extent_buffer *leaf,
748 const struct btrfs_chunk *chunk, u64 logical,
749 const char *fmt, ...)
750{
751 const struct btrfs_fs_info *fs_info = leaf->fs_info;
752 bool is_sb;
753 struct va_format vaf;
754 va_list args;
755 int i;
756 int slot = -1;
757
758 /* Only superblock eb is able to have such small offset */
759 is_sb = (leaf->start == BTRFS_SUPER_INFO_OFFSET);
760
761 if (!is_sb) {
762 /*
763 * Get the slot number by iterating through all slots, this
764 * would provide better readability.
765 */
766 for (i = 0; i < btrfs_header_nritems(eb: leaf); i++) {
767 if (btrfs_item_ptr_offset(leaf, i) ==
768 (unsigned long)chunk) {
769 slot = i;
770 break;
771 }
772 }
773 }
774 va_start(args, fmt);
775 vaf.fmt = fmt;
776 vaf.va = &args;
777
778 if (is_sb)
779 btrfs_crit(fs_info,
780 "corrupt superblock syschunk array: chunk_start=%llu, %pV",
781 logical, &vaf);
782 else
783 btrfs_crit(fs_info,
784 "corrupt leaf: root=%llu block=%llu slot=%d chunk_start=%llu, %pV",
785 BTRFS_CHUNK_TREE_OBJECTID, leaf->start, slot,
786 logical, &vaf);
787 va_end(args);
788}
789
790/*
791 * The common chunk check which could also work on super block sys chunk array.
792 *
793 * Return -EUCLEAN if anything is corrupted.
794 * Return 0 if everything is OK.
795 */
796int btrfs_check_chunk_valid(struct extent_buffer *leaf,
797 struct btrfs_chunk *chunk, u64 logical)
798{
799 struct btrfs_fs_info *fs_info = leaf->fs_info;
800 u64 length;
801 u64 chunk_end;
802 u64 stripe_len;
803 u16 num_stripes;
804 u16 sub_stripes;
805 u64 type;
806 u64 features;
807 bool mixed = false;
808 int raid_index;
809 int nparity;
810 int ncopies;
811
812 length = btrfs_chunk_length(eb: leaf, s: chunk);
813 stripe_len = btrfs_chunk_stripe_len(eb: leaf, s: chunk);
814 num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
815 sub_stripes = btrfs_chunk_sub_stripes(eb: leaf, s: chunk);
816 type = btrfs_chunk_type(eb: leaf, s: chunk);
817 raid_index = btrfs_bg_flags_to_raid_index(flags: type);
818 ncopies = btrfs_raid_array[raid_index].ncopies;
819 nparity = btrfs_raid_array[raid_index].nparity;
820
821 if (unlikely(!num_stripes)) {
822 chunk_err(leaf, chunk, logical,
823 fmt: "invalid chunk num_stripes, have %u", num_stripes);
824 return -EUCLEAN;
825 }
826 if (unlikely(num_stripes < ncopies)) {
827 chunk_err(leaf, chunk, logical,
828 fmt: "invalid chunk num_stripes < ncopies, have %u < %d",
829 num_stripes, ncopies);
830 return -EUCLEAN;
831 }
832 if (unlikely(nparity && num_stripes == nparity)) {
833 chunk_err(leaf, chunk, logical,
834 fmt: "invalid chunk num_stripes == nparity, have %u == %d",
835 num_stripes, nparity);
836 return -EUCLEAN;
837 }
838 if (unlikely(!IS_ALIGNED(logical, fs_info->sectorsize))) {
839 chunk_err(leaf, chunk, logical,
840 fmt: "invalid chunk logical, have %llu should aligned to %u",
841 logical, fs_info->sectorsize);
842 return -EUCLEAN;
843 }
844 if (unlikely(btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize)) {
845 chunk_err(leaf, chunk, logical,
846 fmt: "invalid chunk sectorsize, have %u expect %u",
847 btrfs_chunk_sector_size(eb: leaf, s: chunk),
848 fs_info->sectorsize);
849 return -EUCLEAN;
850 }
851 if (unlikely(!length || !IS_ALIGNED(length, fs_info->sectorsize))) {
852 chunk_err(leaf, chunk, logical,
853 fmt: "invalid chunk length, have %llu", length);
854 return -EUCLEAN;
855 }
856 if (unlikely(check_add_overflow(logical, length, &chunk_end))) {
857 chunk_err(leaf, chunk, logical,
858fmt: "invalid chunk logical start and length, have logical start %llu length %llu",
859 logical, length);
860 return -EUCLEAN;
861 }
862 if (unlikely(!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN)) {
863 chunk_err(leaf, chunk, logical,
864 fmt: "invalid chunk stripe length: %llu",
865 stripe_len);
866 return -EUCLEAN;
867 }
868 /*
869 * We artificially limit the chunk size, so that the number of stripes
870 * inside a chunk can be fit into a U32. The current limit (256G) is
871 * way too large for real world usage anyway, and it's also much larger
872 * than our existing limit (10G).
873 *
874 * Thus it should be a good way to catch obvious bitflips.
875 */
876 if (unlikely(length >= btrfs_stripe_nr_to_offset(U32_MAX))) {
877 chunk_err(leaf, chunk, logical,
878 fmt: "chunk length too large: have %llu limit %llu",
879 length, btrfs_stripe_nr_to_offset(U32_MAX));
880 return -EUCLEAN;
881 }
882 if (unlikely(type & ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
883 BTRFS_BLOCK_GROUP_PROFILE_MASK))) {
884 chunk_err(leaf, chunk, logical,
885 fmt: "unrecognized chunk type: 0x%llx",
886 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
887 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
888 btrfs_chunk_type(eb: leaf, s: chunk));
889 return -EUCLEAN;
890 }
891
892 if (unlikely(!has_single_bit_set(type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
893 (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0)) {
894 chunk_err(leaf, chunk, logical,
895 fmt: "invalid chunk profile flag: 0x%llx, expect 0 or 1 bit set",
896 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
897 return -EUCLEAN;
898 }
899 if (unlikely((type & BTRFS_BLOCK_GROUP_TYPE_MASK) == 0)) {
900 chunk_err(leaf, chunk, logical,
901 fmt: "missing chunk type flag, have 0x%llx one bit must be set in 0x%llx",
902 type, BTRFS_BLOCK_GROUP_TYPE_MASK);
903 return -EUCLEAN;
904 }
905
906 if (unlikely((type & BTRFS_BLOCK_GROUP_SYSTEM) &&
907 (type & (BTRFS_BLOCK_GROUP_METADATA |
908 BTRFS_BLOCK_GROUP_DATA)))) {
909 chunk_err(leaf, chunk, logical,
910 fmt: "system chunk with data or metadata type: 0x%llx",
911 type);
912 return -EUCLEAN;
913 }
914
915 features = btrfs_super_incompat_flags(s: fs_info->super_copy);
916 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
917 mixed = true;
918
919 if (!mixed) {
920 if (unlikely((type & BTRFS_BLOCK_GROUP_METADATA) &&
921 (type & BTRFS_BLOCK_GROUP_DATA))) {
922 chunk_err(leaf, chunk, logical,
923 fmt: "mixed chunk type in non-mixed mode: 0x%llx", type);
924 return -EUCLEAN;
925 }
926 }
927
928 if (unlikely((type & BTRFS_BLOCK_GROUP_RAID10 &&
929 sub_stripes != btrfs_raid_array[BTRFS_RAID_RAID10].sub_stripes) ||
930 (type & BTRFS_BLOCK_GROUP_RAID1 &&
931 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1].devs_min) ||
932 (type & BTRFS_BLOCK_GROUP_RAID1C3 &&
933 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C3].devs_min) ||
934 (type & BTRFS_BLOCK_GROUP_RAID1C4 &&
935 num_stripes != btrfs_raid_array[BTRFS_RAID_RAID1C4].devs_min) ||
936 (type & BTRFS_BLOCK_GROUP_RAID5 &&
937 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID5].devs_min) ||
938 (type & BTRFS_BLOCK_GROUP_RAID6 &&
939 num_stripes < btrfs_raid_array[BTRFS_RAID_RAID6].devs_min) ||
940 (type & BTRFS_BLOCK_GROUP_DUP &&
941 num_stripes != btrfs_raid_array[BTRFS_RAID_DUP].dev_stripes) ||
942 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
943 num_stripes != btrfs_raid_array[BTRFS_RAID_SINGLE].dev_stripes))) {
944 chunk_err(leaf, chunk, logical,
945 fmt: "invalid num_stripes:sub_stripes %u:%u for profile %llu",
946 num_stripes, sub_stripes,
947 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
948 return -EUCLEAN;
949 }
950
951 return 0;
952}
953
954/*
955 * Enhanced version of chunk item checker.
956 *
957 * The common btrfs_check_chunk_valid() doesn't check item size since it needs
958 * to work on super block sys_chunk_array which doesn't have full item ptr.
959 */
960static int check_leaf_chunk_item(struct extent_buffer *leaf,
961 struct btrfs_chunk *chunk,
962 struct btrfs_key *key, int slot)
963{
964 int num_stripes;
965
966 if (unlikely(btrfs_item_size(leaf, slot) < sizeof(struct btrfs_chunk))) {
967 chunk_err(leaf, chunk, logical: key->offset,
968 fmt: "invalid chunk item size: have %u expect [%zu, %u)",
969 btrfs_item_size(eb: leaf, slot),
970 sizeof(struct btrfs_chunk),
971 BTRFS_LEAF_DATA_SIZE(info: leaf->fs_info));
972 return -EUCLEAN;
973 }
974
975 num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
976 /* Let btrfs_check_chunk_valid() handle this error type */
977 if (num_stripes == 0)
978 goto out;
979
980 if (unlikely(btrfs_chunk_item_size(num_stripes) !=
981 btrfs_item_size(leaf, slot))) {
982 chunk_err(leaf, chunk, logical: key->offset,
983 fmt: "invalid chunk item size: have %u expect %lu",
984 btrfs_item_size(eb: leaf, slot),
985 btrfs_chunk_item_size(num_stripes));
986 return -EUCLEAN;
987 }
988out:
989 return btrfs_check_chunk_valid(leaf, chunk, logical: key->offset);
990}
991
992__printf(3, 4)
993__cold
994static void dev_item_err(const struct extent_buffer *eb, int slot,
995 const char *fmt, ...)
996{
997 struct btrfs_key key;
998 struct va_format vaf;
999 va_list args;
1000
1001 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
1002 va_start(args, fmt);
1003
1004 vaf.fmt = fmt;
1005 vaf.va = &args;
1006
1007 btrfs_crit(eb->fs_info,
1008 "corrupt %s: root=%llu block=%llu slot=%d devid=%llu %pV",
1009 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1010 btrfs_header_owner(eb), btrfs_header_bytenr(eb), slot,
1011 key.objectid, &vaf);
1012 va_end(args);
1013}
1014
1015static int check_dev_item(struct extent_buffer *leaf,
1016 struct btrfs_key *key, int slot)
1017{
1018 struct btrfs_dev_item *ditem;
1019 const u32 item_size = btrfs_item_size(eb: leaf, slot);
1020
1021 if (unlikely(key->objectid != BTRFS_DEV_ITEMS_OBJECTID)) {
1022 dev_item_err(eb: leaf, slot,
1023 fmt: "invalid objectid: has=%llu expect=%llu",
1024 key->objectid, BTRFS_DEV_ITEMS_OBJECTID);
1025 return -EUCLEAN;
1026 }
1027
1028 if (unlikely(item_size != sizeof(*ditem))) {
1029 dev_item_err(eb: leaf, slot, fmt: "invalid item size: has %u expect %zu",
1030 item_size, sizeof(*ditem));
1031 return -EUCLEAN;
1032 }
1033
1034 ditem = btrfs_item_ptr(leaf, slot, struct btrfs_dev_item);
1035 if (unlikely(btrfs_device_id(leaf, ditem) != key->offset)) {
1036 dev_item_err(eb: leaf, slot,
1037 fmt: "devid mismatch: key has=%llu item has=%llu",
1038 key->offset, btrfs_device_id(eb: leaf, s: ditem));
1039 return -EUCLEAN;
1040 }
1041
1042 /*
1043 * For device total_bytes, we don't have reliable way to check it, as
1044 * it can be 0 for device removal. Device size check can only be done
1045 * by dev extents check.
1046 */
1047 if (unlikely(btrfs_device_bytes_used(leaf, ditem) >
1048 btrfs_device_total_bytes(leaf, ditem))) {
1049 dev_item_err(eb: leaf, slot,
1050 fmt: "invalid bytes used: have %llu expect [0, %llu]",
1051 btrfs_device_bytes_used(eb: leaf, s: ditem),
1052 btrfs_device_total_bytes(eb: leaf, s: ditem));
1053 return -EUCLEAN;
1054 }
1055 /*
1056 * Remaining members like io_align/type/gen/dev_group aren't really
1057 * utilized. Skip them to make later usage of them easier.
1058 */
1059 return 0;
1060}
1061
1062static int check_inode_item(struct extent_buffer *leaf,
1063 struct btrfs_key *key, int slot)
1064{
1065 struct btrfs_fs_info *fs_info = leaf->fs_info;
1066 struct btrfs_inode_item *iitem;
1067 u64 super_gen = btrfs_super_generation(s: fs_info->super_copy);
1068 u32 valid_mask = (S_IFMT | S_ISUID | S_ISGID | S_ISVTX | 0777);
1069 const u32 item_size = btrfs_item_size(eb: leaf, slot);
1070 u32 mode;
1071 int ret;
1072 u32 flags;
1073 u32 ro_flags;
1074
1075 ret = check_inode_key(leaf, key, slot);
1076 if (unlikely(ret < 0))
1077 return ret;
1078
1079 if (unlikely(item_size != sizeof(*iitem))) {
1080 generic_err(eb: leaf, slot, fmt: "invalid item size: has %u expect %zu",
1081 item_size, sizeof(*iitem));
1082 return -EUCLEAN;
1083 }
1084
1085 iitem = btrfs_item_ptr(leaf, slot, struct btrfs_inode_item);
1086
1087 /* Here we use super block generation + 1 to handle log tree */
1088 if (unlikely(btrfs_inode_generation(leaf, iitem) > super_gen + 1)) {
1089 inode_item_err(leaf, slot,
1090 "invalid inode generation: has %llu expect (0, %llu]",
1091 btrfs_inode_generation(leaf, iitem),
1092 super_gen + 1);
1093 return -EUCLEAN;
1094 }
1095 /* Note for ROOT_TREE_DIR_ITEM, mkfs could set its transid 0 */
1096 if (unlikely(btrfs_inode_transid(leaf, iitem) > super_gen + 1)) {
1097 inode_item_err(leaf, slot,
1098 "invalid inode transid: has %llu expect [0, %llu]",
1099 btrfs_inode_transid(leaf, iitem), super_gen + 1);
1100 return -EUCLEAN;
1101 }
1102
1103 /*
1104 * For size and nbytes it's better not to be too strict, as for dir
1105 * item its size/nbytes can easily get wrong, but doesn't affect
1106 * anything in the fs. So here we skip the check.
1107 */
1108 mode = btrfs_inode_mode(eb: leaf, s: iitem);
1109 if (unlikely(mode & ~valid_mask)) {
1110 inode_item_err(leaf, slot,
1111 "unknown mode bit detected: 0x%x",
1112 mode & ~valid_mask);
1113 return -EUCLEAN;
1114 }
1115
1116 /*
1117 * S_IFMT is not bit mapped so we can't completely rely on
1118 * is_power_of_2/has_single_bit_set, but it can save us from checking
1119 * FIFO/CHR/DIR/REG. Only needs to check BLK, LNK and SOCKS
1120 */
1121 if (!has_single_bit_set(n: mode & S_IFMT)) {
1122 if (unlikely(!S_ISLNK(mode) && !S_ISBLK(mode) && !S_ISSOCK(mode))) {
1123 inode_item_err(leaf, slot,
1124 "invalid mode: has 0%o expect valid S_IF* bit(s)",
1125 mode & S_IFMT);
1126 return -EUCLEAN;
1127 }
1128 }
1129 if (unlikely(S_ISDIR(mode) && btrfs_inode_nlink(leaf, iitem) > 1)) {
1130 inode_item_err(leaf, slot,
1131 "invalid nlink: has %u expect no more than 1 for dir",
1132 btrfs_inode_nlink(leaf, iitem));
1133 return -EUCLEAN;
1134 }
1135 btrfs_inode_split_flags(inode_item_flags: btrfs_inode_flags(eb: leaf, s: iitem), flags: &flags, ro_flags: &ro_flags);
1136 if (unlikely(flags & ~BTRFS_INODE_FLAG_MASK)) {
1137 inode_item_err(leaf, slot,
1138 "unknown incompat flags detected: 0x%x", flags);
1139 return -EUCLEAN;
1140 }
1141 if (unlikely(!sb_rdonly(fs_info->sb) &&
1142 (ro_flags & ~BTRFS_INODE_RO_FLAG_MASK))) {
1143 inode_item_err(leaf, slot,
1144 "unknown ro-compat flags detected on writeable mount: 0x%x",
1145 ro_flags);
1146 return -EUCLEAN;
1147 }
1148 return 0;
1149}
1150
1151static int check_root_item(struct extent_buffer *leaf, struct btrfs_key *key,
1152 int slot)
1153{
1154 struct btrfs_fs_info *fs_info = leaf->fs_info;
1155 struct btrfs_root_item ri = { 0 };
1156 const u64 valid_root_flags = BTRFS_ROOT_SUBVOL_RDONLY |
1157 BTRFS_ROOT_SUBVOL_DEAD;
1158 int ret;
1159
1160 ret = check_root_key(leaf, key, slot);
1161 if (unlikely(ret < 0))
1162 return ret;
1163
1164 if (unlikely(btrfs_item_size(leaf, slot) != sizeof(ri) &&
1165 btrfs_item_size(leaf, slot) !=
1166 btrfs_legacy_root_item_size())) {
1167 generic_err(eb: leaf, slot,
1168 fmt: "invalid root item size, have %u expect %zu or %u",
1169 btrfs_item_size(eb: leaf, slot), sizeof(ri),
1170 btrfs_legacy_root_item_size());
1171 return -EUCLEAN;
1172 }
1173
1174 /*
1175 * For legacy root item, the members starting at generation_v2 will be
1176 * all filled with 0.
1177 * And since we allow geneartion_v2 as 0, it will still pass the check.
1178 */
1179 read_extent_buffer(eb: leaf, dst: &ri, btrfs_item_ptr_offset(leaf, slot),
1180 len: btrfs_item_size(eb: leaf, slot));
1181
1182 /* Generation related */
1183 if (unlikely(btrfs_root_generation(&ri) >
1184 btrfs_super_generation(fs_info->super_copy) + 1)) {
1185 generic_err(eb: leaf, slot,
1186 fmt: "invalid root generation, have %llu expect (0, %llu]",
1187 btrfs_root_generation(s: &ri),
1188 btrfs_super_generation(s: fs_info->super_copy) + 1);
1189 return -EUCLEAN;
1190 }
1191 if (unlikely(btrfs_root_generation_v2(&ri) >
1192 btrfs_super_generation(fs_info->super_copy) + 1)) {
1193 generic_err(eb: leaf, slot,
1194 fmt: "invalid root v2 generation, have %llu expect (0, %llu]",
1195 btrfs_root_generation_v2(s: &ri),
1196 btrfs_super_generation(s: fs_info->super_copy) + 1);
1197 return -EUCLEAN;
1198 }
1199 if (unlikely(btrfs_root_last_snapshot(&ri) >
1200 btrfs_super_generation(fs_info->super_copy) + 1)) {
1201 generic_err(eb: leaf, slot,
1202 fmt: "invalid root last_snapshot, have %llu expect (0, %llu]",
1203 btrfs_root_last_snapshot(s: &ri),
1204 btrfs_super_generation(s: fs_info->super_copy) + 1);
1205 return -EUCLEAN;
1206 }
1207
1208 /* Alignment and level check */
1209 if (unlikely(!IS_ALIGNED(btrfs_root_bytenr(&ri), fs_info->sectorsize))) {
1210 generic_err(eb: leaf, slot,
1211 fmt: "invalid root bytenr, have %llu expect to be aligned to %u",
1212 btrfs_root_bytenr(s: &ri), fs_info->sectorsize);
1213 return -EUCLEAN;
1214 }
1215 if (unlikely(btrfs_root_level(&ri) >= BTRFS_MAX_LEVEL)) {
1216 generic_err(eb: leaf, slot,
1217 fmt: "invalid root level, have %u expect [0, %u]",
1218 btrfs_root_level(s: &ri), BTRFS_MAX_LEVEL - 1);
1219 return -EUCLEAN;
1220 }
1221 if (unlikely(btrfs_root_drop_level(&ri) >= BTRFS_MAX_LEVEL)) {
1222 generic_err(eb: leaf, slot,
1223 fmt: "invalid root level, have %u expect [0, %u]",
1224 btrfs_root_drop_level(s: &ri), BTRFS_MAX_LEVEL - 1);
1225 return -EUCLEAN;
1226 }
1227
1228 /* Flags check */
1229 if (unlikely(btrfs_root_flags(&ri) & ~valid_root_flags)) {
1230 generic_err(eb: leaf, slot,
1231 fmt: "invalid root flags, have 0x%llx expect mask 0x%llx",
1232 btrfs_root_flags(s: &ri), valid_root_flags);
1233 return -EUCLEAN;
1234 }
1235 return 0;
1236}
1237
1238__printf(3,4)
1239__cold
1240static void extent_err(const struct extent_buffer *eb, int slot,
1241 const char *fmt, ...)
1242{
1243 struct btrfs_key key;
1244 struct va_format vaf;
1245 va_list args;
1246 u64 bytenr;
1247 u64 len;
1248
1249 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: slot);
1250 bytenr = key.objectid;
1251 if (key.type == BTRFS_METADATA_ITEM_KEY ||
1252 key.type == BTRFS_TREE_BLOCK_REF_KEY ||
1253 key.type == BTRFS_SHARED_BLOCK_REF_KEY)
1254 len = eb->fs_info->nodesize;
1255 else
1256 len = key.offset;
1257 va_start(args, fmt);
1258
1259 vaf.fmt = fmt;
1260 vaf.va = &args;
1261
1262 btrfs_crit(eb->fs_info,
1263 "corrupt %s: block=%llu slot=%d extent bytenr=%llu len=%llu %pV",
1264 btrfs_header_level(eb) == 0 ? "leaf" : "node",
1265 eb->start, slot, bytenr, len, &vaf);
1266 va_end(args);
1267}
1268
1269static int check_extent_item(struct extent_buffer *leaf,
1270 struct btrfs_key *key, int slot,
1271 struct btrfs_key *prev_key)
1272{
1273 struct btrfs_fs_info *fs_info = leaf->fs_info;
1274 struct btrfs_extent_item *ei;
1275 bool is_tree_block = false;
1276 unsigned long ptr; /* Current pointer inside inline refs */
1277 unsigned long end; /* Extent item end */
1278 const u32 item_size = btrfs_item_size(eb: leaf, slot);
1279 u64 flags;
1280 u64 generation;
1281 u64 total_refs; /* Total refs in btrfs_extent_item */
1282 u64 inline_refs = 0; /* found total inline refs */
1283
1284 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1285 !btrfs_fs_incompat(fs_info, SKINNY_METADATA))) {
1286 generic_err(eb: leaf, slot,
1287fmt: "invalid key type, METADATA_ITEM type invalid when SKINNY_METADATA feature disabled");
1288 return -EUCLEAN;
1289 }
1290 /* key->objectid is the bytenr for both key types */
1291 if (unlikely(!IS_ALIGNED(key->objectid, fs_info->sectorsize))) {
1292 generic_err(eb: leaf, slot,
1293 fmt: "invalid key objectid, have %llu expect to be aligned to %u",
1294 key->objectid, fs_info->sectorsize);
1295 return -EUCLEAN;
1296 }
1297
1298 /* key->offset is tree level for METADATA_ITEM_KEY */
1299 if (unlikely(key->type == BTRFS_METADATA_ITEM_KEY &&
1300 key->offset >= BTRFS_MAX_LEVEL)) {
1301 extent_err(eb: leaf, slot,
1302 fmt: "invalid tree level, have %llu expect [0, %u]",
1303 key->offset, BTRFS_MAX_LEVEL - 1);
1304 return -EUCLEAN;
1305 }
1306
1307 /*
1308 * EXTENT/METADATA_ITEM consists of:
1309 * 1) One btrfs_extent_item
1310 * Records the total refs, type and generation of the extent.
1311 *
1312 * 2) One btrfs_tree_block_info (for EXTENT_ITEM and tree backref only)
1313 * Records the first key and level of the tree block.
1314 *
1315 * 2) Zero or more btrfs_extent_inline_ref(s)
1316 * Each inline ref has one btrfs_extent_inline_ref shows:
1317 * 2.1) The ref type, one of the 4
1318 * TREE_BLOCK_REF Tree block only
1319 * SHARED_BLOCK_REF Tree block only
1320 * EXTENT_DATA_REF Data only
1321 * SHARED_DATA_REF Data only
1322 * 2.2) Ref type specific data
1323 * Either using btrfs_extent_inline_ref::offset, or specific
1324 * data structure.
1325 */
1326 if (unlikely(item_size < sizeof(*ei))) {
1327 extent_err(eb: leaf, slot,
1328 fmt: "invalid item size, have %u expect [%zu, %u)",
1329 item_size, sizeof(*ei),
1330 BTRFS_LEAF_DATA_SIZE(info: fs_info));
1331 return -EUCLEAN;
1332 }
1333 end = item_size + btrfs_item_ptr_offset(leaf, slot);
1334
1335 /* Checks against extent_item */
1336 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
1337 flags = btrfs_extent_flags(eb: leaf, s: ei);
1338 total_refs = btrfs_extent_refs(eb: leaf, s: ei);
1339 generation = btrfs_extent_generation(eb: leaf, s: ei);
1340 if (unlikely(generation >
1341 btrfs_super_generation(fs_info->super_copy) + 1)) {
1342 extent_err(eb: leaf, slot,
1343 fmt: "invalid generation, have %llu expect (0, %llu]",
1344 generation,
1345 btrfs_super_generation(s: fs_info->super_copy) + 1);
1346 return -EUCLEAN;
1347 }
1348 if (unlikely(!has_single_bit_set(flags & (BTRFS_EXTENT_FLAG_DATA |
1349 BTRFS_EXTENT_FLAG_TREE_BLOCK)))) {
1350 extent_err(eb: leaf, slot,
1351 fmt: "invalid extent flag, have 0x%llx expect 1 bit set in 0x%llx",
1352 flags, BTRFS_EXTENT_FLAG_DATA |
1353 BTRFS_EXTENT_FLAG_TREE_BLOCK);
1354 return -EUCLEAN;
1355 }
1356 is_tree_block = !!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK);
1357 if (is_tree_block) {
1358 if (unlikely(key->type == BTRFS_EXTENT_ITEM_KEY &&
1359 key->offset != fs_info->nodesize)) {
1360 extent_err(eb: leaf, slot,
1361 fmt: "invalid extent length, have %llu expect %u",
1362 key->offset, fs_info->nodesize);
1363 return -EUCLEAN;
1364 }
1365 } else {
1366 if (unlikely(key->type != BTRFS_EXTENT_ITEM_KEY)) {
1367 extent_err(eb: leaf, slot,
1368 fmt: "invalid key type, have %u expect %u for data backref",
1369 key->type, BTRFS_EXTENT_ITEM_KEY);
1370 return -EUCLEAN;
1371 }
1372 if (unlikely(!IS_ALIGNED(key->offset, fs_info->sectorsize))) {
1373 extent_err(eb: leaf, slot,
1374 fmt: "invalid extent length, have %llu expect aligned to %u",
1375 key->offset, fs_info->sectorsize);
1376 return -EUCLEAN;
1377 }
1378 if (unlikely(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1379 extent_err(eb: leaf, slot,
1380 fmt: "invalid extent flag, data has full backref set");
1381 return -EUCLEAN;
1382 }
1383 }
1384 ptr = (unsigned long)(struct btrfs_extent_item *)(ei + 1);
1385
1386 /* Check the special case of btrfs_tree_block_info */
1387 if (is_tree_block && key->type != BTRFS_METADATA_ITEM_KEY) {
1388 struct btrfs_tree_block_info *info;
1389
1390 info = (struct btrfs_tree_block_info *)ptr;
1391 if (unlikely(btrfs_tree_block_level(leaf, info) >= BTRFS_MAX_LEVEL)) {
1392 extent_err(eb: leaf, slot,
1393 fmt: "invalid tree block info level, have %u expect [0, %u]",
1394 btrfs_tree_block_level(eb: leaf, s: info),
1395 BTRFS_MAX_LEVEL - 1);
1396 return -EUCLEAN;
1397 }
1398 ptr = (unsigned long)(struct btrfs_tree_block_info *)(info + 1);
1399 }
1400
1401 /* Check inline refs */
1402 while (ptr < end) {
1403 struct btrfs_extent_inline_ref *iref;
1404 struct btrfs_extent_data_ref *dref;
1405 struct btrfs_shared_data_ref *sref;
1406 u64 dref_offset;
1407 u64 inline_offset;
1408 u8 inline_type;
1409
1410 if (unlikely(ptr + sizeof(*iref) > end)) {
1411 extent_err(eb: leaf, slot,
1412fmt: "inline ref item overflows extent item, ptr %lu iref size %zu end %lu",
1413 ptr, sizeof(*iref), end);
1414 return -EUCLEAN;
1415 }
1416 iref = (struct btrfs_extent_inline_ref *)ptr;
1417 inline_type = btrfs_extent_inline_ref_type(eb: leaf, s: iref);
1418 inline_offset = btrfs_extent_inline_ref_offset(eb: leaf, s: iref);
1419 if (unlikely(ptr + btrfs_extent_inline_ref_size(inline_type) > end)) {
1420 extent_err(eb: leaf, slot,
1421fmt: "inline ref item overflows extent item, ptr %lu iref size %u end %lu",
1422 ptr, inline_type, end);
1423 return -EUCLEAN;
1424 }
1425
1426 switch (inline_type) {
1427 /* inline_offset is subvolid of the owner, no need to check */
1428 case BTRFS_TREE_BLOCK_REF_KEY:
1429 inline_refs++;
1430 break;
1431 /* Contains parent bytenr */
1432 case BTRFS_SHARED_BLOCK_REF_KEY:
1433 if (unlikely(!IS_ALIGNED(inline_offset,
1434 fs_info->sectorsize))) {
1435 extent_err(eb: leaf, slot,
1436 fmt: "invalid tree parent bytenr, have %llu expect aligned to %u",
1437 inline_offset, fs_info->sectorsize);
1438 return -EUCLEAN;
1439 }
1440 inline_refs++;
1441 break;
1442 /*
1443 * Contains owner subvolid, owner key objectid, adjusted offset.
1444 * The only obvious corruption can happen in that offset.
1445 */
1446 case BTRFS_EXTENT_DATA_REF_KEY:
1447 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1448 dref_offset = btrfs_extent_data_ref_offset(eb: leaf, s: dref);
1449 if (unlikely(!IS_ALIGNED(dref_offset,
1450 fs_info->sectorsize))) {
1451 extent_err(eb: leaf, slot,
1452 fmt: "invalid data ref offset, have %llu expect aligned to %u",
1453 dref_offset, fs_info->sectorsize);
1454 return -EUCLEAN;
1455 }
1456 inline_refs += btrfs_extent_data_ref_count(eb: leaf, s: dref);
1457 break;
1458 /* Contains parent bytenr and ref count */
1459 case BTRFS_SHARED_DATA_REF_KEY:
1460 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1461 if (unlikely(!IS_ALIGNED(inline_offset,
1462 fs_info->sectorsize))) {
1463 extent_err(eb: leaf, slot,
1464 fmt: "invalid data parent bytenr, have %llu expect aligned to %u",
1465 inline_offset, fs_info->sectorsize);
1466 return -EUCLEAN;
1467 }
1468 inline_refs += btrfs_shared_data_ref_count(eb: leaf, s: sref);
1469 break;
1470 case BTRFS_EXTENT_OWNER_REF_KEY:
1471 WARN_ON(!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
1472 break;
1473 default:
1474 extent_err(eb: leaf, slot, fmt: "unknown inline ref type: %u",
1475 inline_type);
1476 return -EUCLEAN;
1477 }
1478 ptr += btrfs_extent_inline_ref_size(type: inline_type);
1479 }
1480 /* No padding is allowed */
1481 if (unlikely(ptr != end)) {
1482 extent_err(eb: leaf, slot,
1483 fmt: "invalid extent item size, padding bytes found");
1484 return -EUCLEAN;
1485 }
1486
1487 /* Finally, check the inline refs against total refs */
1488 if (unlikely(inline_refs > total_refs)) {
1489 extent_err(eb: leaf, slot,
1490 fmt: "invalid extent refs, have %llu expect >= inline %llu",
1491 total_refs, inline_refs);
1492 return -EUCLEAN;
1493 }
1494
1495 if ((prev_key->type == BTRFS_EXTENT_ITEM_KEY) ||
1496 (prev_key->type == BTRFS_METADATA_ITEM_KEY)) {
1497 u64 prev_end = prev_key->objectid;
1498
1499 if (prev_key->type == BTRFS_METADATA_ITEM_KEY)
1500 prev_end += fs_info->nodesize;
1501 else
1502 prev_end += prev_key->offset;
1503
1504 if (unlikely(prev_end > key->objectid)) {
1505 extent_err(eb: leaf, slot,
1506 fmt: "previous extent [%llu %u %llu] overlaps current extent [%llu %u %llu]",
1507 prev_key->objectid, prev_key->type,
1508 prev_key->offset, key->objectid, key->type,
1509 key->offset);
1510 return -EUCLEAN;
1511 }
1512 }
1513
1514 return 0;
1515}
1516
1517static int check_simple_keyed_refs(struct extent_buffer *leaf,
1518 struct btrfs_key *key, int slot)
1519{
1520 u32 expect_item_size = 0;
1521
1522 if (key->type == BTRFS_SHARED_DATA_REF_KEY)
1523 expect_item_size = sizeof(struct btrfs_shared_data_ref);
1524
1525 if (unlikely(btrfs_item_size(leaf, slot) != expect_item_size)) {
1526 generic_err(eb: leaf, slot,
1527 fmt: "invalid item size, have %u expect %u for key type %u",
1528 btrfs_item_size(eb: leaf, slot),
1529 expect_item_size, key->type);
1530 return -EUCLEAN;
1531 }
1532 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1533 generic_err(eb: leaf, slot,
1534fmt: "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1535 key->objectid, leaf->fs_info->sectorsize);
1536 return -EUCLEAN;
1537 }
1538 if (unlikely(key->type != BTRFS_TREE_BLOCK_REF_KEY &&
1539 !IS_ALIGNED(key->offset, leaf->fs_info->sectorsize))) {
1540 extent_err(eb: leaf, slot,
1541 fmt: "invalid tree parent bytenr, have %llu expect aligned to %u",
1542 key->offset, leaf->fs_info->sectorsize);
1543 return -EUCLEAN;
1544 }
1545 return 0;
1546}
1547
1548static int check_extent_data_ref(struct extent_buffer *leaf,
1549 struct btrfs_key *key, int slot)
1550{
1551 struct btrfs_extent_data_ref *dref;
1552 unsigned long ptr = btrfs_item_ptr_offset(leaf, slot);
1553 const unsigned long end = ptr + btrfs_item_size(eb: leaf, slot);
1554
1555 if (unlikely(btrfs_item_size(leaf, slot) % sizeof(*dref) != 0)) {
1556 generic_err(eb: leaf, slot,
1557 fmt: "invalid item size, have %u expect aligned to %zu for key type %u",
1558 btrfs_item_size(eb: leaf, slot),
1559 sizeof(*dref), key->type);
1560 return -EUCLEAN;
1561 }
1562 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1563 generic_err(eb: leaf, slot,
1564fmt: "invalid key objectid for shared block ref, have %llu expect aligned to %u",
1565 key->objectid, leaf->fs_info->sectorsize);
1566 return -EUCLEAN;
1567 }
1568 for (; ptr < end; ptr += sizeof(*dref)) {
1569 u64 offset;
1570
1571 /*
1572 * We cannot check the extent_data_ref hash due to possible
1573 * overflow from the leaf due to hash collisions.
1574 */
1575 dref = (struct btrfs_extent_data_ref *)ptr;
1576 offset = btrfs_extent_data_ref_offset(eb: leaf, s: dref);
1577 if (unlikely(!IS_ALIGNED(offset, leaf->fs_info->sectorsize))) {
1578 extent_err(eb: leaf, slot,
1579 fmt: "invalid extent data backref offset, have %llu expect aligned to %u",
1580 offset, leaf->fs_info->sectorsize);
1581 return -EUCLEAN;
1582 }
1583 }
1584 return 0;
1585}
1586
1587#define inode_ref_err(eb, slot, fmt, args...) \
1588 inode_item_err(eb, slot, fmt, ##args)
1589static int check_inode_ref(struct extent_buffer *leaf,
1590 struct btrfs_key *key, struct btrfs_key *prev_key,
1591 int slot)
1592{
1593 struct btrfs_inode_ref *iref;
1594 unsigned long ptr;
1595 unsigned long end;
1596
1597 if (unlikely(!check_prev_ino(leaf, key, slot, prev_key)))
1598 return -EUCLEAN;
1599 /* namelen can't be 0, so item_size == sizeof() is also invalid */
1600 if (unlikely(btrfs_item_size(leaf, slot) <= sizeof(*iref))) {
1601 inode_ref_err(leaf, slot,
1602 "invalid item size, have %u expect (%zu, %u)",
1603 btrfs_item_size(leaf, slot),
1604 sizeof(*iref), BTRFS_LEAF_DATA_SIZE(leaf->fs_info));
1605 return -EUCLEAN;
1606 }
1607
1608 ptr = btrfs_item_ptr_offset(leaf, slot);
1609 end = ptr + btrfs_item_size(eb: leaf, slot);
1610 while (ptr < end) {
1611 u16 namelen;
1612
1613 if (unlikely(ptr + sizeof(iref) > end)) {
1614 inode_ref_err(leaf, slot,
1615 "inode ref overflow, ptr %lu end %lu inode_ref_size %zu",
1616 ptr, end, sizeof(iref));
1617 return -EUCLEAN;
1618 }
1619
1620 iref = (struct btrfs_inode_ref *)ptr;
1621 namelen = btrfs_inode_ref_name_len(eb: leaf, s: iref);
1622 if (unlikely(ptr + sizeof(*iref) + namelen > end)) {
1623 inode_ref_err(leaf, slot,
1624 "inode ref overflow, ptr %lu end %lu namelen %u",
1625 ptr, end, namelen);
1626 return -EUCLEAN;
1627 }
1628
1629 /*
1630 * NOTE: In theory we should record all found index numbers
1631 * to find any duplicated indexes, but that will be too time
1632 * consuming for inodes with too many hard links.
1633 */
1634 ptr += sizeof(*iref) + namelen;
1635 }
1636 return 0;
1637}
1638
1639static int check_raid_stripe_extent(const struct extent_buffer *leaf,
1640 const struct btrfs_key *key, int slot)
1641{
1642 struct btrfs_stripe_extent *stripe_extent =
1643 btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent);
1644
1645 if (unlikely(!IS_ALIGNED(key->objectid, leaf->fs_info->sectorsize))) {
1646 generic_err(eb: leaf, slot,
1647fmt: "invalid key objectid for raid stripe extent, have %llu expect aligned to %u",
1648 key->objectid, leaf->fs_info->sectorsize);
1649 return -EUCLEAN;
1650 }
1651
1652 if (unlikely(!btrfs_fs_incompat(leaf->fs_info, RAID_STRIPE_TREE))) {
1653 generic_err(eb: leaf, slot,
1654 fmt: "RAID_STRIPE_EXTENT present but RAID_STRIPE_TREE incompat bit unset");
1655 return -EUCLEAN;
1656 }
1657
1658 switch (btrfs_stripe_extent_encoding(eb: leaf, s: stripe_extent)) {
1659 case BTRFS_STRIPE_RAID0:
1660 case BTRFS_STRIPE_RAID1:
1661 case BTRFS_STRIPE_DUP:
1662 case BTRFS_STRIPE_RAID10:
1663 case BTRFS_STRIPE_RAID5:
1664 case BTRFS_STRIPE_RAID6:
1665 case BTRFS_STRIPE_RAID1C3:
1666 case BTRFS_STRIPE_RAID1C4:
1667 break;
1668 default:
1669 generic_err(eb: leaf, slot, fmt: "invalid raid stripe encoding %u",
1670 btrfs_stripe_extent_encoding(eb: leaf, s: stripe_extent));
1671 return -EUCLEAN;
1672 }
1673
1674 return 0;
1675}
1676
1677/*
1678 * Common point to switch the item-specific validation.
1679 */
1680static enum btrfs_tree_block_status check_leaf_item(struct extent_buffer *leaf,
1681 struct btrfs_key *key,
1682 int slot,
1683 struct btrfs_key *prev_key)
1684{
1685 int ret = 0;
1686 struct btrfs_chunk *chunk;
1687
1688 switch (key->type) {
1689 case BTRFS_EXTENT_DATA_KEY:
1690 ret = check_extent_data_item(leaf, key, slot, prev_key);
1691 break;
1692 case BTRFS_EXTENT_CSUM_KEY:
1693 ret = check_csum_item(leaf, key, slot, prev_key);
1694 break;
1695 case BTRFS_DIR_ITEM_KEY:
1696 case BTRFS_DIR_INDEX_KEY:
1697 case BTRFS_XATTR_ITEM_KEY:
1698 ret = check_dir_item(leaf, key, prev_key, slot);
1699 break;
1700 case BTRFS_INODE_REF_KEY:
1701 ret = check_inode_ref(leaf, key, prev_key, slot);
1702 break;
1703 case BTRFS_BLOCK_GROUP_ITEM_KEY:
1704 ret = check_block_group_item(leaf, key, slot);
1705 break;
1706 case BTRFS_CHUNK_ITEM_KEY:
1707 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
1708 ret = check_leaf_chunk_item(leaf, chunk, key, slot);
1709 break;
1710 case BTRFS_DEV_ITEM_KEY:
1711 ret = check_dev_item(leaf, key, slot);
1712 break;
1713 case BTRFS_INODE_ITEM_KEY:
1714 ret = check_inode_item(leaf, key, slot);
1715 break;
1716 case BTRFS_ROOT_ITEM_KEY:
1717 ret = check_root_item(leaf, key, slot);
1718 break;
1719 case BTRFS_EXTENT_ITEM_KEY:
1720 case BTRFS_METADATA_ITEM_KEY:
1721 ret = check_extent_item(leaf, key, slot, prev_key);
1722 break;
1723 case BTRFS_TREE_BLOCK_REF_KEY:
1724 case BTRFS_SHARED_DATA_REF_KEY:
1725 case BTRFS_SHARED_BLOCK_REF_KEY:
1726 ret = check_simple_keyed_refs(leaf, key, slot);
1727 break;
1728 case BTRFS_EXTENT_DATA_REF_KEY:
1729 ret = check_extent_data_ref(leaf, key, slot);
1730 break;
1731 case BTRFS_RAID_STRIPE_KEY:
1732 ret = check_raid_stripe_extent(leaf, key, slot);
1733 break;
1734 }
1735
1736 if (ret)
1737 return BTRFS_TREE_BLOCK_INVALID_ITEM;
1738 return BTRFS_TREE_BLOCK_CLEAN;
1739}
1740
1741enum btrfs_tree_block_status __btrfs_check_leaf(struct extent_buffer *leaf)
1742{
1743 struct btrfs_fs_info *fs_info = leaf->fs_info;
1744 /* No valid key type is 0, so all key should be larger than this key */
1745 struct btrfs_key prev_key = {0, 0, 0};
1746 struct btrfs_key key;
1747 u32 nritems = btrfs_header_nritems(eb: leaf);
1748 int slot;
1749
1750 if (unlikely(btrfs_header_level(leaf) != 0)) {
1751 generic_err(eb: leaf, slot: 0,
1752 fmt: "invalid level for leaf, have %d expect 0",
1753 btrfs_header_level(eb: leaf));
1754 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1755 }
1756
1757 /*
1758 * Extent buffers from a relocation tree have a owner field that
1759 * corresponds to the subvolume tree they are based on. So just from an
1760 * extent buffer alone we can not find out what is the id of the
1761 * corresponding subvolume tree, so we can not figure out if the extent
1762 * buffer corresponds to the root of the relocation tree or not. So
1763 * skip this check for relocation trees.
1764 */
1765 if (nritems == 0 && !btrfs_header_flag(eb: leaf, BTRFS_HEADER_FLAG_RELOC)) {
1766 u64 owner = btrfs_header_owner(eb: leaf);
1767
1768 /* These trees must never be empty */
1769 if (unlikely(owner == BTRFS_ROOT_TREE_OBJECTID ||
1770 owner == BTRFS_CHUNK_TREE_OBJECTID ||
1771 owner == BTRFS_DEV_TREE_OBJECTID ||
1772 owner == BTRFS_FS_TREE_OBJECTID ||
1773 owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
1774 generic_err(eb: leaf, slot: 0,
1775 fmt: "invalid root, root %llu must never be empty",
1776 owner);
1777 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1778 }
1779
1780 /* Unknown tree */
1781 if (unlikely(owner == 0)) {
1782 generic_err(eb: leaf, slot: 0,
1783 fmt: "invalid owner, root 0 is not defined");
1784 return BTRFS_TREE_BLOCK_INVALID_OWNER;
1785 }
1786
1787 /* EXTENT_TREE_V2 can have empty extent trees. */
1788 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1789 return BTRFS_TREE_BLOCK_CLEAN;
1790
1791 if (unlikely(owner == BTRFS_EXTENT_TREE_OBJECTID)) {
1792 generic_err(eb: leaf, slot: 0,
1793 fmt: "invalid root, root %llu must never be empty",
1794 owner);
1795 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1796 }
1797
1798 return BTRFS_TREE_BLOCK_CLEAN;
1799 }
1800
1801 if (unlikely(nritems == 0))
1802 return BTRFS_TREE_BLOCK_CLEAN;
1803
1804 /*
1805 * Check the following things to make sure this is a good leaf, and
1806 * leaf users won't need to bother with similar sanity checks:
1807 *
1808 * 1) key ordering
1809 * 2) item offset and size
1810 * No overlap, no hole, all inside the leaf.
1811 * 3) item content
1812 * If possible, do comprehensive sanity check.
1813 * NOTE: All checks must only rely on the item data itself.
1814 */
1815 for (slot = 0; slot < nritems; slot++) {
1816 u32 item_end_expected;
1817 u64 item_data_end;
1818
1819 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
1820
1821 /* Make sure the keys are in the right order */
1822 if (unlikely(btrfs_comp_cpu_keys(&prev_key, &key) >= 0)) {
1823 generic_err(eb: leaf, slot,
1824 fmt: "bad key order, prev (%llu %u %llu) current (%llu %u %llu)",
1825 prev_key.objectid, prev_key.type,
1826 prev_key.offset, key.objectid, key.type,
1827 key.offset);
1828 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1829 }
1830
1831 item_data_end = (u64)btrfs_item_offset(eb: leaf, slot) +
1832 btrfs_item_size(eb: leaf, slot);
1833 /*
1834 * Make sure the offset and ends are right, remember that the
1835 * item data starts at the end of the leaf and grows towards the
1836 * front.
1837 */
1838 if (slot == 0)
1839 item_end_expected = BTRFS_LEAF_DATA_SIZE(info: fs_info);
1840 else
1841 item_end_expected = btrfs_item_offset(eb: leaf,
1842 slot: slot - 1);
1843 if (unlikely(item_data_end != item_end_expected)) {
1844 generic_err(eb: leaf, slot,
1845 fmt: "unexpected item end, have %llu expect %u",
1846 item_data_end, item_end_expected);
1847 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1848 }
1849
1850 /*
1851 * Check to make sure that we don't point outside of the leaf,
1852 * just in case all the items are consistent to each other, but
1853 * all point outside of the leaf.
1854 */
1855 if (unlikely(item_data_end > BTRFS_LEAF_DATA_SIZE(fs_info))) {
1856 generic_err(eb: leaf, slot,
1857 fmt: "slot end outside of leaf, have %llu expect range [0, %u]",
1858 item_data_end, BTRFS_LEAF_DATA_SIZE(info: fs_info));
1859 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1860 }
1861
1862 /* Also check if the item pointer overlaps with btrfs item. */
1863 if (unlikely(btrfs_item_ptr_offset(leaf, slot) <
1864 btrfs_item_nr_offset(leaf, slot) + sizeof(struct btrfs_item))) {
1865 generic_err(eb: leaf, slot,
1866 fmt: "slot overlaps with its data, item end %lu data start %lu",
1867 btrfs_item_nr_offset(eb: leaf, nr: slot) +
1868 sizeof(struct btrfs_item),
1869 btrfs_item_ptr_offset(leaf, slot));
1870 return BTRFS_TREE_BLOCK_INVALID_OFFSETS;
1871 }
1872
1873 /*
1874 * We only want to do this if WRITTEN is set, otherwise the leaf
1875 * may be in some intermediate state and won't appear valid.
1876 */
1877 if (btrfs_header_flag(eb: leaf, BTRFS_HEADER_FLAG_WRITTEN)) {
1878 enum btrfs_tree_block_status ret;
1879
1880 /*
1881 * Check if the item size and content meet other
1882 * criteria
1883 */
1884 ret = check_leaf_item(leaf, key: &key, slot, prev_key: &prev_key);
1885 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1886 return ret;
1887 }
1888
1889 prev_key.objectid = key.objectid;
1890 prev_key.type = key.type;
1891 prev_key.offset = key.offset;
1892 }
1893
1894 return BTRFS_TREE_BLOCK_CLEAN;
1895}
1896
1897int btrfs_check_leaf(struct extent_buffer *leaf)
1898{
1899 enum btrfs_tree_block_status ret;
1900
1901 ret = __btrfs_check_leaf(leaf);
1902 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1903 return -EUCLEAN;
1904 return 0;
1905}
1906ALLOW_ERROR_INJECTION(btrfs_check_leaf, ERRNO);
1907
1908enum btrfs_tree_block_status __btrfs_check_node(struct extent_buffer *node)
1909{
1910 struct btrfs_fs_info *fs_info = node->fs_info;
1911 unsigned long nr = btrfs_header_nritems(eb: node);
1912 struct btrfs_key key, next_key;
1913 int slot;
1914 int level = btrfs_header_level(eb: node);
1915 u64 bytenr;
1916
1917 if (unlikely(level <= 0 || level >= BTRFS_MAX_LEVEL)) {
1918 generic_err(eb: node, slot: 0,
1919 fmt: "invalid level for node, have %d expect [1, %d]",
1920 level, BTRFS_MAX_LEVEL - 1);
1921 return BTRFS_TREE_BLOCK_INVALID_LEVEL;
1922 }
1923 if (unlikely(nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(fs_info))) {
1924 btrfs_crit(fs_info,
1925"corrupt node: root=%llu block=%llu, nritems too %s, have %lu expect range [1,%u]",
1926 btrfs_header_owner(node), node->start,
1927 nr == 0 ? "small" : "large", nr,
1928 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1929 return BTRFS_TREE_BLOCK_INVALID_NRITEMS;
1930 }
1931
1932 for (slot = 0; slot < nr - 1; slot++) {
1933 bytenr = btrfs_node_blockptr(eb: node, nr: slot);
1934 btrfs_node_key_to_cpu(eb: node, cpu_key: &key, nr: slot);
1935 btrfs_node_key_to_cpu(eb: node, cpu_key: &next_key, nr: slot + 1);
1936
1937 if (unlikely(!bytenr)) {
1938 generic_err(eb: node, slot,
1939 fmt: "invalid NULL node pointer");
1940 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1941 }
1942 if (unlikely(!IS_ALIGNED(bytenr, fs_info->sectorsize))) {
1943 generic_err(eb: node, slot,
1944 fmt: "unaligned pointer, have %llu should be aligned to %u",
1945 bytenr, fs_info->sectorsize);
1946 return BTRFS_TREE_BLOCK_INVALID_BLOCKPTR;
1947 }
1948
1949 if (unlikely(btrfs_comp_cpu_keys(&key, &next_key) >= 0)) {
1950 generic_err(eb: node, slot,
1951 fmt: "bad key order, current (%llu %u %llu) next (%llu %u %llu)",
1952 key.objectid, key.type, key.offset,
1953 next_key.objectid, next_key.type,
1954 next_key.offset);
1955 return BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
1956 }
1957 }
1958 return BTRFS_TREE_BLOCK_CLEAN;
1959}
1960
1961int btrfs_check_node(struct extent_buffer *node)
1962{
1963 enum btrfs_tree_block_status ret;
1964
1965 ret = __btrfs_check_node(node);
1966 if (unlikely(ret != BTRFS_TREE_BLOCK_CLEAN))
1967 return -EUCLEAN;
1968 return 0;
1969}
1970ALLOW_ERROR_INJECTION(btrfs_check_node, ERRNO);
1971
1972int btrfs_check_eb_owner(const struct extent_buffer *eb, u64 root_owner)
1973{
1974 const bool is_subvol = is_fstree(rootid: root_owner);
1975 const u64 eb_owner = btrfs_header_owner(eb);
1976
1977 /*
1978 * Skip dummy fs, as selftests don't create unique ebs for each dummy
1979 * root.
1980 */
1981 if (test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &eb->fs_info->fs_state))
1982 return 0;
1983 /*
1984 * There are several call sites (backref walking, qgroup, and data
1985 * reloc) passing 0 as @root_owner, as they are not holding the
1986 * tree root. In that case, we can not do a reliable ownership check,
1987 * so just exit.
1988 */
1989 if (root_owner == 0)
1990 return 0;
1991 /*
1992 * These trees use key.offset as their owner, our callers don't have
1993 * the extra capacity to pass key.offset here. So we just skip them.
1994 */
1995 if (root_owner == BTRFS_TREE_LOG_OBJECTID ||
1996 root_owner == BTRFS_TREE_RELOC_OBJECTID)
1997 return 0;
1998
1999 if (!is_subvol) {
2000 /* For non-subvolume trees, the eb owner should match root owner */
2001 if (unlikely(root_owner != eb_owner)) {
2002 btrfs_crit(eb->fs_info,
2003"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect %llu",
2004 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2005 root_owner, btrfs_header_bytenr(eb), eb_owner,
2006 root_owner);
2007 return -EUCLEAN;
2008 }
2009 return 0;
2010 }
2011
2012 /*
2013 * For subvolume trees, owners can mismatch, but they should all belong
2014 * to subvolume trees.
2015 */
2016 if (unlikely(is_subvol != is_fstree(eb_owner))) {
2017 btrfs_crit(eb->fs_info,
2018"corrupted %s, root=%llu block=%llu owner mismatch, have %llu expect [%llu, %llu]",
2019 btrfs_header_level(eb) == 0 ? "leaf" : "node",
2020 root_owner, btrfs_header_bytenr(eb), eb_owner,
2021 BTRFS_FIRST_FREE_OBJECTID, BTRFS_LAST_FREE_OBJECTID);
2022 return -EUCLEAN;
2023 }
2024 return 0;
2025}
2026
2027int btrfs_verify_level_key(struct extent_buffer *eb, int level,
2028 struct btrfs_key *first_key, u64 parent_transid)
2029{
2030 struct btrfs_fs_info *fs_info = eb->fs_info;
2031 int found_level;
2032 struct btrfs_key found_key;
2033 int ret;
2034
2035 found_level = btrfs_header_level(eb);
2036 if (found_level != level) {
2037 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2038 KERN_ERR "BTRFS: tree level check failed\n");
2039 btrfs_err(fs_info,
2040"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
2041 eb->start, level, found_level);
2042 return -EIO;
2043 }
2044
2045 if (!first_key)
2046 return 0;
2047
2048 /*
2049 * For live tree block (new tree blocks in current transaction),
2050 * we need proper lock context to avoid race, which is impossible here.
2051 * So we only checks tree blocks which is read from disk, whose
2052 * generation <= fs_info->last_trans_committed.
2053 */
2054 if (btrfs_header_generation(eb) > btrfs_get_last_trans_committed(fs_info))
2055 return 0;
2056
2057 /* We have @first_key, so this @eb must have at least one item */
2058 if (btrfs_header_nritems(eb) == 0) {
2059 btrfs_err(fs_info,
2060 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
2061 eb->start);
2062 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2063 return -EUCLEAN;
2064 }
2065
2066 if (found_level)
2067 btrfs_node_key_to_cpu(eb, cpu_key: &found_key, nr: 0);
2068 else
2069 btrfs_item_key_to_cpu(eb, cpu_key: &found_key, nr: 0);
2070 ret = btrfs_comp_cpu_keys(k1: first_key, k2: &found_key);
2071
2072 if (ret) {
2073 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
2074 KERN_ERR "BTRFS: tree first key check failed\n");
2075 btrfs_err(fs_info,
2076"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
2077 eb->start, parent_transid, first_key->objectid,
2078 first_key->type, first_key->offset,
2079 found_key.objectid, found_key.type,
2080 found_key.offset);
2081 }
2082 return ret;
2083}
2084

source code of linux/fs/btrfs/tree-checker.c