1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_dir2.h"
18#include "xfs_attr.h"
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
21#include "xfs_buf_item.h"
22#include "xfs_inode_item.h"
23#include "xfs_iunlink_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
38#include "xfs_ag.h"
39#include "xfs_log_priv.h"
40
41struct kmem_cache *xfs_inode_cache;
42
43/*
44 * Used in xfs_itruncate_extents(). This is the maximum number of extents
45 * freed from a file in a single transaction.
46 */
47#define XFS_ITRUNC_MAX_EXTENTS 2
48
49STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
50STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51 struct xfs_inode *);
52
53/*
54 * helper function to extract extent size hint from inode
55 */
56xfs_extlen_t
57xfs_get_extsz_hint(
58 struct xfs_inode *ip)
59{
60 /*
61 * No point in aligning allocations if we need to COW to actually
62 * write to them.
63 */
64 if (xfs_is_always_cow_inode(ip))
65 return 0;
66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67 return ip->i_extsize;
68 if (XFS_IS_REALTIME_INODE(ip))
69 return ip->i_mount->m_sb.sb_rextsize;
70 return 0;
71}
72
73/*
74 * Helper function to extract CoW extent size hint from inode.
75 * Between the extent size hint and the CoW extent size hint, we
76 * return the greater of the two. If the value is zero (automatic),
77 * use the default size.
78 */
79xfs_extlen_t
80xfs_get_cowextsz_hint(
81 struct xfs_inode *ip)
82{
83 xfs_extlen_t a, b;
84
85 a = 0;
86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87 a = ip->i_cowextsize;
88 b = xfs_get_extsz_hint(ip);
89
90 a = max(a, b);
91 if (a == 0)
92 return XFS_DEFAULT_COWEXTSZ_HINT;
93 return a;
94}
95
96/*
97 * These two are wrapper routines around the xfs_ilock() routine used to
98 * centralize some grungy code. They are used in places that wish to lock the
99 * inode solely for reading the extents. The reason these places can't just
100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101 * bringing in of the extents from disk for a file in b-tree format. If the
102 * inode is in b-tree format, then we need to lock the inode exclusively until
103 * the extents are read in. Locking it exclusively all the time would limit
104 * our parallelism unnecessarily, though. What we do instead is check to see
105 * if the extents have been read in yet, and only lock the inode exclusively
106 * if they have not.
107 *
108 * The functions return a value which should be given to the corresponding
109 * xfs_iunlock() call.
110 */
111uint
112xfs_ilock_data_map_shared(
113 struct xfs_inode *ip)
114{
115 uint lock_mode = XFS_ILOCK_SHARED;
116
117 if (xfs_need_iread_extents(&ip->i_df))
118 lock_mode = XFS_ILOCK_EXCL;
119 xfs_ilock(ip, lock_mode);
120 return lock_mode;
121}
122
123uint
124xfs_ilock_attr_map_shared(
125 struct xfs_inode *ip)
126{
127 uint lock_mode = XFS_ILOCK_SHARED;
128
129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
133}
134
135/*
136 * You can't set both SHARED and EXCL for the same lock,
137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139 * to set in lock_flags.
140 */
141static inline void
142xfs_lock_flags_assert(
143 uint lock_flags)
144{
145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152 ASSERT(lock_flags != 0);
153}
154
155/*
156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
158 * various combinations of the locks to be obtained.
159 *
160 * The 3 locks should always be ordered so that the IO lock is obtained first,
161 * the mmap lock second and the ilock last in order to prevent deadlock.
162 *
163 * Basic locking order:
164 *
165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166 *
167 * mmap_lock locking order:
168 *
169 * i_rwsem -> page lock -> mmap_lock
170 * mmap_lock -> invalidate_lock -> page_lock
171 *
172 * The difference in mmap_lock locking order mean that we cannot hold the
173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174 * can fault in pages during copy in/out (for buffered IO) or require the
175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177 * fault because page faults already hold the mmap_lock.
178 *
179 * Hence to serialise fully against both syscall and mmap based IO, we need to
180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181 * both taken in places where we need to invalidate the page cache in a race
182 * free manner (e.g. truncate, hole punch and other extent manipulation
183 * functions).
184 */
185void
186xfs_ilock(
187 xfs_inode_t *ip,
188 uint lock_flags)
189{
190 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191
192 xfs_lock_flags_assert(lock_flags);
193
194 if (lock_flags & XFS_IOLOCK_EXCL) {
195 down_write_nested(sem: &VFS_I(ip)->i_rwsem,
196 XFS_IOLOCK_DEP(lock_flags));
197 } else if (lock_flags & XFS_IOLOCK_SHARED) {
198 down_read_nested(sem: &VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 }
201
202 if (lock_flags & XFS_MMAPLOCK_EXCL) {
203 down_write_nested(sem: &VFS_I(ip)->i_mapping->invalidate_lock,
204 XFS_MMAPLOCK_DEP(lock_flags));
205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206 down_read_nested(sem: &VFS_I(ip)->i_mapping->invalidate_lock,
207 XFS_MMAPLOCK_DEP(lock_flags));
208 }
209
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(mrp: &ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(mrp: &ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228int
229xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232{
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235 xfs_lock_flags_assert(lock_flags);
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
238 if (!down_write_trylock(sem: &VFS_I(ip)->i_rwsem))
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
241 if (!down_read_trylock(sem: &VFS_I(ip)->i_rwsem))
242 goto out;
243 }
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 if (!down_write_trylock(sem: &VFS_I(ip)->i_mapping->invalidate_lock))
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 if (!down_read_trylock(sem: &VFS_I(ip)->i_mapping->invalidate_lock))
250 goto out_undo_iolock;
251 }
252
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(mrp: &ip->i_lock))
255 goto out_undo_mmaplock;
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(mrp: &ip->i_lock))
258 goto out_undo_mmaplock;
259 }
260 return 1;
261
262out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
264 up_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock);
265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 up_read(sem: &VFS_I(ip)->i_mapping->invalidate_lock);
267out_undo_iolock:
268 if (lock_flags & XFS_IOLOCK_EXCL)
269 up_write(sem: &VFS_I(ip)->i_rwsem);
270 else if (lock_flags & XFS_IOLOCK_SHARED)
271 up_read(sem: &VFS_I(ip)->i_rwsem);
272out:
273 return 0;
274}
275
276/*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288void
289xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
293 xfs_lock_flags_assert(lock_flags);
294
295 if (lock_flags & XFS_IOLOCK_EXCL)
296 up_write(sem: &VFS_I(ip)->i_rwsem);
297 else if (lock_flags & XFS_IOLOCK_SHARED)
298 up_read(sem: &VFS_I(ip)->i_rwsem);
299
300 if (lock_flags & XFS_MMAPLOCK_EXCL)
301 up_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock);
302 else if (lock_flags & XFS_MMAPLOCK_SHARED)
303 up_read(sem: &VFS_I(ip)->i_mapping->invalidate_lock);
304
305 if (lock_flags & XFS_ILOCK_EXCL)
306 mrunlock_excl(mrp: &ip->i_lock);
307 else if (lock_flags & XFS_ILOCK_SHARED)
308 mrunlock_shared(mrp: &ip->i_lock);
309
310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311}
312
313/*
314 * give up write locks. the i/o lock cannot be held nested
315 * if it is being demoted.
316 */
317void
318xfs_ilock_demote(
319 xfs_inode_t *ip,
320 uint lock_flags)
321{
322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 ASSERT((lock_flags &
324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrdemote(mrp: &ip->i_lock);
328 if (lock_flags & XFS_MMAPLOCK_EXCL)
329 downgrade_write(sem: &VFS_I(ip)->i_mapping->invalidate_lock);
330 if (lock_flags & XFS_IOLOCK_EXCL)
331 downgrade_write(sem: &VFS_I(ip)->i_rwsem);
332
333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334}
335
336#if defined(DEBUG) || defined(XFS_WARN)
337static inline bool
338__xfs_rwsem_islocked(
339 struct rw_semaphore *rwsem,
340 bool shared)
341{
342 if (!debug_locks)
343 return rwsem_is_locked(sem: rwsem);
344
345 if (!shared)
346 return lockdep_is_held_type(rwsem, 0);
347
348 /*
349 * We are checking that the lock is held at least in shared
350 * mode but don't care that it might be held exclusively
351 * (i.e. shared | excl). Hence we check if the lock is held
352 * in any mode rather than an explicit shared mode.
353 */
354 return lockdep_is_held_type(rwsem, -1);
355}
356
357bool
358xfs_isilocked(
359 struct xfs_inode *ip,
360 uint lock_flags)
361{
362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 if (!(lock_flags & XFS_ILOCK_SHARED))
364 return !!ip->i_lock.mr_writer;
365 return rwsem_is_locked(sem: &ip->i_lock.mr_lock);
366 }
367
368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369 return __xfs_rwsem_islocked(rwsem: &VFS_I(ip)->i_mapping->invalidate_lock,
370 shared: (lock_flags & XFS_MMAPLOCK_SHARED));
371 }
372
373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374 return __xfs_rwsem_islocked(rwsem: &VFS_I(ip)->i_rwsem,
375 shared: (lock_flags & XFS_IOLOCK_SHARED));
376 }
377
378 ASSERT(0);
379 return false;
380}
381#endif
382
383/*
384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387 * errors and warnings.
388 */
389#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390static bool
391xfs_lockdep_subclass_ok(
392 int subclass)
393{
394 return subclass < MAX_LOCKDEP_SUBCLASSES;
395}
396#else
397#define xfs_lockdep_subclass_ok(subclass) (true)
398#endif
399
400/*
401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
402 * value. This can be called for any type of inode lock combination, including
403 * parent locking. Care must be taken to ensure we don't overrun the subclass
404 * storage fields in the class mask we build.
405 */
406static inline uint
407xfs_lock_inumorder(
408 uint lock_mode,
409 uint subclass)
410{
411 uint class = 0;
412
413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 XFS_ILOCK_RTSUM)));
415 ASSERT(xfs_lockdep_subclass_ok(subclass));
416
417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
419 class += subclass << XFS_IOLOCK_SHIFT;
420 }
421
422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424 class += subclass << XFS_MMAPLOCK_SHIFT;
425 }
426
427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429 class += subclass << XFS_ILOCK_SHIFT;
430 }
431
432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
433}
434
435/*
436 * The following routine will lock n inodes in exclusive mode. We assume the
437 * caller calls us with the inodes in i_ino order.
438 *
439 * We need to detect deadlock where an inode that we lock is in the AIL and we
440 * start waiting for another inode that is locked by a thread in a long running
441 * transaction (such as truncate). This can result in deadlock since the long
442 * running trans might need to wait for the inode we just locked in order to
443 * push the tail and free space in the log.
444 *
445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447 * lock more than one at a time, lockdep will report false positives saying we
448 * have violated locking orders.
449 */
450static void
451xfs_lock_inodes(
452 struct xfs_inode **ips,
453 int inodes,
454 uint lock_mode)
455{
456 int attempts = 0;
457 uint i;
458 int j;
459 bool try_lock;
460 struct xfs_log_item *lp;
461
462 /*
463 * Currently supports between 2 and 5 inodes with exclusive locking. We
464 * support an arbitrary depth of locking here, but absolute limits on
465 * inodes depend on the type of locking and the limits placed by
466 * lockdep annotations in xfs_lock_inumorder. These are all checked by
467 * the asserts.
468 */
469 ASSERT(ips && inodes >= 2 && inodes <= 5);
470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 XFS_ILOCK_EXCL));
472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 XFS_ILOCK_SHARED)));
474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479 if (lock_mode & XFS_IOLOCK_EXCL) {
480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483
484again:
485 try_lock = false;
486 i = 0;
487 for (; i < inodes; i++) {
488 ASSERT(ips[i]);
489
490 if (i && (ips[i] == ips[i - 1])) /* Already locked */
491 continue;
492
493 /*
494 * If try_lock is not set yet, make sure all locked inodes are
495 * not in the AIL. If any are, set try_lock to be used later.
496 */
497 if (!try_lock) {
498 for (j = (i - 1); j >= 0 && !try_lock; j--) {
499 lp = &ips[j]->i_itemp->ili_item;
500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
501 try_lock = true;
502 }
503 }
504
505 /*
506 * If any of the previous locks we have locked is in the AIL,
507 * we must TRY to get the second and subsequent locks. If
508 * we can't get any, we must release all we have
509 * and try again.
510 */
511 if (!try_lock) {
512 xfs_ilock(ip: ips[i], lock_flags: xfs_lock_inumorder(lock_mode, subclass: i));
513 continue;
514 }
515
516 /* try_lock means we have an inode locked that is in the AIL. */
517 ASSERT(i != 0);
518 if (xfs_ilock_nowait(ip: ips[i], lock_flags: xfs_lock_inumorder(lock_mode, subclass: i)))
519 continue;
520
521 /*
522 * Unlock all previous guys and try again. xfs_iunlock will try
523 * to push the tail if the inode is in the AIL.
524 */
525 attempts++;
526 for (j = i - 1; j >= 0; j--) {
527 /*
528 * Check to see if we've already unlocked this one. Not
529 * the first one going back, and the inode ptr is the
530 * same.
531 */
532 if (j != (i - 1) && ips[j] == ips[j + 1])
533 continue;
534
535 xfs_iunlock(ip: ips[j], lock_flags: lock_mode);
536 }
537
538 if ((attempts % 5) == 0) {
539 delay(ticks: 1); /* Don't just spin the CPU */
540 }
541 goto again;
542 }
543}
544
545/*
546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547 * mmaplock must be double-locked separately since we use i_rwsem and
548 * invalidate_lock for that. We now support taking one lock EXCL and the
549 * other SHARED.
550 */
551void
552xfs_lock_two_inodes(
553 struct xfs_inode *ip0,
554 uint ip0_mode,
555 struct xfs_inode *ip1,
556 uint ip1_mode)
557{
558 int attempts = 0;
559 struct xfs_log_item *lp;
560
561 ASSERT(hweight32(ip0_mode) == 1);
562 ASSERT(hweight32(ip1_mode) == 1);
563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 swap(ip0, ip1);
571 swap(ip0_mode, ip1_mode);
572 }
573
574 again:
575 xfs_ilock(ip: ip0, lock_flags: xfs_lock_inumorder(lock_mode: ip0_mode, subclass: 0));
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
582 lp = &ip0->i_itemp->ili_item;
583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584 if (!xfs_ilock_nowait(ip: ip1, lock_flags: xfs_lock_inumorder(lock_mode: ip1_mode, subclass: 1))) {
585 xfs_iunlock(ip: ip0, lock_flags: ip0_mode);
586 if ((++attempts % 5) == 0)
587 delay(ticks: 1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
591 xfs_ilock(ip: ip1, lock_flags: xfs_lock_inumorder(lock_mode: ip1_mode, subclass: 1));
592 }
593}
594
595uint
596xfs_ip2xflags(
597 struct xfs_inode *ip)
598{
599 uint flags = 0;
600
601 if (ip->i_diflags & XFS_DIFLAG_ANY) {
602 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
603 flags |= FS_XFLAG_REALTIME;
604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
605 flags |= FS_XFLAG_PREALLOC;
606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
607 flags |= FS_XFLAG_IMMUTABLE;
608 if (ip->i_diflags & XFS_DIFLAG_APPEND)
609 flags |= FS_XFLAG_APPEND;
610 if (ip->i_diflags & XFS_DIFLAG_SYNC)
611 flags |= FS_XFLAG_SYNC;
612 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
613 flags |= FS_XFLAG_NOATIME;
614 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
615 flags |= FS_XFLAG_NODUMP;
616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
617 flags |= FS_XFLAG_RTINHERIT;
618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
619 flags |= FS_XFLAG_PROJINHERIT;
620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
621 flags |= FS_XFLAG_NOSYMLINKS;
622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
623 flags |= FS_XFLAG_EXTSIZE;
624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
625 flags |= FS_XFLAG_EXTSZINHERIT;
626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
627 flags |= FS_XFLAG_NODEFRAG;
628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
629 flags |= FS_XFLAG_FILESTREAM;
630 }
631
632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
634 flags |= FS_XFLAG_DAX;
635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
636 flags |= FS_XFLAG_COWEXTSIZE;
637 }
638
639 if (xfs_inode_has_attr_fork(ip))
640 flags |= FS_XFLAG_HASATTR;
641 return flags;
642}
643
644/*
645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
647 * ci_name->name will point to a the actual name (caller must free) or
648 * will be set to NULL if an exact match is found.
649 */
650int
651xfs_lookup(
652 struct xfs_inode *dp,
653 const struct xfs_name *name,
654 struct xfs_inode **ipp,
655 struct xfs_name *ci_name)
656{
657 xfs_ino_t inum;
658 int error;
659
660 trace_xfs_lookup(dp, xfs_lookup: name);
661
662 if (xfs_is_shutdown(mp: dp->i_mount))
663 return -EIO;
664
665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
666 if (error)
667 goto out_unlock;
668
669 error = xfs_iget(mp: dp->i_mount, NULL, ino: inum, flags: 0, lock_flags: 0, ipp);
670 if (error)
671 goto out_free_name;
672
673 return 0;
674
675out_free_name:
676 if (ci_name)
677 kmem_free(ptr: ci_name->name);
678out_unlock:
679 *ipp = NULL;
680 return error;
681}
682
683/* Propagate di_flags from a parent inode to a child inode. */
684static void
685xfs_inode_inherit_flags(
686 struct xfs_inode *ip,
687 const struct xfs_inode *pip)
688{
689 unsigned int di_flags = 0;
690 xfs_failaddr_t failaddr;
691 umode_t mode = VFS_I(ip)->i_mode;
692
693 if (S_ISDIR(mode)) {
694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
695 di_flags |= XFS_DIFLAG_RTINHERIT;
696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
697 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
698 ip->i_extsize = pip->i_extsize;
699 }
700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
701 di_flags |= XFS_DIFLAG_PROJINHERIT;
702 } else if (S_ISREG(mode)) {
703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
704 xfs_has_realtime(ip->i_mount))
705 di_flags |= XFS_DIFLAG_REALTIME;
706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707 di_flags |= XFS_DIFLAG_EXTSIZE;
708 ip->i_extsize = pip->i_extsize;
709 }
710 }
711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712 xfs_inherit_noatime)
713 di_flags |= XFS_DIFLAG_NOATIME;
714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715 xfs_inherit_nodump)
716 di_flags |= XFS_DIFLAG_NODUMP;
717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718 xfs_inherit_sync)
719 di_flags |= XFS_DIFLAG_SYNC;
720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
721 xfs_inherit_nosymlinks)
722 di_flags |= XFS_DIFLAG_NOSYMLINKS;
723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
724 xfs_inherit_nodefrag)
725 di_flags |= XFS_DIFLAG_NODEFRAG;
726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
727 di_flags |= XFS_DIFLAG_FILESTREAM;
728
729 ip->i_diflags |= di_flags;
730
731 /*
732 * Inode verifiers on older kernels only check that the extent size
733 * hint is an integer multiple of the rt extent size on realtime files.
734 * They did not check the hint alignment on a directory with both
735 * rtinherit and extszinherit flags set. If the misaligned hint is
736 * propagated from a directory into a new realtime file, new file
737 * allocations will fail due to math errors in the rt allocator and/or
738 * trip the verifiers. Validate the hint settings in the new file so
739 * that we don't let broken hints propagate.
740 */
741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742 VFS_I(ip)->i_mode, ip->i_diflags);
743 if (failaddr) {
744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745 XFS_DIFLAG_EXTSZINHERIT);
746 ip->i_extsize = 0;
747 }
748}
749
750/* Propagate di_flags2 from a parent inode to a child inode. */
751static void
752xfs_inode_inherit_flags2(
753 struct xfs_inode *ip,
754 const struct xfs_inode *pip)
755{
756 xfs_failaddr_t failaddr;
757
758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
760 ip->i_cowextsize = pip->i_cowextsize;
761 }
762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764
765 /* Don't let invalid cowextsize hints propagate. */
766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 if (failaddr) {
769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770 ip->i_cowextsize = 0;
771 }
772}
773
774/*
775 * Initialise a newly allocated inode and return the in-core inode to the
776 * caller locked exclusively.
777 */
778int
779xfs_init_new_inode(
780 struct mnt_idmap *idmap,
781 struct xfs_trans *tp,
782 struct xfs_inode *pip,
783 xfs_ino_t ino,
784 umode_t mode,
785 xfs_nlink_t nlink,
786 dev_t rdev,
787 prid_t prid,
788 bool init_xattrs,
789 struct xfs_inode **ipp)
790{
791 struct inode *dir = pip ? VFS_I(ip: pip) : NULL;
792 struct xfs_mount *mp = tp->t_mountp;
793 struct xfs_inode *ip;
794 unsigned int flags;
795 int error;
796 struct timespec64 tv;
797 struct inode *inode;
798
799 /*
800 * Protect against obviously corrupt allocation btree records. Later
801 * xfs_iget checks will catch re-allocation of other active in-memory
802 * and on-disk inodes. If we don't catch reallocating the parent inode
803 * here we will deadlock in xfs_iget() so we have to do these checks
804 * first.
805 */
806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808 return -EFSCORRUPTED;
809 }
810
811 /*
812 * Get the in-core inode with the lock held exclusively to prevent
813 * others from looking at until we're done.
814 */
815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, ipp: &ip);
816 if (error)
817 return error;
818
819 ASSERT(ip != NULL);
820 inode = VFS_I(ip);
821 set_nlink(inode, nlink);
822 inode->i_rdev = rdev;
823 ip->i_projid = prid;
824
825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
826 inode_fsuid_set(inode, idmap);
827 inode->i_gid = dir->i_gid;
828 inode->i_mode = mode;
829 } else {
830 inode_init_owner(idmap, inode, dir, mode);
831 }
832
833 /*
834 * If the group ID of the new file does not match the effective group
835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836 * (and only if the irix_sgid_inherit compatibility variable is set).
837 */
838 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
839 !vfsgid_in_group_p(vfsgid: i_gid_into_vfsgid(idmap, inode)))
840 inode->i_mode &= ~S_ISGID;
841
842 ip->i_disk_size = 0;
843 ip->i_df.if_nextents = 0;
844 ASSERT(ip->i_nblocks == 0);
845
846 tv = inode_set_ctime_current(inode);
847 inode_set_mtime_to_ts(inode, ts: tv);
848 inode_set_atime_to_ts(inode, ts: tv);
849
850 ip->i_extsize = 0;
851 ip->i_diflags = 0;
852
853 if (xfs_has_v3inodes(mp)) {
854 inode_set_iversion(inode, val: 1);
855 ip->i_cowextsize = 0;
856 ip->i_crtime = tv;
857 }
858
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
866 flags |= XFS_ILOG_DEV;
867 break;
868 case S_IFREG:
869 case S_IFDIR:
870 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
871 xfs_inode_inherit_flags(ip, pip);
872 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
873 xfs_inode_inherit_flags2(ip, pip);
874 fallthrough;
875 case S_IFLNK:
876 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
877 ip->i_df.if_bytes = 0;
878 ip->i_df.if_u1.if_root = NULL;
879 break;
880 default:
881 ASSERT(0);
882 }
883
884 /*
885 * If we need to create attributes immediately after allocating the
886 * inode, initialise an empty attribute fork right now. We use the
887 * default fork offset for attributes here as we don't know exactly what
888 * size or how many attributes we might be adding. We can do this
889 * safely here because we know the data fork is completely empty and
890 * this saves us from needing to run a separate transaction to set the
891 * fork offset in the immediate future.
892 */
893 if (init_xattrs && xfs_has_attr(mp)) {
894 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
895 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
896 }
897
898 /*
899 * Log the new values stuffed into the inode.
900 */
901 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
902 xfs_trans_log_inode(tp, ip, flags);
903
904 /* now that we have an i_mode we can setup the inode structure */
905 xfs_setup_inode(ip);
906
907 *ipp = ip;
908 return 0;
909}
910
911/*
912 * Decrement the link count on an inode & log the change. If this causes the
913 * link count to go to zero, move the inode to AGI unlinked list so that it can
914 * be freed when the last active reference goes away via xfs_inactive().
915 */
916static int /* error */
917xfs_droplink(
918 xfs_trans_t *tp,
919 xfs_inode_t *ip)
920{
921 if (VFS_I(ip)->i_nlink == 0) {
922 xfs_alert(ip->i_mount,
923 "%s: Attempt to drop inode (%llu) with nlink zero.",
924 __func__, ip->i_ino);
925 return -EFSCORRUPTED;
926 }
927
928 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
929
930 drop_nlink(inode: VFS_I(ip));
931 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
932
933 if (VFS_I(ip)->i_nlink)
934 return 0;
935
936 return xfs_iunlink(tp, ip);
937}
938
939/*
940 * Increment the link count on an inode & log the change.
941 */
942static void
943xfs_bumplink(
944 xfs_trans_t *tp,
945 xfs_inode_t *ip)
946{
947 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
948
949 inc_nlink(inode: VFS_I(ip));
950 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
951}
952
953int
954xfs_create(
955 struct mnt_idmap *idmap,
956 xfs_inode_t *dp,
957 struct xfs_name *name,
958 umode_t mode,
959 dev_t rdev,
960 bool init_xattrs,
961 xfs_inode_t **ipp)
962{
963 int is_dir = S_ISDIR(mode);
964 struct xfs_mount *mp = dp->i_mount;
965 struct xfs_inode *ip = NULL;
966 struct xfs_trans *tp = NULL;
967 int error;
968 bool unlock_dp_on_error = false;
969 prid_t prid;
970 struct xfs_dquot *udqp = NULL;
971 struct xfs_dquot *gdqp = NULL;
972 struct xfs_dquot *pdqp = NULL;
973 struct xfs_trans_res *tres;
974 uint resblks;
975 xfs_ino_t ino;
976
977 trace_xfs_create(dp, xfs_create: name);
978
979 if (xfs_is_shutdown(mp))
980 return -EIO;
981
982 prid = xfs_get_initial_prid(dp);
983
984 /*
985 * Make sure that we have allocated dquot(s) on disk.
986 */
987 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
988 mapped_fsgid(idmap, &init_user_ns), prid,
989 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
990 &udqp, &gdqp, &pdqp);
991 if (error)
992 return error;
993
994 if (is_dir) {
995 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
996 tres = &M_RES(mp)->tr_mkdir;
997 } else {
998 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
999 tres = &M_RES(mp)->tr_create;
1000 }
1001
1002 /*
1003 * Initially assume that the file does not exist and
1004 * reserve the resources for that case. If that is not
1005 * the case we'll drop the one we have and get a more
1006 * appropriate transaction later.
1007 */
1008 error = xfs_trans_alloc_icreate(mp, resv: tres, udqp, gdqp, pdqp, dblocks: resblks,
1009 tpp: &tp);
1010 if (error == -ENOSPC) {
1011 /* flush outstanding delalloc blocks and retry */
1012 xfs_flush_inodes(mp);
1013 error = xfs_trans_alloc_icreate(mp, resv: tres, udqp, gdqp, pdqp,
1014 dblocks: resblks, tpp: &tp);
1015 }
1016 if (error)
1017 goto out_release_dquots;
1018
1019 xfs_ilock(ip: dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020 unlock_dp_on_error = true;
1021
1022 /*
1023 * A newly created regular or special file just has one directory
1024 * entry pointing to them, but a directory also the "." entry
1025 * pointing to itself.
1026 */
1027 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1028 if (!error)
1029 error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1030 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1031 if (error)
1032 goto out_trans_cancel;
1033
1034 /*
1035 * Now we join the directory inode to the transaction. We do not do it
1036 * earlier because xfs_dialloc might commit the previous transaction
1037 * (and release all the locks). An error from here on will result in
1038 * the transaction cancel unlocking dp so don't do it explicitly in the
1039 * error path.
1040 */
1041 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1042 unlock_dp_on_error = false;
1043
1044 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1045 resblks - XFS_IALLOC_SPACE_RES(mp));
1046 if (error) {
1047 ASSERT(error != -ENOSPC);
1048 goto out_trans_cancel;
1049 }
1050 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1051 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1052
1053 if (is_dir) {
1054 error = xfs_dir_init(tp, ip, dp);
1055 if (error)
1056 goto out_trans_cancel;
1057
1058 xfs_bumplink(tp, ip: dp);
1059 }
1060
1061 /*
1062 * If this is a synchronous mount, make sure that the
1063 * create transaction goes to disk before returning to
1064 * the user.
1065 */
1066 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1067 xfs_trans_set_sync(tp);
1068
1069 /*
1070 * Attach the dquot(s) to the inodes and modify them incore.
1071 * These ids of the inode couldn't have changed since the new
1072 * inode has been locked ever since it was created.
1073 */
1074 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1075
1076 error = xfs_trans_commit(tp);
1077 if (error)
1078 goto out_release_inode;
1079
1080 xfs_qm_dqrele(udqp);
1081 xfs_qm_dqrele(gdqp);
1082 xfs_qm_dqrele(pdqp);
1083
1084 *ipp = ip;
1085 return 0;
1086
1087 out_trans_cancel:
1088 xfs_trans_cancel(tp);
1089 out_release_inode:
1090 /*
1091 * Wait until after the current transaction is aborted to finish the
1092 * setup of the inode and release the inode. This prevents recursive
1093 * transactions and deadlocks from xfs_inactive.
1094 */
1095 if (ip) {
1096 xfs_finish_inode_setup(ip);
1097 xfs_irele(ip);
1098 }
1099 out_release_dquots:
1100 xfs_qm_dqrele(udqp);
1101 xfs_qm_dqrele(gdqp);
1102 xfs_qm_dqrele(pdqp);
1103
1104 if (unlock_dp_on_error)
1105 xfs_iunlock(ip: dp, XFS_ILOCK_EXCL);
1106 return error;
1107}
1108
1109int
1110xfs_create_tmpfile(
1111 struct mnt_idmap *idmap,
1112 struct xfs_inode *dp,
1113 umode_t mode,
1114 struct xfs_inode **ipp)
1115{
1116 struct xfs_mount *mp = dp->i_mount;
1117 struct xfs_inode *ip = NULL;
1118 struct xfs_trans *tp = NULL;
1119 int error;
1120 prid_t prid;
1121 struct xfs_dquot *udqp = NULL;
1122 struct xfs_dquot *gdqp = NULL;
1123 struct xfs_dquot *pdqp = NULL;
1124 struct xfs_trans_res *tres;
1125 uint resblks;
1126 xfs_ino_t ino;
1127
1128 if (xfs_is_shutdown(mp))
1129 return -EIO;
1130
1131 prid = xfs_get_initial_prid(dp);
1132
1133 /*
1134 * Make sure that we have allocated dquot(s) on disk.
1135 */
1136 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1137 mapped_fsgid(idmap, &init_user_ns), prid,
1138 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1139 &udqp, &gdqp, &pdqp);
1140 if (error)
1141 return error;
1142
1143 resblks = XFS_IALLOC_SPACE_RES(mp);
1144 tres = &M_RES(mp)->tr_create_tmpfile;
1145
1146 error = xfs_trans_alloc_icreate(mp, resv: tres, udqp, gdqp, pdqp, dblocks: resblks,
1147 tpp: &tp);
1148 if (error)
1149 goto out_release_dquots;
1150
1151 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1152 if (!error)
1153 error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1154 0, 0, prid, false, &ip);
1155 if (error)
1156 goto out_trans_cancel;
1157
1158 if (xfs_has_wsync(mp))
1159 xfs_trans_set_sync(tp);
1160
1161 /*
1162 * Attach the dquot(s) to the inodes and modify them incore.
1163 * These ids of the inode couldn't have changed since the new
1164 * inode has been locked ever since it was created.
1165 */
1166 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1167
1168 error = xfs_iunlink(tp, ip);
1169 if (error)
1170 goto out_trans_cancel;
1171
1172 error = xfs_trans_commit(tp);
1173 if (error)
1174 goto out_release_inode;
1175
1176 xfs_qm_dqrele(udqp);
1177 xfs_qm_dqrele(gdqp);
1178 xfs_qm_dqrele(pdqp);
1179
1180 *ipp = ip;
1181 return 0;
1182
1183 out_trans_cancel:
1184 xfs_trans_cancel(tp);
1185 out_release_inode:
1186 /*
1187 * Wait until after the current transaction is aborted to finish the
1188 * setup of the inode and release the inode. This prevents recursive
1189 * transactions and deadlocks from xfs_inactive.
1190 */
1191 if (ip) {
1192 xfs_finish_inode_setup(ip);
1193 xfs_irele(ip);
1194 }
1195 out_release_dquots:
1196 xfs_qm_dqrele(udqp);
1197 xfs_qm_dqrele(gdqp);
1198 xfs_qm_dqrele(pdqp);
1199
1200 return error;
1201}
1202
1203int
1204xfs_link(
1205 xfs_inode_t *tdp,
1206 xfs_inode_t *sip,
1207 struct xfs_name *target_name)
1208{
1209 xfs_mount_t *mp = tdp->i_mount;
1210 xfs_trans_t *tp;
1211 int error, nospace_error = 0;
1212 int resblks;
1213
1214 trace_xfs_link(dp: tdp, xfs_link: target_name);
1215
1216 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1217
1218 if (xfs_is_shutdown(mp))
1219 return -EIO;
1220
1221 error = xfs_qm_dqattach(sip);
1222 if (error)
1223 goto std_return;
1224
1225 error = xfs_qm_dqattach(tdp);
1226 if (error)
1227 goto std_return;
1228
1229 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1230 error = xfs_trans_alloc_dir(dp: tdp, resv: &M_RES(mp)->tr_link, ip: sip, dblocks: &resblks,
1231 tpp: &tp, nospace_error: &nospace_error);
1232 if (error)
1233 goto std_return;
1234
1235 /*
1236 * If we are using project inheritance, we only allow hard link
1237 * creation in our tree when the project IDs are the same; else
1238 * the tree quota mechanism could be circumvented.
1239 */
1240 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1241 tdp->i_projid != sip->i_projid)) {
1242 error = -EXDEV;
1243 goto error_return;
1244 }
1245
1246 if (!resblks) {
1247 error = xfs_dir_canenter(tp, tdp, target_name);
1248 if (error)
1249 goto error_return;
1250 }
1251
1252 /*
1253 * Handle initial link state of O_TMPFILE inode
1254 */
1255 if (VFS_I(ip: sip)->i_nlink == 0) {
1256 struct xfs_perag *pag;
1257
1258 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1259 error = xfs_iunlink_remove(tp, pag, sip);
1260 xfs_perag_put(pag);
1261 if (error)
1262 goto error_return;
1263 }
1264
1265 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1266 resblks);
1267 if (error)
1268 goto error_return;
1269 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1270 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1271
1272 xfs_bumplink(tp, ip: sip);
1273
1274 /*
1275 * If this is a synchronous mount, make sure that the
1276 * link transaction goes to disk before returning to
1277 * the user.
1278 */
1279 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1280 xfs_trans_set_sync(tp);
1281
1282 return xfs_trans_commit(tp);
1283
1284 error_return:
1285 xfs_trans_cancel(tp);
1286 std_return:
1287 if (error == -ENOSPC && nospace_error)
1288 error = nospace_error;
1289 return error;
1290}
1291
1292/* Clear the reflink flag and the cowblocks tag if possible. */
1293static void
1294xfs_itruncate_clear_reflink_flags(
1295 struct xfs_inode *ip)
1296{
1297 struct xfs_ifork *dfork;
1298 struct xfs_ifork *cfork;
1299
1300 if (!xfs_is_reflink_inode(ip))
1301 return;
1302 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1303 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1304 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1305 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1306 if (cfork->if_bytes == 0)
1307 xfs_inode_clear_cowblocks_tag(ip);
1308}
1309
1310/*
1311 * Free up the underlying blocks past new_size. The new size must be smaller
1312 * than the current size. This routine can be used both for the attribute and
1313 * data fork, and does not modify the inode size, which is left to the caller.
1314 *
1315 * The transaction passed to this routine must have made a permanent log
1316 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1317 * given transaction and start new ones, so make sure everything involved in
1318 * the transaction is tidy before calling here. Some transaction will be
1319 * returned to the caller to be committed. The incoming transaction must
1320 * already include the inode, and both inode locks must be held exclusively.
1321 * The inode must also be "held" within the transaction. On return the inode
1322 * will be "held" within the returned transaction. This routine does NOT
1323 * require any disk space to be reserved for it within the transaction.
1324 *
1325 * If we get an error, we must return with the inode locked and linked into the
1326 * current transaction. This keeps things simple for the higher level code,
1327 * because it always knows that the inode is locked and held in the transaction
1328 * that returns to it whether errors occur or not. We don't mark the inode
1329 * dirty on error so that transactions can be easily aborted if possible.
1330 */
1331int
1332xfs_itruncate_extents_flags(
1333 struct xfs_trans **tpp,
1334 struct xfs_inode *ip,
1335 int whichfork,
1336 xfs_fsize_t new_size,
1337 int flags)
1338{
1339 struct xfs_mount *mp = ip->i_mount;
1340 struct xfs_trans *tp = *tpp;
1341 xfs_fileoff_t first_unmap_block;
1342 xfs_filblks_t unmap_len;
1343 int error = 0;
1344
1345 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1346 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1347 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348 ASSERT(new_size <= XFS_ISIZE(ip));
1349 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1350 ASSERT(ip->i_itemp != NULL);
1351 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1352 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1353
1354 trace_xfs_itruncate_extents_start(ip, new_size);
1355
1356 flags |= xfs_bmapi_aflag(whichfork);
1357
1358 /*
1359 * Since it is possible for space to become allocated beyond
1360 * the end of the file (in a crash where the space is allocated
1361 * but the inode size is not yet updated), simply remove any
1362 * blocks which show up between the new EOF and the maximum
1363 * possible file size.
1364 *
1365 * We have to free all the blocks to the bmbt maximum offset, even if
1366 * the page cache can't scale that far.
1367 */
1368 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1369 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1370 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1371 return 0;
1372 }
1373
1374 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1375 while (unmap_len > 0) {
1376 ASSERT(tp->t_highest_agno == NULLAGNUMBER);
1377 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1378 flags, XFS_ITRUNC_MAX_EXTENTS);
1379 if (error)
1380 goto out;
1381
1382 /* free the just unmapped extents */
1383 error = xfs_defer_finish(&tp);
1384 if (error)
1385 goto out;
1386 }
1387
1388 if (whichfork == XFS_DATA_FORK) {
1389 /* Remove all pending CoW reservations. */
1390 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1391 first_unmap_block, XFS_MAX_FILEOFF, true);
1392 if (error)
1393 goto out;
1394
1395 xfs_itruncate_clear_reflink_flags(ip);
1396 }
1397
1398 /*
1399 * Always re-log the inode so that our permanent transaction can keep
1400 * on rolling it forward in the log.
1401 */
1402 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1403
1404 trace_xfs_itruncate_extents_end(ip, new_size);
1405
1406out:
1407 *tpp = tp;
1408 return error;
1409}
1410
1411int
1412xfs_release(
1413 xfs_inode_t *ip)
1414{
1415 xfs_mount_t *mp = ip->i_mount;
1416 int error = 0;
1417
1418 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1419 return 0;
1420
1421 /* If this is a read-only mount, don't do this (would generate I/O) */
1422 if (xfs_is_readonly(mp))
1423 return 0;
1424
1425 if (!xfs_is_shutdown(mp)) {
1426 int truncated;
1427
1428 /*
1429 * If we previously truncated this file and removed old data
1430 * in the process, we want to initiate "early" writeout on
1431 * the last close. This is an attempt to combat the notorious
1432 * NULL files problem which is particularly noticeable from a
1433 * truncate down, buffered (re-)write (delalloc), followed by
1434 * a crash. What we are effectively doing here is
1435 * significantly reducing the time window where we'd otherwise
1436 * be exposed to that problem.
1437 */
1438 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1439 if (truncated) {
1440 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1441 if (ip->i_delayed_blks > 0) {
1442 error = filemap_flush(VFS_I(ip)->i_mapping);
1443 if (error)
1444 return error;
1445 }
1446 }
1447 }
1448
1449 if (VFS_I(ip)->i_nlink == 0)
1450 return 0;
1451
1452 /*
1453 * If we can't get the iolock just skip truncating the blocks past EOF
1454 * because we could deadlock with the mmap_lock otherwise. We'll get
1455 * another chance to drop them once the last reference to the inode is
1456 * dropped, so we'll never leak blocks permanently.
1457 */
1458 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1459 return 0;
1460
1461 if (xfs_can_free_eofblocks(ip, force: false)) {
1462 /*
1463 * Check if the inode is being opened, written and closed
1464 * frequently and we have delayed allocation blocks outstanding
1465 * (e.g. streaming writes from the NFS server), truncating the
1466 * blocks past EOF will cause fragmentation to occur.
1467 *
1468 * In this case don't do the truncation, but we have to be
1469 * careful how we detect this case. Blocks beyond EOF show up as
1470 * i_delayed_blks even when the inode is clean, so we need to
1471 * truncate them away first before checking for a dirty release.
1472 * Hence on the first dirty close we will still remove the
1473 * speculative allocation, but after that we will leave it in
1474 * place.
1475 */
1476 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1477 goto out_unlock;
1478
1479 error = xfs_free_eofblocks(ip);
1480 if (error)
1481 goto out_unlock;
1482
1483 /* delalloc blocks after truncation means it really is dirty */
1484 if (ip->i_delayed_blks)
1485 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1486 }
1487
1488out_unlock:
1489 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1490 return error;
1491}
1492
1493/*
1494 * xfs_inactive_truncate
1495 *
1496 * Called to perform a truncate when an inode becomes unlinked.
1497 */
1498STATIC int
1499xfs_inactive_truncate(
1500 struct xfs_inode *ip)
1501{
1502 struct xfs_mount *mp = ip->i_mount;
1503 struct xfs_trans *tp;
1504 int error;
1505
1506 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_itruncate, blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
1507 if (error) {
1508 ASSERT(xfs_is_shutdown(mp));
1509 return error;
1510 }
1511 xfs_ilock(ip, XFS_ILOCK_EXCL);
1512 xfs_trans_ijoin(tp, ip, 0);
1513
1514 /*
1515 * Log the inode size first to prevent stale data exposure in the event
1516 * of a system crash before the truncate completes. See the related
1517 * comment in xfs_vn_setattr_size() for details.
1518 */
1519 ip->i_disk_size = 0;
1520 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1521
1522 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1523 if (error)
1524 goto error_trans_cancel;
1525
1526 ASSERT(ip->i_df.if_nextents == 0);
1527
1528 error = xfs_trans_commit(tp);
1529 if (error)
1530 goto error_unlock;
1531
1532 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533 return 0;
1534
1535error_trans_cancel:
1536 xfs_trans_cancel(tp);
1537error_unlock:
1538 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1539 return error;
1540}
1541
1542/*
1543 * xfs_inactive_ifree()
1544 *
1545 * Perform the inode free when an inode is unlinked.
1546 */
1547STATIC int
1548xfs_inactive_ifree(
1549 struct xfs_inode *ip)
1550{
1551 struct xfs_mount *mp = ip->i_mount;
1552 struct xfs_trans *tp;
1553 int error;
1554
1555 /*
1556 * We try to use a per-AG reservation for any block needed by the finobt
1557 * tree, but as the finobt feature predates the per-AG reservation
1558 * support a degraded file system might not have enough space for the
1559 * reservation at mount time. In that case try to dip into the reserved
1560 * pool and pray.
1561 *
1562 * Send a warning if the reservation does happen to fail, as the inode
1563 * now remains allocated and sits on the unlinked list until the fs is
1564 * repaired.
1565 */
1566 if (unlikely(mp->m_finobt_nores)) {
1567 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1568 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1569 &tp);
1570 } else {
1571 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_ifree, blocks: 0, rtextents: 0, flags: 0, tpp: &tp);
1572 }
1573 if (error) {
1574 if (error == -ENOSPC) {
1575 xfs_warn_ratelimited(mp,
1576 "Failed to remove inode(s) from unlinked list. "
1577 "Please free space, unmount and run xfs_repair.");
1578 } else {
1579 ASSERT(xfs_is_shutdown(mp));
1580 }
1581 return error;
1582 }
1583
1584 /*
1585 * We do not hold the inode locked across the entire rolling transaction
1586 * here. We only need to hold it for the first transaction that
1587 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1588 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1589 * here breaks the relationship between cluster buffer invalidation and
1590 * stale inode invalidation on cluster buffer item journal commit
1591 * completion, and can result in leaving dirty stale inodes hanging
1592 * around in memory.
1593 *
1594 * We have no need for serialising this inode operation against other
1595 * operations - we freed the inode and hence reallocation is required
1596 * and that will serialise on reallocating the space the deferops need
1597 * to free. Hence we can unlock the inode on the first commit of
1598 * the transaction rather than roll it right through the deferops. This
1599 * avoids relogging the XFS_ISTALE inode.
1600 *
1601 * We check that xfs_ifree() hasn't grown an internal transaction roll
1602 * by asserting that the inode is still locked when it returns.
1603 */
1604 xfs_ilock(ip, XFS_ILOCK_EXCL);
1605 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1606
1607 error = xfs_ifree(tp, ip);
1608 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1609 if (error) {
1610 /*
1611 * If we fail to free the inode, shut down. The cancel
1612 * might do that, we need to make sure. Otherwise the
1613 * inode might be lost for a long time or forever.
1614 */
1615 if (!xfs_is_shutdown(mp)) {
1616 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1617 __func__, error);
1618 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1619 }
1620 xfs_trans_cancel(tp);
1621 return error;
1622 }
1623
1624 /*
1625 * Credit the quota account(s). The inode is gone.
1626 */
1627 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1628
1629 return xfs_trans_commit(tp);
1630}
1631
1632/*
1633 * Returns true if we need to update the on-disk metadata before we can free
1634 * the memory used by this inode. Updates include freeing post-eof
1635 * preallocations; freeing COW staging extents; and marking the inode free in
1636 * the inobt if it is on the unlinked list.
1637 */
1638bool
1639xfs_inode_needs_inactive(
1640 struct xfs_inode *ip)
1641{
1642 struct xfs_mount *mp = ip->i_mount;
1643 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1644
1645 /*
1646 * If the inode is already free, then there can be nothing
1647 * to clean up here.
1648 */
1649 if (VFS_I(ip)->i_mode == 0)
1650 return false;
1651
1652 /*
1653 * If this is a read-only mount, don't do this (would generate I/O)
1654 * unless we're in log recovery and cleaning the iunlinked list.
1655 */
1656 if (xfs_is_readonly(mp) && !xlog_recovery_needed(log: mp->m_log))
1657 return false;
1658
1659 /* If the log isn't running, push inodes straight to reclaim. */
1660 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661 return false;
1662
1663 /* Metadata inodes require explicit resource cleanup. */
1664 if (xfs_is_metadata_inode(ip))
1665 return false;
1666
1667 /* Want to clean out the cow blocks if there are any. */
1668 if (cow_ifp && cow_ifp->if_bytes > 0)
1669 return true;
1670
1671 /* Unlinked files must be freed. */
1672 if (VFS_I(ip)->i_nlink == 0)
1673 return true;
1674
1675 /*
1676 * This file isn't being freed, so check if there are post-eof blocks
1677 * to free. @force is true because we are evicting an inode from the
1678 * cache. Post-eof blocks must be freed, lest we end up with broken
1679 * free space accounting.
1680 *
1681 * Note: don't bother with iolock here since lockdep complains about
1682 * acquiring it in reclaim context. We have the only reference to the
1683 * inode at this point anyways.
1684 */
1685 return xfs_can_free_eofblocks(ip, force: true);
1686}
1687
1688/*
1689 * xfs_inactive
1690 *
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero. If the file has been unlinked, then it must
1693 * now be truncated. Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1695 */
1696int
1697xfs_inactive(
1698 xfs_inode_t *ip)
1699{
1700 struct xfs_mount *mp;
1701 int error = 0;
1702 int truncate = 0;
1703
1704 /*
1705 * If the inode is already free, then there can be nothing
1706 * to clean up here.
1707 */
1708 if (VFS_I(ip)->i_mode == 0) {
1709 ASSERT(ip->i_df.if_broot_bytes == 0);
1710 goto out;
1711 }
1712
1713 mp = ip->i_mount;
1714 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715
1716 /*
1717 * If this is a read-only mount, don't do this (would generate I/O)
1718 * unless we're in log recovery and cleaning the iunlinked list.
1719 */
1720 if (xfs_is_readonly(mp) && !xlog_recovery_needed(log: mp->m_log))
1721 goto out;
1722
1723 /* Metadata inodes require explicit resource cleanup. */
1724 if (xfs_is_metadata_inode(ip))
1725 goto out;
1726
1727 /* Try to clean out the cow blocks if there are any. */
1728 if (xfs_inode_has_cow_data(ip))
1729 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1730
1731 if (VFS_I(ip)->i_nlink != 0) {
1732 /*
1733 * force is true because we are evicting an inode from the
1734 * cache. Post-eof blocks must be freed, lest we end up with
1735 * broken free space accounting.
1736 *
1737 * Note: don't bother with iolock here since lockdep complains
1738 * about acquiring it in reclaim context. We have the only
1739 * reference to the inode at this point anyways.
1740 */
1741 if (xfs_can_free_eofblocks(ip, force: true))
1742 error = xfs_free_eofblocks(ip);
1743
1744 goto out;
1745 }
1746
1747 if (S_ISREG(VFS_I(ip)->i_mode) &&
1748 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1749 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1750 truncate = 1;
1751
1752 if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1753 /*
1754 * If this inode is being inactivated during a quotacheck and
1755 * has not yet been scanned by quotacheck, we /must/ remove
1756 * the dquots from the inode before inactivation changes the
1757 * block and inode counts. Most probably this is a result of
1758 * reloading the incore iunlinked list to purge unrecovered
1759 * unlinked inodes.
1760 */
1761 xfs_qm_dqdetach(ip);
1762 } else {
1763 error = xfs_qm_dqattach(ip);
1764 if (error)
1765 goto out;
1766 }
1767
1768 if (S_ISLNK(VFS_I(ip)->i_mode))
1769 error = xfs_inactive_symlink(ip);
1770 else if (truncate)
1771 error = xfs_inactive_truncate(ip);
1772 if (error)
1773 goto out;
1774
1775 /*
1776 * If there are attributes associated with the file then blow them away
1777 * now. The code calls a routine that recursively deconstructs the
1778 * attribute fork. If also blows away the in-core attribute fork.
1779 */
1780 if (xfs_inode_has_attr_fork(ip)) {
1781 error = xfs_attr_inactive(ip);
1782 if (error)
1783 goto out;
1784 }
1785
1786 ASSERT(ip->i_forkoff == 0);
1787
1788 /*
1789 * Free the inode.
1790 */
1791 error = xfs_inactive_ifree(ip);
1792
1793out:
1794 /*
1795 * We're done making metadata updates for this inode, so we can release
1796 * the attached dquots.
1797 */
1798 xfs_qm_dqdetach(ip);
1799 return error;
1800}
1801
1802/*
1803 * In-Core Unlinked List Lookups
1804 * =============================
1805 *
1806 * Every inode is supposed to be reachable from some other piece of metadata
1807 * with the exception of the root directory. Inodes with a connection to a
1808 * file descriptor but not linked from anywhere in the on-disk directory tree
1809 * are collectively known as unlinked inodes, though the filesystem itself
1810 * maintains links to these inodes so that on-disk metadata are consistent.
1811 *
1812 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1813 * header contains a number of buckets that point to an inode, and each inode
1814 * record has a pointer to the next inode in the hash chain. This
1815 * singly-linked list causes scaling problems in the iunlink remove function
1816 * because we must walk that list to find the inode that points to the inode
1817 * being removed from the unlinked hash bucket list.
1818 *
1819 * Hence we keep an in-memory double linked list to link each inode on an
1820 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1821 * based lists would require having 64 list heads in the perag, one for each
1822 * list. This is expensive in terms of memory (think millions of AGs) and cache
1823 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1824 * must be referenced at the VFS level to keep them on the list and hence we
1825 * have an existence guarantee for inodes on the unlinked list.
1826 *
1827 * Given we have an existence guarantee, we can use lockless inode cache lookups
1828 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1829 * for the double linked unlinked list, and we don't need any extra locking to
1830 * keep the list safe as all manipulations are done under the AGI buffer lock.
1831 * Keeping the list up to date does not require memory allocation, just finding
1832 * the XFS inode and updating the next/prev unlinked list aginos.
1833 */
1834
1835/*
1836 * Find an inode on the unlinked list. This does not take references to the
1837 * inode as we have existence guarantees by holding the AGI buffer lock and that
1838 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1839 * don't find the inode in cache, then let the caller handle the situation.
1840 */
1841static struct xfs_inode *
1842xfs_iunlink_lookup(
1843 struct xfs_perag *pag,
1844 xfs_agino_t agino)
1845{
1846 struct xfs_inode *ip;
1847
1848 rcu_read_lock();
1849 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1850 if (!ip) {
1851 /* Caller can handle inode not being in memory. */
1852 rcu_read_unlock();
1853 return NULL;
1854 }
1855
1856 /*
1857 * Inode in RCU freeing limbo should not happen. Warn about this and
1858 * let the caller handle the failure.
1859 */
1860 if (WARN_ON_ONCE(!ip->i_ino)) {
1861 rcu_read_unlock();
1862 return NULL;
1863 }
1864 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1865 rcu_read_unlock();
1866 return ip;
1867}
1868
1869/*
1870 * Update the prev pointer of the next agino. Returns -ENOLINK if the inode
1871 * is not in cache.
1872 */
1873static int
1874xfs_iunlink_update_backref(
1875 struct xfs_perag *pag,
1876 xfs_agino_t prev_agino,
1877 xfs_agino_t next_agino)
1878{
1879 struct xfs_inode *ip;
1880
1881 /* No update necessary if we are at the end of the list. */
1882 if (next_agino == NULLAGINO)
1883 return 0;
1884
1885 ip = xfs_iunlink_lookup(pag, next_agino);
1886 if (!ip)
1887 return -ENOLINK;
1888
1889 ip->i_prev_unlinked = prev_agino;
1890 return 0;
1891}
1892
1893/*
1894 * Point the AGI unlinked bucket at an inode and log the results. The caller
1895 * is responsible for validating the old value.
1896 */
1897STATIC int
1898xfs_iunlink_update_bucket(
1899 struct xfs_trans *tp,
1900 struct xfs_perag *pag,
1901 struct xfs_buf *agibp,
1902 unsigned int bucket_index,
1903 xfs_agino_t new_agino)
1904{
1905 struct xfs_agi *agi = agibp->b_addr;
1906 xfs_agino_t old_value;
1907 int offset;
1908
1909 ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1910
1911 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1912 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1913 old_value, new_agino);
1914
1915 /*
1916 * We should never find the head of the list already set to the value
1917 * passed in because either we're adding or removing ourselves from the
1918 * head of the list.
1919 */
1920 if (old_value == new_agino) {
1921 xfs_buf_mark_corrupt(agibp);
1922 return -EFSCORRUPTED;
1923 }
1924
1925 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1926 offset = offsetof(struct xfs_agi, agi_unlinked) +
1927 (sizeof(xfs_agino_t) * bucket_index);
1928 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1929 return 0;
1930}
1931
1932/*
1933 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1934 * to @prev_agino. Caller must hold the AGI to synchronize with other changes
1935 * to the unlinked list.
1936 */
1937STATIC int
1938xfs_iunlink_reload_next(
1939 struct xfs_trans *tp,
1940 struct xfs_buf *agibp,
1941 xfs_agino_t prev_agino,
1942 xfs_agino_t next_agino)
1943{
1944 struct xfs_perag *pag = agibp->b_pag;
1945 struct xfs_mount *mp = pag->pag_mount;
1946 struct xfs_inode *next_ip = NULL;
1947 xfs_ino_t ino;
1948 int error;
1949
1950 ASSERT(next_agino != NULLAGINO);
1951
1952#ifdef DEBUG
1953 rcu_read_lock();
1954 next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1955 ASSERT(next_ip == NULL);
1956 rcu_read_unlock();
1957#endif
1958
1959 xfs_info_ratelimited(mp,
1960 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating recovery.",
1961 next_agino, pag->pag_agno);
1962
1963 /*
1964 * Use an untrusted lookup just to be cautious in case the AGI has been
1965 * corrupted and now points at a free inode. That shouldn't happen,
1966 * but we'd rather shut down now since we're already running in a weird
1967 * situation.
1968 */
1969 ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1970 error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, lock_flags: 0, ipp: &next_ip);
1971 if (error)
1972 return error;
1973
1974 /* If this is not an unlinked inode, something is very wrong. */
1975 if (VFS_I(ip: next_ip)->i_nlink != 0) {
1976 error = -EFSCORRUPTED;
1977 goto rele;
1978 }
1979
1980 next_ip->i_prev_unlinked = prev_agino;
1981 trace_xfs_iunlink_reload_next(ip: next_ip);
1982rele:
1983 ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1984 if (xfs_is_quotacheck_running(mp) && next_ip)
1985 xfs_iflags_set(ip: next_ip, XFS_IQUOTAUNCHECKED);
1986 xfs_irele(ip: next_ip);
1987 return error;
1988}
1989
1990static int
1991xfs_iunlink_insert_inode(
1992 struct xfs_trans *tp,
1993 struct xfs_perag *pag,
1994 struct xfs_buf *agibp,
1995 struct xfs_inode *ip)
1996{
1997 struct xfs_mount *mp = tp->t_mountp;
1998 struct xfs_agi *agi = agibp->b_addr;
1999 xfs_agino_t next_agino;
2000 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2002 int error;
2003
2004 /*
2005 * Get the index into the agi hash table for the list this inode will
2006 * go on. Make sure the pointer isn't garbage and that this inode
2007 * isn't already on the list.
2008 */
2009 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2010 if (next_agino == agino ||
2011 !xfs_verify_agino_or_null(pag, next_agino)) {
2012 xfs_buf_mark_corrupt(agibp);
2013 return -EFSCORRUPTED;
2014 }
2015
2016 /*
2017 * Update the prev pointer in the next inode to point back to this
2018 * inode.
2019 */
2020 error = xfs_iunlink_update_backref(pag, agino, next_agino);
2021 if (error == -ENOLINK)
2022 error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2023 if (error)
2024 return error;
2025
2026 if (next_agino != NULLAGINO) {
2027 /*
2028 * There is already another inode in the bucket, so point this
2029 * inode to the current head of the list.
2030 */
2031 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2032 if (error)
2033 return error;
2034 ip->i_next_unlinked = next_agino;
2035 }
2036
2037 /* Point the head of the list to point to this inode. */
2038 ip->i_prev_unlinked = NULLAGINO;
2039 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2040}
2041
2042/*
2043 * This is called when the inode's link count has gone to 0 or we are creating
2044 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
2045 *
2046 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2047 * list when the inode is freed.
2048 */
2049STATIC int
2050xfs_iunlink(
2051 struct xfs_trans *tp,
2052 struct xfs_inode *ip)
2053{
2054 struct xfs_mount *mp = tp->t_mountp;
2055 struct xfs_perag *pag;
2056 struct xfs_buf *agibp;
2057 int error;
2058
2059 ASSERT(VFS_I(ip)->i_nlink == 0);
2060 ASSERT(VFS_I(ip)->i_mode != 0);
2061 trace_xfs_iunlink(ip);
2062
2063 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2064
2065 /* Get the agi buffer first. It ensures lock ordering on the list. */
2066 error = xfs_read_agi(pag, tp, &agibp);
2067 if (error)
2068 goto out;
2069
2070 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2071out:
2072 xfs_perag_put(pag);
2073 return error;
2074}
2075
2076static int
2077xfs_iunlink_remove_inode(
2078 struct xfs_trans *tp,
2079 struct xfs_perag *pag,
2080 struct xfs_buf *agibp,
2081 struct xfs_inode *ip)
2082{
2083 struct xfs_mount *mp = tp->t_mountp;
2084 struct xfs_agi *agi = agibp->b_addr;
2085 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2086 xfs_agino_t head_agino;
2087 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2088 int error;
2089
2090 trace_xfs_iunlink_remove(ip);
2091
2092 /*
2093 * Get the index into the agi hash table for the list this inode will
2094 * go on. Make sure the head pointer isn't garbage.
2095 */
2096 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2097 if (!xfs_verify_agino(pag, head_agino)) {
2098 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2099 agi, sizeof(*agi));
2100 return -EFSCORRUPTED;
2101 }
2102
2103 /*
2104 * Set our inode's next_unlinked pointer to NULL and then return
2105 * the old pointer value so that we can update whatever was previous
2106 * to us in the list to point to whatever was next in the list.
2107 */
2108 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2109 if (error)
2110 return error;
2111
2112 /*
2113 * Update the prev pointer in the next inode to point back to previous
2114 * inode in the chain.
2115 */
2116 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2117 ip->i_next_unlinked);
2118 if (error == -ENOLINK)
2119 error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2120 ip->i_next_unlinked);
2121 if (error)
2122 return error;
2123
2124 if (head_agino != agino) {
2125 struct xfs_inode *prev_ip;
2126
2127 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2128 if (!prev_ip)
2129 return -EFSCORRUPTED;
2130
2131 error = xfs_iunlink_log_inode(tp, ip: prev_ip, pag,
2132 next_agino: ip->i_next_unlinked);
2133 prev_ip->i_next_unlinked = ip->i_next_unlinked;
2134 } else {
2135 /* Point the head of the list to the next unlinked inode. */
2136 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2137 ip->i_next_unlinked);
2138 }
2139
2140 ip->i_next_unlinked = NULLAGINO;
2141 ip->i_prev_unlinked = 0;
2142 return error;
2143}
2144
2145/*
2146 * Pull the on-disk inode from the AGI unlinked list.
2147 */
2148STATIC int
2149xfs_iunlink_remove(
2150 struct xfs_trans *tp,
2151 struct xfs_perag *pag,
2152 struct xfs_inode *ip)
2153{
2154 struct xfs_buf *agibp;
2155 int error;
2156
2157 trace_xfs_iunlink_remove(ip);
2158
2159 /* Get the agi buffer first. It ensures lock ordering on the list. */
2160 error = xfs_read_agi(pag, tp, &agibp);
2161 if (error)
2162 return error;
2163
2164 return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2165}
2166
2167/*
2168 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2169 * mark it stale. We should only find clean inodes in this lookup that aren't
2170 * already stale.
2171 */
2172static void
2173xfs_ifree_mark_inode_stale(
2174 struct xfs_perag *pag,
2175 struct xfs_inode *free_ip,
2176 xfs_ino_t inum)
2177{
2178 struct xfs_mount *mp = pag->pag_mount;
2179 struct xfs_inode_log_item *iip;
2180 struct xfs_inode *ip;
2181
2182retry:
2183 rcu_read_lock();
2184 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2185
2186 /* Inode not in memory, nothing to do */
2187 if (!ip) {
2188 rcu_read_unlock();
2189 return;
2190 }
2191
2192 /*
2193 * because this is an RCU protected lookup, we could find a recently
2194 * freed or even reallocated inode during the lookup. We need to check
2195 * under the i_flags_lock for a valid inode here. Skip it if it is not
2196 * valid, the wrong inode or stale.
2197 */
2198 spin_lock(lock: &ip->i_flags_lock);
2199 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2200 goto out_iflags_unlock;
2201
2202 /*
2203 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2204 * other inodes that we did not find in the list attached to the buffer
2205 * and are not already marked stale. If we can't lock it, back off and
2206 * retry.
2207 */
2208 if (ip != free_ip) {
2209 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2210 spin_unlock(lock: &ip->i_flags_lock);
2211 rcu_read_unlock();
2212 delay(ticks: 1);
2213 goto retry;
2214 }
2215 }
2216 ip->i_flags |= XFS_ISTALE;
2217
2218 /*
2219 * If the inode is flushing, it is already attached to the buffer. All
2220 * we needed to do here is mark the inode stale so buffer IO completion
2221 * will remove it from the AIL.
2222 */
2223 iip = ip->i_itemp;
2224 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2225 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2226 ASSERT(iip->ili_last_fields);
2227 goto out_iunlock;
2228 }
2229
2230 /*
2231 * Inodes not attached to the buffer can be released immediately.
2232 * Everything else has to go through xfs_iflush_abort() on journal
2233 * commit as the flock synchronises removal of the inode from the
2234 * cluster buffer against inode reclaim.
2235 */
2236 if (!iip || list_empty(head: &iip->ili_item.li_bio_list))
2237 goto out_iunlock;
2238
2239 __xfs_iflags_set(ip, XFS_IFLUSHING);
2240 spin_unlock(lock: &ip->i_flags_lock);
2241 rcu_read_unlock();
2242
2243 /* we have a dirty inode in memory that has not yet been flushed. */
2244 spin_lock(lock: &iip->ili_lock);
2245 iip->ili_last_fields = iip->ili_fields;
2246 iip->ili_fields = 0;
2247 iip->ili_fsync_fields = 0;
2248 spin_unlock(lock: &iip->ili_lock);
2249 ASSERT(iip->ili_last_fields);
2250
2251 if (ip != free_ip)
2252 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2253 return;
2254
2255out_iunlock:
2256 if (ip != free_ip)
2257 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2258out_iflags_unlock:
2259 spin_unlock(lock: &ip->i_flags_lock);
2260 rcu_read_unlock();
2261}
2262
2263/*
2264 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2265 * inodes that are in memory - they all must be marked stale and attached to
2266 * the cluster buffer.
2267 */
2268static int
2269xfs_ifree_cluster(
2270 struct xfs_trans *tp,
2271 struct xfs_perag *pag,
2272 struct xfs_inode *free_ip,
2273 struct xfs_icluster *xic)
2274{
2275 struct xfs_mount *mp = free_ip->i_mount;
2276 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2277 struct xfs_buf *bp;
2278 xfs_daddr_t blkno;
2279 xfs_ino_t inum = xic->first_ino;
2280 int nbufs;
2281 int i, j;
2282 int ioffset;
2283 int error;
2284
2285 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2286
2287 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2288 /*
2289 * The allocation bitmap tells us which inodes of the chunk were
2290 * physically allocated. Skip the cluster if an inode falls into
2291 * a sparse region.
2292 */
2293 ioffset = inum - xic->first_ino;
2294 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2295 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2296 continue;
2297 }
2298
2299 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2300 XFS_INO_TO_AGBNO(mp, inum));
2301
2302 /*
2303 * We obtain and lock the backing buffer first in the process
2304 * here to ensure dirty inodes attached to the buffer remain in
2305 * the flushing state while we mark them stale.
2306 *
2307 * If we scan the in-memory inodes first, then buffer IO can
2308 * complete before we get a lock on it, and hence we may fail
2309 * to mark all the active inodes on the buffer stale.
2310 */
2311 error = xfs_trans_get_buf(tp, target: mp->m_ddev_targp, blkno,
2312 numblks: mp->m_bsize * igeo->blocks_per_cluster,
2313 XBF_UNMAPPED, bpp: &bp);
2314 if (error)
2315 return error;
2316
2317 /*
2318 * This buffer may not have been correctly initialised as we
2319 * didn't read it from disk. That's not important because we are
2320 * only using to mark the buffer as stale in the log, and to
2321 * attach stale cached inodes on it. That means it will never be
2322 * dispatched for IO. If it is, we want to know about it, and we
2323 * want it to fail. We can acheive this by adding a write
2324 * verifier to the buffer.
2325 */
2326 bp->b_ops = &xfs_inode_buf_ops;
2327
2328 /*
2329 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2330 * too. This requires lookups, and will skip inodes that we've
2331 * already marked XFS_ISTALE.
2332 */
2333 for (i = 0; i < igeo->inodes_per_cluster; i++)
2334 xfs_ifree_mark_inode_stale(pag, free_ip, inum: inum + i);
2335
2336 xfs_trans_stale_inode_buf(tp, bp);
2337 xfs_trans_binval(tp, bp);
2338 }
2339 return 0;
2340}
2341
2342/*
2343 * This is called to return an inode to the inode free list. The inode should
2344 * already be truncated to 0 length and have no pages associated with it. This
2345 * routine also assumes that the inode is already a part of the transaction.
2346 *
2347 * The on-disk copy of the inode will have been added to the list of unlinked
2348 * inodes in the AGI. We need to remove the inode from that list atomically with
2349 * respect to freeing it here.
2350 */
2351int
2352xfs_ifree(
2353 struct xfs_trans *tp,
2354 struct xfs_inode *ip)
2355{
2356 struct xfs_mount *mp = ip->i_mount;
2357 struct xfs_perag *pag;
2358 struct xfs_icluster xic = { 0 };
2359 struct xfs_inode_log_item *iip = ip->i_itemp;
2360 int error;
2361
2362 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2363 ASSERT(VFS_I(ip)->i_nlink == 0);
2364 ASSERT(ip->i_df.if_nextents == 0);
2365 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2366 ASSERT(ip->i_nblocks == 0);
2367
2368 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2369
2370 /*
2371 * Free the inode first so that we guarantee that the AGI lock is going
2372 * to be taken before we remove the inode from the unlinked list. This
2373 * makes the AGI lock -> unlinked list modification order the same as
2374 * used in O_TMPFILE creation.
2375 */
2376 error = xfs_difree(tp, pag, ip->i_ino, &xic);
2377 if (error)
2378 goto out;
2379
2380 error = xfs_iunlink_remove(tp, pag, ip);
2381 if (error)
2382 goto out;
2383
2384 /*
2385 * Free any local-format data sitting around before we reset the
2386 * data fork to extents format. Note that the attr fork data has
2387 * already been freed by xfs_attr_inactive.
2388 */
2389 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2390 kmem_free(ptr: ip->i_df.if_u1.if_data);
2391 ip->i_df.if_u1.if_data = NULL;
2392 ip->i_df.if_bytes = 0;
2393 }
2394
2395 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2396 ip->i_diflags = 0;
2397 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2398 ip->i_forkoff = 0; /* mark the attr fork not in use */
2399 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2400 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2401 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2402
2403 /* Don't attempt to replay owner changes for a deleted inode */
2404 spin_lock(lock: &iip->ili_lock);
2405 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2406 spin_unlock(lock: &iip->ili_lock);
2407
2408 /*
2409 * Bump the generation count so no one will be confused
2410 * by reincarnations of this inode.
2411 */
2412 VFS_I(ip)->i_generation++;
2413 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2414
2415 if (xic.deleted)
2416 error = xfs_ifree_cluster(tp, pag, free_ip: ip, xic: &xic);
2417out:
2418 xfs_perag_put(pag);
2419 return error;
2420}
2421
2422/*
2423 * This is called to unpin an inode. The caller must have the inode locked
2424 * in at least shared mode so that the buffer cannot be subsequently pinned
2425 * once someone is waiting for it to be unpinned.
2426 */
2427static void
2428xfs_iunpin(
2429 struct xfs_inode *ip)
2430{
2431 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2432
2433 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2434
2435 /* Give the log a push to start the unpinning I/O */
2436 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2437
2438}
2439
2440static void
2441__xfs_iunpin_wait(
2442 struct xfs_inode *ip)
2443{
2444 wait_queue_head_t *wq = bit_waitqueue(word: &ip->i_flags, __XFS_IPINNED_BIT);
2445 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2446
2447 xfs_iunpin(ip);
2448
2449 do {
2450 prepare_to_wait(wq_head: wq, wq_entry: &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2451 if (xfs_ipincount(ip))
2452 io_schedule();
2453 } while (xfs_ipincount(ip));
2454 finish_wait(wq_head: wq, wq_entry: &wait.wq_entry);
2455}
2456
2457void
2458xfs_iunpin_wait(
2459 struct xfs_inode *ip)
2460{
2461 if (xfs_ipincount(ip))
2462 __xfs_iunpin_wait(ip);
2463}
2464
2465/*
2466 * Removing an inode from the namespace involves removing the directory entry
2467 * and dropping the link count on the inode. Removing the directory entry can
2468 * result in locking an AGF (directory blocks were freed) and removing a link
2469 * count can result in placing the inode on an unlinked list which results in
2470 * locking an AGI.
2471 *
2472 * The big problem here is that we have an ordering constraint on AGF and AGI
2473 * locking - inode allocation locks the AGI, then can allocate a new extent for
2474 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2475 * removes the inode from the unlinked list, requiring that we lock the AGI
2476 * first, and then freeing the inode can result in an inode chunk being freed
2477 * and hence freeing disk space requiring that we lock an AGF.
2478 *
2479 * Hence the ordering that is imposed by other parts of the code is AGI before
2480 * AGF. This means we cannot remove the directory entry before we drop the inode
2481 * reference count and put it on the unlinked list as this results in a lock
2482 * order of AGF then AGI, and this can deadlock against inode allocation and
2483 * freeing. Therefore we must drop the link counts before we remove the
2484 * directory entry.
2485 *
2486 * This is still safe from a transactional point of view - it is not until we
2487 * get to xfs_defer_finish() that we have the possibility of multiple
2488 * transactions in this operation. Hence as long as we remove the directory
2489 * entry and drop the link count in the first transaction of the remove
2490 * operation, there are no transactional constraints on the ordering here.
2491 */
2492int
2493xfs_remove(
2494 xfs_inode_t *dp,
2495 struct xfs_name *name,
2496 xfs_inode_t *ip)
2497{
2498 xfs_mount_t *mp = dp->i_mount;
2499 xfs_trans_t *tp = NULL;
2500 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2501 int dontcare;
2502 int error = 0;
2503 uint resblks;
2504
2505 trace_xfs_remove(dp, xfs_remove: name);
2506
2507 if (xfs_is_shutdown(mp))
2508 return -EIO;
2509
2510 error = xfs_qm_dqattach(dp);
2511 if (error)
2512 goto std_return;
2513
2514 error = xfs_qm_dqattach(ip);
2515 if (error)
2516 goto std_return;
2517
2518 /*
2519 * We try to get the real space reservation first, allowing for
2520 * directory btree deletion(s) implying possible bmap insert(s). If we
2521 * can't get the space reservation then we use 0 instead, and avoid the
2522 * bmap btree insert(s) in the directory code by, if the bmap insert
2523 * tries to happen, instead trimming the LAST block from the directory.
2524 *
2525 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2526 * the directory code can handle a reservationless update and we don't
2527 * want to prevent a user from trying to free space by deleting things.
2528 */
2529 resblks = XFS_REMOVE_SPACE_RES(mp);
2530 error = xfs_trans_alloc_dir(dp, resv: &M_RES(mp)->tr_remove, ip, dblocks: &resblks,
2531 tpp: &tp, nospace_error: &dontcare);
2532 if (error) {
2533 ASSERT(error != -ENOSPC);
2534 goto std_return;
2535 }
2536
2537 /*
2538 * If we're removing a directory perform some additional validation.
2539 */
2540 if (is_dir) {
2541 ASSERT(VFS_I(ip)->i_nlink >= 2);
2542 if (VFS_I(ip)->i_nlink != 2) {
2543 error = -ENOTEMPTY;
2544 goto out_trans_cancel;
2545 }
2546 if (!xfs_dir_isempty(ip)) {
2547 error = -ENOTEMPTY;
2548 goto out_trans_cancel;
2549 }
2550
2551 /* Drop the link from ip's "..". */
2552 error = xfs_droplink(tp, ip: dp);
2553 if (error)
2554 goto out_trans_cancel;
2555
2556 /* Drop the "." link from ip to self. */
2557 error = xfs_droplink(tp, ip);
2558 if (error)
2559 goto out_trans_cancel;
2560
2561 /*
2562 * Point the unlinked child directory's ".." entry to the root
2563 * directory to eliminate back-references to inodes that may
2564 * get freed before the child directory is closed. If the fs
2565 * gets shrunk, this can lead to dirent inode validation errors.
2566 */
2567 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2568 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2569 tp->t_mountp->m_sb.sb_rootino, 0);
2570 if (error)
2571 goto out_trans_cancel;
2572 }
2573 } else {
2574 /*
2575 * When removing a non-directory we need to log the parent
2576 * inode here. For a directory this is done implicitly
2577 * by the xfs_droplink call for the ".." entry.
2578 */
2579 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2580 }
2581 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2582
2583 /* Drop the link from dp to ip. */
2584 error = xfs_droplink(tp, ip);
2585 if (error)
2586 goto out_trans_cancel;
2587
2588 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2589 if (error) {
2590 ASSERT(error != -ENOENT);
2591 goto out_trans_cancel;
2592 }
2593
2594 /*
2595 * If this is a synchronous mount, make sure that the
2596 * remove transaction goes to disk before returning to
2597 * the user.
2598 */
2599 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2600 xfs_trans_set_sync(tp);
2601
2602 error = xfs_trans_commit(tp);
2603 if (error)
2604 goto std_return;
2605
2606 if (is_dir && xfs_inode_is_filestream(ip))
2607 xfs_filestream_deassociate(ip);
2608
2609 return 0;
2610
2611 out_trans_cancel:
2612 xfs_trans_cancel(tp);
2613 std_return:
2614 return error;
2615}
2616
2617/*
2618 * Enter all inodes for a rename transaction into a sorted array.
2619 */
2620#define __XFS_SORT_INODES 5
2621STATIC void
2622xfs_sort_for_rename(
2623 struct xfs_inode *dp1, /* in: old (source) directory inode */
2624 struct xfs_inode *dp2, /* in: new (target) directory inode */
2625 struct xfs_inode *ip1, /* in: inode of old entry */
2626 struct xfs_inode *ip2, /* in: inode of new entry */
2627 struct xfs_inode *wip, /* in: whiteout inode */
2628 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2629 int *num_inodes) /* in/out: inodes in array */
2630{
2631 int i, j;
2632
2633 ASSERT(*num_inodes == __XFS_SORT_INODES);
2634 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2635
2636 /*
2637 * i_tab contains a list of pointers to inodes. We initialize
2638 * the table here & we'll sort it. We will then use it to
2639 * order the acquisition of the inode locks.
2640 *
2641 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2642 */
2643 i = 0;
2644 i_tab[i++] = dp1;
2645 i_tab[i++] = dp2;
2646 i_tab[i++] = ip1;
2647 if (ip2)
2648 i_tab[i++] = ip2;
2649 if (wip)
2650 i_tab[i++] = wip;
2651 *num_inodes = i;
2652
2653 /*
2654 * Sort the elements via bubble sort. (Remember, there are at
2655 * most 5 elements to sort, so this is adequate.)
2656 */
2657 for (i = 0; i < *num_inodes; i++) {
2658 for (j = 1; j < *num_inodes; j++) {
2659 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2660 struct xfs_inode *temp = i_tab[j];
2661 i_tab[j] = i_tab[j-1];
2662 i_tab[j-1] = temp;
2663 }
2664 }
2665 }
2666}
2667
2668static int
2669xfs_finish_rename(
2670 struct xfs_trans *tp)
2671{
2672 /*
2673 * If this is a synchronous mount, make sure that the rename transaction
2674 * goes to disk before returning to the user.
2675 */
2676 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2677 xfs_trans_set_sync(tp);
2678
2679 return xfs_trans_commit(tp);
2680}
2681
2682/*
2683 * xfs_cross_rename()
2684 *
2685 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2686 */
2687STATIC int
2688xfs_cross_rename(
2689 struct xfs_trans *tp,
2690 struct xfs_inode *dp1,
2691 struct xfs_name *name1,
2692 struct xfs_inode *ip1,
2693 struct xfs_inode *dp2,
2694 struct xfs_name *name2,
2695 struct xfs_inode *ip2,
2696 int spaceres)
2697{
2698 int error = 0;
2699 int ip1_flags = 0;
2700 int ip2_flags = 0;
2701 int dp2_flags = 0;
2702
2703 /* Swap inode number for dirent in first parent */
2704 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2705 if (error)
2706 goto out_trans_abort;
2707
2708 /* Swap inode number for dirent in second parent */
2709 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2710 if (error)
2711 goto out_trans_abort;
2712
2713 /*
2714 * If we're renaming one or more directories across different parents,
2715 * update the respective ".." entries (and link counts) to match the new
2716 * parents.
2717 */
2718 if (dp1 != dp2) {
2719 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2720
2721 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2722 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2723 dp1->i_ino, spaceres);
2724 if (error)
2725 goto out_trans_abort;
2726
2727 /* transfer ip2 ".." reference to dp1 */
2728 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2729 error = xfs_droplink(tp, ip: dp2);
2730 if (error)
2731 goto out_trans_abort;
2732 xfs_bumplink(tp, ip: dp1);
2733 }
2734
2735 /*
2736 * Although ip1 isn't changed here, userspace needs
2737 * to be warned about the change, so that applications
2738 * relying on it (like backup ones), will properly
2739 * notify the change
2740 */
2741 ip1_flags |= XFS_ICHGTIME_CHG;
2742 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2743 }
2744
2745 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2746 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2747 dp2->i_ino, spaceres);
2748 if (error)
2749 goto out_trans_abort;
2750
2751 /* transfer ip1 ".." reference to dp2 */
2752 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2753 error = xfs_droplink(tp, ip: dp1);
2754 if (error)
2755 goto out_trans_abort;
2756 xfs_bumplink(tp, ip: dp2);
2757 }
2758
2759 /*
2760 * Although ip2 isn't changed here, userspace needs
2761 * to be warned about the change, so that applications
2762 * relying on it (like backup ones), will properly
2763 * notify the change
2764 */
2765 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2766 ip2_flags |= XFS_ICHGTIME_CHG;
2767 }
2768 }
2769
2770 if (ip1_flags) {
2771 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2772 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2773 }
2774 if (ip2_flags) {
2775 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2776 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2777 }
2778 if (dp2_flags) {
2779 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2780 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2781 }
2782 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2783 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2784 return xfs_finish_rename(tp);
2785
2786out_trans_abort:
2787 xfs_trans_cancel(tp);
2788 return error;
2789}
2790
2791/*
2792 * xfs_rename_alloc_whiteout()
2793 *
2794 * Return a referenced, unlinked, unlocked inode that can be used as a
2795 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2796 * crash between allocating the inode and linking it into the rename transaction
2797 * recovery will free the inode and we won't leak it.
2798 */
2799static int
2800xfs_rename_alloc_whiteout(
2801 struct mnt_idmap *idmap,
2802 struct xfs_name *src_name,
2803 struct xfs_inode *dp,
2804 struct xfs_inode **wip)
2805{
2806 struct xfs_inode *tmpfile;
2807 struct qstr name;
2808 int error;
2809
2810 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2811 ipp: &tmpfile);
2812 if (error)
2813 return error;
2814
2815 name.name = src_name->name;
2816 name.len = src_name->len;
2817 error = xfs_inode_init_security(inode: VFS_I(ip: tmpfile), dir: VFS_I(ip: dp), qstr: &name);
2818 if (error) {
2819 xfs_finish_inode_setup(ip: tmpfile);
2820 xfs_irele(ip: tmpfile);
2821 return error;
2822 }
2823
2824 /*
2825 * Prepare the tmpfile inode as if it were created through the VFS.
2826 * Complete the inode setup and flag it as linkable. nlink is already
2827 * zero, so we can skip the drop_nlink.
2828 */
2829 xfs_setup_iops(ip: tmpfile);
2830 xfs_finish_inode_setup(ip: tmpfile);
2831 VFS_I(ip: tmpfile)->i_state |= I_LINKABLE;
2832
2833 *wip = tmpfile;
2834 return 0;
2835}
2836
2837/*
2838 * xfs_rename
2839 */
2840int
2841xfs_rename(
2842 struct mnt_idmap *idmap,
2843 struct xfs_inode *src_dp,
2844 struct xfs_name *src_name,
2845 struct xfs_inode *src_ip,
2846 struct xfs_inode *target_dp,
2847 struct xfs_name *target_name,
2848 struct xfs_inode *target_ip,
2849 unsigned int flags)
2850{
2851 struct xfs_mount *mp = src_dp->i_mount;
2852 struct xfs_trans *tp;
2853 struct xfs_inode *wip = NULL; /* whiteout inode */
2854 struct xfs_inode *inodes[__XFS_SORT_INODES];
2855 int i;
2856 int num_inodes = __XFS_SORT_INODES;
2857 bool new_parent = (src_dp != target_dp);
2858 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2859 int spaceres;
2860 bool retried = false;
2861 int error, nospace_error = 0;
2862
2863 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2864
2865 if ((flags & RENAME_EXCHANGE) && !target_ip)
2866 return -EINVAL;
2867
2868 /*
2869 * If we are doing a whiteout operation, allocate the whiteout inode
2870 * we will be placing at the target and ensure the type is set
2871 * appropriately.
2872 */
2873 if (flags & RENAME_WHITEOUT) {
2874 error = xfs_rename_alloc_whiteout(idmap, src_name,
2875 dp: target_dp, wip: &wip);
2876 if (error)
2877 return error;
2878
2879 /* setup target dirent info as whiteout */
2880 src_name->type = XFS_DIR3_FT_CHRDEV;
2881 }
2882
2883 xfs_sort_for_rename(dp1: src_dp, dp2: target_dp, ip1: src_ip, ip2: target_ip, wip,
2884 i_tab: inodes, num_inodes: &num_inodes);
2885
2886retry:
2887 nospace_error = 0;
2888 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2889 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_rename, blocks: spaceres, rtextents: 0, flags: 0, tpp: &tp);
2890 if (error == -ENOSPC) {
2891 nospace_error = error;
2892 spaceres = 0;
2893 error = xfs_trans_alloc(mp, resp: &M_RES(mp)->tr_rename, blocks: 0, rtextents: 0, flags: 0,
2894 tpp: &tp);
2895 }
2896 if (error)
2897 goto out_release_wip;
2898
2899 /*
2900 * Attach the dquots to the inodes
2901 */
2902 error = xfs_qm_vop_rename_dqattach(inodes);
2903 if (error)
2904 goto out_trans_cancel;
2905
2906 /*
2907 * Lock all the participating inodes. Depending upon whether
2908 * the target_name exists in the target directory, and
2909 * whether the target directory is the same as the source
2910 * directory, we can lock from 2 to 5 inodes.
2911 */
2912 xfs_lock_inodes(ips: inodes, inodes: num_inodes, XFS_ILOCK_EXCL);
2913
2914 /*
2915 * Join all the inodes to the transaction. From this point on,
2916 * we can rely on either trans_commit or trans_cancel to unlock
2917 * them.
2918 */
2919 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2920 if (new_parent)
2921 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2922 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2923 if (target_ip)
2924 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2925 if (wip)
2926 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2927
2928 /*
2929 * If we are using project inheritance, we only allow renames
2930 * into our tree when the project IDs are the same; else the
2931 * tree quota mechanism would be circumvented.
2932 */
2933 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2934 target_dp->i_projid != src_ip->i_projid)) {
2935 error = -EXDEV;
2936 goto out_trans_cancel;
2937 }
2938
2939 /* RENAME_EXCHANGE is unique from here on. */
2940 if (flags & RENAME_EXCHANGE)
2941 return xfs_cross_rename(tp, dp1: src_dp, name1: src_name, ip1: src_ip,
2942 dp2: target_dp, name2: target_name, ip2: target_ip,
2943 spaceres);
2944
2945 /*
2946 * Try to reserve quota to handle an expansion of the target directory.
2947 * We'll allow the rename to continue in reservationless mode if we hit
2948 * a space usage constraint. If we trigger reservationless mode, save
2949 * the errno if there isn't any free space in the target directory.
2950 */
2951 if (spaceres != 0) {
2952 error = xfs_trans_reserve_quota_nblks(tp, ip: target_dp, dblocks: spaceres,
2953 rblocks: 0, force: false);
2954 if (error == -EDQUOT || error == -ENOSPC) {
2955 if (!retried) {
2956 xfs_trans_cancel(tp);
2957 xfs_blockgc_free_quota(ip: target_dp, iwalk_flags: 0);
2958 retried = true;
2959 goto retry;
2960 }
2961
2962 nospace_error = error;
2963 spaceres = 0;
2964 error = 0;
2965 }
2966 if (error)
2967 goto out_trans_cancel;
2968 }
2969
2970 /*
2971 * Check for expected errors before we dirty the transaction
2972 * so we can return an error without a transaction abort.
2973 */
2974 if (target_ip == NULL) {
2975 /*
2976 * If there's no space reservation, check the entry will
2977 * fit before actually inserting it.
2978 */
2979 if (!spaceres) {
2980 error = xfs_dir_canenter(tp, target_dp, target_name);
2981 if (error)
2982 goto out_trans_cancel;
2983 }
2984 } else {
2985 /*
2986 * If target exists and it's a directory, check that whether
2987 * it can be destroyed.
2988 */
2989 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2990 (!xfs_dir_isempty(target_ip) ||
2991 (VFS_I(ip: target_ip)->i_nlink > 2))) {
2992 error = -EEXIST;
2993 goto out_trans_cancel;
2994 }
2995 }
2996
2997 /*
2998 * Lock the AGI buffers we need to handle bumping the nlink of the
2999 * whiteout inode off the unlinked list and to handle dropping the
3000 * nlink of the target inode. Per locking order rules, do this in
3001 * increasing AG order and before directory block allocation tries to
3002 * grab AGFs because we grab AGIs before AGFs.
3003 *
3004 * The (vfs) caller must ensure that if src is a directory then
3005 * target_ip is either null or an empty directory.
3006 */
3007 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3008 if (inodes[i] == wip ||
3009 (inodes[i] == target_ip &&
3010 (VFS_I(ip: target_ip)->i_nlink == 1 || src_is_directory))) {
3011 struct xfs_perag *pag;
3012 struct xfs_buf *bp;
3013
3014 pag = xfs_perag_get(mp,
3015 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3016 error = xfs_read_agi(pag, tp, &bp);
3017 xfs_perag_put(pag);
3018 if (error)
3019 goto out_trans_cancel;
3020 }
3021 }
3022
3023 /*
3024 * Directory entry creation below may acquire the AGF. Remove
3025 * the whiteout from the unlinked list first to preserve correct
3026 * AGI/AGF locking order. This dirties the transaction so failures
3027 * after this point will abort and log recovery will clean up the
3028 * mess.
3029 *
3030 * For whiteouts, we need to bump the link count on the whiteout
3031 * inode. After this point, we have a real link, clear the tmpfile
3032 * state flag from the inode so it doesn't accidentally get misused
3033 * in future.
3034 */
3035 if (wip) {
3036 struct xfs_perag *pag;
3037
3038 ASSERT(VFS_I(wip)->i_nlink == 0);
3039
3040 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3041 error = xfs_iunlink_remove(tp, pag, ip: wip);
3042 xfs_perag_put(pag);
3043 if (error)
3044 goto out_trans_cancel;
3045
3046 xfs_bumplink(tp, ip: wip);
3047 VFS_I(ip: wip)->i_state &= ~I_LINKABLE;
3048 }
3049
3050 /*
3051 * Set up the target.
3052 */
3053 if (target_ip == NULL) {
3054 /*
3055 * If target does not exist and the rename crosses
3056 * directories, adjust the target directory link count
3057 * to account for the ".." reference from the new entry.
3058 */
3059 error = xfs_dir_createname(tp, target_dp, target_name,
3060 src_ip->i_ino, spaceres);
3061 if (error)
3062 goto out_trans_cancel;
3063
3064 xfs_trans_ichgtime(tp, target_dp,
3065 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3066
3067 if (new_parent && src_is_directory) {
3068 xfs_bumplink(tp, ip: target_dp);
3069 }
3070 } else { /* target_ip != NULL */
3071 /*
3072 * Link the source inode under the target name.
3073 * If the source inode is a directory and we are moving
3074 * it across directories, its ".." entry will be
3075 * inconsistent until we replace that down below.
3076 *
3077 * In case there is already an entry with the same
3078 * name at the destination directory, remove it first.
3079 */
3080 error = xfs_dir_replace(tp, target_dp, target_name,
3081 src_ip->i_ino, spaceres);
3082 if (error)
3083 goto out_trans_cancel;
3084
3085 xfs_trans_ichgtime(tp, target_dp,
3086 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3087
3088 /*
3089 * Decrement the link count on the target since the target
3090 * dir no longer points to it.
3091 */
3092 error = xfs_droplink(tp, ip: target_ip);
3093 if (error)
3094 goto out_trans_cancel;
3095
3096 if (src_is_directory) {
3097 /*
3098 * Drop the link from the old "." entry.
3099 */
3100 error = xfs_droplink(tp, ip: target_ip);
3101 if (error)
3102 goto out_trans_cancel;
3103 }
3104 } /* target_ip != NULL */
3105
3106 /*
3107 * Remove the source.
3108 */
3109 if (new_parent && src_is_directory) {
3110 /*
3111 * Rewrite the ".." entry to point to the new
3112 * directory.
3113 */
3114 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3115 target_dp->i_ino, spaceres);
3116 ASSERT(error != -EEXIST);
3117 if (error)
3118 goto out_trans_cancel;
3119 }
3120
3121 /*
3122 * We always want to hit the ctime on the source inode.
3123 *
3124 * This isn't strictly required by the standards since the source
3125 * inode isn't really being changed, but old unix file systems did
3126 * it and some incremental backup programs won't work without it.
3127 */
3128 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3129 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3130
3131 /*
3132 * Adjust the link count on src_dp. This is necessary when
3133 * renaming a directory, either within one parent when
3134 * the target existed, or across two parent directories.
3135 */
3136 if (src_is_directory && (new_parent || target_ip != NULL)) {
3137
3138 /*
3139 * Decrement link count on src_directory since the
3140 * entry that's moved no longer points to it.
3141 */
3142 error = xfs_droplink(tp, ip: src_dp);
3143 if (error)
3144 goto out_trans_cancel;
3145 }
3146
3147 /*
3148 * For whiteouts, we only need to update the source dirent with the
3149 * inode number of the whiteout inode rather than removing it
3150 * altogether.
3151 */
3152 if (wip)
3153 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3154 spaceres);
3155 else
3156 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3157 spaceres);
3158
3159 if (error)
3160 goto out_trans_cancel;
3161
3162 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3163 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3164 if (new_parent)
3165 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3166
3167 error = xfs_finish_rename(tp);
3168 if (wip)
3169 xfs_irele(ip: wip);
3170 return error;
3171
3172out_trans_cancel:
3173 xfs_trans_cancel(tp);
3174out_release_wip:
3175 if (wip)
3176 xfs_irele(ip: wip);
3177 if (error == -ENOSPC && nospace_error)
3178 error = nospace_error;
3179 return error;
3180}
3181
3182static int
3183xfs_iflush(
3184 struct xfs_inode *ip,
3185 struct xfs_buf *bp)
3186{
3187 struct xfs_inode_log_item *iip = ip->i_itemp;
3188 struct xfs_dinode *dip;
3189 struct xfs_mount *mp = ip->i_mount;
3190 int error;
3191
3192 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3193 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3194 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3195 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3196 ASSERT(iip->ili_item.li_buf == bp);
3197
3198 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3199
3200 /*
3201 * We don't flush the inode if any of the following checks fail, but we
3202 * do still update the log item and attach to the backing buffer as if
3203 * the flush happened. This is a formality to facilitate predictable
3204 * error handling as the caller will shutdown and fail the buffer.
3205 */
3206 error = -EFSCORRUPTED;
3207 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3208 mp, XFS_ERRTAG_IFLUSH_1)) {
3209 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3210 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3211 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3212 goto flush_out;
3213 }
3214 if (S_ISREG(VFS_I(ip)->i_mode)) {
3215 if (XFS_TEST_ERROR(
3216 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3217 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3218 mp, XFS_ERRTAG_IFLUSH_3)) {
3219 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3220 "%s: Bad regular inode %llu, ptr "PTR_FMT,
3221 __func__, ip->i_ino, ip);
3222 goto flush_out;
3223 }
3224 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3225 if (XFS_TEST_ERROR(
3226 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3227 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3228 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3229 mp, XFS_ERRTAG_IFLUSH_4)) {
3230 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3231 "%s: Bad directory inode %llu, ptr "PTR_FMT,
3232 __func__, ip->i_ino, ip);
3233 goto flush_out;
3234 }
3235 }
3236 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3237 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3238 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3239 "%s: detected corrupt incore inode %llu, "
3240 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3241 __func__, ip->i_ino,
3242 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3243 ip->i_nblocks, ip);
3244 goto flush_out;
3245 }
3246 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3247 mp, XFS_ERRTAG_IFLUSH_6)) {
3248 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3249 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3250 __func__, ip->i_ino, ip->i_forkoff, ip);
3251 goto flush_out;
3252 }
3253
3254 /*
3255 * Inode item log recovery for v2 inodes are dependent on the flushiter
3256 * count for correct sequencing. We bump the flush iteration count so
3257 * we can detect flushes which postdate a log record during recovery.
3258 * This is redundant as we now log every change and hence this can't
3259 * happen but we need to still do it to ensure backwards compatibility
3260 * with old kernels that predate logging all inode changes.
3261 */
3262 if (!xfs_has_v3inodes(mp))
3263 ip->i_flushiter++;
3264
3265 /*
3266 * If there are inline format data / attr forks attached to this inode,
3267 * make sure they are not corrupt.
3268 */
3269 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3270 xfs_ifork_verify_local_data(ip))
3271 goto flush_out;
3272 if (xfs_inode_has_attr_fork(ip) &&
3273 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3274 xfs_ifork_verify_local_attr(ip))
3275 goto flush_out;
3276
3277 /*
3278 * Copy the dirty parts of the inode into the on-disk inode. We always
3279 * copy out the core of the inode, because if the inode is dirty at all
3280 * the core must be.
3281 */
3282 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3283
3284 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3285 if (!xfs_has_v3inodes(mp)) {
3286 if (ip->i_flushiter == DI_MAX_FLUSH)
3287 ip->i_flushiter = 0;
3288 }
3289
3290 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3291 if (xfs_inode_has_attr_fork(ip))
3292 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3293
3294 /*
3295 * We've recorded everything logged in the inode, so we'd like to clear
3296 * the ili_fields bits so we don't log and flush things unnecessarily.
3297 * However, we can't stop logging all this information until the data
3298 * we've copied into the disk buffer is written to disk. If we did we
3299 * might overwrite the copy of the inode in the log with all the data
3300 * after re-logging only part of it, and in the face of a crash we
3301 * wouldn't have all the data we need to recover.
3302 *
3303 * What we do is move the bits to the ili_last_fields field. When
3304 * logging the inode, these bits are moved back to the ili_fields field.
3305 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3306 * we know that the information those bits represent is permanently on
3307 * disk. As long as the flush completes before the inode is logged
3308 * again, then both ili_fields and ili_last_fields will be cleared.
3309 */
3310 error = 0;
3311flush_out:
3312 spin_lock(lock: &iip->ili_lock);
3313 iip->ili_last_fields = iip->ili_fields;
3314 iip->ili_fields = 0;
3315 iip->ili_fsync_fields = 0;
3316 spin_unlock(lock: &iip->ili_lock);
3317
3318 /*
3319 * Store the current LSN of the inode so that we can tell whether the
3320 * item has moved in the AIL from xfs_buf_inode_iodone().
3321 */
3322 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3323 &iip->ili_item.li_lsn);
3324
3325 /* generate the checksum. */
3326 xfs_dinode_calc_crc(mp, dip);
3327 return error;
3328}
3329
3330/*
3331 * Non-blocking flush of dirty inode metadata into the backing buffer.
3332 *
3333 * The caller must have a reference to the inode and hold the cluster buffer
3334 * locked. The function will walk across all the inodes on the cluster buffer it
3335 * can find and lock without blocking, and flush them to the cluster buffer.
3336 *
3337 * On successful flushing of at least one inode, the caller must write out the
3338 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3339 * the caller needs to release the buffer. On failure, the filesystem will be
3340 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3341 * will be returned.
3342 */
3343int
3344xfs_iflush_cluster(
3345 struct xfs_buf *bp)
3346{
3347 struct xfs_mount *mp = bp->b_mount;
3348 struct xfs_log_item *lip, *n;
3349 struct xfs_inode *ip;
3350 struct xfs_inode_log_item *iip;
3351 int clcount = 0;
3352 int error = 0;
3353
3354 /*
3355 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3356 * will remove itself from the list.
3357 */
3358 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3359 iip = (struct xfs_inode_log_item *)lip;
3360 ip = iip->ili_inode;
3361
3362 /*
3363 * Quick and dirty check to avoid locks if possible.
3364 */
3365 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3366 continue;
3367 if (xfs_ipincount(ip))
3368 continue;
3369
3370 /*
3371 * The inode is still attached to the buffer, which means it is
3372 * dirty but reclaim might try to grab it. Check carefully for
3373 * that, and grab the ilock while still holding the i_flags_lock
3374 * to guarantee reclaim will not be able to reclaim this inode
3375 * once we drop the i_flags_lock.
3376 */
3377 spin_lock(lock: &ip->i_flags_lock);
3378 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3379 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3380 spin_unlock(lock: &ip->i_flags_lock);
3381 continue;
3382 }
3383
3384 /*
3385 * ILOCK will pin the inode against reclaim and prevent
3386 * concurrent transactions modifying the inode while we are
3387 * flushing the inode. If we get the lock, set the flushing
3388 * state before we drop the i_flags_lock.
3389 */
3390 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3391 spin_unlock(lock: &ip->i_flags_lock);
3392 continue;
3393 }
3394 __xfs_iflags_set(ip, XFS_IFLUSHING);
3395 spin_unlock(lock: &ip->i_flags_lock);
3396
3397 /*
3398 * Abort flushing this inode if we are shut down because the
3399 * inode may not currently be in the AIL. This can occur when
3400 * log I/O failure unpins the inode without inserting into the
3401 * AIL, leaving a dirty/unpinned inode attached to the buffer
3402 * that otherwise looks like it should be flushed.
3403 */
3404 if (xlog_is_shutdown(log: mp->m_log)) {
3405 xfs_iunpin_wait(ip);
3406 xfs_iflush_abort(ip);
3407 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3408 error = -EIO;
3409 continue;
3410 }
3411
3412 /* don't block waiting on a log force to unpin dirty inodes */
3413 if (xfs_ipincount(ip)) {
3414 xfs_iflags_clear(ip, XFS_IFLUSHING);
3415 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3416 continue;
3417 }
3418
3419 if (!xfs_inode_clean(ip))
3420 error = xfs_iflush(ip, bp);
3421 else
3422 xfs_iflags_clear(ip, XFS_IFLUSHING);
3423 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3424 if (error)
3425 break;
3426 clcount++;
3427 }
3428
3429 if (error) {
3430 /*
3431 * Shutdown first so we kill the log before we release this
3432 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3433 * of the log, failing it before the _log_ is shut down can
3434 * result in the log tail being moved forward in the journal
3435 * on disk because log writes can still be taking place. Hence
3436 * unpinning the tail will allow the ICREATE intent to be
3437 * removed from the log an recovery will fail with uninitialised
3438 * inode cluster buffers.
3439 */
3440 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3441 bp->b_flags |= XBF_ASYNC;
3442 xfs_buf_ioend_fail(bp);
3443 return error;
3444 }
3445
3446 if (!clcount)
3447 return -EAGAIN;
3448
3449 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3450 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3451 return 0;
3452
3453}
3454
3455/* Release an inode. */
3456void
3457xfs_irele(
3458 struct xfs_inode *ip)
3459{
3460 trace_xfs_irele(ip, _RET_IP_);
3461 iput(VFS_I(ip));
3462}
3463
3464/*
3465 * Ensure all commited transactions touching the inode are written to the log.
3466 */
3467int
3468xfs_log_force_inode(
3469 struct xfs_inode *ip)
3470{
3471 xfs_csn_t seq = 0;
3472
3473 xfs_ilock(ip, XFS_ILOCK_SHARED);
3474 if (xfs_ipincount(ip))
3475 seq = ip->i_itemp->ili_commit_seq;
3476 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3477
3478 if (!seq)
3479 return 0;
3480 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3481}
3482
3483/*
3484 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3485 * abide vfs locking order (lowest pointer value goes first) and breaking the
3486 * layout leases before proceeding. The loop is needed because we cannot call
3487 * the blocking break_layout() with the iolocks held, and therefore have to
3488 * back out both locks.
3489 */
3490static int
3491xfs_iolock_two_inodes_and_break_layout(
3492 struct inode *src,
3493 struct inode *dest)
3494{
3495 int error;
3496
3497 if (src > dest)
3498 swap(src, dest);
3499
3500retry:
3501 /* Wait to break both inodes' layouts before we start locking. */
3502 error = break_layout(inode: src, wait: true);
3503 if (error)
3504 return error;
3505 if (src != dest) {
3506 error = break_layout(inode: dest, wait: true);
3507 if (error)
3508 return error;
3509 }
3510
3511 /* Lock one inode and make sure nobody got in and leased it. */
3512 inode_lock(inode: src);
3513 error = break_layout(inode: src, wait: false);
3514 if (error) {
3515 inode_unlock(inode: src);
3516 if (error == -EWOULDBLOCK)
3517 goto retry;
3518 return error;
3519 }
3520
3521 if (src == dest)
3522 return 0;
3523
3524 /* Lock the other inode and make sure nobody got in and leased it. */
3525 inode_lock_nested(inode: dest, subclass: I_MUTEX_NONDIR2);
3526 error = break_layout(inode: dest, wait: false);
3527 if (error) {
3528 inode_unlock(inode: src);
3529 inode_unlock(inode: dest);
3530 if (error == -EWOULDBLOCK)
3531 goto retry;
3532 return error;
3533 }
3534
3535 return 0;
3536}
3537
3538static int
3539xfs_mmaplock_two_inodes_and_break_dax_layout(
3540 struct xfs_inode *ip1,
3541 struct xfs_inode *ip2)
3542{
3543 int error;
3544 bool retry;
3545 struct page *page;
3546
3547 if (ip1->i_ino > ip2->i_ino)
3548 swap(ip1, ip2);
3549
3550again:
3551 retry = false;
3552 /* Lock the first inode */
3553 xfs_ilock(ip: ip1, XFS_MMAPLOCK_EXCL);
3554 error = xfs_break_dax_layouts(inode: VFS_I(ip: ip1), retry: &retry);
3555 if (error || retry) {
3556 xfs_iunlock(ip: ip1, XFS_MMAPLOCK_EXCL);
3557 if (error == 0 && retry)
3558 goto again;
3559 return error;
3560 }
3561
3562 if (ip1 == ip2)
3563 return 0;
3564
3565 /* Nested lock the second inode */
3566 xfs_ilock(ip: ip2, lock_flags: xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, subclass: 1));
3567 /*
3568 * We cannot use xfs_break_dax_layouts() directly here because it may
3569 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3570 * for this nested lock case.
3571 */
3572 page = dax_layout_busy_page(mapping: VFS_I(ip: ip2)->i_mapping);
3573 if (page && page_ref_count(page) != 1) {
3574 xfs_iunlock(ip: ip2, XFS_MMAPLOCK_EXCL);
3575 xfs_iunlock(ip: ip1, XFS_MMAPLOCK_EXCL);
3576 goto again;
3577 }
3578
3579 return 0;
3580}
3581
3582/*
3583 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3584 * mmap activity.
3585 */
3586int
3587xfs_ilock2_io_mmap(
3588 struct xfs_inode *ip1,
3589 struct xfs_inode *ip2)
3590{
3591 int ret;
3592
3593 ret = xfs_iolock_two_inodes_and_break_layout(src: VFS_I(ip: ip1), dest: VFS_I(ip: ip2));
3594 if (ret)
3595 return ret;
3596
3597 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3598 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3599 if (ret) {
3600 inode_unlock(inode: VFS_I(ip: ip2));
3601 if (ip1 != ip2)
3602 inode_unlock(inode: VFS_I(ip: ip1));
3603 return ret;
3604 }
3605 } else
3606 filemap_invalidate_lock_two(mapping1: VFS_I(ip: ip1)->i_mapping,
3607 mapping2: VFS_I(ip: ip2)->i_mapping);
3608
3609 return 0;
3610}
3611
3612/* Unlock both inodes to allow IO and mmap activity. */
3613void
3614xfs_iunlock2_io_mmap(
3615 struct xfs_inode *ip1,
3616 struct xfs_inode *ip2)
3617{
3618 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3619 xfs_iunlock(ip: ip2, XFS_MMAPLOCK_EXCL);
3620 if (ip1 != ip2)
3621 xfs_iunlock(ip: ip1, XFS_MMAPLOCK_EXCL);
3622 } else
3623 filemap_invalidate_unlock_two(mapping1: VFS_I(ip: ip1)->i_mapping,
3624 mapping2: VFS_I(ip: ip2)->i_mapping);
3625
3626 inode_unlock(inode: VFS_I(ip: ip2));
3627 if (ip1 != ip2)
3628 inode_unlock(inode: VFS_I(ip: ip1));
3629}
3630
3631/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3632void
3633xfs_iunlock2_remapping(
3634 struct xfs_inode *ip1,
3635 struct xfs_inode *ip2)
3636{
3637 xfs_iflags_clear(ip: ip1, XFS_IREMAPPING);
3638
3639 if (ip1 != ip2)
3640 xfs_iunlock(ip: ip1, XFS_MMAPLOCK_SHARED);
3641 xfs_iunlock(ip: ip2, XFS_MMAPLOCK_EXCL);
3642
3643 if (ip1 != ip2)
3644 inode_unlock_shared(inode: VFS_I(ip: ip1));
3645 inode_unlock(inode: VFS_I(ip: ip2));
3646}
3647
3648/*
3649 * Reload the incore inode list for this inode. Caller should ensure that
3650 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3651 * preventing other threads from executing.
3652 */
3653int
3654xfs_inode_reload_unlinked_bucket(
3655 struct xfs_trans *tp,
3656 struct xfs_inode *ip)
3657{
3658 struct xfs_mount *mp = tp->t_mountp;
3659 struct xfs_buf *agibp;
3660 struct xfs_agi *agi;
3661 struct xfs_perag *pag;
3662 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3663 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3664 xfs_agino_t prev_agino, next_agino;
3665 unsigned int bucket;
3666 bool foundit = false;
3667 int error;
3668
3669 /* Grab the first inode in the list */
3670 pag = xfs_perag_get(mp, agno);
3671 error = xfs_ialloc_read_agi(pag, tp, &agibp);
3672 xfs_perag_put(pag);
3673 if (error)
3674 return error;
3675
3676 /*
3677 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3678 * incore unlinked list pointers for this inode. Check once more to
3679 * see if we raced with anyone else to reload the unlinked list.
3680 */
3681 if (!xfs_inode_unlinked_incomplete(ip)) {
3682 foundit = true;
3683 goto out_agibp;
3684 }
3685
3686 bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3687 agi = agibp->b_addr;
3688
3689 trace_xfs_inode_reload_unlinked_bucket(ip);
3690
3691 xfs_info_ratelimited(mp,
3692 "Found unrecovered unlinked inode 0x%x in AG 0x%x. Initiating list recovery.",
3693 agino, agno);
3694
3695 prev_agino = NULLAGINO;
3696 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3697 while (next_agino != NULLAGINO) {
3698 struct xfs_inode *next_ip = NULL;
3699
3700 /* Found this caller's inode, set its backlink. */
3701 if (next_agino == agino) {
3702 next_ip = ip;
3703 next_ip->i_prev_unlinked = prev_agino;
3704 foundit = true;
3705 goto next_inode;
3706 }
3707
3708 /* Try in-memory lookup first. */
3709 next_ip = xfs_iunlink_lookup(pag, next_agino);
3710 if (next_ip)
3711 goto next_inode;
3712
3713 /* Inode not in memory, try reloading it. */
3714 error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3715 next_agino);
3716 if (error)
3717 break;
3718
3719 /* Grab the reloaded inode. */
3720 next_ip = xfs_iunlink_lookup(pag, next_agino);
3721 if (!next_ip) {
3722 /* No incore inode at all? We reloaded it... */
3723 ASSERT(next_ip != NULL);
3724 error = -EFSCORRUPTED;
3725 break;
3726 }
3727
3728next_inode:
3729 prev_agino = next_agino;
3730 next_agino = next_ip->i_next_unlinked;
3731 }
3732
3733out_agibp:
3734 xfs_trans_brelse(tp, agibp);
3735 /* Should have found this inode somewhere in the iunlinked bucket. */
3736 if (!error && !foundit)
3737 error = -EFSCORRUPTED;
3738 return error;
3739}
3740
3741/* Decide if this inode is missing its unlinked list and reload it. */
3742int
3743xfs_inode_reload_unlinked(
3744 struct xfs_inode *ip)
3745{
3746 struct xfs_trans *tp;
3747 int error;
3748
3749 error = xfs_trans_alloc_empty(mp: ip->i_mount, tpp: &tp);
3750 if (error)
3751 return error;
3752
3753 xfs_ilock(ip, XFS_ILOCK_SHARED);
3754 if (xfs_inode_unlinked_incomplete(ip))
3755 error = xfs_inode_reload_unlinked_bucket(tp, ip);
3756 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3757 xfs_trans_cancel(tp);
3758
3759 return error;
3760}
3761

source code of linux/fs/xfs/xfs_inode.c