1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * fs/ext4/fast_commit.c
5 *
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7 *
8 * Ext4 fast commits routines.
9 */
10#include "ext4.h"
11#include "ext4_jbd2.h"
12#include "ext4_extents.h"
13#include "mballoc.h"
14
15/*
16 * Ext4 Fast Commits
17 * -----------------
18 *
19 * Ext4 fast commits implement fine grained journalling for Ext4.
20 *
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
26 *
27 * (A) Directory entry updates:
28 *
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
32 *
33 * (B) File specific data range updates:
34 *
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
37 *
38 * (C) Inode metadata (mtime / ctime etc):
39 *
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
51 *
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
60 *
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
65 *
66 * Fast Commit Ineligibility
67 * -------------------------
68 *
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
73 *
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
83 *
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
89 *
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
93 *
94 * Replay code should thus check for all the valid tails in the FC area.
95 *
96 * Fast Commit Replay Idempotence
97 * ------------------------------
98 *
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
103 *
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
108 *
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
112 *
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
115 *
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
118 *
119 * rm A; mv B A; read A
120 * (x) (y) (z)
121 *
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
130 *
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
133 *
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
136 *
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
144 *
145 * TODOs
146 * -----
147 *
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
158 *
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
164 *
165 * 2) Handle more ineligible cases.
166 */
167
168#include <trace/events/ext4.h>
169static struct kmem_cache *ext4_fc_dentry_cachep;
170
171static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172{
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
182 }
183
184 unlock_buffer(bh);
185}
186
187static inline void ext4_fc_reset_inode(struct inode *inode)
188{
189 struct ext4_inode_info *ei = EXT4_I(inode);
190
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
193}
194
195void ext4_fc_init_inode(struct inode *inode)
196{
197 struct ext4_inode_info *ei = EXT4_I(inode);
198
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, bit: EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(list: &ei->i_fc_list);
202 INIT_LIST_HEAD(list: &ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(v: &ei->i_fc_updates, i: 0);
205}
206
207/* This function must be called with sbi->s_fc_lock held. */
208static void ext4_fc_wait_committing_inode(struct inode *inode)
209__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210{
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
213
214#if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219#else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(word: &ei->i_flags,
223 bit: EXT4_STATE_FC_COMMITTING);
224#endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq_head: wq, wq_entry: &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(lock: &EXT4_SB(sb: inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq_head: wq, wq_entry: &wait.wq_entry);
230}
231
232static bool ext4_fc_disabled(struct super_block *sb)
233{
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236}
237
238/*
239 * Inform Ext4's fast about start of an inode update
240 *
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
244 */
245void ext4_fc_start_update(struct inode *inode)
246{
247 struct ext4_inode_info *ei = EXT4_I(inode);
248
249 if (ext4_fc_disabled(sb: inode->i_sb))
250 return;
251
252restart:
253 spin_lock(lock: &EXT4_SB(sb: inode->i_sb)->s_fc_lock);
254 if (list_empty(head: &ei->i_fc_list))
255 goto out;
256
257 if (ext4_test_inode_state(inode, bit: EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
260 }
261out:
262 atomic_inc(v: &ei->i_fc_updates);
263 spin_unlock(lock: &EXT4_SB(sb: inode->i_sb)->s_fc_lock);
264}
265
266/*
267 * Stop inode update and wake up waiting fast commits if any.
268 */
269void ext4_fc_stop_update(struct inode *inode)
270{
271 struct ext4_inode_info *ei = EXT4_I(inode);
272
273 if (ext4_fc_disabled(sb: inode->i_sb))
274 return;
275
276 if (atomic_dec_and_test(v: &ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
278}
279
280/*
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
283 */
284void ext4_fc_del(struct inode *inode)
285{
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
289
290 if (ext4_fc_disabled(sb: inode->i_sb))
291 return;
292
293restart:
294 spin_lock(lock: &EXT4_SB(sb: inode->i_sb)->s_fc_lock);
295 if (list_empty(head: &ei->i_fc_list) && list_empty(head: &ei->i_fc_dilist)) {
296 spin_unlock(lock: &EXT4_SB(sb: inode->i_sb)->s_fc_lock);
297 return;
298 }
299
300 if (ext4_test_inode_state(inode, bit: EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
303 }
304
305 if (!list_empty(head: &ei->i_fc_list))
306 list_del_init(entry: &ei->i_fc_list);
307
308 /*
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
311 */
312 if (list_empty(head: &ei->i_fc_dilist)) {
313 spin_unlock(lock: &sbi->s_fc_lock);
314 return;
315 }
316
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(entry: &fc_dentry->fcd_list);
320 list_del_init(entry: &fc_dentry->fcd_dilist);
321
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(lock: &sbi->s_fc_lock);
324
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(objp: fc_dentry->fcd_name.name);
328 kmem_cache_free(s: ext4_fc_dentry_cachep, objp: fc_dentry);
329
330 return;
331}
332
333/*
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
337 */
338void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339{
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342
343 if (ext4_fc_disabled(sb))
344 return;
345
346 ext4_set_mount_flag(sb, bit: EXT4_MF_FC_INELIGIBLE);
347 if (handle && !IS_ERR(ptr: handle))
348 tid = handle->h_transaction->t_tid;
349 else {
350 read_lock(&sbi->s_journal->j_state_lock);
351 tid = sbi->s_journal->j_running_transaction ?
352 sbi->s_journal->j_running_transaction->t_tid : 0;
353 read_unlock(&sbi->s_journal->j_state_lock);
354 }
355 spin_lock(lock: &sbi->s_fc_lock);
356 if (sbi->s_fc_ineligible_tid < tid)
357 sbi->s_fc_ineligible_tid = tid;
358 spin_unlock(lock: &sbi->s_fc_lock);
359 WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361}
362
363/*
364 * Generic fast commit tracking function. If this is the first time this we are
365 * called after a full commit, we initialize fast commit fields and then call
366 * __fc_track_fn() with update = 0. If we have already been called after a full
367 * commit, we pass update = 1. Based on that, the track function can determine
368 * if it needs to track a field for the first time or if it needs to just
369 * update the previously tracked value.
370 *
371 * If enqueue is set, this function enqueues the inode in fast commit list.
372 */
373static int ext4_fc_track_template(
374 handle_t *handle, struct inode *inode,
375 int (*__fc_track_fn)(struct inode *, void *, bool),
376 void *args, int enqueue)
377{
378 bool update = false;
379 struct ext4_inode_info *ei = EXT4_I(inode);
380 struct ext4_sb_info *sbi = EXT4_SB(sb: inode->i_sb);
381 tid_t tid = 0;
382 int ret;
383
384 tid = handle->h_transaction->t_tid;
385 mutex_lock(&ei->i_fc_lock);
386 if (tid == ei->i_sync_tid) {
387 update = true;
388 } else {
389 ext4_fc_reset_inode(inode);
390 ei->i_sync_tid = tid;
391 }
392 ret = __fc_track_fn(inode, args, update);
393 mutex_unlock(lock: &ei->i_fc_lock);
394
395 if (!enqueue)
396 return ret;
397
398 spin_lock(lock: &sbi->s_fc_lock);
399 if (list_empty(head: &EXT4_I(inode)->i_fc_list))
400 list_add_tail(new: &EXT4_I(inode)->i_fc_list,
401 head: (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 &sbi->s_fc_q[FC_Q_STAGING] :
404 &sbi->s_fc_q[FC_Q_MAIN]);
405 spin_unlock(lock: &sbi->s_fc_lock);
406
407 return ret;
408}
409
410struct __track_dentry_update_args {
411 struct dentry *dentry;
412 int op;
413};
414
415/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
416static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417{
418 struct ext4_fc_dentry_update *node;
419 struct ext4_inode_info *ei = EXT4_I(inode);
420 struct __track_dentry_update_args *dentry_update =
421 (struct __track_dentry_update_args *)arg;
422 struct dentry *dentry = dentry_update->dentry;
423 struct inode *dir = dentry->d_parent->d_inode;
424 struct super_block *sb = inode->i_sb;
425 struct ext4_sb_info *sbi = EXT4_SB(sb);
426
427 mutex_unlock(lock: &ei->i_fc_lock);
428
429 if (IS_ENCRYPTED(dir)) {
430 ext4_fc_mark_ineligible(sb, reason: EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 NULL);
432 mutex_lock(&ei->i_fc_lock);
433 return -EOPNOTSUPP;
434 }
435
436 node = kmem_cache_alloc(cachep: ext4_fc_dentry_cachep, GFP_NOFS);
437 if (!node) {
438 ext4_fc_mark_ineligible(sb, reason: EXT4_FC_REASON_NOMEM, NULL);
439 mutex_lock(&ei->i_fc_lock);
440 return -ENOMEM;
441 }
442
443 node->fcd_op = dentry_update->op;
444 node->fcd_parent = dir->i_ino;
445 node->fcd_ino = inode->i_ino;
446 if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 node->fcd_name.name = kmalloc(size: dentry->d_name.len, GFP_NOFS);
448 if (!node->fcd_name.name) {
449 kmem_cache_free(s: ext4_fc_dentry_cachep, objp: node);
450 ext4_fc_mark_ineligible(sb, reason: EXT4_FC_REASON_NOMEM, NULL);
451 mutex_lock(&ei->i_fc_lock);
452 return -ENOMEM;
453 }
454 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 dentry->d_name.len);
456 } else {
457 memcpy(node->fcd_iname, dentry->d_name.name,
458 dentry->d_name.len);
459 node->fcd_name.name = node->fcd_iname;
460 }
461 node->fcd_name.len = dentry->d_name.len;
462 INIT_LIST_HEAD(list: &node->fcd_dilist);
463 spin_lock(lock: &sbi->s_fc_lock);
464 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 list_add_tail(new: &node->fcd_list,
467 head: &sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 else
469 list_add_tail(new: &node->fcd_list, head: &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470
471 /*
472 * This helps us keep a track of all fc_dentry updates which is part of
473 * this ext4 inode. So in case the inode is getting unlinked, before
474 * even we get a chance to fsync, we could remove all fc_dentry
475 * references while evicting the inode in ext4_fc_del().
476 * Also with this, we don't need to loop over all the inodes in
477 * sbi->s_fc_q to get the corresponding inode in
478 * ext4_fc_commit_dentry_updates().
479 */
480 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 WARN_ON(!list_empty(&ei->i_fc_dilist));
482 list_add_tail(new: &node->fcd_dilist, head: &ei->i_fc_dilist);
483 }
484 spin_unlock(lock: &sbi->s_fc_lock);
485 mutex_lock(&ei->i_fc_lock);
486
487 return 0;
488}
489
490void __ext4_fc_track_unlink(handle_t *handle,
491 struct inode *inode, struct dentry *dentry)
492{
493 struct __track_dentry_update_args args;
494 int ret;
495
496 args.dentry = dentry;
497 args.op = EXT4_FC_TAG_UNLINK;
498
499 ret = ext4_fc_track_template(handle, inode, fc_track_fn: __track_dentry_update,
500 args: (void *)&args, enqueue: 0);
501 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502}
503
504void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505{
506 struct inode *inode = d_inode(dentry);
507
508 if (ext4_fc_disabled(sb: inode->i_sb))
509 return;
510
511 if (ext4_test_mount_flag(sb: inode->i_sb, bit: EXT4_MF_FC_INELIGIBLE))
512 return;
513
514 __ext4_fc_track_unlink(handle, inode, dentry);
515}
516
517void __ext4_fc_track_link(handle_t *handle,
518 struct inode *inode, struct dentry *dentry)
519{
520 struct __track_dentry_update_args args;
521 int ret;
522
523 args.dentry = dentry;
524 args.op = EXT4_FC_TAG_LINK;
525
526 ret = ext4_fc_track_template(handle, inode, fc_track_fn: __track_dentry_update,
527 args: (void *)&args, enqueue: 0);
528 trace_ext4_fc_track_link(handle, inode, dentry, ret);
529}
530
531void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532{
533 struct inode *inode = d_inode(dentry);
534
535 if (ext4_fc_disabled(sb: inode->i_sb))
536 return;
537
538 if (ext4_test_mount_flag(sb: inode->i_sb, bit: EXT4_MF_FC_INELIGIBLE))
539 return;
540
541 __ext4_fc_track_link(handle, inode, dentry);
542}
543
544void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 struct dentry *dentry)
546{
547 struct __track_dentry_update_args args;
548 int ret;
549
550 args.dentry = dentry;
551 args.op = EXT4_FC_TAG_CREAT;
552
553 ret = ext4_fc_track_template(handle, inode, fc_track_fn: __track_dentry_update,
554 args: (void *)&args, enqueue: 0);
555 trace_ext4_fc_track_create(handle, inode, dentry, ret);
556}
557
558void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559{
560 struct inode *inode = d_inode(dentry);
561
562 if (ext4_fc_disabled(sb: inode->i_sb))
563 return;
564
565 if (ext4_test_mount_flag(sb: inode->i_sb, bit: EXT4_MF_FC_INELIGIBLE))
566 return;
567
568 __ext4_fc_track_create(handle, inode, dentry);
569}
570
571/* __track_fn for inode tracking */
572static int __track_inode(struct inode *inode, void *arg, bool update)
573{
574 if (update)
575 return -EEXIST;
576
577 EXT4_I(inode)->i_fc_lblk_len = 0;
578
579 return 0;
580}
581
582void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583{
584 int ret;
585
586 if (S_ISDIR(inode->i_mode))
587 return;
588
589 if (ext4_fc_disabled(sb: inode->i_sb))
590 return;
591
592 if (ext4_should_journal_data(inode)) {
593 ext4_fc_mark_ineligible(sb: inode->i_sb,
594 reason: EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 return;
596 }
597
598 if (ext4_test_mount_flag(sb: inode->i_sb, bit: EXT4_MF_FC_INELIGIBLE))
599 return;
600
601 ret = ext4_fc_track_template(handle, inode, fc_track_fn: __track_inode, NULL, enqueue: 1);
602 trace_ext4_fc_track_inode(handle, inode, ret);
603}
604
605struct __track_range_args {
606 ext4_lblk_t start, end;
607};
608
609/* __track_fn for tracking data updates */
610static int __track_range(struct inode *inode, void *arg, bool update)
611{
612 struct ext4_inode_info *ei = EXT4_I(inode);
613 ext4_lblk_t oldstart;
614 struct __track_range_args *__arg =
615 (struct __track_range_args *)arg;
616
617 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 return -ECANCELED;
620 }
621
622 oldstart = ei->i_fc_lblk_start;
623
624 if (update && ei->i_fc_lblk_len > 0) {
625 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 ei->i_fc_lblk_len =
627 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 ei->i_fc_lblk_start + 1;
629 } else {
630 ei->i_fc_lblk_start = __arg->start;
631 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 }
633
634 return 0;
635}
636
637void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 ext4_lblk_t end)
639{
640 struct __track_range_args args;
641 int ret;
642
643 if (S_ISDIR(inode->i_mode))
644 return;
645
646 if (ext4_fc_disabled(sb: inode->i_sb))
647 return;
648
649 if (ext4_test_mount_flag(sb: inode->i_sb, bit: EXT4_MF_FC_INELIGIBLE))
650 return;
651
652 args.start = start;
653 args.end = end;
654
655 ret = ext4_fc_track_template(handle, inode, fc_track_fn: __track_range, args: &args, enqueue: 1);
656
657 trace_ext4_fc_track_range(handle, inode, start, end, ret);
658}
659
660static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661{
662 blk_opf_t write_flags = REQ_SYNC;
663 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664
665 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 if (test_opt(sb, BARRIER) && is_tail)
667 write_flags |= REQ_FUA | REQ_PREFLUSH;
668 lock_buffer(bh);
669 set_buffer_dirty(bh);
670 set_buffer_uptodate(bh);
671 bh->b_end_io = ext4_end_buffer_io_sync;
672 submit_bh(REQ_OP_WRITE | write_flags, bh);
673 EXT4_SB(sb)->s_fc_bh = NULL;
674}
675
676/* Ext4 commit path routines */
677
678/*
679 * Allocate len bytes on a fast commit buffer.
680 *
681 * During the commit time this function is used to manage fast commit
682 * block space. We don't split a fast commit log onto different
683 * blocks. So this function makes sure that if there's not enough space
684 * on the current block, the remaining space in the current block is
685 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
686 * new block is from jbd2 and CRC is updated to reflect the padding
687 * we added.
688 */
689static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
690{
691 struct ext4_fc_tl tl;
692 struct ext4_sb_info *sbi = EXT4_SB(sb);
693 struct buffer_head *bh;
694 int bsize = sbi->s_journal->j_blocksize;
695 int ret, off = sbi->s_fc_bytes % bsize;
696 int remaining;
697 u8 *dst;
698
699 /*
700 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
701 * cannot fulfill the request.
702 */
703 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
704 return NULL;
705
706 if (!sbi->s_fc_bh) {
707 ret = jbd2_fc_get_buf(journal: EXT4_SB(sb)->s_journal, bh_out: &bh);
708 if (ret)
709 return NULL;
710 sbi->s_fc_bh = bh;
711 }
712 dst = sbi->s_fc_bh->b_data + off;
713
714 /*
715 * Allocate the bytes in the current block if we can do so while still
716 * leaving enough space for a PAD tlv.
717 */
718 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
719 if (len <= remaining) {
720 sbi->s_fc_bytes += len;
721 return dst;
722 }
723
724 /*
725 * Else, terminate the current block with a PAD tlv, then allocate a new
726 * block and allocate the bytes at the start of that new block.
727 */
728
729 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
730 tl.fc_len = cpu_to_le16(remaining);
731 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
732 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
733 *crc = ext4_chksum(sbi, crc: *crc, address: sbi->s_fc_bh->b_data, length: bsize);
734
735 ext4_fc_submit_bh(sb, is_tail: false);
736
737 ret = jbd2_fc_get_buf(journal: EXT4_SB(sb)->s_journal, bh_out: &bh);
738 if (ret)
739 return NULL;
740 sbi->s_fc_bh = bh;
741 sbi->s_fc_bytes += bsize - off + len;
742 return sbi->s_fc_bh->b_data;
743}
744
745/*
746 * Complete a fast commit by writing tail tag.
747 *
748 * Writing tail tag marks the end of a fast commit. In order to guarantee
749 * atomicity, after writing tail tag, even if there's space remaining
750 * in the block, next commit shouldn't use it. That's why tail tag
751 * has the length as that of the remaining space on the block.
752 */
753static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
754{
755 struct ext4_sb_info *sbi = EXT4_SB(sb);
756 struct ext4_fc_tl tl;
757 struct ext4_fc_tail tail;
758 int off, bsize = sbi->s_journal->j_blocksize;
759 u8 *dst;
760
761 /*
762 * ext4_fc_reserve_space takes care of allocating an extra block if
763 * there's no enough space on this block for accommodating this tail.
764 */
765 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), crc: &crc);
766 if (!dst)
767 return -ENOSPC;
768
769 off = sbi->s_fc_bytes % bsize;
770
771 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
772 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
773 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
774
775 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
776 dst += EXT4_FC_TAG_BASE_LEN;
777 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
778 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
779 dst += sizeof(tail.fc_tid);
780 crc = ext4_chksum(sbi, crc, address: sbi->s_fc_bh->b_data,
781 length: dst - (u8 *)sbi->s_fc_bh->b_data);
782 tail.fc_crc = cpu_to_le32(crc);
783 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
784 dst += sizeof(tail.fc_crc);
785 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
786
787 ext4_fc_submit_bh(sb, is_tail: true);
788
789 return 0;
790}
791
792/*
793 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
794 * Returns false if there's not enough space.
795 */
796static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
797 u32 *crc)
798{
799 struct ext4_fc_tl tl;
800 u8 *dst;
801
802 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
803 if (!dst)
804 return false;
805
806 tl.fc_tag = cpu_to_le16(tag);
807 tl.fc_len = cpu_to_le16(len);
808
809 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
810 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
811
812 return true;
813}
814
815/* Same as above, but adds dentry tlv. */
816static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
817 struct ext4_fc_dentry_update *fc_dentry)
818{
819 struct ext4_fc_dentry_info fcd;
820 struct ext4_fc_tl tl;
821 int dlen = fc_dentry->fcd_name.len;
822 u8 *dst = ext4_fc_reserve_space(sb,
823 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
824
825 if (!dst)
826 return false;
827
828 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
829 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
830 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
831 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
832 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
833 dst += EXT4_FC_TAG_BASE_LEN;
834 memcpy(dst, &fcd, sizeof(fcd));
835 dst += sizeof(fcd);
836 memcpy(dst, fc_dentry->fcd_name.name, dlen);
837
838 return true;
839}
840
841/*
842 * Writes inode in the fast commit space under TLV with tag @tag.
843 * Returns 0 on success, error on failure.
844 */
845static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
846{
847 struct ext4_inode_info *ei = EXT4_I(inode);
848 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
849 int ret;
850 struct ext4_iloc iloc;
851 struct ext4_fc_inode fc_inode;
852 struct ext4_fc_tl tl;
853 u8 *dst;
854
855 ret = ext4_get_inode_loc(inode, &iloc);
856 if (ret)
857 return ret;
858
859 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_INLINE_DATA))
860 inode_len = EXT4_INODE_SIZE(inode->i_sb);
861 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
862 inode_len += ei->i_extra_isize;
863
864 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
865 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
866 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
867
868 ret = -ECANCELED;
869 dst = ext4_fc_reserve_space(sb: inode->i_sb,
870 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
871 if (!dst)
872 goto err;
873
874 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
875 dst += EXT4_FC_TAG_BASE_LEN;
876 memcpy(dst, &fc_inode, sizeof(fc_inode));
877 dst += sizeof(fc_inode);
878 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
879 ret = 0;
880err:
881 brelse(bh: iloc.bh);
882 return ret;
883}
884
885/*
886 * Writes updated data ranges for the inode in question. Updates CRC.
887 * Returns 0 on success, error otherwise.
888 */
889static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
890{
891 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
892 struct ext4_inode_info *ei = EXT4_I(inode);
893 struct ext4_map_blocks map;
894 struct ext4_fc_add_range fc_ext;
895 struct ext4_fc_del_range lrange;
896 struct ext4_extent *ex;
897 int ret;
898
899 mutex_lock(&ei->i_fc_lock);
900 if (ei->i_fc_lblk_len == 0) {
901 mutex_unlock(lock: &ei->i_fc_lock);
902 return 0;
903 }
904 old_blk_size = ei->i_fc_lblk_start;
905 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
906 ei->i_fc_lblk_len = 0;
907 mutex_unlock(lock: &ei->i_fc_lock);
908
909 cur_lblk_off = old_blk_size;
910 ext4_debug("will try writing %d to %d for inode %ld\n",
911 cur_lblk_off, new_blk_size, inode->i_ino);
912
913 while (cur_lblk_off <= new_blk_size) {
914 map.m_lblk = cur_lblk_off;
915 map.m_len = new_blk_size - cur_lblk_off + 1;
916 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
917 if (ret < 0)
918 return -ECANCELED;
919
920 if (map.m_len == 0) {
921 cur_lblk_off++;
922 continue;
923 }
924
925 if (ret == 0) {
926 lrange.fc_ino = cpu_to_le32(inode->i_ino);
927 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
928 lrange.fc_len = cpu_to_le32(map.m_len);
929 if (!ext4_fc_add_tlv(sb: inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
930 len: sizeof(lrange), val: (u8 *)&lrange, crc))
931 return -ENOSPC;
932 } else {
933 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
934 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
935
936 /* Limit the number of blocks in one extent */
937 map.m_len = min(max, map.m_len);
938
939 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
940 ex = (struct ext4_extent *)&fc_ext.fc_ex;
941 ex->ee_block = cpu_to_le32(map.m_lblk);
942 ex->ee_len = cpu_to_le16(map.m_len);
943 ext4_ext_store_pblock(ex, pb: map.m_pblk);
944 if (map.m_flags & EXT4_MAP_UNWRITTEN)
945 ext4_ext_mark_unwritten(ext: ex);
946 else
947 ext4_ext_mark_initialized(ext: ex);
948 if (!ext4_fc_add_tlv(sb: inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
949 len: sizeof(fc_ext), val: (u8 *)&fc_ext, crc))
950 return -ENOSPC;
951 }
952
953 cur_lblk_off += map.m_len;
954 }
955
956 return 0;
957}
958
959
960/* Submit data for all the fast commit inodes */
961static int ext4_fc_submit_inode_data_all(journal_t *journal)
962{
963 struct super_block *sb = journal->j_private;
964 struct ext4_sb_info *sbi = EXT4_SB(sb);
965 struct ext4_inode_info *ei;
966 int ret = 0;
967
968 spin_lock(lock: &sbi->s_fc_lock);
969 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
970 ext4_set_inode_state(inode: &ei->vfs_inode, bit: EXT4_STATE_FC_COMMITTING);
971 while (atomic_read(v: &ei->i_fc_updates)) {
972 DEFINE_WAIT(wait);
973
974 prepare_to_wait(wq_head: &ei->i_fc_wait, wq_entry: &wait,
975 TASK_UNINTERRUPTIBLE);
976 if (atomic_read(v: &ei->i_fc_updates)) {
977 spin_unlock(lock: &sbi->s_fc_lock);
978 schedule();
979 spin_lock(lock: &sbi->s_fc_lock);
980 }
981 finish_wait(wq_head: &ei->i_fc_wait, wq_entry: &wait);
982 }
983 spin_unlock(lock: &sbi->s_fc_lock);
984 ret = jbd2_submit_inode_data(journal, jinode: ei->jinode);
985 if (ret)
986 return ret;
987 spin_lock(lock: &sbi->s_fc_lock);
988 }
989 spin_unlock(lock: &sbi->s_fc_lock);
990
991 return ret;
992}
993
994/* Wait for completion of data for all the fast commit inodes */
995static int ext4_fc_wait_inode_data_all(journal_t *journal)
996{
997 struct super_block *sb = journal->j_private;
998 struct ext4_sb_info *sbi = EXT4_SB(sb);
999 struct ext4_inode_info *pos, *n;
1000 int ret = 0;
1001
1002 spin_lock(lock: &sbi->s_fc_lock);
1003 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1004 if (!ext4_test_inode_state(inode: &pos->vfs_inode,
1005 bit: EXT4_STATE_FC_COMMITTING))
1006 continue;
1007 spin_unlock(lock: &sbi->s_fc_lock);
1008
1009 ret = jbd2_wait_inode_data(journal, jinode: pos->jinode);
1010 if (ret)
1011 return ret;
1012 spin_lock(lock: &sbi->s_fc_lock);
1013 }
1014 spin_unlock(lock: &sbi->s_fc_lock);
1015
1016 return 0;
1017}
1018
1019/* Commit all the directory entry updates */
1020static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1021__acquires(&sbi->s_fc_lock)
1022__releases(&sbi->s_fc_lock)
1023{
1024 struct super_block *sb = journal->j_private;
1025 struct ext4_sb_info *sbi = EXT4_SB(sb);
1026 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1027 struct inode *inode;
1028 struct ext4_inode_info *ei;
1029 int ret;
1030
1031 if (list_empty(head: &sbi->s_fc_dentry_q[FC_Q_MAIN]))
1032 return 0;
1033 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1034 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1035 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1036 spin_unlock(lock: &sbi->s_fc_lock);
1037 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1038 ret = -ENOSPC;
1039 goto lock_and_exit;
1040 }
1041 spin_lock(lock: &sbi->s_fc_lock);
1042 continue;
1043 }
1044 /*
1045 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1046 * corresponding inode pointer
1047 */
1048 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1049 ei = list_first_entry(&fc_dentry->fcd_dilist,
1050 struct ext4_inode_info, i_fc_dilist);
1051 inode = &ei->vfs_inode;
1052 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1053
1054 spin_unlock(lock: &sbi->s_fc_lock);
1055
1056 /*
1057 * We first write the inode and then the create dirent. This
1058 * allows the recovery code to create an unnamed inode first
1059 * and then link it to a directory entry. This allows us
1060 * to use namei.c routines almost as is and simplifies
1061 * the recovery code.
1062 */
1063 ret = ext4_fc_write_inode(inode, crc);
1064 if (ret)
1065 goto lock_and_exit;
1066
1067 ret = ext4_fc_write_inode_data(inode, crc);
1068 if (ret)
1069 goto lock_and_exit;
1070
1071 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1072 ret = -ENOSPC;
1073 goto lock_and_exit;
1074 }
1075
1076 spin_lock(lock: &sbi->s_fc_lock);
1077 }
1078 return 0;
1079lock_and_exit:
1080 spin_lock(lock: &sbi->s_fc_lock);
1081 return ret;
1082}
1083
1084static int ext4_fc_perform_commit(journal_t *journal)
1085{
1086 struct super_block *sb = journal->j_private;
1087 struct ext4_sb_info *sbi = EXT4_SB(sb);
1088 struct ext4_inode_info *iter;
1089 struct ext4_fc_head head;
1090 struct inode *inode;
1091 struct blk_plug plug;
1092 int ret = 0;
1093 u32 crc = 0;
1094
1095 ret = ext4_fc_submit_inode_data_all(journal);
1096 if (ret)
1097 return ret;
1098
1099 ret = ext4_fc_wait_inode_data_all(journal);
1100 if (ret)
1101 return ret;
1102
1103 /*
1104 * If file system device is different from journal device, issue a cache
1105 * flush before we start writing fast commit blocks.
1106 */
1107 if (journal->j_fs_dev != journal->j_dev)
1108 blkdev_issue_flush(bdev: journal->j_fs_dev);
1109
1110 blk_start_plug(&plug);
1111 if (sbi->s_fc_bytes == 0) {
1112 /*
1113 * Add a head tag only if this is the first fast commit
1114 * in this TID.
1115 */
1116 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1117 head.fc_tid = cpu_to_le32(
1118 sbi->s_journal->j_running_transaction->t_tid);
1119 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, len: sizeof(head),
1120 val: (u8 *)&head, crc: &crc)) {
1121 ret = -ENOSPC;
1122 goto out;
1123 }
1124 }
1125
1126 spin_lock(lock: &sbi->s_fc_lock);
1127 ret = ext4_fc_commit_dentry_updates(journal, crc: &crc);
1128 if (ret) {
1129 spin_unlock(lock: &sbi->s_fc_lock);
1130 goto out;
1131 }
1132
1133 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1134 inode = &iter->vfs_inode;
1135 if (!ext4_test_inode_state(inode, bit: EXT4_STATE_FC_COMMITTING))
1136 continue;
1137
1138 spin_unlock(lock: &sbi->s_fc_lock);
1139 ret = ext4_fc_write_inode_data(inode, crc: &crc);
1140 if (ret)
1141 goto out;
1142 ret = ext4_fc_write_inode(inode, crc: &crc);
1143 if (ret)
1144 goto out;
1145 spin_lock(lock: &sbi->s_fc_lock);
1146 }
1147 spin_unlock(lock: &sbi->s_fc_lock);
1148
1149 ret = ext4_fc_write_tail(sb, crc);
1150
1151out:
1152 blk_finish_plug(&plug);
1153 return ret;
1154}
1155
1156static void ext4_fc_update_stats(struct super_block *sb, int status,
1157 u64 commit_time, int nblks, tid_t commit_tid)
1158{
1159 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1160
1161 ext4_debug("Fast commit ended with status = %d for tid %u",
1162 status, commit_tid);
1163 if (status == EXT4_FC_STATUS_OK) {
1164 stats->fc_num_commits++;
1165 stats->fc_numblks += nblks;
1166 if (likely(stats->s_fc_avg_commit_time))
1167 stats->s_fc_avg_commit_time =
1168 (commit_time +
1169 stats->s_fc_avg_commit_time * 3) / 4;
1170 else
1171 stats->s_fc_avg_commit_time = commit_time;
1172 } else if (status == EXT4_FC_STATUS_FAILED ||
1173 status == EXT4_FC_STATUS_INELIGIBLE) {
1174 if (status == EXT4_FC_STATUS_FAILED)
1175 stats->fc_failed_commits++;
1176 stats->fc_ineligible_commits++;
1177 } else {
1178 stats->fc_skipped_commits++;
1179 }
1180 trace_ext4_fc_commit_stop(sb, nblks, reason: status, commit_tid);
1181}
1182
1183/*
1184 * The main commit entry point. Performs a fast commit for transaction
1185 * commit_tid if needed. If it's not possible to perform a fast commit
1186 * due to various reasons, we fall back to full commit. Returns 0
1187 * on success, error otherwise.
1188 */
1189int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1190{
1191 struct super_block *sb = journal->j_private;
1192 struct ext4_sb_info *sbi = EXT4_SB(sb);
1193 int nblks = 0, ret, bsize = journal->j_blocksize;
1194 int subtid = atomic_read(v: &sbi->s_fc_subtid);
1195 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1196 ktime_t start_time, commit_time;
1197
1198 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1199 return jbd2_complete_transaction(journal, tid: commit_tid);
1200
1201 trace_ext4_fc_commit_start(sb, commit_tid);
1202
1203 start_time = ktime_get();
1204
1205restart_fc:
1206 ret = jbd2_fc_begin_commit(journal, tid: commit_tid);
1207 if (ret == -EALREADY) {
1208 /* There was an ongoing commit, check if we need to restart */
1209 if (atomic_read(v: &sbi->s_fc_subtid) <= subtid &&
1210 commit_tid > journal->j_commit_sequence)
1211 goto restart_fc;
1212 ext4_fc_update_stats(sb, status: EXT4_FC_STATUS_SKIPPED, commit_time: 0, nblks: 0,
1213 commit_tid);
1214 return 0;
1215 } else if (ret) {
1216 /*
1217 * Commit couldn't start. Just update stats and perform a
1218 * full commit.
1219 */
1220 ext4_fc_update_stats(sb, status: EXT4_FC_STATUS_FAILED, commit_time: 0, nblks: 0,
1221 commit_tid);
1222 return jbd2_complete_transaction(journal, tid: commit_tid);
1223 }
1224
1225 /*
1226 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1227 * if we are fast commit ineligible.
1228 */
1229 if (ext4_test_mount_flag(sb, bit: EXT4_MF_FC_INELIGIBLE)) {
1230 status = EXT4_FC_STATUS_INELIGIBLE;
1231 goto fallback;
1232 }
1233
1234 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1235 ret = ext4_fc_perform_commit(journal);
1236 if (ret < 0) {
1237 status = EXT4_FC_STATUS_FAILED;
1238 goto fallback;
1239 }
1240 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1241 ret = jbd2_fc_wait_bufs(journal, num_blks: nblks);
1242 if (ret < 0) {
1243 status = EXT4_FC_STATUS_FAILED;
1244 goto fallback;
1245 }
1246 atomic_inc(v: &sbi->s_fc_subtid);
1247 ret = jbd2_fc_end_commit(journal);
1248 /*
1249 * weight the commit time higher than the average time so we
1250 * don't react too strongly to vast changes in the commit time
1251 */
1252 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1253 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1254 return ret;
1255
1256fallback:
1257 ret = jbd2_fc_end_commit_fallback(journal);
1258 ext4_fc_update_stats(sb, status, commit_time: 0, nblks: 0, commit_tid);
1259 return ret;
1260}
1261
1262/*
1263 * Fast commit cleanup routine. This is called after every fast commit and
1264 * full commit. full is true if we are called after a full commit.
1265 */
1266static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1267{
1268 struct super_block *sb = journal->j_private;
1269 struct ext4_sb_info *sbi = EXT4_SB(sb);
1270 struct ext4_inode_info *iter, *iter_n;
1271 struct ext4_fc_dentry_update *fc_dentry;
1272
1273 if (full && sbi->s_fc_bh)
1274 sbi->s_fc_bh = NULL;
1275
1276 trace_ext4_fc_cleanup(journal, full, tid);
1277 jbd2_fc_release_bufs(journal);
1278
1279 spin_lock(lock: &sbi->s_fc_lock);
1280 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1281 i_fc_list) {
1282 list_del_init(entry: &iter->i_fc_list);
1283 ext4_clear_inode_state(inode: &iter->vfs_inode,
1284 bit: EXT4_STATE_FC_COMMITTING);
1285 if (iter->i_sync_tid <= tid)
1286 ext4_fc_reset_inode(inode: &iter->vfs_inode);
1287 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1288 smp_mb();
1289#if (BITS_PER_LONG < 64)
1290 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1291#else
1292 wake_up_bit(word: &iter->i_flags, bit: EXT4_STATE_FC_COMMITTING);
1293#endif
1294 }
1295
1296 while (!list_empty(head: &sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1297 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1298 struct ext4_fc_dentry_update,
1299 fcd_list);
1300 list_del_init(entry: &fc_dentry->fcd_list);
1301 list_del_init(entry: &fc_dentry->fcd_dilist);
1302 spin_unlock(lock: &sbi->s_fc_lock);
1303
1304 if (fc_dentry->fcd_name.name &&
1305 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1306 kfree(objp: fc_dentry->fcd_name.name);
1307 kmem_cache_free(s: ext4_fc_dentry_cachep, objp: fc_dentry);
1308 spin_lock(lock: &sbi->s_fc_lock);
1309 }
1310
1311 list_splice_init(list: &sbi->s_fc_dentry_q[FC_Q_STAGING],
1312 head: &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1313 list_splice_init(list: &sbi->s_fc_q[FC_Q_STAGING],
1314 head: &sbi->s_fc_q[FC_Q_MAIN]);
1315
1316 if (tid >= sbi->s_fc_ineligible_tid) {
1317 sbi->s_fc_ineligible_tid = 0;
1318 ext4_clear_mount_flag(sb, bit: EXT4_MF_FC_INELIGIBLE);
1319 }
1320
1321 if (full)
1322 sbi->s_fc_bytes = 0;
1323 spin_unlock(lock: &sbi->s_fc_lock);
1324 trace_ext4_fc_stats(sb);
1325}
1326
1327/* Ext4 Replay Path Routines */
1328
1329/* Helper struct for dentry replay routines */
1330struct dentry_info_args {
1331 int parent_ino, dname_len, ino, inode_len;
1332 char *dname;
1333};
1334
1335/* Same as struct ext4_fc_tl, but uses native endianness fields */
1336struct ext4_fc_tl_mem {
1337 u16 fc_tag;
1338 u16 fc_len;
1339};
1340
1341static inline void tl_to_darg(struct dentry_info_args *darg,
1342 struct ext4_fc_tl_mem *tl, u8 *val)
1343{
1344 struct ext4_fc_dentry_info fcd;
1345
1346 memcpy(&fcd, val, sizeof(fcd));
1347
1348 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1349 darg->ino = le32_to_cpu(fcd.fc_ino);
1350 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1351 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1352}
1353
1354static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1355{
1356 struct ext4_fc_tl tl_disk;
1357
1358 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1359 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1360 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1361}
1362
1363/* Unlink replay function */
1364static int ext4_fc_replay_unlink(struct super_block *sb,
1365 struct ext4_fc_tl_mem *tl, u8 *val)
1366{
1367 struct inode *inode, *old_parent;
1368 struct qstr entry;
1369 struct dentry_info_args darg;
1370 int ret = 0;
1371
1372 tl_to_darg(darg: &darg, tl, val);
1373
1374 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, ino: darg.ino,
1375 priv1: darg.parent_ino, priv2: darg.dname_len);
1376
1377 entry.name = darg.dname;
1378 entry.len = darg.dname_len;
1379 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1380
1381 if (IS_ERR(ptr: inode)) {
1382 ext4_debug("Inode %d not found", darg.ino);
1383 return 0;
1384 }
1385
1386 old_parent = ext4_iget(sb, darg.parent_ino,
1387 EXT4_IGET_NORMAL);
1388 if (IS_ERR(ptr: old_parent)) {
1389 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1390 iput(inode);
1391 return 0;
1392 }
1393
1394 ret = __ext4_unlink(dir: old_parent, d_name: &entry, inode, NULL);
1395 /* -ENOENT ok coz it might not exist anymore. */
1396 if (ret == -ENOENT)
1397 ret = 0;
1398 iput(old_parent);
1399 iput(inode);
1400 return ret;
1401}
1402
1403static int ext4_fc_replay_link_internal(struct super_block *sb,
1404 struct dentry_info_args *darg,
1405 struct inode *inode)
1406{
1407 struct inode *dir = NULL;
1408 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1409 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1410 int ret = 0;
1411
1412 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1413 if (IS_ERR(ptr: dir)) {
1414 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1415 dir = NULL;
1416 goto out;
1417 }
1418
1419 dentry_dir = d_obtain_alias(dir);
1420 if (IS_ERR(ptr: dentry_dir)) {
1421 ext4_debug("Failed to obtain dentry");
1422 dentry_dir = NULL;
1423 goto out;
1424 }
1425
1426 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1427 if (!dentry_inode) {
1428 ext4_debug("Inode dentry not created.");
1429 ret = -ENOMEM;
1430 goto out;
1431 }
1432
1433 ret = __ext4_link(dir, inode, dentry: dentry_inode);
1434 /*
1435 * It's possible that link already existed since data blocks
1436 * for the dir in question got persisted before we crashed OR
1437 * we replayed this tag and crashed before the entire replay
1438 * could complete.
1439 */
1440 if (ret && ret != -EEXIST) {
1441 ext4_debug("Failed to link\n");
1442 goto out;
1443 }
1444
1445 ret = 0;
1446out:
1447 if (dentry_dir) {
1448 d_drop(dentry: dentry_dir);
1449 dput(dentry_dir);
1450 } else if (dir) {
1451 iput(dir);
1452 }
1453 if (dentry_inode) {
1454 d_drop(dentry: dentry_inode);
1455 dput(dentry_inode);
1456 }
1457
1458 return ret;
1459}
1460
1461/* Link replay function */
1462static int ext4_fc_replay_link(struct super_block *sb,
1463 struct ext4_fc_tl_mem *tl, u8 *val)
1464{
1465 struct inode *inode;
1466 struct dentry_info_args darg;
1467 int ret = 0;
1468
1469 tl_to_darg(darg: &darg, tl, val);
1470 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, ino: darg.ino,
1471 priv1: darg.parent_ino, priv2: darg.dname_len);
1472
1473 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1474 if (IS_ERR(ptr: inode)) {
1475 ext4_debug("Inode not found.");
1476 return 0;
1477 }
1478
1479 ret = ext4_fc_replay_link_internal(sb, darg: &darg, inode);
1480 iput(inode);
1481 return ret;
1482}
1483
1484/*
1485 * Record all the modified inodes during replay. We use this later to setup
1486 * block bitmaps correctly.
1487 */
1488static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1489{
1490 struct ext4_fc_replay_state *state;
1491 int i;
1492
1493 state = &EXT4_SB(sb)->s_fc_replay_state;
1494 for (i = 0; i < state->fc_modified_inodes_used; i++)
1495 if (state->fc_modified_inodes[i] == ino)
1496 return 0;
1497 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1498 int *fc_modified_inodes;
1499
1500 fc_modified_inodes = krealloc(objp: state->fc_modified_inodes,
1501 new_size: sizeof(int) * (state->fc_modified_inodes_size +
1502 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1503 GFP_KERNEL);
1504 if (!fc_modified_inodes)
1505 return -ENOMEM;
1506 state->fc_modified_inodes = fc_modified_inodes;
1507 state->fc_modified_inodes_size +=
1508 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1509 }
1510 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1511 return 0;
1512}
1513
1514/*
1515 * Inode replay function
1516 */
1517static int ext4_fc_replay_inode(struct super_block *sb,
1518 struct ext4_fc_tl_mem *tl, u8 *val)
1519{
1520 struct ext4_fc_inode fc_inode;
1521 struct ext4_inode *raw_inode;
1522 struct ext4_inode *raw_fc_inode;
1523 struct inode *inode = NULL;
1524 struct ext4_iloc iloc;
1525 int inode_len, ino, ret, tag = tl->fc_tag;
1526 struct ext4_extent_header *eh;
1527 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1528
1529 memcpy(&fc_inode, val, sizeof(fc_inode));
1530
1531 ino = le32_to_cpu(fc_inode.fc_ino);
1532 trace_ext4_fc_replay(sb, tag, ino, priv1: 0, priv2: 0);
1533
1534 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1535 if (!IS_ERR(ptr: inode)) {
1536 ext4_ext_clear_bb(inode);
1537 iput(inode);
1538 }
1539 inode = NULL;
1540
1541 ret = ext4_fc_record_modified_inode(sb, ino);
1542 if (ret)
1543 goto out;
1544
1545 raw_fc_inode = (struct ext4_inode *)
1546 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1547 ret = ext4_get_fc_inode_loc(sb, ino, iloc: &iloc);
1548 if (ret)
1549 goto out;
1550
1551 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1552 raw_inode = ext4_raw_inode(iloc: &iloc);
1553
1554 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1555 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1556 inode_len - off_gen);
1557 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1558 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1559 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1560 memset(eh, 0, sizeof(*eh));
1561 eh->eh_magic = EXT4_EXT_MAGIC;
1562 eh->eh_max = cpu_to_le16(
1563 (sizeof(raw_inode->i_block) -
1564 sizeof(struct ext4_extent_header))
1565 / sizeof(struct ext4_extent));
1566 }
1567 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1568 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1569 sizeof(raw_inode->i_block));
1570 }
1571
1572 /* Immediately update the inode on disk. */
1573 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1574 if (ret)
1575 goto out;
1576 ret = sync_dirty_buffer(bh: iloc.bh);
1577 if (ret)
1578 goto out;
1579 ret = ext4_mark_inode_used(sb, ino);
1580 if (ret)
1581 goto out;
1582
1583 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1584 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1585 if (IS_ERR(ptr: inode)) {
1586 ext4_debug("Inode not found.");
1587 return -EFSCORRUPTED;
1588 }
1589
1590 /*
1591 * Our allocator could have made different decisions than before
1592 * crashing. This should be fixed but until then, we calculate
1593 * the number of blocks the inode.
1594 */
1595 if (!ext4_test_inode_flag(inode, bit: EXT4_INODE_INLINE_DATA))
1596 ext4_ext_replay_set_iblocks(inode);
1597
1598 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1599 ext4_reset_inode_seed(inode);
1600
1601 ext4_inode_csum_set(inode, raw: ext4_raw_inode(iloc: &iloc), EXT4_I(inode));
1602 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1603 sync_dirty_buffer(bh: iloc.bh);
1604 brelse(bh: iloc.bh);
1605out:
1606 iput(inode);
1607 if (!ret)
1608 blkdev_issue_flush(bdev: sb->s_bdev);
1609
1610 return 0;
1611}
1612
1613/*
1614 * Dentry create replay function.
1615 *
1616 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1617 * inode for which we are trying to create a dentry here, should already have
1618 * been replayed before we start here.
1619 */
1620static int ext4_fc_replay_create(struct super_block *sb,
1621 struct ext4_fc_tl_mem *tl, u8 *val)
1622{
1623 int ret = 0;
1624 struct inode *inode = NULL;
1625 struct inode *dir = NULL;
1626 struct dentry_info_args darg;
1627
1628 tl_to_darg(darg: &darg, tl, val);
1629
1630 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, ino: darg.ino,
1631 priv1: darg.parent_ino, priv2: darg.dname_len);
1632
1633 /* This takes care of update group descriptor and other metadata */
1634 ret = ext4_mark_inode_used(sb, ino: darg.ino);
1635 if (ret)
1636 goto out;
1637
1638 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1639 if (IS_ERR(ptr: inode)) {
1640 ext4_debug("inode %d not found.", darg.ino);
1641 inode = NULL;
1642 ret = -EINVAL;
1643 goto out;
1644 }
1645
1646 if (S_ISDIR(inode->i_mode)) {
1647 /*
1648 * If we are creating a directory, we need to make sure that the
1649 * dot and dot dot dirents are setup properly.
1650 */
1651 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1652 if (IS_ERR(ptr: dir)) {
1653 ext4_debug("Dir %d not found.", darg.ino);
1654 goto out;
1655 }
1656 ret = ext4_init_new_dir(NULL, dir, inode);
1657 iput(dir);
1658 if (ret) {
1659 ret = 0;
1660 goto out;
1661 }
1662 }
1663 ret = ext4_fc_replay_link_internal(sb, darg: &darg, inode);
1664 if (ret)
1665 goto out;
1666 set_nlink(inode, nlink: 1);
1667 ext4_mark_inode_dirty(NULL, inode);
1668out:
1669 iput(inode);
1670 return ret;
1671}
1672
1673/*
1674 * Record physical disk regions which are in use as per fast commit area,
1675 * and used by inodes during replay phase. Our simple replay phase
1676 * allocator excludes these regions from allocation.
1677 */
1678int ext4_fc_record_regions(struct super_block *sb, int ino,
1679 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1680{
1681 struct ext4_fc_replay_state *state;
1682 struct ext4_fc_alloc_region *region;
1683
1684 state = &EXT4_SB(sb)->s_fc_replay_state;
1685 /*
1686 * during replay phase, the fc_regions_valid may not same as
1687 * fc_regions_used, update it when do new additions.
1688 */
1689 if (replay && state->fc_regions_used != state->fc_regions_valid)
1690 state->fc_regions_used = state->fc_regions_valid;
1691 if (state->fc_regions_used == state->fc_regions_size) {
1692 struct ext4_fc_alloc_region *fc_regions;
1693
1694 fc_regions = krealloc(objp: state->fc_regions,
1695 new_size: sizeof(struct ext4_fc_alloc_region) *
1696 (state->fc_regions_size +
1697 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1698 GFP_KERNEL);
1699 if (!fc_regions)
1700 return -ENOMEM;
1701 state->fc_regions_size +=
1702 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1703 state->fc_regions = fc_regions;
1704 }
1705 region = &state->fc_regions[state->fc_regions_used++];
1706 region->ino = ino;
1707 region->lblk = lblk;
1708 region->pblk = pblk;
1709 region->len = len;
1710
1711 if (replay)
1712 state->fc_regions_valid++;
1713
1714 return 0;
1715}
1716
1717/* Replay add range tag */
1718static int ext4_fc_replay_add_range(struct super_block *sb,
1719 struct ext4_fc_tl_mem *tl, u8 *val)
1720{
1721 struct ext4_fc_add_range fc_add_ex;
1722 struct ext4_extent newex, *ex;
1723 struct inode *inode;
1724 ext4_lblk_t start, cur;
1725 int remaining, len;
1726 ext4_fsblk_t start_pblk;
1727 struct ext4_map_blocks map;
1728 struct ext4_ext_path *path = NULL;
1729 int ret;
1730
1731 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1732 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1733
1734 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1735 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1736 priv2: ext4_ext_get_actual_len(ext: ex));
1737
1738 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1739 if (IS_ERR(ptr: inode)) {
1740 ext4_debug("Inode not found.");
1741 return 0;
1742 }
1743
1744 ret = ext4_fc_record_modified_inode(sb, ino: inode->i_ino);
1745 if (ret)
1746 goto out;
1747
1748 start = le32_to_cpu(ex->ee_block);
1749 start_pblk = ext4_ext_pblock(ex);
1750 len = ext4_ext_get_actual_len(ext: ex);
1751
1752 cur = start;
1753 remaining = len;
1754 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1755 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1756 inode->i_ino);
1757
1758 while (remaining > 0) {
1759 map.m_lblk = cur;
1760 map.m_len = remaining;
1761 map.m_pblk = 0;
1762 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
1763
1764 if (ret < 0)
1765 goto out;
1766
1767 if (ret == 0) {
1768 /* Range is not mapped */
1769 path = ext4_find_extent(inode, cur, NULL, flags: 0);
1770 if (IS_ERR(ptr: path))
1771 goto out;
1772 memset(&newex, 0, sizeof(newex));
1773 newex.ee_block = cpu_to_le32(cur);
1774 ext4_ext_store_pblock(
1775 ex: &newex, pb: start_pblk + cur - start);
1776 newex.ee_len = cpu_to_le16(map.m_len);
1777 if (ext4_ext_is_unwritten(ext: ex))
1778 ext4_ext_mark_unwritten(ext: &newex);
1779 down_write(sem: &EXT4_I(inode)->i_data_sem);
1780 ret = ext4_ext_insert_extent(
1781 NULL, inode, &path, &newex, 0);
1782 up_write(sem: (&EXT4_I(inode)->i_data_sem));
1783 ext4_free_ext_path(path);
1784 if (ret)
1785 goto out;
1786 goto next;
1787 }
1788
1789 if (start_pblk + cur - start != map.m_pblk) {
1790 /*
1791 * Logical to physical mapping changed. This can happen
1792 * if this range was removed and then reallocated to
1793 * map to new physical blocks during a fast commit.
1794 */
1795 ret = ext4_ext_replay_update_ex(inode, start: cur, len: map.m_len,
1796 unwritten: ext4_ext_is_unwritten(ext: ex),
1797 pblk: start_pblk + cur - start);
1798 if (ret)
1799 goto out;
1800 /*
1801 * Mark the old blocks as free since they aren't used
1802 * anymore. We maintain an array of all the modified
1803 * inodes. In case these blocks are still used at either
1804 * a different logical range in the same inode or in
1805 * some different inode, we will mark them as allocated
1806 * at the end of the FC replay using our array of
1807 * modified inodes.
1808 */
1809 ext4_mb_mark_bb(sb: inode->i_sb, block: map.m_pblk, len: map.m_len, state: false);
1810 goto next;
1811 }
1812
1813 /* Range is mapped and needs a state change */
1814 ext4_debug("Converting from %ld to %d %lld",
1815 map.m_flags & EXT4_MAP_UNWRITTEN,
1816 ext4_ext_is_unwritten(ex), map.m_pblk);
1817 ret = ext4_ext_replay_update_ex(inode, start: cur, len: map.m_len,
1818 unwritten: ext4_ext_is_unwritten(ext: ex), pblk: map.m_pblk);
1819 if (ret)
1820 goto out;
1821 /*
1822 * We may have split the extent tree while toggling the state.
1823 * Try to shrink the extent tree now.
1824 */
1825 ext4_ext_replay_shrink_inode(inode, end: start + len);
1826next:
1827 cur += map.m_len;
1828 remaining -= map.m_len;
1829 }
1830 ext4_ext_replay_shrink_inode(inode, end: i_size_read(inode) >>
1831 sb->s_blocksize_bits);
1832out:
1833 iput(inode);
1834 return 0;
1835}
1836
1837/* Replay DEL_RANGE tag */
1838static int
1839ext4_fc_replay_del_range(struct super_block *sb,
1840 struct ext4_fc_tl_mem *tl, u8 *val)
1841{
1842 struct inode *inode;
1843 struct ext4_fc_del_range lrange;
1844 struct ext4_map_blocks map;
1845 ext4_lblk_t cur, remaining;
1846 int ret;
1847
1848 memcpy(&lrange, val, sizeof(lrange));
1849 cur = le32_to_cpu(lrange.fc_lblk);
1850 remaining = le32_to_cpu(lrange.fc_len);
1851
1852 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1853 le32_to_cpu(lrange.fc_ino), priv1: cur, priv2: remaining);
1854
1855 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1856 if (IS_ERR(ptr: inode)) {
1857 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1858 return 0;
1859 }
1860
1861 ret = ext4_fc_record_modified_inode(sb, ino: inode->i_ino);
1862 if (ret)
1863 goto out;
1864
1865 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1866 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1867 le32_to_cpu(lrange.fc_len));
1868 while (remaining > 0) {
1869 map.m_lblk = cur;
1870 map.m_len = remaining;
1871
1872 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
1873 if (ret < 0)
1874 goto out;
1875 if (ret > 0) {
1876 remaining -= ret;
1877 cur += ret;
1878 ext4_mb_mark_bb(sb: inode->i_sb, block: map.m_pblk, len: map.m_len, state: false);
1879 } else {
1880 remaining -= map.m_len;
1881 cur += map.m_len;
1882 }
1883 }
1884
1885 down_write(sem: &EXT4_I(inode)->i_data_sem);
1886 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1887 le32_to_cpu(lrange.fc_lblk) +
1888 le32_to_cpu(lrange.fc_len) - 1);
1889 up_write(sem: &EXT4_I(inode)->i_data_sem);
1890 if (ret)
1891 goto out;
1892 ext4_ext_replay_shrink_inode(inode,
1893 end: i_size_read(inode) >> sb->s_blocksize_bits);
1894 ext4_mark_inode_dirty(NULL, inode);
1895out:
1896 iput(inode);
1897 return 0;
1898}
1899
1900static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1901{
1902 struct ext4_fc_replay_state *state;
1903 struct inode *inode;
1904 struct ext4_ext_path *path = NULL;
1905 struct ext4_map_blocks map;
1906 int i, ret, j;
1907 ext4_lblk_t cur, end;
1908
1909 state = &EXT4_SB(sb)->s_fc_replay_state;
1910 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1911 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1912 EXT4_IGET_NORMAL);
1913 if (IS_ERR(ptr: inode)) {
1914 ext4_debug("Inode %d not found.",
1915 state->fc_modified_inodes[i]);
1916 continue;
1917 }
1918 cur = 0;
1919 end = EXT_MAX_BLOCKS;
1920 if (ext4_test_inode_flag(inode, bit: EXT4_INODE_INLINE_DATA)) {
1921 iput(inode);
1922 continue;
1923 }
1924 while (cur < end) {
1925 map.m_lblk = cur;
1926 map.m_len = end - cur;
1927
1928 ret = ext4_map_blocks(NULL, inode, map: &map, flags: 0);
1929 if (ret < 0)
1930 break;
1931
1932 if (ret > 0) {
1933 path = ext4_find_extent(inode, map.m_lblk, NULL, flags: 0);
1934 if (!IS_ERR(ptr: path)) {
1935 for (j = 0; j < path->p_depth; j++)
1936 ext4_mb_mark_bb(sb: inode->i_sb,
1937 block: path[j].p_block, len: 1, state: true);
1938 ext4_free_ext_path(path);
1939 }
1940 cur += ret;
1941 ext4_mb_mark_bb(sb: inode->i_sb, block: map.m_pblk,
1942 len: map.m_len, state: true);
1943 } else {
1944 cur = cur + (map.m_len ? map.m_len : 1);
1945 }
1946 }
1947 iput(inode);
1948 }
1949}
1950
1951/*
1952 * Check if block is in excluded regions for block allocation. The simple
1953 * allocator that runs during replay phase is calls this function to see
1954 * if it is okay to use a block.
1955 */
1956bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1957{
1958 int i;
1959 struct ext4_fc_replay_state *state;
1960
1961 state = &EXT4_SB(sb)->s_fc_replay_state;
1962 for (i = 0; i < state->fc_regions_valid; i++) {
1963 if (state->fc_regions[i].ino == 0 ||
1964 state->fc_regions[i].len == 0)
1965 continue;
1966 if (in_range(blk, state->fc_regions[i].pblk,
1967 state->fc_regions[i].len))
1968 return true;
1969 }
1970 return false;
1971}
1972
1973/* Cleanup function called after replay */
1974void ext4_fc_replay_cleanup(struct super_block *sb)
1975{
1976 struct ext4_sb_info *sbi = EXT4_SB(sb);
1977
1978 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
1979 kfree(objp: sbi->s_fc_replay_state.fc_regions);
1980 kfree(objp: sbi->s_fc_replay_state.fc_modified_inodes);
1981}
1982
1983static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
1984 int tag, int len)
1985{
1986 switch (tag) {
1987 case EXT4_FC_TAG_ADD_RANGE:
1988 return len == sizeof(struct ext4_fc_add_range);
1989 case EXT4_FC_TAG_DEL_RANGE:
1990 return len == sizeof(struct ext4_fc_del_range);
1991 case EXT4_FC_TAG_CREAT:
1992 case EXT4_FC_TAG_LINK:
1993 case EXT4_FC_TAG_UNLINK:
1994 len -= sizeof(struct ext4_fc_dentry_info);
1995 return len >= 1 && len <= EXT4_NAME_LEN;
1996 case EXT4_FC_TAG_INODE:
1997 len -= sizeof(struct ext4_fc_inode);
1998 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
1999 len <= sbi->s_inode_size;
2000 case EXT4_FC_TAG_PAD:
2001 return true; /* padding can have any length */
2002 case EXT4_FC_TAG_TAIL:
2003 return len >= sizeof(struct ext4_fc_tail);
2004 case EXT4_FC_TAG_HEAD:
2005 return len == sizeof(struct ext4_fc_head);
2006 }
2007 return false;
2008}
2009
2010/*
2011 * Recovery Scan phase handler
2012 *
2013 * This function is called during the scan phase and is responsible
2014 * for doing following things:
2015 * - Make sure the fast commit area has valid tags for replay
2016 * - Count number of tags that need to be replayed by the replay handler
2017 * - Verify CRC
2018 * - Create a list of excluded blocks for allocation during replay phase
2019 *
2020 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2021 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2022 * to indicate that scan has finished and JBD2 can now start replay phase.
2023 * It returns a negative error to indicate that there was an error. At the end
2024 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2025 * to indicate the number of tags that need to replayed during the replay phase.
2026 */
2027static int ext4_fc_replay_scan(journal_t *journal,
2028 struct buffer_head *bh, int off,
2029 tid_t expected_tid)
2030{
2031 struct super_block *sb = journal->j_private;
2032 struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 struct ext4_fc_replay_state *state;
2034 int ret = JBD2_FC_REPLAY_CONTINUE;
2035 struct ext4_fc_add_range ext;
2036 struct ext4_fc_tl_mem tl;
2037 struct ext4_fc_tail tail;
2038 __u8 *start, *end, *cur, *val;
2039 struct ext4_fc_head head;
2040 struct ext4_extent *ex;
2041
2042 state = &sbi->s_fc_replay_state;
2043
2044 start = (u8 *)bh->b_data;
2045 end = start + journal->j_blocksize;
2046
2047 if (state->fc_replay_expected_off == 0) {
2048 state->fc_cur_tag = 0;
2049 state->fc_replay_num_tags = 0;
2050 state->fc_crc = 0;
2051 state->fc_regions = NULL;
2052 state->fc_regions_valid = state->fc_regions_used =
2053 state->fc_regions_size = 0;
2054 /* Check if we can stop early */
2055 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2056 != EXT4_FC_TAG_HEAD)
2057 return 0;
2058 }
2059
2060 if (off != state->fc_replay_expected_off) {
2061 ret = -EFSCORRUPTED;
2062 goto out_err;
2063 }
2064
2065 state->fc_replay_expected_off++;
2066 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2067 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2068 ext4_fc_get_tl(tl: &tl, val: cur);
2069 val = cur + EXT4_FC_TAG_BASE_LEN;
2070 if (tl.fc_len > end - val ||
2071 !ext4_fc_value_len_isvalid(sbi, tag: tl.fc_tag, len: tl.fc_len)) {
2072 ret = state->fc_replay_num_tags ?
2073 JBD2_FC_REPLAY_STOP : -ECANCELED;
2074 goto out_err;
2075 }
2076 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2077 tag2str(tl.fc_tag), bh->b_blocknr);
2078 switch (tl.fc_tag) {
2079 case EXT4_FC_TAG_ADD_RANGE:
2080 memcpy(&ext, val, sizeof(ext));
2081 ex = (struct ext4_extent *)&ext.fc_ex;
2082 ret = ext4_fc_record_regions(sb,
2083 le32_to_cpu(ext.fc_ino),
2084 le32_to_cpu(ex->ee_block), pblk: ext4_ext_pblock(ex),
2085 len: ext4_ext_get_actual_len(ext: ex), replay: 0);
2086 if (ret < 0)
2087 break;
2088 ret = JBD2_FC_REPLAY_CONTINUE;
2089 fallthrough;
2090 case EXT4_FC_TAG_DEL_RANGE:
2091 case EXT4_FC_TAG_LINK:
2092 case EXT4_FC_TAG_UNLINK:
2093 case EXT4_FC_TAG_CREAT:
2094 case EXT4_FC_TAG_INODE:
2095 case EXT4_FC_TAG_PAD:
2096 state->fc_cur_tag++;
2097 state->fc_crc = ext4_chksum(sbi, crc: state->fc_crc, address: cur,
2098 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2099 break;
2100 case EXT4_FC_TAG_TAIL:
2101 state->fc_cur_tag++;
2102 memcpy(&tail, val, sizeof(tail));
2103 state->fc_crc = ext4_chksum(sbi, crc: state->fc_crc, address: cur,
2104 EXT4_FC_TAG_BASE_LEN +
2105 offsetof(struct ext4_fc_tail,
2106 fc_crc));
2107 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2108 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2109 state->fc_replay_num_tags = state->fc_cur_tag;
2110 state->fc_regions_valid =
2111 state->fc_regions_used;
2112 } else {
2113 ret = state->fc_replay_num_tags ?
2114 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2115 }
2116 state->fc_crc = 0;
2117 break;
2118 case EXT4_FC_TAG_HEAD:
2119 memcpy(&head, val, sizeof(head));
2120 if (le32_to_cpu(head.fc_features) &
2121 ~EXT4_FC_SUPPORTED_FEATURES) {
2122 ret = -EOPNOTSUPP;
2123 break;
2124 }
2125 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2126 ret = JBD2_FC_REPLAY_STOP;
2127 break;
2128 }
2129 state->fc_cur_tag++;
2130 state->fc_crc = ext4_chksum(sbi, crc: state->fc_crc, address: cur,
2131 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2132 break;
2133 default:
2134 ret = state->fc_replay_num_tags ?
2135 JBD2_FC_REPLAY_STOP : -ECANCELED;
2136 }
2137 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2138 break;
2139 }
2140
2141out_err:
2142 trace_ext4_fc_replay_scan(sb, error: ret, off);
2143 return ret;
2144}
2145
2146/*
2147 * Main recovery path entry point.
2148 * The meaning of return codes is similar as above.
2149 */
2150static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2151 enum passtype pass, int off, tid_t expected_tid)
2152{
2153 struct super_block *sb = journal->j_private;
2154 struct ext4_sb_info *sbi = EXT4_SB(sb);
2155 struct ext4_fc_tl_mem tl;
2156 __u8 *start, *end, *cur, *val;
2157 int ret = JBD2_FC_REPLAY_CONTINUE;
2158 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2159 struct ext4_fc_tail tail;
2160
2161 if (pass == PASS_SCAN) {
2162 state->fc_current_pass = PASS_SCAN;
2163 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2164 }
2165
2166 if (state->fc_current_pass != pass) {
2167 state->fc_current_pass = pass;
2168 sbi->s_mount_state |= EXT4_FC_REPLAY;
2169 }
2170 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2171 ext4_debug("Replay stops\n");
2172 ext4_fc_set_bitmaps_and_counters(sb);
2173 return 0;
2174 }
2175
2176#ifdef CONFIG_EXT4_DEBUG
2177 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2178 pr_warn("Dropping fc block %d because max_replay set\n", off);
2179 return JBD2_FC_REPLAY_STOP;
2180 }
2181#endif
2182
2183 start = (u8 *)bh->b_data;
2184 end = start + journal->j_blocksize;
2185
2186 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2187 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2188 ext4_fc_get_tl(tl: &tl, val: cur);
2189 val = cur + EXT4_FC_TAG_BASE_LEN;
2190
2191 if (state->fc_replay_num_tags == 0) {
2192 ret = JBD2_FC_REPLAY_STOP;
2193 ext4_fc_set_bitmaps_and_counters(sb);
2194 break;
2195 }
2196
2197 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2198 state->fc_replay_num_tags--;
2199 switch (tl.fc_tag) {
2200 case EXT4_FC_TAG_LINK:
2201 ret = ext4_fc_replay_link(sb, tl: &tl, val);
2202 break;
2203 case EXT4_FC_TAG_UNLINK:
2204 ret = ext4_fc_replay_unlink(sb, tl: &tl, val);
2205 break;
2206 case EXT4_FC_TAG_ADD_RANGE:
2207 ret = ext4_fc_replay_add_range(sb, tl: &tl, val);
2208 break;
2209 case EXT4_FC_TAG_CREAT:
2210 ret = ext4_fc_replay_create(sb, tl: &tl, val);
2211 break;
2212 case EXT4_FC_TAG_DEL_RANGE:
2213 ret = ext4_fc_replay_del_range(sb, tl: &tl, val);
2214 break;
2215 case EXT4_FC_TAG_INODE:
2216 ret = ext4_fc_replay_inode(sb, tl: &tl, val);
2217 break;
2218 case EXT4_FC_TAG_PAD:
2219 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, ino: 0,
2220 priv1: tl.fc_len, priv2: 0);
2221 break;
2222 case EXT4_FC_TAG_TAIL:
2223 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2224 ino: 0, priv1: tl.fc_len, priv2: 0);
2225 memcpy(&tail, val, sizeof(tail));
2226 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2227 break;
2228 case EXT4_FC_TAG_HEAD:
2229 break;
2230 default:
2231 trace_ext4_fc_replay(sb, tag: tl.fc_tag, ino: 0, priv1: tl.fc_len, priv2: 0);
2232 ret = -ECANCELED;
2233 break;
2234 }
2235 if (ret < 0)
2236 break;
2237 ret = JBD2_FC_REPLAY_CONTINUE;
2238 }
2239 return ret;
2240}
2241
2242void ext4_fc_init(struct super_block *sb, journal_t *journal)
2243{
2244 /*
2245 * We set replay callback even if fast commit disabled because we may
2246 * could still have fast commit blocks that need to be replayed even if
2247 * fast commit has now been turned off.
2248 */
2249 journal->j_fc_replay_callback = ext4_fc_replay;
2250 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2251 return;
2252 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2253}
2254
2255static const char * const fc_ineligible_reasons[] = {
2256 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2257 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2258 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2259 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2260 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2261 [EXT4_FC_REASON_RESIZE] = "Resize",
2262 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2263 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2264 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2265 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2266};
2267
2268int ext4_fc_info_show(struct seq_file *seq, void *v)
2269{
2270 struct ext4_sb_info *sbi = EXT4_SB(sb: (struct super_block *)seq->private);
2271 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2272 int i;
2273
2274 if (v != SEQ_START_TOKEN)
2275 return 0;
2276
2277 seq_printf(m: seq,
2278 fmt: "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2279 stats->fc_num_commits, stats->fc_ineligible_commits,
2280 stats->fc_numblks,
2281 div_u64(dividend: stats->s_fc_avg_commit_time, divisor: 1000));
2282 seq_puts(m: seq, s: "Ineligible reasons:\n");
2283 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2284 seq_printf(m: seq, fmt: "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2285 stats->fc_ineligible_reason_count[i]);
2286
2287 return 0;
2288}
2289
2290int __init ext4_fc_init_dentry_cache(void)
2291{
2292 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2293 SLAB_RECLAIM_ACCOUNT);
2294
2295 if (ext4_fc_dentry_cachep == NULL)
2296 return -ENOMEM;
2297
2298 return 0;
2299}
2300
2301void ext4_fc_destroy_dentry_cache(void)
2302{
2303 kmem_cache_destroy(s: ext4_fc_dentry_cachep);
2304}
2305

source code of linux/fs/ext4/fast_commit.c